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Identifying untapped opportunities for crop productionimprovementin
current cropland is crucial to guide food availability interventions. Here

we integrated an agronomically robust bottom-up approach with machine
learning to generate global maps of yield potential of high resolution (ca.
1km?at the Equator) and accuracy for maize, wheat and rice. These maps
serve as arobust reference to benchmark farmers’yields in the context of
current cropping systems and water regimes and can help to identify areas
with large roomtoincrease crop yields.

Meeting future food demand without massive land conversion depends
on the capacity of existing cropland to support higher yields'. Esti-
mating yield potential (Ypot), that is, the maximum yield of a locally
adapted crop cultivar, serves as a basis for identifying areas with large
room to increase crop yields and provides essential input to studies
assessing food security, land use and climate change from local to
globallevels®*. Because of spatial and temporal variationin the factors
governing Ypot and limitations to achieve perfection in crop and soil
management, measuring Ypot viafield experimentation is not feasible
at large spatial scales. Alternatively, well-validated crop simulation
models, coupled with high-quality weather, soil and cropping system
data, canbe used to estimate Ypot at local, regional and global levels*.
Consequently, most large-scale studies rely on crop simulation models
to estimate Ypot.

While there is consensus on the use of crop modelling to esti-
mate Ypot, there is considerable debate about the proper spatial
framework to use. Onthe one hand, simulations following ‘top-down’
approachesrely onglobal crop models lackinglocal validation, gridded
synthetic climate and soil data, and rough assumptions concerning
cropping systems and water regimes’. Yet, they allow estimation of
Ypot at global scale and high resolution (for example, 5 arc-minutes
(ref. 5)) with a modest investment of time and effort. On the other
hand, so-called bottom-up approaches are based on sites strategi-
cally selected to represent the largest fraction of the harvested area
and prioritize using measured weather and soil data, local agronomic

data and locally calibrated and evaluated crop models*. Not surpris-
ingly, this approach leads to more accurate local Ypot estimates than
top-down approaches®. However, the better performance of bottom-up
approachesis at the expense of higher data requirements and associ-
ated time investment in data collection and model calibration and
evaluation, making the application of this approach challenging in
data-scarce regions’.

Over the past decade, substantial improvements in computing
power, spatial information onsoil and climate, and advancementin the
use of machine learning (ML) for geospatial analysis have provided new
toolsthat can help address the limitations of bottom-up and top-down
approaches®’. Here, we developed a method, hereafter referred to as
‘metamodel’, to estimate gridded Ypot globally. The metamodel was
applied ata30-arc-second resolution (approximately 1 km?at the Equa-
tor) to three main cereal crops (maize, wheat and rice) separately for
irrigated and rainfed conditions.

The metamodel approach comprises three steps (Fig.1). Thefirst
step consists of abottom-up crop modelling approach developed for
the Global Yield Gap Atlas (GYGA) that results inlocally evaluated Ypot
estimates for specific sites selected to represent the harvested area
distribution. The second step involves traininga ML model with these
site-specific Ypot values and gridded climate, soil and cropping system
data.Inthelast step, the ML modelis used to estimate gridded Ypot and
associated prediction uncertainty in areas harvested with agiven crop
and water regime combination. We restricted ML model predictions
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tothe environmental range across the GYGA Ypotsites that were used
to train the ML model.

Our high-resolution maps of yield potential shown in Fig. 2 over-
come limitations of bottom-up approaches. By using state-of-the-art
geospatial analytical tools'>", we show that our Ypot maps cover
90-95% of the land planted with these crops (Extended Data Fig.1and
Supplementary Section 1) without losing much precisioninrelation to
GYGA Ypot (root mean square error (RMSE) of 13% to 18%) (Extended
Data Figs. 2-4 and Supplementary Sections 2 and 3), ensuring the
local relevance of the gridded Ypot. Additionally, the metamodel
approach is flexible enough to accommodate new data, for example,
as new site-specific data on Ypot become available from bottom-up
approaches like GYGA, the metamodel can be easily updated and
applied to generate updated Ypot data at high spatial resolution, ulti-
mately leading to more precise global maps of Ypot.

