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High-resolution global maps of yield 
potential with local relevance for targeted 
crop production improvement
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& Patricio Grassini    1 

Identifying untapped opportunities for crop production improvement in 
current cropland is crucial to guide food availability interventions. Here 
we integrated an agronomically robust bottom-up approach with machine 
learning to generate global maps of yield potential of high resolution (ca. 
1 km2 at the Equator) and accuracy for maize, wheat and rice. These maps 
serve as a robust reference to benchmark farmers’ yields in the context of 
current cropping systems and water regimes and can help to identify areas 
with large room to increase crop yields.

Meeting future food demand without massive land conversion depends 
on the capacity of existing cropland to support higher yields1. Esti-
mating yield potential (Ypot), that is, the maximum yield of a locally 
adapted crop cultivar, serves as a basis for identifying areas with large 
room to increase crop yields and provides essential input to studies 
assessing food security, land use and climate change from local to 
global levels2,3. Because of spatial and temporal variation in the factors 
governing Ypot and limitations to achieve perfection in crop and soil 
management, measuring Ypot via field experimentation is not feasible 
at large spatial scales. Alternatively, well-validated crop simulation 
models, coupled with high-quality weather, soil and cropping system 
data, can be used to estimate Ypot at local, regional and global levels4. 
Consequently, most large-scale studies rely on crop simulation models 
to estimate Ypot.

While there is consensus on the use of crop modelling to esti-
mate Ypot, there is considerable debate about the proper spatial 
framework to use. On the one hand, simulations following ‘top-down’ 
approaches rely on global crop models lacking local validation, gridded 
synthetic climate and soil data, and rough assumptions concerning 
cropping systems and water regimes5. Yet, they allow estimation of 
Ypot at global scale and high resolution (for example, 5 arc-minutes 
(ref. 5)) with a modest investment of time and effort. On the other 
hand, so-called bottom-up approaches are based on sites strategi-
cally selected to represent the largest fraction of the harvested area 
and prioritize using measured weather and soil data, local agronomic 

data and locally calibrated and evaluated crop models4. Not surpris-
ingly, this approach leads to more accurate local Ypot estimates than 
top-down approaches6. However, the better performance of bottom-up 
approaches is at the expense of higher data requirements and associ-
ated time investment in data collection and model calibration and 
evaluation, making the application of this approach challenging in 
data-scarce regions7.

Over the past decade, substantial improvements in computing 
power, spatial information on soil and climate, and advancement in the 
use of machine learning (ML) for geospatial analysis have provided new 
tools that can help address the limitations of bottom-up and top-down 
approaches8,9. Here, we developed a method, hereafter referred to as 
‘metamodel’, to estimate gridded Ypot globally. The metamodel was 
applied at a 30-arc-second resolution (approximately 1 km2 at the Equa-
tor) to three main cereal crops (maize, wheat and rice) separately for 
irrigated and rainfed conditions.

The metamodel approach comprises three steps (Fig. 1). The first 
step consists of a bottom-up crop modelling approach developed for 
the Global Yield Gap Atlas (GYGA) that results in locally evaluated Ypot 
estimates for specific sites selected to represent the harvested area 
distribution. The second step involves training a ML model with these 
site-specific Ypot values and gridded climate, soil and cropping system 
data. In the last step, the ML model is used to estimate gridded Ypot and 
associated prediction uncertainty in areas harvested with a given crop 
and water regime combination. We restricted ML model predictions 
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underlying point-based yield potential data to reflect changes in cli-
mate, genetics and cropping systems over time.

Methods
Yield potential definitions
Yield potential (Yp) is defined as the maximum yield of a locally adapted 
crop cultivar as determined by solar radiation, temperature, carbon 
dioxide and genetic traits that govern length of growing period, light 
interception by the crop canopy, its conversion to biomass and parti-
tioning of biomass to the harvestable organs4. In the case of rainfed 
crops, water-limited yield potential (Yw) is also determined by pre-
cipitation patterns and soil properties influencing the crop water 
balance4. Herein, we use Ypot to refer to the Yp of irrigated crops and/
or the Yw of rainfed crops. The difference between Ypot and average 
farmer yields is the yield gap4.

