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ABSTRACT

Recent language models generate false but plausible-sounding text
with surprising frequency. Such “hallucinations” are an obstacle to
the usability of language-based Al systems and can harm people
who rely upon their outputs. This work shows that there is an
inherent statistical lower-bound on the rate that pretrained lan-
guage models hallucinate certain types of facts, having nothing
to do with the transformer LM architecture or data quality. For
“arbitrary” facts whose veracity cannot be determined from the
training data, we show that hallucinations must occur at a certain
rate for language models that satisfy a statistical calibration con-
dition appropriate for generative language models. Specifically, if
the maximum probability of any fact is bounded, we show that the
probability of generating a hallucination is close to the fraction of
facts that occur exactly once in the training data (a “Good-Turing”
estimate), even assuming ideal training data without errors.

One conclusion is that models pretrained to be sufficiently good
predictors (i.e., calibrated) may require post-training to mitigate
hallucinations on the type of arbitrary facts that tend to appear
once in the training set. However, our analysis also suggests that
there is no statistical reason that pretraining will lead to halluci-
nation on facts that tend to appear repeatedly in the training data
(like references to publications such as articles and books, whose
hallucinations have been particularly notable and problematic) or
on systematic facts (like arithmetic calculations). Therefore, differ-
ent architectures and learning algorithms may mitigate these latter
types of hallucinations.
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1 INTRODUCTION

The surprisingly high rate at which Language Models (LMs) gen-
erate false information, such as references to non-existent article
titles, has recently emerged as a critical issue. The popular term
hallucination is defined in the Merriam-Webster [25] dictionary
as “a plausible but false or misleading response generated by an
artificial intelligence algorithm.” In one case, lawyers were fined
$5,000 for submitting legal research containing hallucinated legal
cases that they believed were correct [30]. In healthcare, halluci-
nations could be life threatening to patients and physicians are
concerned about malpractice cases [24]. Furthermore, hallucina-
tions have been widely reported on by the media [34], and the U.S.
President recently put out an Executive Order calling for, among
other things, safeguards against misleading outputs from genera-
tive Al systems [5]. This paper presents statistical lower-bounds
on the rate of hallucination for LMs that are calibrated predictors
of facts. This helps illuminate the nature of hallucination. It should
not be taken to mean that hallucination is inevitable. Rather, as we
discuss it is consistent with the fact that practitioners have increas-
ingly been augmenting “pretraining” procedures by “post-training”
procedures that reduce hallucination rates at the cost of reducing
calibration as well.

An LM is simply a probability distribution D over sequences of to-
kens, i.e., words or other character sequences. Clearly any LM which
predicts every string with positive probability (a common property
of LMs) will necessarily hallucinate with positive probability. How-
ever, if this probability is small, then hallucinations will be rare.
Thus it is crucial to quantify the rate of hallucinations. Every distri-
bution D can equivalently be represented by its log-probabilities
over entire sequences or conditional log-probabilities of the subse-
quent token given previous ones, log D(t1 ... tm) = X2, log D(t; |
t1 ...t;—1). This mathematically trivial equivalence' has a profound
implication: any LM can be used either to generate text or predict the
next token in naturally occurring text conditioned on the previous
tokens, though prediction and generation have different desiderata.
For instance, consider the sentence:

“Alexa Wilkins had a tuna sandwich at Salumeria for lunch last
Tuesday because the reviews said that it was divine."

Sentences of this sort could be likely under a predictive LM, for
example, to offer suggestions to reduce typing on phones [e.g., 32]. It
may be desirable to predict sandwich as an option of a word to type
after the word tuna, along with other likely words such as salad. On
the other hand, the vast majority of sentences of this sort would be
false if randomly fabricated by a generative LM. This paper shows
LMs with good predictive text performance should hallucinate, even

!'The equivalence between next-token-prediction and document generation holds only
if one disregards computational costs. It is similar to the statement that book can
be output one word at a time, in order, in a single pass, even though writing a book
generally involves many iterations.
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under ideal conditions. Notably in the first stage of pretraining,
common today, the generative LM is optimized for predictive text
performance [9, 27]. Moreover, it gives a lower-bound on the rate of
hallucination, which can shed light on the different rates at which
different types of facts should be hallucinated.

What is common to both potential references and the example
above (which we shall refer to as 5W = Who-Ate-What-When-
Where-Why factoids), above is that they are arbitrary in the sense
that neither one can be determined systematically by rules—one
cannot determine the veracity of most such facts that are not present
in the training data. This in contrast to facts whose veracity can
be determined systematically. We quantify how much LMs should
hallucinate even in an simplified setting with several ideal properties.
Because we are giving statistical lower-bounds, we favor simplicity
over generality as the point of our lower bounds is to identify a
fundamental cause of LM hallucination. Similar to classification,
where one seeks a lower-bound for the difficulty of classification in
noiseless settings (but noise-tolerant classifications algorithms), we
seek a hallucination lower-bound that holds in the simplest setting
where training data is i.i.d. without factual errors.