Our approach also has clear advantages relative to published
top-down approaches. As shown in Extended Data Figs. 5-7, Supple-
mentary Section 3 and previous studies*®, estimates of Ypot from
top-down approaches are biased and lack local relevance. For exam-
ple, Ypot estimates much lower than average farmer yields are clear
evidence of Ypot underestimation. That is the case for 21% of the Ypot
estimates for rainfed maize in the US Midwest froma popular top-down
approach’® (Extended Data Fig. 7), which highlights the limitations of
using top-down Ypot values that have not been validated with out-
comes from bottom-up approaches. In contrast, our estimations of
Ypot were consistently above farmer yields.

The metamodel approach to derive gridded Ypot also has limi-
tations. First, our uncertainty assessment is incomplete because it
does not consider the uncertainty of GYGA Ypot estimations, which
islarger in places with lack of measured weather data and detailed
soil maps’. Errors in GYGA Ypot propagate to the metamodel, affect-
ing its accuracy. Thus, more and better locally measured weather
and soil data can help improve GYGA Ypot and metamodel accuracy.
Second, the metamodel is weaker in reproducing Ypot at the lower
and upper extremes of the Ypot range (Supplementary Section 2).
These biases are common in ML algorithms such as random forest
when the number of observations in extreme conditions is limited'>".
The GYGA Ypot sites used for model training were selected prioritiz-
ing the most important crop producing regions accounting for the
largest portion of national crop area. Thus, it is not surprising that the
highest metamodel uncertainty occursin marginal lands with low and
highly variable Ypot, relatively low crop area and few GYGA sites, where
the gridded Ypot tends to exceed GYGA Ypot (Extended Data Figs. 2
and 4). Likewise, there are few sites with very high GYGA Ypot, which
might explain the tendency of the metamodel to underestimate yield
potentialin those cases. Although more complex ML models could be
explored, more is likely to be gained with better quality global data
and more training sites derived from bottom-up approaches in such
environments. In addition, we note that the metamodel cannot be
applied to crop producing regions where climate and soil types differ
from those used for model training (Extended Data Fig. 1). For these
regions, generating Ypot using bottom-up approaches is advisable
rather than using the metamodel outside the environmental range
within which it was trained’.

While our maps are a robust reference to benchmark farmers’
yields in the context of current cropping systems and water regimes,
we acknowledge theinherent uncertainty from the databases we used,
including crop area distribution and environmental variables. Addi-
tionally, our maps represent asnapshot of average yield potential ata
short period in time. Still, they serve as valuable tools for identifying
regions with the greatest potential for increasing crop output through
agronomic management and for studies assessing food security, land
use change and climate change at local to global levels. Moreover,
our method s flexible, allowing for easy updates as newer global data
become available. Likewise, it remains essential to periodically update

croppingGs;igtgﬁ? PeaEEE TSN
climate <2/ T TANSNN
and soildata /1NN

[ ]
9 Ypot of selected sites

Local weather, soil and
cropping system data

Fig.1|Schematic representation of the metamodel. The metamodelintegrates
abottom-up approach with machine learning (ML) to estimate high-resolution
globalyield potential (Ypot). Metamodel steps: (1) Ypot estimation for
strategically selected sites using locally calibrated and evaluated crop simulation
models and the best available observed weather, soil and cropping system

data. (2) Training of a ML algorithm with site-specific Ypot and relevant gridded
environmental predictors. (3) Global gridded Ypot estimation for the area of
applicability of the ML model and evaluation of its prediction uncertainty.

underlying point-based yield potential data to reflect changes in cli-
mate, genetics and cropping systems over time.

Methods

Yield potential definitions

Yield potential (Yp) is defined as the maximum yield of alocally adapted
crop cultivar as determined by solar radiation, temperature, carbon
dioxide and genetic traits that govern length of growing period, light
interception by the crop canopy, its conversion to biomass and parti-
tioning of biomass to the harvestable organs®. In the case of rainfed
crops, water-limited yield potential (Yw) is also determined by pre-
cipitation patterns and soil properties influencing the crop water
balance*. Herein, we use Ypot to refer to the Yp of irrigated crops and/
or the Yw of rainfed crops. The difference between Ypot and average
farmeryieldsis the yield gap®.