Yield potential for selected sites from a bottom-up approach
Our framework builds on the site-specific Ypot estimates of the GYGA. 
This long-running project has become a reference for agronomically 
robust Ypot and yield gap data, providing valuable information for 
food security risk assessments of large regions and countries. GYGA 
follows a bottom-up protocol for site selection, data collection and 
crop modelling and makes use of best available data sources, giving 
priority to measured weather, fine-resolution soil maps and locally 
validated crop calendars. Over the past 10 years, this protocol has 
been applied to quantify yield gaps in more than 70 countries and for 
multiple crops in rainfed and irrigated conditions. This section briefly 
introduces this protocol; more details can be found at http://www.
yieldgap.org and references therein.

First, at each country and crop included in GYGA, sites were strate-
gically selected on the basis of GYGA climate zones (CZ)14 and harvested 
area distribution. A CZ is a region with similar climatic conditions as 
defined by its growing degree days (that is, growing season length in 

to the environmental range across the GYGA Ypot sites that were used 
to train the ML model.

Our high-resolution maps of yield potential shown in Fig. 2 over-
come limitations of bottom-up approaches. By using state-of-the-art 
geospatial analytical tools10,11, we show that our Ypot maps cover 
90–95% of the land planted with these crops (Extended Data Fig. 1 and 
Supplementary Section 1) without losing much precision in relation to 
GYGA Ypot (root mean square error (RMSE) of 13% to 18%) (Extended 
Data Figs. 2–4 and Supplementary Sections 2 and 3), ensuring the 
local relevance of the gridded Ypot. Additionally, the metamodel 
approach is flexible enough to accommodate new data, for example, 
as new site-specific data on Ypot become available from bottom-up 
approaches like GYGA, the metamodel can be easily updated and 
applied to generate updated Ypot data at high spatial resolution, ulti-
mately leading to more precise global maps of Ypot.

Our approach also has clear advantages relative to published 
top-down approaches. As shown in Extended Data Figs. 5–7, Supple-
mentary Section 3 and previous studies4,6, estimates of Ypot from 
top-down approaches are biased and lack local relevance. For exam-
ple, Ypot estimates much lower than average farmer yields are clear 
evidence of Ypot underestimation. That is the case for 21% of the Ypot 
estimates for rainfed maize in the US Midwest from a popular top-down 
approach5 (Extended Data Fig. 7), which highlights the limitations of 
using top-down Ypot values that have not been validated with out-
comes from bottom-up approaches. In contrast, our estimations of 
Ypot were consistently above farmer yields.

The metamodel approach to derive gridded Ypot also has limi-
tations. First, our uncertainty assessment is incomplete because it 
does not consider the uncertainty of GYGA Ypot estimations, which 
is larger in places with lack of measured weather data and detailed 
soil maps7. Errors in GYGA Ypot propagate to the metamodel, affect-
ing its accuracy. Thus, more and better locally measured weather 
and soil data can help improve GYGA Ypot and metamodel accuracy. 
Second, the metamodel is weaker in reproducing Ypot at the lower 
and upper extremes of the Ypot range (Supplementary Section 2). 
These biases are common in ML algorithms such as random forest 
when the number of observations in extreme conditions is limited12,13. 
The GYGA Ypot sites used for model training were selected prioritiz-
ing the most important crop producing regions accounting for the 
largest portion of national crop area. Thus, it is not surprising that the 
highest metamodel uncertainty occurs in marginal lands with low and 
highly variable Ypot, relatively low crop area and few GYGA sites, where 
the gridded Ypot tends to exceed GYGA Ypot (Extended Data Figs. 2 
and 4). Likewise, there are few sites with very high GYGA Ypot, which 
might explain the tendency of the metamodel to underestimate yield 
potential in those cases. Although more complex ML models could be 
explored, more is likely to be gained with better quality global data 
and more training sites derived from bottom-up approaches in such 
environments. In addition, we note that the metamodel cannot be 
applied to crop producing regions where climate and soil types differ 
from those used for model training (Extended Data Fig. 1). For these 
regions, generating Ypot using bottom-up approaches is advisable 
rather than using the metamodel outside the environmental range 
within which it was trained9.