Calibration for generative models. Calibration is a natural require-
ment of a probabilistic predictor meaning that its probabilities can
be interpreted as accurate confidences in its own predictions. Dawid
[10] introduced the notion with the example of a weather forecaster:
among days when they predict 30% chance of rain, it rains approxi-
mately 30% of the time. Calibration metrics have been extensively
studied for LMs [see, e.g., 7, 17, 38]. Fig. 1 illustrates multi-class
calibration for GPT-4, a large modern LM, on a multiple choice
exam. Post-training alignment was applied to reduce hallucination
(among other factors) but was also found to reduce calibration [27].
Calibration is both meaningful, since a calibrated predictor’s proba-
bilities are interpretable as accurate confidences, and statistically
achievable.? In contrast, the perfectly accurate predictor would also
be calibrated but may be impossible to learn. However, calibration
is only a minimal requirement for predictors, as not all calibrated
models are useful predictors: the predictor which always outputs
the annual average probability of rain is trivially calibrated.

We provide a natural generalization of calibration to generative
models. Our notion differs from prior uses of calibration in LMs
which were at the token-level. The problem with analyzing raw
token probabilities is that there are many ways to describe any fact
in natural language, and thus having calibrated token probabilities
is not particularly meaningful. To illustrate, consider the old tri-
gram LMs, which predict next-token probabilities based only on
the previous two tokens (e.g., words). Trigram models are naturally
calibrated at the token level, and yet hallucination was not a major
problem for trigram models. This is because they mostly gener-
ate gibberish. Instead, our semantic-level calibration considers the
probability distribution over pieces of information (facts or halluci-
nations) contained in the text. We say an LM is calibrated if, for any
probability z € [0, 1], among the pieces of information it generates
with probability = z, such information occurs on average ina ~ z

ZSimple post-hoc probability modification procedures can calibrate any uncalibrated
predictor and simultaneously increase its accuracy under metrics such as cross-entropy
[see, e.g., 7, 8].

161

Adam Tauman Kalai and Santosh S. Vempala

fraction of naturally occurring language (ideally the distribution
from which training data was drawn).

Why LMs hallucinate. Hallucinations have mystified LM users
and some researchers alike. Section 2 surveys numerous hypotheses
that have been studied for why LMs hallucinate, ranging from in-
accurate or outdated training data to the next-token log-likelihood
objective in training. Hallucination can also be due to an adversarial
or out-of-distribution prompt: a textual prefix provided for the LM
to complete which establishes context. For example, there may be
no factual completion to a fabricated prompt such as, The 15 Elves
of San Salami are named. ...> In contrast, our work shows that even
in an ideal, unchanging world with perfect training data and no
prompts,* one should expect hallucinations from LMs which are
calibrated.

Simplified setting. We consider a stationary language distribu-
tion Dy € A(X) over documents (i.e., strings of text) x € X, and a
learning algorithm A which takes training data X¢rain € X consist-
ing of n documents sampled independently from Dy, and outputs
an LM, i.e., a distribution Dy := A(Xtrain) € A(X). For simplicity,
we assume that there are only facts in the training data, and at most
one per document, i.e., no training hallucinations. We focus on
arbitrary facts such as the above examples, whose truth is usually
undetermined from the training set, rather than systematic facts
such as 572 < 120523 predictable from a training set by learning the
underlying rules governing correctness. There is no statistical rea-
son that LMs should hallucinate on systematic facts. Additionally,
mistakes on systematic facts may not be considered hallucinations
at all — they are often categorized as reasoning or arithmetic errors.

We assume that each document x € X contains at most one
factoid f(x) € Y, where factoids are arbitrary pieces of information
which are each either true (facts) or false (hallucinations) and whose
truth is statistically hard to determine from the training data. We
also simplify matters by considering unconditional generation [e.g.,
31] in which the LM is sampled to generate text without any prompt
(equivalently, the empty-string prefix). Again, compared to our
simplified setting, hallucination may be even more likely in the
more realistic case where the LM is prompted with contexts that
come from a different distribution than the training data.

Results. Consider n i.i.d. samples from an unknown distribution
p over a large number of arbitrary factoids, such as the 5W example
and references. The missing mass, or in our case missing facts p(U),
is the fraction of future samples from this fact distribution p that
were not observed in the n training samples, where U is the subset
of facts that were unobserved in training data. The Good-Turing
estimate of the missing mass [14] is the fraction of samples (in our
case facts) that appear exactly once in the training data. In our
context, we call this the MonoFacts estimator,

F - Number of facts appearing exactly once in training data
= " .

3A completion such as ... actually never mind, I have no idea is unlikely given training
data that does not have such retractions.

“Equivalently, one could consider there being a fixed constant prompt, such as the
string “Document:”, that begins every document.
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The Good-Turing estimator was shown to be within [p(U) — MF| =
O(~/1/n) of the missing mass, with high probability [22, 23], for
any distribution p.