Yield potential for selected sites from abottom-up approach
Our framework builds on the site-specific Ypot estimates of the GYGA.
This long-running project has become a reference for agronomically
robust Ypot and yield gap data, providing valuable information for
food security risk assessments of large regions and countries. GYGA
follows a bottom-up protocol for site selection, data collection and
crop modelling and makes use of best available data sources, giving
priority to measured weather, fine-resolution soil maps and locally
validated crop calendars. Over the past 10 years, this protocol has
been applied to quantify yield gaps in more than 70 countries and for
multiple cropsinrainfed andirrigated conditions. This section briefly
introduces this protocol; more details can be found at http://www.
yieldgap.org and references therein.

First,ateach countryand cropincludedin GYGA, sites were strate-
gically selected on the basis of GYGA climate zones (CZ)"* and harvested
area distribution. A CZ is a region with similar climatic conditions as
defined by its growing degree days (that is, growing season length in
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Fig.2|Global gridded yield potential for the three main cereal crops around
year2020. Yield potential (Ypot) of irrigated and rainfed maize, wheat and rice was
estimated at a30-arc-second spatial resolution with a machine learning metamodel

trained with site-specific Ypot values from the Global Yield Gap Atlas (GYGA, www.
yieldgap.org). Predictions were restricted to the metamodel area of applicability
(Extended Data Fig.1). Prediction uncertainty is shown in Extended Data Fig. 5.

thermaltime), aridity index (water-stress indicator) and temperature
seasonality. On average, the size of each GYGA CZ s ca. 0.3 million km?,
whichissmaller than other available agroecological zone frameworks™.
Within the most important CZs for the target crop, representative
sites with long-term weather records were selected to represent the
harvested area of agiven crop. For this purpose, we considered the har-
vested area within a1l00-km-radius buffer around each site constrained
toits corresponding CZ borders such that the buffer does not extend
to different CZs. On average, the buffers of selected sites include ca.
100,000 haof the given crop®. Next, the best available observed data
for these sites (and their buffers) were retrieved with help from local
experts in agronomy, including weather, soil and crop management
(for example, cultivar maturity, sowing and harvest dates, and plant-
ing density). Soil data are needed only for rainfed conditions, and the
three to five most dominant soil types where the target crop is grown
were selected for each buffer. These datasets, subject to thorough
quality control, are the foundation of crop simulation model per-
formance. Then, crop simulation models were locally calibrated and
evaluated in their capacity to reproduce yields of well-managed local
field experiments with adapted and commonly used cultivars where
yield-limiting and reducing factors had been effectively controlled.
The Ypot of selected sites was subsequently simulated with calibrated
crop models for multiple years to capture the inter-annual climate
variability. These steps resulted in high-quality, unbiased site-specific
Ypotestimates that captured the variability in climates, soils and farm-
ers’ cropping systems. Up to our last access date (10 June 2023), GYGA
provided Ypot data for 543, 573 and 325 sites (weather stations) for,
respectively, maize, wheat and rice distributed across 74 countries
(Extended DataFig. 8).

Selection of gridded environmental predictors for the
metamodel

A completelist of environmental predictors, descriptions, spatial reso-
lution, sources and references is provided in Supplementary Table 1.
Just as crop simulation model performance relies on good local data,
selecting relevant gridded environmental predictors of spatial varia-
tion in Ypot is key for metamodel performance. For a given crop and

cultivar, the spatial variation inirrigated Yp is a function of climatic
conditions duringits growing season, mainly solar radiation and tem-
perature, while rainfed Yw variation also depends on soil properties
and rainfall amount and distribution®. Considering these factors, we
created crop-specific climatic Ypot predictors from crop calendar
information and monthly gridded climatic data. To account for vari-
ations in climatic conditions during the cropping season that may
affect the crop differently depending on its growing cycle stage, we
split the crop growing season into three equal thermal-time periods
(early vegetative, flowering and grain filling) and computed climatic
variables for each period. Up to three crops per year can be grown in
(sub)tropical environments with ample water supply from rainfalland/
orirrigation. Inthose cases, we split each cropping season of each crop
cycle into three periods but then computed average climate means
for each period across the crop cycles as our goal was to estimate the
average Ypot for agiven grid.