While our maps are a robust reference to benchmark farmers’ 
yields in the context of current cropping systems and water regimes, 
we acknowledge the inherent uncertainty from the databases we used, 
including crop area distribution and environmental variables. Addi-
tionally, our maps represent a snapshot of average yield potential at a 
short period in time. Still, they serve as valuable tools for identifying 
regions with the greatest potential for increasing crop output through 
agronomic management and for studies assessing food security, land 
use change and climate change at local to global levels. Moreover, 
our method is flexible, allowing for easy updates as newer global data 
become available. Likewise, it remains essential to periodically update 
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Fig. 1 | Schematic representation of the metamodel. The metamodel integrates 
a bottom-up approach with machine learning (ML) to estimate high-resolution 
global yield potential (Ypot). Metamodel steps: (1) Ypot estimation for 
strategically selected sites using locally calibrated and evaluated crop simulation 
models and the best available observed weather, soil and cropping system 
data. (2) Training of a ML algorithm with site-specific Ypot and relevant gridded 
environmental predictors. (3) Global gridded Ypot estimation for the area of 
applicability of the ML model and evaluation of its prediction uncertainty.
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thermal time), aridity index (water-stress indicator) and temperature 
seasonality. On average, the size of each GYGA CZ is ca. 0.3 million km2, 
which is smaller than other available agroecological zone frameworks14. 
Within the most important CZs for the target crop, representative 
sites with long-term weather records were selected to represent the 
harvested area of a given crop. For this purpose, we considered the har-
vested area within a 100-km-radius buffer around each site constrained 
to its corresponding CZ borders such that the buffer does not extend 
to different CZs. On average, the buffers of selected sites include ca. 
100,000 ha of the given crop15. Next, the best available observed data 
for these sites (and their buffers) were retrieved with help from local 
experts in agronomy, including weather, soil and crop management 
(for example, cultivar maturity, sowing and harvest dates, and plant-
ing density). Soil data are needed only for rainfed conditions, and the 
three to five most dominant soil types where the target crop is grown 
were selected for each buffer. These datasets, subject to thorough 
quality control, are the foundation of crop simulation model per-
formance. Then, crop simulation models were locally calibrated and 
evaluated in their capacity to reproduce yields of well-managed local 
field experiments with adapted and commonly used cultivars where 
yield-limiting and reducing factors had been effectively controlled. 
The Ypot of selected sites was subsequently simulated with calibrated 
crop models for multiple years to capture the inter-annual climate 
variability. These steps resulted in high-quality, unbiased site-specific 
Ypot estimates that captured the variability in climates, soils and farm-
ers’ cropping systems. Up to our last access date (10 June 2023), GYGA 
provided Ypot data for 543, 573 and 325 sites (weather stations) for, 
respectively, maize, wheat and rice distributed across 74 countries 
(Extended Data Fig. 8).

Selection of gridded environmental predictors for the 
metamodel
A complete list of environmental predictors, descriptions, spatial reso-
lution, sources and references is provided in Supplementary Table 1. 
Just as crop simulation model performance relies on good local data, 
selecting relevant gridded environmental predictors of spatial varia-
tion in Ypot is key for metamodel performance. For a given crop and 

cultivar, the spatial variation in irrigated Yp is a function of climatic 
conditions during its growing season, mainly solar radiation and tem-
perature, while rainfed Yw variation also depends on soil properties 
and rainfall amount and distribution4. Considering these factors, we 
created crop-specific climatic Ypot predictors from crop calendar 
information and monthly gridded climatic data. To account for vari-
ations in climatic conditions during the cropping season that may 
affect the crop differently depending on its growing cycle stage, we 
split the crop growing season into three equal thermal-time periods 
(early vegetative, flowering and grain filling) and computed climatic 
variables for each period. Up to three crops per year can be grown in 
(sub)tropical environments with ample water supply from rainfall and/
or irrigation. In those cases, we split each cropping season of each crop 
cycle into three periods but then computed average climate means 
for each period across the crop cycles as our goal was to estimate the 
average Ypot for a given grid.

In addition, we included a set of annual bioclimatic variables that 
might help to explain spatial variation in Ypot. To that end, we con-
sidered those variables used to define CZs (annual growing degree 
days, aridity index and temperature seasonality), together with other 
variables describing seasonal rainfall and temperature patterns (for 
example, precipitation of the warmest quarter of the year). These vari-
ables have demonstrated value for spatial prediction of the suitability 
and distribution of plant species, including cereal crops16. Moreover, 
when used for global Ypot prediction, these bioclimatic variables 
resulted in better ML model performance than the use of monthly 
values (for example, average precipitation of each month of the year) 
as model predictors8.