If the correctness of arbitrary factoids not contained in the train-
ing cannot be determined, the missing fact rate can provide a lower-
bound on the rate of hallucination. This in turn gives us a lower-
bound close to MF. In particular, under a “regularity” assumption
on the factoid distribution, our simplest bound (Corollary 1) implies
that, for any algorithm, with probability > 99% over training sets,
the Hallucination rate is at least
300|Facts| 7

N
where the “Hallucination rate” is the rate at which the LM gener-
ates hallucinations, the next term is “monofact” estimator of the
missing facts. The subsequent term is a “miscalibration rate” which
quantifies how close to calibration the distribution is. We also have
a term involving the ratio of the number of arbitrary facts to similar
pieces of information that are false, which is exponentially small
for many types of information. The final 7/+/n term is small for
the large training set sizes n used in today’s LM. The regularity
assumption means that all unobserved factoids have, on average,
equal probability of being true. More generally, the bound holds
with probability > 1 — § where the constant 60 can be replaced by
a term which is inversely proportional to § and proportional to a
regularity term on the distribution of factoids. The regularity term
measures the ratio of the most likely factoid (that was not observed
in training data) to the average unobserved factoid probability. This
constant is 1 for symmetric distributions and other types of simple
distributions. We relax it to consider bounded regularity, which
permits there to be certain negative correlations such as the fact
that a person does not eat 1000 lunches in 1000 different places
on the same day and allows for some factoids to have conditional
probability 0, but it prohibits unobserved factoids from having very
large probability.

MF — Miscalibration —

|Possible hallucinations|

Interpretation. Our lower-bounds have the following interpre-
tation. First, one should identify a large set of factoids: arbitrary,
plausible, regular factoids. These could be posts about 5W and plau-
sible research article citations. Intuitively, there are exponentially
more plausible factoids that are incorrect (which we call halluci-
nations), than those that are facts. One can then consider what
fraction of such factoids might appear exactly once in the training
data. In the case of 5W, one could imagine that half of the posts
occur exactly once. This would suggest that a calibrated-factoid
model would hallucinate on about half of its generations on 5W
factoids. On the other hand, one could imagine that there are many
many fewer than n articles and since the goal of publication is
advertising, each reference might be expected to appear multiple
times in the training data® (i.e., have probability > 1/n) except for
perhaps very recent publications (e.g., within the last day before
they other references begin to appear). This would suggest that
the missing mass for articles is low and that there is no inherent
statistical necessity to hallucinate reference titles. There may be

SEven papers that are never cited often appear on an authors’ CVs and institutional
web pages and are cross-posted and listed in multiple publication indexes since the
authors and institutions often wish to publicize their output and indices such as
Google/Semantic Scholar may compete for completeness.
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Figure 1: GPT-4 calibration curves before (left) and after
(right) reinforcement learning [27, Figure 8, reprinted with
permission]. As suggested by our model, post-training re-
duces hallucination rates at the cost of increasing calibration
error. Note that calibration here is on a multiple-choice test
rather than generative calibration which we study.

other causes of such hallucinations such as limited model capacity
(even if the number of LM parameters is much greater than the
number of articles, these parameters must encode many types of
information beyond article titles). This also justifies the mitigation
of consulting a fact database at generation time, even if that fact
database is constructed solely from training data [6]. Corollary 4
gives a simple generalization of our analysis to multiple types of
facts.

Conversely, one may wonder what if any facts appear only once
in a large training corpus that might encompass the entire web.
First, it is worth noting that significant efforts are made, in con-
structing LM corpora, to remove duplicates [see, e.g. 29]. And in
other contexts, such as Zipfian and other power-law distributions, it
is often observed that a constant fraction of entities appear exactly
once, even as the datasets scale. While most facts that come to mind
may be well-known, many public meeting notes and other posts
may contain unremarkable facts that are not mentioned in other
places.

Despite this tension between factuality and predictive accuracy,
the parameters of both types of LMs are typically trained or “pre-
trained” to maximize likelihood on a corpus, or equivalently to
minimize the “KL divergence”, a strong statistical discrepancy met-
ric between the LM and the distribution of data on which it was
trained.

The arXiv version of this paper® has further elaboration.

2 RELATED WORK

As discussed in the introduction, the concept of calibration was
introduced by Dawid [10] and has been extensively studied in
statistics and machine learning and even specifically for LMs [7,
17, 38] and other related fields of deep learning and generative Al
[21, 28]. Blasiok et al. [8] argue that calibration happens naturally
as a byproduct of minimizing log-loss for deep neural networks,
though their results are for a different architecture and different
notion of calibration.

Unfortunately, there is not clear agreement on what counts as
a hallucination. This is why we consider an idealized model in

®https://arxiv.org/abs/2311.14648
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which there are clear-cut facts, where statements that violate these
facts would generally be categorized as hallucinations by most
definitions.

Open- vs. closed-domain hallucinations. Interestingly, many stud-
ies focus on hallucination with respect to a specific source document
that is given to an LM, such as in translation [35] or summarization
[21]. There, LMs are also found to fabricate facts not present in
the source document even when instructed to use only informa-
tion present in the source. This is referred to as closed-domain
hallucination in contrast to our open-domain setting, where the
LM generates hallucinations which are not factually grounded in
its training data. There is no clear statistical argument for why
closed-domain hallucinations must occur, since if one can verify
such hallucinations from the source text and generation one can
avoid them by filtering out generations with such mistakes. Con-
sistent with this, [27] reports a greater reduction in closed-domain
hallucinations over open-domain ones.