Inaddition, weincluded a set of annual bioclimatic variables that
might help to explain spatial variation in Ypot. To that end, we con-
sidered those variables used to define CZs (annual growing degree
days, aridity index and temperature seasonality), together with other
variables describing seasonal rainfall and temperature patterns (for
example, precipitation of the warmest quarter of the year). These vari-
ables have demonstrated value for spatial prediction of the suitability
and distribution of plant species, including cereal crops'®. Moreover,
when used for global Ypot prediction, these bioclimatic variables
resulted in better ML model performance than the use of monthly
values (for example, average precipitation of each month of the year)
asmodel predictors®.

Weretrieved dataon plant-available soil water holding capacity in
the first and second metre of soil depth to account for the capacity of
the soil to supply water during rain-free periods (note that these were
used only for Yw and not for Yp predictions). For model training and
validation, we considered the climatic conditions at the GYGA Ypot
sites and the average soil and cropping system properties within a
100-km-radius buffer around eachsite.

Finally, we used harvested areamaps from the Spatial Production
Allocation Model (SPAM)" to define the target area of metamodel
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predictions for each crop and water regime. We chose SPAM maps
because they remain the only source that provides crop- and
water-regime-specific harvested area maps for the three crops (maize,
wheat and rice) with global coverage. We note that crop harvested
areawasnot used asapredictorinthe metamodel, so SPAM uncertain-
ties have noimpact on metamodel performance.

Machine-learning algorithmused in the metamodel

We used random forest regression as ML algorithm in the metamodel.
We trained the random forest regression model with site-specific Ypot
from GYGA and gridded environmental predictors to generate global
gridded Ypot estimates for maize, wheat andrice. This algorithm is flex-
ibleenoughto capture the complexinteractions between crops, climate
conditions and soil properties that result in nonlinear yield responses
to variation in environmental conditions and has a relatively low com-
putational cost®. Such low computational cost was required due to the
many iterations of the spatial cross-validation procedure (see below).
We tuned the algorithm to avoid overfitting by selecting the random
forest tuning parameters (number of covariables considered in each
splitand minimum node ssize for asplit) thatresulted in the lowest spa-
tially cross-validated RMSE for each crop and water regime (see below).

Metamodel validation method

We evaluated metamodel performance by comparing GYGA Ypot
with metamodel predictions derived using a spatial cross-validation
method: the nearest-neighbour-distance-matching leave-one-out
cross-validation (NNDM LOO CV)'°, which is explained below. In the
present study, spatial cross-validation and NNDM LOO CV are used
interchangeably. We used the following performance metrics: the RMSE
derived from the spatial cross-validation, expressed as absolute value
and as percentage of the average GYGA Ypot (that is, relative RMSE or
normalized RMSE), concordance correlation coefficient, coefficient
of determination and mean bias error. In addition, we calculated the
percentage of the error due to lack of accuracy and precision. Only
the relative RMSE is shown in the main text; other metrics (and their
corresponding references) are shown in Supplementary Section 2.

To assess how wellamodel performsin newssites in the absence of
anindependent validation dataset, model validationis usually done by
partitioning the datainto training and testing subsets. When sites are
randomly distributed, the data partitioning might be done randomly.
For example, the model might be trained with all observations but one
(theleft-out), andits prediction error tested on the left-out, repeating
this procedure for each observation. This method is the leave-one-out
cross-validation (LOO CV).However, when observations are clusteredin
specific regions and spatially autocorrelated, as is the case with data of
our study (Extended Data Fig. 8), this validation strategy would inflate
the prediction performance metrics. In such cases, the data partition-
ing strategy must consider the spatial structure of the data, which can
be done with the NNDM LOO CV method™.