We retrieved data on plant-available soil water holding capacity in 
the first and second metre of soil depth to account for the capacity of 
the soil to supply water during rain-free periods (note that these were 
used only for Yw and not for Yp predictions). For model training and 
validation, we considered the climatic conditions at the GYGA Ypot 
sites and the average soil and cropping system properties within a 
100-km-radius buffer around each site.

Finally, we used harvested area maps from the Spatial Production 
Allocation Model (SPAM)17 to define the target area of metamodel 
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Fig. 2 | Global gridded yield potential for the three main cereal crops around 
year 2020. Yield potential (Ypot) of irrigated and rainfed maize, wheat and rice was 
estimated at a 30-arc-second spatial resolution with a machine learning metamodel 

trained with site-specific Ypot values from the Global Yield Gap Atlas (GYGA, www.
yieldgap.org). Predictions were restricted to the metamodel area of applicability 
(Extended Data Fig. 1). Prediction uncertainty is shown in Extended Data Fig. 5.
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predictions for each crop and water regime. We chose SPAM maps 
because they remain the only source that provides crop- and 
water-regime-specific harvested area maps for the three crops (maize, 
wheat and rice) with global coverage. We note that crop harvested  
area was not used as a predictor in the metamodel, so SPAM uncertain-
ties have no impact on metamodel performance.

Machine-learning algorithm used in the metamodel
We used random forest regression as ML algorithm in the metamodel. 
We trained the random forest regression model with site-specific Ypot 
from GYGA and gridded environmental predictors to generate global 
gridded Ypot estimates for maize, wheat and rice. This algorithm is flex-
ible enough to capture the complex interactions between crops, climate 
conditions and soil properties that result in nonlinear yield responses 
to variation in environmental conditions and has a relatively low com-
putational cost8. Such low computational cost was required due to the 
many iterations of the spatial cross-validation procedure (see below). 
We tuned the algorithm to avoid overfitting by selecting the random 
forest tuning parameters (number of covariables considered in each 
split and minimum node size for a split) that resulted in the lowest spa-
tially cross-validated RMSE for each crop and water regime (see below).

Metamodel validation method
We evaluated metamodel performance by comparing GYGA Ypot 
with metamodel predictions derived using a spatial cross-validation 
method: the nearest-neighbour-distance-matching leave-one-out 
cross-validation (NNDM LOO CV)10, which is explained below. In the 
present study, spatial cross-validation and NNDM LOO CV are used 
interchangeably. We used the following performance metrics: the RMSE 
derived from the spatial cross-validation, expressed as absolute value 
and as percentage of the average GYGA Ypot (that is, relative RMSE or 
normalized RMSE), concordance correlation coefficient, coefficient 
of determination and mean bias error. In addition, we calculated the 
percentage of the error due to lack of accuracy and precision. Only 
the relative RMSE is shown in the main text; other metrics (and their 
corresponding references) are shown in Supplementary Section 2.

To assess how well a model performs in new sites in the absence of 
an independent validation dataset, model validation is usually done by 
partitioning the data into training and testing subsets. When sites are 
randomly distributed, the data partitioning might be done randomly. 
For example, the model might be trained with all observations but one 
(the left-out), and its prediction error tested on the left-out, repeating 
this procedure for each observation. This method is the leave-one-out 
cross-validation (LOO CV). However, when observations are clustered in 
specific regions and spatially autocorrelated, as is the case with data of 
our study (Extended Data Fig. 8), this validation strategy would inflate 
the prediction performance metrics. In such cases, the data partition-
ing strategy must consider the spatial structure of the data, which can 
be done with the NNDM LOO CV method10.