Honesty vs. factuality. Evans et al. [12] points out that there is
a difference between factuality and truthfulness (i.e., honesty). An
LM which states something that disagrees with its training data
may be said to lie, whereas factuality may be much harder to deter-
mine for a variety of reasons, including the possibility that what is
considered factual may change as scientists make new discoveries
and rebuke old theories. Nonetheless, in worlds where there is an
absolute notion of facts, and the training data only contain facts,
then any falsehood is also untruthful. Thus in ideal worlds where
training data is perfectly consistent with an internally consistent
ground-truth notion of facts, our bounds on non-factuality directly
imply bounds on the rate at which LMs must generate untruthful
information or “lie”

Hypotheses for why LMs hallucinate. There have been many ex-
planations of why LMs hallucinate. The primary reason proposed
for hallucinations is inadequacies in training data. This can be bro-
ken into two issues. First are falsehoods contained in the training
data [11, 13, 16, 19], which Lin et al. [19] refer to as “imitative false-
hoods” Second is the temporal nature of data, i.e., the fact that
training data is no longer relevant and is missing current events
[2, 33]. While both of these are certainly factors in hallucination,
our work shows that it is not the only cause of LM hallucinations.

An additional reason given for why LMs may hallucinate is the
fact that they are trained to produce tokens one at a time may lead
to hallucination [36] because the LM may generate a plausible-
sounding sequence of tokens which is impossible to complete factu-
ally. While this may be true for transformers due to computational
limitations, this is not simply a statistical byproduct of their being
trained on the next-token prediction task. Since document log-
likelihood is simply the sum of next-token log-likelihood, the two
objectives are identical and thus from a statistical perspective this is
not a factor. Mathematically, any probability distribution over doc-
uments can be represented as a conditional next-token probability
distribution.

Another line of work that sheds light on the nature of hallucina-
tions shows that LMs know when they’re hallucinating [1, 3, 18, 20].
Various techniques may be used to identify LM hallucinations
purely from the LM itself, either the internal weights, its token

163

Adam Tauman Kalai and Santosh S. Vempala

probabilities, or by querying it with additional questions. This is
consistent with our work in the sense that one would expect even
an ideal “super-intelligent” model should hallucinate if its goal is
predictive accuracy.

A bevy of additional reasons have been proposed and studied
for why LMs may hallucinate. These fall under headings such as
duplicates in training data, biases, architecture, overconfidence and
various types of knowledge failures, among others. A complete
listing of these is beyond this scope of this work. For further details,
see the recent surveys of Huang et al. [15], Ji et al. [16], Zhang et al.
[37].

3 MATHEMATICAL PRELIMINARIES

We first define preliminary notation and concepts, including statis-
tical distance and our notion of generative calibration.

3.1 Standard Definitions and Notation

Let A(S) denote the set of probability distributions over S. For dis-
tribution D € A(S) and R C S, let D(R) := Y, cg D(x). The Total
Variation distance (TV) (also called statistical distance) between
distributions D, D’ € A(S) has multiple equivalent definitions (for
finite or countably infinite sets S):

1D =Dty = max | D(R) - D' (R)] 1)

Y IDE - DW= Y (D) - D' (),

xX€S xX€S
where (z); = max(0,z) for z € R. It satisfies ||D — D’||tv =
1D’ — DIty € [0,1]. The support of distribution D is supp(D) =
{x € S| D(x) > 0}, as long as S is finite or countably infinite.
Let the set of partitions of set S be denoted by P(S) = {II C 25 |
Vx € S|{B € II | x € B}| = 1}. For a function f : X — Y and set
S c X, let f(S) := {f(x) | x € S}. For a distribution D € A(X),
let f o D denote the induced distribution of f(x) for x ~ D, i.e,,
F) = Zxif(x)=y D (x). Finally, let D*" denote the distribution
over n independent samples from D.

3.2 Generative (Mis)calibration

This section defines a notion of miscalibration Misy(p, g) € [0,1]
for a generative model g that measures how accurate its own prob-
abilities are with respect to future examples drawn from a given
pretraining distribution p, using b > 1 bins. It is a natural exten-
sion of existing notions of calibration to generative models, and
can be skipped on first read for those who want to get straight
to the model. Appendix B discusses the relationship between this
and existing notions of calibrated classifiers. The definitions in this
section apply to any distributions p, g € A(Y) for any finite set Y.
In other words, there is only assumed to be a generative distribu-
tion g over information y € Y, and calibration is with respect to a
“true” distribution p. Finiteness of Y is only assumed at this point to
avoid measure-theoretic technicalities. We first define a calibrated
distribution g as any coarsening of p.

DEFINITION 1 (COARSENING AND CALIBRATION). For partition
Il e P(Y) and D € A(Y), D € A(Y) is the II-coarsening of D if;
D(B)

VBellVy e BD"(y) = B
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Distribution g is said to be calibrated to p ifg = p'! for some partition
II.