NNDM LOO CV is a modification of the LOO CV in which obser-
vations near testing sites are excluded for model training. Sites to
be excluded are defined such that the distribution function of dis-
tances between testing sites and their nearest training sites matches
the nearest-neighbour distance distribution function between the
prediction area and their nearest training sites. In other words, we
validated the capacity of the metamodel to reproduce each GYGA Ypot
while excluding that GYGA Ypot and nearest neighbours from model
training. The neighbours to be excluded for each GYGA Ypot during
the NNDM LOO CV procedure were defined such that the distances
between GYGA Ypot used for testing and their nearest GYGA Ypot used
for model training match the distances between the prediction grid
cellsand their nearest GYGA Ypot (Extended DataFig. 9). For each crop
and water regime, the prediction grid was defined as those areas with
more than 0.5% of crop harvested area according to SPAM at a spatial
resolution of 5 arc-minutes (9.3 km at the Equator).

Delineation of metamodel area of applicability

ML models cangenerate predictions for any environment, soit is pos-
sible to estimate global gridded Ypot independently of the number
and distribution of the bottom-up local Ypot used to train it. How-
ever, extrapolating to environments outside the environmental range
captured by sites with bottom-up estimates leads to meaningless
predictions with unknown uncertainty’. Therefore, itisimperative to
constrainthe predictions to the area of applicability of the metamodel.
By delineating the geographical scope inwhich the metamodel remains
representative and with known accuracy, therisk of disseminating sub-
stantial errors is mitigated, ensuring the reliability and meaningfulness
of gridded Ypot predictions.

We delineated the area of applicability of the metamodel following
Meyer and Pebesma'. First, we computed a dissimilarity index between
the biophysical conditions in the training data (GYGA Ypot) and the
target prediction area, defined as the global gridded harvested area
of each crop and water regime as reported in SPAM at a 5-arc-minute
resolution. For each grid cell with more than 0.5% of harvested area for
the given crop and water regime, the dissimilarity index equalled the
Euclideandistancein the environmental space to the most similar GYGA
Ypot, with environmental variables (that is, gridded predictors listed
inSupplementary Table 1) weighted by their relative importance in the
randomforest model. Therefore, the dissimilarity index indicates how dif-
ferentagrid cellis fromits most similar GYGA site in terms of biophysical
properties defining Ypot. Second, this dissimilarity index was compared
with the dissimilarity betweenthe training and testing sitesinthe NNDM
LOO CV procedure. Those grid cells that were more dissimilar than the
outlier-removed maximum dissimilarity between NNDMLOO CV training
and testing sites were considered outside the area of applicability of the
metamodel. Thus, thearea of applicability is the geographic region where
the estimated NNDMLOO CV performance holds because environmental
conditions are similar enough to those in GYGA sites. We computed the
areaofapplicability at a5-arc-minute resolution and disaggregatedittoa
30-arc-second resolution to match that of metamodel Ypot predictions.
Giventhat SPAM crop area maps have alower spatial resolution than our
Ypotestimates grids, our maps mightinclude some grid cellswhere the
target crop is not grown and may miss very isolated areas.

Estimation of global yield potential and prediction
uncertainty

We estimated Ypot for maize, wheat and rice for rainfed and irrigated
conditions within the area of applicability of the metamodel using the
random forest regression model trained with GYGA Ypot and gridded
environmental variables. We applied the metamodel at a30-arc-second
resolution (ca. 1> km at the Equator), matching the resolution of the
climatic data. We aggregated gridded soil predictors available at finer
spatial resolution to match this 30-arc-second resolution.

We used the association of the dissimilarity index between training
and testing sites with their spatially cross-validated errors to estimate
the uncertainty of gridded Ypot predictions" (Extended DataFig. 10).
For each crop and water regime, we adjusted anonlinear model to the
associationbetween each observation error andits dissimilarity index
with its most similar training data. We used that model to predict the
uncertainty (thatis, expected RMSE) in the prediction grid at a given
dissimilarity index level. The prediction uncertainty is expected to be
smaller (larger) in those regions with environmental conditions that
are similar (different) to those in GYGA sites, eventually approaching
the GYGA Ypot standard deviation in very dissimilar regions.