NNDM LOO CV is a modification of the LOO CV in which obser-
vations near testing sites are excluded for model training. Sites to 
be excluded are defined such that the distribution function of dis-
tances between testing sites and their nearest training sites matches 
the nearest-neighbour distance distribution function between the 
prediction area and their nearest training sites. In other words, we 
validated the capacity of the metamodel to reproduce each GYGA Ypot 
while excluding that GYGA Ypot and nearest neighbours from model 
training. The neighbours to be excluded for each GYGA Ypot during 
the NNDM LOO CV procedure were defined such that the distances 
between GYGA Ypot used for testing and their nearest GYGA Ypot used 
for model training match the distances between the prediction grid 
cells and their nearest GYGA Ypot (Extended Data Fig. 9). For each crop 
and water regime, the prediction grid was defined as those areas with 
more than 0.5% of crop harvested area according to SPAM at a spatial 
resolution of 5 arc-minutes (9.3 km at the Equator).

Delineation of metamodel area of applicability
ML models can generate predictions for any environment, so it is pos-
sible to estimate global gridded Ypot independently of the number 
and distribution of the bottom-up local Ypot used to train it. How-
ever, extrapolating to environments outside the environmental range 
captured by sites with bottom-up estimates leads to meaningless 
predictions with unknown uncertainty9. Therefore, it is imperative to 
constrain the predictions to the area of applicability of the metamodel. 
By delineating the geographical scope in which the metamodel remains 
representative and with known accuracy, the risk of disseminating sub-
stantial errors is mitigated, ensuring the reliability and meaningfulness 
of gridded Ypot predictions.

We delineated the area of applicability of the metamodel following 
Meyer and Pebesma11. First, we computed a dissimilarity index between 
the biophysical conditions in the training data (GYGA Ypot) and the 
target prediction area, defined as the global gridded harvested area 
of each crop and water regime as reported in SPAM at a 5-arc-minute 
resolution. For each grid cell with more than 0.5% of harvested area for 
the given crop and water regime, the dissimilarity index equalled the 
Euclidean distance in the environmental space to the most similar GYGA 
Ypot, with environmental variables (that is, gridded predictors listed 
in Supplementary Table 1) weighted by their relative importance in the 
random forest model. Therefore, the dissimilarity index indicates how dif-
ferent a grid cell is from its most similar GYGA site in terms of biophysical 
properties defining Ypot. Second, this dissimilarity index was compared 
with the dissimilarity between the training and testing sites in the NNDM 
LOO CV procedure. Those grid cells that were more dissimilar than the 
outlier-removed maximum dissimilarity between NNDM LOO CV training 
and testing sites were considered outside the area of applicability of the 
metamodel. Thus, the area of applicability is the geographic region where 
the estimated NNDM LOO CV performance holds because environmental 
conditions are similar enough to those in GYGA sites. We computed the 
area of applicability at a 5-arc-minute resolution and disaggregated it to a 
30-arc-second resolution to match that of metamodel Ypot predictions. 
Given that SPAM crop area maps have a lower spatial resolution than our 
Ypot estimates grids, our maps might include some grid cells where the 
target crop is not grown and may miss very isolated areas.

Estimation of global yield potential and prediction 
uncertainty
We estimated Ypot for maize, wheat and rice for rainfed and irrigated 
conditions within the area of applicability of the metamodel using the 
random forest regression model trained with GYGA Ypot and gridded 
environmental variables. We applied the metamodel at a 30-arc-second 
resolution (ca. 12 km at the Equator), matching the resolution of the 
climatic data. We aggregated gridded soil predictors available at finer 
spatial resolution to match this 30-arc-second resolution.

We used the association of the dissimilarity index between training 
and testing sites with their spatially cross-validated errors to estimate 
the uncertainty of gridded Ypot predictions11 (Extended Data Fig. 10). 
For each crop and water regime, we adjusted a nonlinear model to the 
association between each observation error and its dissimilarity index 
with its most similar training data. We used that model to predict the 
uncertainty (that is, expected RMSE) in the prediction grid at a given 
dissimilarity index level. The prediction uncertainty is expected to be 
smaller (larger) in those regions with environmental conditions that 
are similar (different) to those in GYGA sites, eventually approaching 
the GYGA Ypot standard deviation in very dissimilar regions.