Clearly g = p is calibrated to p, and so is the uniform distribution
g(y) = u(y) := 1/|Y|. To define miscalibration, let B := {y € Y |
g(y) = z} and omit g, writing B, = BY when clear from context. It is
also clear that g is calibrated to p iff g = p(9) for partition B(g) =
{B; | z € [0,1]} and thus a natural definition of miscalibration
(which is 0 iff g is calibrated to p) is:

Miseo (g, p) = ||p8(g) _gHTV = % Z Z

BeB(g) yeB

2B g @

The oo in the above notation refers to the fact that there is no
limit on the number of bins. This also explains why it is called
“calibration”™: the average probability over each bin that shares a
common value of g(y) is g(y). This can be written as,

vz € [0,1] y@g[ﬁ(y) 19(y) =z] == ®)

We next generalize B(g) to intervals. For I C [0, 1], define:
Br=B]:={yeY|g(y eI}

The definition below uses b > 1 adaptively sized bins which each
have roughly equal probability mass in terms of generations y ~ g.
Appendix B gives an alternate definition using bins of equal width
in terms of log-probability.

DEFINITION 2 (MISCALIBRATION). Let b € N and define the adap-
tive partition, Vy(g) := {B[O’tl],B(tl,[z], . "’B(tb_1,tb]} where

i
ti=supyzelon]| D g <y
y9(y)<z

The miscalibration of g with respect to p isMisy, (g, p) := Hp(vb @9 - g”T

Adaptive binning has been used in supervised classification [e.g.,
26]. Note that Mis; (g, p) = ||g — ull1y is the total variation to the
uniform distribution, which shows that Misy, (g, p) is not monotonic
in b because b = 1 is the minimum for g = u (regardless of p) while
b = co minimizes Misy(p,p) = 0 for g = p. Also, Misy(g,p) =
Miso (g, p) for b is large enough that 1/b < minyegupp(g) 9(Y)-
Finally note that necessarily ¢, = 1 in the above definition.

Advantages and limitations. An advantage of semantic-level cal-
ibration is that it naturally models the exponentially many ways
there are to describe any given fact, unlike token-level calibration
models. This is also a disadvantage, however, because it means that
it may be intractable to measure calibration rates, and thus experi-
mental validation may be easier in synthetic settings where facts
have canonical descriptions. One nice property of the above adap-
tive binning is that Misy (g, p) = 0 iff g is calibrated to p, regardless
of b, whereas other definitions give 0 miscalibration whenever there
is a single bin. Nonetheless, Appendix B shows how our analysis
applies to other binning strategies.

4 THE MODEL AND GUARANTEES

Our notation is summarized in Table 1. Let ¥ denote the set of
tokens and 3* denote the set of finite token sequences, i.e., strings.

v
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Let X C 3" denote the set of documents (this could be finite, e.g., if
a length restriction is imposed or countably infinite if X = 3*).
The world is assumed to contain randomness, which is modeled
by a distribution Dy,oq € A(A(X)) over language (document)
distributions Dy ~ Dyerlq. (More generally, a full world model
would contain lot of other information but language distributions
suffices for our purposes.) The training data consists of n documents
Xtrain ~ Df” sampled independently from this distribution. It will
be convenient to denote by Dyyain € A(X™) the distribution over
training data, where the probability of any training document is:

1_[ DL (xt(ria)in) } .

i=1

E

Drrain (Xtrain) =
Dr~Dyorld

This model requires a static world that does not change. Of course,
real-world distributions are non-stationary and dynamic, and real-
world training data contains duplicates and is not i.i.d. However, our
lower bounds imply hallucination even in this ideal static setting.

4.1 Factoid Assumptions

We assume there is a large but finite set Y of “factoids” by which
we mean arbitrary plausible pieces of information, each of which
could be true (facts) or false (hallucinations), as determined by some
world distribution. Their arbitrary nature means that, given the
facts observed in training data, one cannot infer any likely facts
among the unobserved factoids. Of course, many real-world facts
are systematic, not arbitrary. For instance, mathematical inequal-
ities such as 17 < 252395 are systematic and should thus not be
included in Y. Note that Y is not intended to capture all world facts
but rather a large set of arbitrary ones. It could contain the 5W
factoids (except for people who eat the same lunch every day in the
same location, as their eating behaviors are too systematic). There
is no statistical reason an LM must hallucinate on systematic facts.
We will make a few assumptions about factoids.

One-per-doc: First, we assume that there is at most one factoid
per document by defining a surjective function f : X -» Y which
extracts a single factoid with each document, where f(x) = L
represents the empty fact (to allow for documents with no facts)
and assume L € Y. This makes the notation simpler as one can
define the induced factoid distribution p = f o Dy € A(Y) defined
by p(y) == Zx.f(x)=y DL (x). Similarly, we can take g = f o Drp to
be the induced distribution over generated factoids, where Dy s €
A(X) is the distribution over documents generated by the LM. The
surjective requirement simply means that every factoid is describ-
able by some document x € X, and if this didn’t hold one could
always shrink Y. Our model does permit many documents to encode
the same factoid, since there are typically many ways to describe
any given piece of information. Again, this assumption may be
generalized to a model where documents contain sets of factoids
with further notation, but we show that calibrated LMs hallucinate
even in a simple idealized setting with one factoid per document.