Comparison of metamodel performance with
climate-zone-based approaches

We compared the performance of our metamodel for global gridded
Ypot predictions against that of a country-blind CZ extrapolation
approach. For each crop and water regime, this approach assumes that
Ypot is constant within a CZ (that is, all prediction grid cells within a
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CZ have the same Ypot) and equal to the weighted average of all GYGA
Ypot withinthe same CZ worldwide. Weights were defined on the basis
ofthe harvested areain a100 km buffer zone around each GYGA Ypot
site, circumscribed to its corresponding CZ and country. We evaluated
CZgridded predictions with the same NNDM LOO CV method used for
the metamodel (Extended Data Fig. 9). That is, each GYGA Ypot was
compared against the weighted average of all other GYGA Ypotsinthe
same CZ worldwide while excluding the nearest neighbours.

We note that this approach generates different Ypot values than
those reportedin GYGA at the CZ level. Whereas the country-blind CZ
approach used above as baseline does not consider country borders
togenerategridded Ypot predictions, Ypot estimates derived fromthe
original GYGA bottom-up upscaling protocol via CZ are country spe-
cific. Therefore, we also tested how the metamodel performs compared
with the original GYGA country-specific CZ level Ypot estimations. This
assessment is of interest for agronomists and researchers who want
to generate more granular Ypot maps than those provided by GYGA
at the CZ level. We evaluated the metamodel and GYGA CZ level Ypot
estimates withthe NNDMLOO CV, considering the crop harvested area
of countriesincluded in GYGA as prediction target. For GYGA CZ level
Ypot, we made use of CZs with multiple Ypot sites and compared the
Ypot of each site against the weighted average Ypot of other sites within
the same CZ and country. This cross-validation approach was therefore
not possible for CZ countries with only one Ypot site.

Assessment of local relevance in the metamodel and a
top-down approach

Yield potential estimates are locally relevant when they are calculated
by leveraginglocal knowledge and data, such that they are agronomi-
cally sound and unbiased at subnational levels®. By definition, the
yield gap between potential and farmer yields cannot be negative;
therefore, Ypot estimates that are (much) lower than average farmer
yields are unequivocal evidence of Ypot underestimation. We assessed
whether Ypot estimates were lower than average farmer yields in the
US Midwest rainfed maize at the county level. We chose this region and
crop owing to its high yields and the quality of its official statistics,
which discriminate crop yields by water regime. Weretrieved average
farmer yields between 2005 and 2015 from USDA-NASS Quick Stats
(https://quickstats.nass.usda.gov). We only considered counties that
explicitly reported non-irrigated maize yields or with less than 5% of
irrigated area and at least 3 years of data. We calculated the difference
between average farmers yield and average gridded Ypot at county
level for 861 counties across 12 states. For comparison, we repeated the
analysis using Ypot estimates from FAO Global Agroecological Zone’.
We retrieved the ‘agro-climatic potential yield’ for rainfed maize from
https://gaez.fao.org/ and converted it from dry weight to US harvest
weight by dividing it by 0.845. We also used that information to com-
pare spatial patterns of rainfed maize Ypot as derived from atop-down
approach (FAO Global Agroecological Zone), a bottom-up approach
(GYGA CZ) and the metamodel. We chose East Africa for this compari-
son for being a data-scarce region with high environmental variability,
where the contrasts between methods become more apparent.

Software
Allthe analysis was done in R™. Alist of R packages used in the analysis
is provided in Supplementary Section S5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thehigh-resolution global maps of yield potential have been deposited
in Zenodo (https://doi.org/10.5281/zenod0.12209708) (ref. 19). Data
on yield potential are available on the GYGA (https://www.yieldgap.

org/). Global climatic data are available on WorldClim (https://www.
worldclim.org/). Global gridded soil data are available on ISRIC (https://
data.isric.org/). Global crop calendar data are available on SAGE,
UW-Madison (https://sage.nelson.wisc.edu/data-and-models/datasets/
crop-calendar-dataset/), RiceAtlas (https://www.nature.com/articles/
sdata201774) and CropMonitor (https://cropmonitor.org/index.php/
eodatatools/baseline-data/). Crop distribution maps are available on
SPAM (https://mapspam.info). Source data are provided with this paper.