Comparison of metamodel performance with 
climate-zone-based approaches
We compared the performance of our metamodel for global gridded 
Ypot predictions against that of a country-blind CZ extrapolation 
approach. For each crop and water regime, this approach assumes that 
Ypot is constant within a CZ (that is, all prediction grid cells within a 
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CZ have the same Ypot) and equal to the weighted average of all GYGA 
Ypot within the same CZ worldwide. Weights were defined on the basis 
of the harvested area in a 100 km buffer zone around each GYGA Ypot 
site, circumscribed to its corresponding CZ and country. We evaluated 
CZ gridded predictions with the same NNDM LOO CV method used for 
the metamodel (Extended Data Fig. 9). That is, each GYGA Ypot was 
compared against the weighted average of all other GYGA Ypots in the 
same CZ worldwide while excluding the nearest neighbours.

We note that this approach generates different Ypot values than 
those reported in GYGA at the CZ level. Whereas the country-blind CZ 
approach used above as baseline does not consider country borders 
to generate gridded Ypot predictions, Ypot estimates derived from the 
original GYGA bottom-up upscaling protocol via CZ are country spe-
cific. Therefore, we also tested how the metamodel performs compared 
with the original GYGA country-specific CZ level Ypot estimations. This 
assessment is of interest for agronomists and researchers who want 
to generate more granular Ypot maps than those provided by GYGA 
at the CZ level. We evaluated the metamodel and GYGA CZ level Ypot 
estimates with the NNDM LOO CV, considering the crop harvested area 
of countries included in GYGA as prediction target. For GYGA CZ level 
Ypot, we made use of CZs with multiple Ypot sites and compared the 
Ypot of each site against the weighted average Ypot of other sites within 
the same CZ and country. This cross-validation approach was therefore 
not possible for CZ countries with only one Ypot site.

Assessment of local relevance in the metamodel and a 
top-down approach
Yield potential estimates are locally relevant when they are calculated 
by leveraging local knowledge and data, such that they are agronomi-
cally sound and unbiased at subnational levels4. By definition, the 
yield gap between potential and farmer yields cannot be negative; 
therefore, Ypot estimates that are (much) lower than average farmer 
yields are unequivocal evidence of Ypot underestimation. We assessed 
whether Ypot estimates were lower than average farmer yields in the 
US Midwest rainfed maize at the county level. We chose this region and 
crop owing to its high yields and the quality of its official statistics, 
which discriminate crop yields by water regime. We retrieved average 
farmer yields between 2005 and 2015 from USDA-NASS Quick Stats 
(https://quickstats.nass.usda.gov). We only considered counties that 
explicitly reported non-irrigated maize yields or with less than 5% of 
irrigated area and at least 3 years of data. We calculated the difference 
between average farmers yield and average gridded Ypot at county 
level for 861 counties across 12 states. For comparison, we repeated the 
analysis using Ypot estimates from FAO Global Agroecological Zone5. 
We retrieved the ‘agro-climatic potential yield’ for rainfed maize from 
https://gaez.fao.org/ and converted it from dry weight to US harvest 
weight by dividing it by 0.845. We also used that information to com-
pare spatial patterns of rainfed maize Ypot as derived from a top-down 
approach (FAO Global Agroecological Zone), a bottom-up approach 
(GYGA CZ) and the metamodel. We chose East Africa for this compari-
son for being a data-scarce region with high environmental variability, 
where the contrasts between methods become more apparent.

Software
All the analysis was done in R18. A list of R packages used in the analysis 
is provided in Supplementary Section S5.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The high-resolution global maps of yield potential have been deposited 
in Zenodo (https://doi.org/10.5281/zenodo.12209708) (ref. 19). Data 
on yield potential are available on the GYGA (https://www.yieldgap.

org/). Global climatic data are available on WorldClim (https://www.
worldclim.org/). Global gridded soil data are available on ISRIC (https://
data.isric.org/). Global crop calendar data are available on SAGE, 
UW-Madison (https://sage.nelson.wisc.edu/data-and-models/datasets/
crop-calendar-dataset/), RiceAtlas (https://www.nature.com/articles/
sdata201774) and CropMonitor (https://cropmonitor.org/index.php/
eodatatools/baseline-data/). Crop distribution maps are available on 
SPAM (https://mapspam.info). Source data are provided with this paper.