Good-training-data: Second, we assume that the set of facts
F = supp(p) U {1} where supp(p) = {y € Y | p(y) > 0} =
f(supp(Dr)), i.e., the training data consists solely of facts and
every fact has non-zero probability of being described under Dy.
Both of these assumptions can be removed at the cost of addi-
tional notation without changing the results in the slightest—the
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world distribution would need to determine an arbitrary F C Y and
Dr, € A(Y). Keeping in the spirit of the ideal training data model,
we choose to simplify notation and take F := supp(p) U {L}. The
set of hallucinations is H := Y \ F, i.e., every non-fact.
More-false-than-true: Third, Assumption 1 below requires that
there are many more falsehoods in Y than facts, which makes sense
for many types of information. For example, consider those factoids
which describe a paper citation including the paper title, authors,
and further details. There are vastly more plausible citations than
existing ones. In this case, one may choose to include in Y a some-
what smaller sparse set, i.e., not include author middle names or
other minor variations in Y which would make a reference in the
“grey area” between fact and hallucination. Similarly, for 5W fac-
toids, there are many more combinations of people who did not eat
a given food on at a given time than people who did.

ASSUMPTION 1 (s-SPARSE FACTs). There are many fewer facts
than hallucinations. Specifically, there exists s € R such that, with
probability 1 over Di ~ Dyona: |F| < e |H|. Recall that F =
f(supp(Dr))U{L} andH=Y \F.

We write sparsity as an exponential to reflect the general expo-
nentially nature of natural language facts.
(Semi)Regularity: Finally, and most importantly, we assume that
no single factoid is very likely. Specifically, perfect regularity re-
quires that after observing the training data, all unobserved factoids
are equally likely to appear as facts in the language distribution,
and we also provide a relaxed r-regular notion, which we refer to
as a “semi-regularity” assumption.

DEFINITION 3 (REGULAR FACTS). Dyrlq has regular facts if for
all Xtrain € SUPp(Dirain):

Yy, y/ €U Prly € F | Xyrain] = Pr[y, € F | Xtrain]-

Forr > 1, Dyopd has r-regular-facts if for all X¢rain € supp(Dirain)»
r

< 0] E[|FmU| | Xtrain]-

Vy € U Pry € F | Xrain]

Having regular facts will suffice to prove the lower bound Corol-

lary 2, but stronger lower bounds will be possible if we also have
regular probabilities.

DEFINITION 4 (REGULAR PROBABILITIES). Dy,o14 hasregular prob-
abilities if for all Xrain € SUPP(Dirain):

Yy, y, €U E[p(y) | Xtrain] = E[P(y/) | Xtrain]-

For r > 1, Dyqdq has r-regular-probabilities if for all X¢ain €

supp(Dirain)»
r

U E[p(U) | Xtrain]-

Yy € U E[p(y) | Xtrain] <
Finally, we say Dy,oy1q is regular if it has regular facts and regular
probabilities. It is not difficult to see that a distribution is regular iff
it has 1-regular-facts and 1-regular-probabilities. We also note that
our regularity assumptions could be modified to only holds with
high-probability over Xiain and not for all X¢rain € supp(Dirain)-
We illustrate with a simple family of regular world distributions,
followed by one which is only r-regular, does not have indepen-
dence, and has anti-correlations between facts.
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Table 1: Summary of notation. Symbols below the line are all
derived quantities in terms of symbols above the line.

Symbol Meaning

Xcsr The set of documents (strings)

Y Factoids, arbitrary plausible information
ley Special “empty” fact

f:X>»Y Each document x contains

Dyyorid € A(A(X))

one factoid f(x) and f(X) =Y
Distribution over document distributions

Dy € A(X) Language distribution over documents
Xtrain € X" Training data (i.i.d.)
(D (2) (n) \ _ ¢ox

Xtrain = <xtrain’ Xirain® = xtrain> 'Z)L "
A: X" - A(X)  Algorithm that learns an LM from data
peAY) Distribution over factoids f(x) for

x ~Dr,ie,p:=foDp
FCYy Facts F := supp(p) U {L}
HCY Hallucinations H := Y \ F

Dhirain € A(X™) Distribution over Xrain ~ D} "

induced by D ~ Dyorld-

ocy Set of observed factoids
0:={f(x )li=12...n}U{L} CF
ucy Unobserved factoids U :=Y\ O 2 H

v Posterior over p given training data Xirain

Dry € A(X) Distribution over documents
generated by the LM, D := A(Xrain)
g e A(Y) Distribution over factoids f(x) for

X ~ DLM> ie., g = f o DLM

Regular example: Permuted power-law world. Suppose X =Y and
f is the identity. The world distribution Dy,qq first picks F C Y
uniformly random over such that |F| = N (where N < |Y]/(1 + ¢®)
so that |F|/|H| < e™* so facts are s-sparse) and then picks p to
be a power-law distribution supported on a random ordering on
F. That is, it picks a random permutation o : {1,2,...,N} — F
and defines p so that p(o(i)) o i~ for some constant k > 0. The
uniform distribution over F (k = 0) and Zipfian distributions (k = 1)
are special cases.