Code availability
The R code used in the current study is publicly available on GitHub
(https://github.com/AramburuMerlos/gGYGA).
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Extended Data Fig.1| Area of applicability of metamodel. The metamodel crop harvested area of each crop and water regime combination as percentage
area of applicability is shown in shades of gray. Red areas were excluded from of the total area of each pixel. White areas have < 0.5% of given crop and
metamodel predictions due to their high dissimilarity with the environments water regime and were not considered. Crop harvested areas were retrieved

explored by data used to train the metamodel. Color darkness represents the from SPAM".
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Extended Data Fig. 2| Global gridded yield potential (Ypot) comparison site (reference weather station). Predictions were derived following
of two approaches. Comparison of gridded Ypot predictions based on nearest-neighbor-distance-matching leave-one-out cross-validation method.
country-blind climate zones extrapolation (left panels) and metamodel (right Theroot mean square error relative to GYGA Ypot average (RSME %, also known as
panels) versus site-level Ypot from the Global Yield Gap Atlas (GYGA Ypot) normalized RMSE) is shown for each method and crop combination. Other model
for three crops and two water regimes. Each point represents a simulation performance metrics are shown in Supplementary Table 2.
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Extended Data Fig. 3| National gridded yield potential (Ypot) comparison were derived following the Nearest-Neighbor-Distance-Matching Leave-One-Out
of two approaches. Comparison of Ypot predictions based on GYGA upscaling Cross-Validation method, with crop harvested area of countries included in
approach (left panels) and the metamodel (right panels) versus site-level Ypot GYGA as target prediction area. The root mean square error relative to GYGA Ypot
from the Global Yield Gap Atlas (GYGA Ypot) for three crops and two water average (RSME, %) is shown for each method and crop combination.

regimes. Each point represents asite (reference weather station). Predictions
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Extended Data Fig. 4| Metamodel prediction uncertainty. Expected normalized root mean square error (NRMSE) of global gridded yield potential estimates
derived from the metamodel, expressed as percentage of the predicted yield potential.
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Gap Atlas (GYGA, www.yieldgap.org) at reference weather station level for the three main cereal crops. Last access: July 10", 2023.
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Extended Data Fig. 9 | Nearest-neighbor-distance-matching leave-one-
out cross-validation (NNDM LOO CV) examples for rainfed wheat. The top
panel shows the distribution of site-specific water-limited yield potential (Yw)
of rainfed wheat from the Global Yield Gap Atlas (GYGA) and the prediction
grid (lands harvested with rainfed wheat as reported by SPAM”). The lower left
and middle panels show the GYGA Yw sites used for model testing and training

and excluded sites due to their proximity to the testing site for two iterations

of the NNDM LOO CV™. The neighbors to be excluded are defined so that the
cumulative frequency of distances between testing sites and their nearest
training site in the NNDM LOO CV procedure matches the cumulative frequency
of distances between the prediction grid cells and their nearest GYGA Yw, as
shownin the lower right panel.
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Software and code

Policy information about availability of computer code

Data collection  Data on yield potential were downloaded from the Global Yield Gap Atlas website APl with R and the packages httr (v1.4.7) and jsonlite
(v1.8.7). Climatic data were downloaded with R using the geodata package (v0.5.9). Other datasets were downloaded from their web
repositories.

Data analysis All the analysis was done in R. We used the packages terra (v1.7.55) for spatial data analysis, data.table (v1.14.8) for data manipulation, ranger
(v0.15.1) for Random Forest Regression (i.e., the machine learning algorithm), and caret (v6.0.94) and CAST (v0.8.1) for spatial cross-validation
and area of applicability estimation.