Code availability
The R code used in the current study is publicly available on GitHub 
(https://github.com/AramburuMerlos/gGYGA).
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Extended Data Fig. 1 | Area of applicability of metamodel. The metamodel 
area of applicability is shown in shades of gray. Red areas were excluded from 
metamodel predictions due to their high dissimilarity with the environments 
explored by data used to train the metamodel. Color darkness represents the 

crop harvested area of each crop and water regime combination as percentage  
of the total area of each pixel. White areas have < 0.5% of given crop and  
water regime and were not considered. Crop harvested areas were retrieved  
from SPAM17.
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Extended Data Fig. 2 | Global gridded yield potential (Ypot) comparison 
of two approaches. Comparison of gridded Ypot predictions based on 
country-blind climate zones extrapolation (left panels) and metamodel (right 
panels) versus site-level Ypot from the Global Yield Gap Atlas (GYGA Ypot) 
for three crops and two water regimes. Each point represents a simulation 

site (reference weather station). Predictions were derived following 
nearest-neighbor-distance-matching leave-one-out cross-validation method. 
The root mean square error relative to GYGA Ypot average (RSME %, also known as 
normalized RMSE) is shown for each method and crop combination. Other model 
performance metrics are shown in Supplementary Table 2.
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Extended Data Fig. 3 | National gridded yield potential (Ypot) comparison 
of two approaches. Comparison of Ypot predictions based on GYGA upscaling 
approach (left panels) and the metamodel (right panels) versus site-level Ypot 
from the Global Yield Gap Atlas (GYGA Ypot) for three crops and two water 
regimes. Each point represents a site (reference weather station). Predictions 

were derived following the Nearest-Neighbor-Distance-Matching Leave-One-Out 
Cross-Validation method, with crop harvested area of countries included in 
GYGA as target prediction area. The root mean square error relative to GYGA Ypot 
average (RSME, %) is shown for each method and crop combination.

http://www.nature.com/natfood
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Extended Data Fig. 4 | Metamodel prediction uncertainty. Expected normalized root mean square error (NRMSE) of global gridded yield potential estimates 
derived from the metamodel, expressed as percentage of the predicted yield potential.
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Extended Data Fig. 5 | Yield potential derived from different approaches. 
Comparison of maize water-limited yield potential derived from a top- 
down approach (GAEZ, gaez.fao.org)5, a bottom-up approach (GYGA CZ,  

www.yieldgap.org), and a metamodel that integrates a bottom-up approach with 
machine learning (Metamodel) in East Africa.
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Extended Data Fig. 6 | Relation between annual precipitation and the yield 
potential derived from two approaches. Water-limited yield potential (Yw) 
of rainfed maize as a function of annual precipitation in East Africa for two yield 
potential prediction approaches: a metamodel that integrates a bottom-up 

approach with machine learning (Metamodel) and a top-down approach (GAEZ, 
gaez.fao.org)5. Each point represents a 5-arc-minute resolution grid with rainfed 
maize in East Africa. The red lines are local regression lines. Annual precipitation 
data was extracted from WorldClim (worldclim.org).

http://www.nature.com/natfood
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Extended Data Fig. 7 | Negative yield gap assessment. Yield gaps (Yg) between 
water-limited yield potential and farmers’ actual yield for rainfed maize in 
the US Midwest at county level for two yield potential prediction approaches: 
a metamodel that integrates a bottom-up approach with machine learning 
(Metamodel) and a top-down approach (GAEZ, gaez.fao.org)5. Average county-
level farmers’ yield for rainfed maize between 2005 and 2015 was retrieved from 

USDA-NASS Quick Stats (quickstats.nass.usda.gov/). Only counties with less 
than 5% of irrigated area or reporting non-irrigated yields in 3 or more years were 
considered. In the histograms, the dashed vertical line indicates Yg = 0, that is, 
no difference between yield potential and actual yield, and the percentage of 
counties presenting negative Yg for each method is shown.
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Extended Data Fig. 8 | Site-specific yield potential. Yield potential of irrigated crops and water-limited yield potential of rainfed crops reported in the Global Yield 
Gap Atlas (GYGA, www.yieldgap.org) at reference weather station level for the three main cereal crops. Last access: July 10th, 2023.
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Extended Data Fig. 9 | Nearest-neighbor-distance-matching leave-one-
out cross-validation (NNDM LOO CV) examples for rainfed wheat. The top 
panel shows the distribution of site-specific water-limited yield potential (Yw) 
of rainfed wheat from the Global Yield Gap Atlas (GYGA) and the prediction 
grid (lands harvested with rainfed wheat as reported by SPAM17). The lower left 
and middle panels show the GYGA Yw sites used for model testing and training 