Semi-regular example: W5 with negative correlations. The set of
factoids is the product of fixed sets of people, dates, foods, and
locations. Dy,q1q chooses the set of facts F randomly by: for each
person on each date, there is a single fact which consists of that
person eating a random food at a random location, and p is uniform
over F. This creates anti-correlations between factoids because the
knowledge about what and where a person ate a specific meal rules
out any possible alternatives for that meal. Nonetheless, it can be
seen that r-regularity holds for r < npeqplendates-

The above model can be enriched in various ways by adding
reasons and by modeling people’s preferences, geographic con-
straints, and behaviors. However the regularity parameter r will
be prohibitively large if there are predictable eaters, and indeed
LMs might hallucinate less if there are large numbers of predictable
eaters because an LM learning algorithm may learn these patterns
and hallucinate less often.
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5 GUARANTEES

Our results are stated in terms of missing facts, a term inspired
by the missing mass in data drawn from a probability distribution
[14]. The missing facts rate is the fraction of facts (according to
the pretraining fact distribution p) that were not observed in the
training data. Specifically, it is defined to be p(U) where U is the
set of unobserved facts in the training data. Formally, define the
observed and unobserved factoids as,

(i)
{f (xtrlain)
Y \ Oxtrain’

respectively. The monofact estimate of the missing fact rate is de-
fined to be the fraction of facts that appear exactly once in the
training data:

i:1,2,.‘.,n}U{J_}QY, (4)

Hyev\{1}|y= f(xt(ri;in) for single i € [n]}|

n

Q)

Note that the facts in the training data are distributed according

to the distribution p. Appendix A states classical results asserting

that |MF — p(U)| = O(+/1/n) with high probability over n samples
from any distribution p.

An algorithm A : X" — A(X) takes as input n training docu-
ments and outputs a document distribution Dy p; = A(Xtrain ), Which
determines g = f o Dy, ie., f(x) for x ~ Dppr. We now state our
main results, which will all follow from Theorem 1. The first result
relies on a regular Dy, defined in Definitions 3 and 4 above.

m = mxtrain =

CoRroLLARY 1. Fixanyd € [0,1],b,n € N,s € R and any s-sparse
regular Dy,pq. Then for any algorithm A : X" — A(X), with
probability > 1~ & over D ~ Dyorlq and Xirain ~ D",

3e”° [61n(6/0)
s n

where Dy pr = A(Xtrain), g(H) is the LM hallucination rate, and MF
is defined in Eq. (5).

g(H) > MF — Misy (g, p) —

Next, we can state a weaker guarantee for semi-regular facts
alone.

COROLLARY 2. Fixany d € [0,1],b,n € N,r,s € R and any s-
sparse Dyorid With r-regular-facts. Then for any algorithm A : X" —
A(X), with probability > 1 — & over D ~ Dyopd @nd Xirain ~ D",

3rne”* [61n(6/6)
5 n

The above is meaningful when sparsity s > log n is larger than
the log of the number of training data. Otherwise, following bound
uses semi-regularity of facts and probabilities.

g(H) > MF - Misy (g, p) -

COROLLARY 3. Fixany d € [0,1],b,n € N,r,s € R and any s-
sparse Dy,or1q With r-regular-facts and r-regular-probabilities. Then
for any algorithm A : X" — A(X), with probability > 1 — & over

Dy, ~ Dyorid and Xirain ~ Dfn:

g(H) > MF - Misy (g, p) - 3’;5 - \/@_

It is easy to see that Corollary 1 is a special case of this corollary
forr=1.
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5.1 Different Types of Facts

Our analysis immediately generalizes to multiple distinct types
of facts (e.g., article references and social media posts). Suppose
there are k > 1 sets of factoids, Y1, Ys, ..., Y and functions f; :
X — Y;, with corresponding sets of facts and hallucinations F; U
H; = Y;, monofact estimates K/I\Fi € [0, 1] and miscalibration rates
Mis; (g, p). One also would generalizes the notion of s-sparse to
include the fact that, for each type of fact, |F;| < e *|H;| with
probability 1 and similarly generalize regular facts to hold for each
type of fact. Then Corollary 1 implies:

CoOROLLARY 4. Fix any § € [0,1],b,k,n € N,s € R and any s-
sparse regular Dy,114- Then for any algorithm A : X — A(X), with
probability > 1~ & over Dp, ~ Dyold and Xirain ~ D",

ke™$

5 -/ 6ln(:k/5) fori=1,2,... k.

The proof follows trivially from Corollary 1 using the union
bound and §/k failure probability for each type of fact.