The R code used in the study is publicly available on GitHub (https://github.com/AramburuMerlos/gGYGA).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The high-resolution global maps of yield potential have been deposited in Zenodo (https://zenodo.org/doi/10.5281/zenodo.12209708)

All data used in this study is open data. Data on yield potential was downloaded from the Global Yield Gap Atlas website API (https://www.yieldgap.org/). Global
climatic variables were downloaded from WorldClim (https://www.worldclim.org/). Soil data was downloaded from ISRIC (https://data.isric.org/). Crop calendar
data was downloaded from SAGE, UW-Madison (https://sage.nelson.wisc.edu/data-and-models/datasets/crop-calendar-dataset/), RiceAtlas (https://
www.nature.com/articles/sdata201774), and CropMonitor (chttps://cropmonitor.org/index.php/eodatatools/baseline-data/). Crop distribution maps were
downloaded from SPAM (https://mapspam.info/)

>
Q
Q
(e
=
)
o
o)
=
o
=
_
D)
§o)
o)
=
>
Q@
w
c
=
3
Q
<L

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We integrated an agronomically robust bottom-up approach with machine learning to generate high-resolution global maps of yield
potential for maize, wheat, and rice. Our machine learning metamodel leveraged site-specific yield potential derived from locally
evaluated crop growth simulations and gridded climate, soil, and cropping system global databases.

Research sample We trained our machine learning model with existing site-specific data on yield potential of maize, wheat, and rice from the Global
Yield Gap Atlas. This dataset includes 543 (maize), 573 (wheat), and 325 (rice) sites distributed across 74 countries. Those sites were
strategically selected to represent the harvested area distribution of each crop based on predefined climate zones and weather data

availability.

Sampling strategy To assess whether these data were sufficient to predict yield potential globally, we calculated the area of applicability of the machine
learning model by considering the dissimilarity in biophysical properties between sites with data and global crop areas.

Data collection We used existing databases of yield potential. Details about the protocols used to derive these yield potential estimates can be found
in the Global Yield Gap Atlas (www.yieldgap.org) and references therein.

Timing and spatial scale  The Global Yield Gap Atlas provides yield potential estimates circa 2010 to 2020, depending on the country. We used machine
learning to estimate yield potential globally, but we evaluated the accuracy of our results at local level.

Data exclusions No yield potential data were excluded from the study.
Reproducibility We provide access to the R code used for the analysis and raw data inputs.

Randomization Not applicable as we did not conduct field experiments.




Blinding Not applicable.

Did the study involve field work? D Yes IXI No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
Q
(e
=
)
o
o)
=
o
=
_
D)
§o)
o)
=
>
Q@
w
(e
=
3
Q
<L

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IXI D ChlP-seq
Eukaryotic cell lines IXI D Flow cytometry
Palaeontology and archaeology IXI D MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXXXNXNX s
OooOood




	High-resolution global maps of yield potential with local relevance for targeted crop production improvement

	Methods

	Yield potential definitions

	Yield potential for selected sites from a bottom-up approach

	Selection of gridded environmental predictors for the metamodel

	Machine-learning algorithm used in the metamodel

	Metamodel validation method

	Delineation of metamodel area of applicability

	Estimation of global yield potential and prediction uncertainty

	Comparison of metamodel performance with climate-zone-based approaches

	Assessment of local relevance in the metamodel and a top-down approach

	Software

	Reporting summary


	Acknowledgements

	Fig. 1 Schematic representation of the metamodel.
	Fig. 2 Global gridded yield potential for the three main cereal crops around year 2020.
	Extended Data Fig. 1 Area of applicability of metamodel.
	Extended Data Fig. 2 Global gridded yield potential (Ypot) comparison of two approaches.
	Extended Data Fig. 3 National gridded yield potential (Ypot) comparison of two approaches.
	Extended Data Fig. 4 Metamodel prediction uncertainty.
	Extended Data Fig. 5 Yield potential derived from different approaches.
	Extended Data Fig. 6 Relation between annual precipitation and the yield potential derived from two approaches.
	Extended Data Fig. 7 Negative yield gap assessment.
	Extended Data Fig. 8 Site-specific yield potential.
	Extended Data Fig. 9 Nearest-neighbor-distance-matching leave-one-out cross-validation (NNDM LOO CV) examples for rainfed wheat.
	Extended Data Fig. 10 Relation between yield potential uncertainty and environmental dissimilarity.