and excluded sites due to their proximity to the testing site for two iterations 
of the NNDM LOO CV10. The neighbors to be excluded are defined so that the 
cumulative frequency of distances between testing sites and their nearest 
training site in the NNDM LOO CV procedure matches the cumulative frequency 
of distances between the prediction grid cells and their nearest GYGA Yw, as 
shown in the lower right panel.
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Extended Data Fig. 10 | Relation between yield potential uncertainty and 
environmental dissimilarity. Relationship between spatially cross-validated 
root mean square errors (RMSE) and dissimilarity indexes between testing and 
training sites for each crop and water regime. Values were derived following the 
nearest-neighbor-distance-matching leave-one-out cross-validation (NNDM LOO 

CV) method10 and the dissimilarity index used to estimate the area of applicability 
of the metamodel11. This association was used to estimate the expected RMSE of 
yield potential predictions from the dissimilarity index between the prediction 
area and the training sites. Pearson correlation coefficients (r) and their P values 
are shown.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data on yield potential were downloaded from the Global Yield Gap Atlas website API with R and the packages httr (v1.4.7) and jsonlite 
(v1.8.7). Climatic data were downloaded with R using the geodata package (v0.5.9). Other datasets were downloaded from their web 
repositories. 

Data analysis All the analysis was done in R. We used the packages terra (v1.7.55) for spatial data analysis, data.table (v1.14.8) for data manipulation, ranger 
(v0.15.1) for Random Forest Regression (i.e., the machine learning algorithm), and caret (v6.0.94) and CAST (v0.8.1) for spatial cross-validation 
and area of applicability estimation. 
The R code used in the study is publicly available on GitHub (https://github.com/AramburuMerlos/gGYGA). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The high-resolution global maps of yield potential have been deposited in Zenodo (https://zenodo.org/doi/10.5281/zenodo.12209708) 
All data used in this study is open data. Data on yield potential was downloaded from the Global Yield Gap Atlas website API (https://www.yieldgap.org/). Global 
climatic variables were downloaded from WorldClim (https://www.worldclim.org/). Soil data was downloaded from ISRIC (https://data.isric.org/). Crop calendar 
data was downloaded from SAGE, UW-Madison (https://sage.nelson.wisc.edu/data-and-models/datasets/crop-calendar-dataset/), RiceAtlas (https://
www.nature.com/articles/sdata201774), and CropMonitor (chttps://cropmonitor.org/index.php/eodatatools/baseline-data/). Crop distribution maps were 
downloaded from SPAM (https://mapspam.info/)

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We integrated an agronomically robust bottom-up approach with machine learning to generate high-resolution global maps of yield 
potential for maize, wheat, and rice. Our machine learning metamodel leveraged site-specific yield potential derived from locally 
evaluated crop growth simulations and gridded climate, soil, and cropping system global databases. 

Research sample We trained our machine learning model with existing site-specific data on yield potential of maize, wheat, and rice from the Global 
Yield Gap Atlas. This dataset includes  543 (maize), 573 (wheat), and 325 (rice) sites distributed across 74 countries. Those sites were 
strategically selected to represent the harvested area distribution of each crop based on predefined climate zones and weather data 
availability. 

Sampling strategy To assess whether these data were sufficient to predict yield potential globally, we calculated the area of applicability of the machine 
learning model by considering the dissimilarity in biophysical properties between sites with data and global crop areas. 

Data collection We used existing databases of yield potential. Details about the protocols used to derive these yield potential estimates can be found 
in the Global Yield Gap Atlas (www.yieldgap.org) and references therein.

Timing and spatial scale The Global Yield Gap Atlas provides yield potential estimates circa 2010 to 2020, depending on the country. We used machine 
learning to estimate yield potential globally, but we evaluated the accuracy of our results at local level. 

Data exclusions No yield potential data were excluded from the study. 

Reproducibility We provide access to the R code used for the analysis and raw data inputs.

Randomization Not applicable as we did not conduct field experiments.
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Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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