— 3
g(H;) > MF;—Mis; 3 (g, p)—

5.2 Analysis Approach

While our model supposes Dp, ~ Dy,or14 followed later by Xipain ~
D f", for analysis purposes we imagine first selecting X¢rain ~ Dtrain
and then selecting p ~ vy, Where v = vy, is defined to be the
posterior distribution on p given Xy,in. These two procedures result
in identical joint distributions on p, X¢rain, but the latter is easier to
analyze. In particular, we show:

THEOREM 1. Foranyv € A(A(Y)),anyO C F C Y,anyg € A(Y),
and any partitionII € P(Y), we have
Ep~v [(p(U) - ||pn —gHTV —g(H))J < maxyey Prp~v[y € F] +
|Ol maxyey Ey[p(y)], where H := Y\ F andU := Y \ O.

The corollaries stated earlier follow directly from this theo-
rem together with the definition of Misy (g, p) = “p(vb (9) - gHTV,

Markov’s inequality for a non-negative random variable to show
that the quantity in the expectation is small with high probability,
which we combine with existing bounds on the Good-Turing estima-
tor from Appendix A that show that |m -p(U)| = é(\/l/_n) The
quantities on the right hand side correspond to the arbitrary facts
and arbitrary probability notions. The above theorem is enough to
show the result for various binning strategies, such as fixed-width,
which depend arbitrarily on g (but not on p).

6 PROOF OF THEOREM 1

This section proves Theorem 1.

LEMMA 2. LetS C Y and let p' be any coarsening of p. Then,

2[(p9)-p"®), | <17\ 81 maxEipy)].



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

PRrOOF. Suppose q = p!I for some partition Il € P(Y). Then,

p(S)-q(8)= D p(SNB)~q(SNB)
Bell

=Zp(SmB)—@|SmB|
B

|B|

s;p(sma)—f%

B| - SN B

|S N B

B
sZP(SHBNB\sL

IS N B

Since a < b = (a)+ < (b)4+ and this last quantity is non-negative,

(p(5) - q<s>)+_Z”|(Ssm“Ij) \s|
HUCRCINED: e s

< ; 1B 5| maxE[p(y)]

=Y\ $| maxE[p(y)].
yesS v

]
We are no ready to prove Theorem 1.
PROOF OF THEOREM 1. Let g = p'L. By the definition of TV,
9(U) 2 q(U) —llg = gllrv - (©)
Since Y\F=H CU,wehave H=U \ (FNU) and,
g(H) = g(U) =g(FNU)
2 qU) = llg = glirv - 9(F N U) by Eq. (6)

=p(U) - (p(U) = q(U)) = llg = gliry — 9(F N U)
=pU) = llg = gllry = (p(U) = q(U) + g(F N U)).
Rearranging terms gives p(U) - g(H) - [lq — gllpy < p(U)—q(U)+
g(FNU). Applyinga < b = (a)+ < (b)s,
(p(U) - g(H) - < (p(U) —q(U) +g(FNU)),
< (p(U) —q(U)), +g(FNU).

lg—gllrv),

Thus, it suffices to prove:

E[g(FNU)+ (p(U) - q(U)), ] < maxPr[y € F]+|0| maxE[p(y)].
v yeU v yeU v

™
To this end, linearity of expectation implies that,
E[g(FNU)] = ) g(y)Prly € F] < maxPrly e Fl. ()
yeU
By Lemma 2 (with § = U),
E[(p) - q(),] <10/ maxE[p(y)].
Combining this with Eq. (8) gives Eq. (7), as required. O
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7 UPPER BOUNDS ON HALLUCINATION

Could one prove a much better lower bound than MF? If not in
general, are there better lower bounds under various assumptions
on Dy,d? In this section, we argue that a significantly better
lower-bound is not possible by showing that for any Dy,q14, there
is a algorithm that is calibrated and hallucinates at a rate near
the missing facts rate, equivalent its Good-Turing estimate. The
conceptually simple algorithm is neither efficient nor a good LM,
but it suffices to show that a better lower-bound is not possible.

The algorithm memorizes the facts in the training data and gen-
erates random facts from the training data and random unseen
factoids uniformly at random, but at different rates.

(1) Inputs: X¢rajn € X™.

(2) Let O,U = Y \ O be the sets of observed and unobserved
factoids in the training data, respectively, as defined in Sec-
tion 5 and compute MF, the fraction of factoids that appear
exactly once in the training data, as defined in Eq. (5). Let
g € A(Y) be defined as

MF
() =10 Hyel
I I-MF ity e 0

0] LA

(3) For each factoid y € Y, select a corresponding document
d(y) € X such that f(d(y)) = y. To be specific, one can take
d(y) to be the lexicographically first document in {x € X |

f(x) =y}
(4) Output Drpr = d o g, i.e., the distribution which samples
y ~ g and then outputs d(y).

It is easy to see that, by design, g = f o Dy .

LEmMMA 3. Forany 8, A € [0,1], Dyords n = 1,

g(H) < MF and Mise (g, p) < 3\/@} >1-96,

where g = f o Dy for the above algorithm, g(H) is its hallucination
rate, and Mis (g, p) is defined in Eq. (2).

Pr

Xtrain~ Dirain

In other words, with high probability one can have a calibrated
LM that hallucinates with probability close to MF.

PROOF. There can either be one or two bins Bg based on whether
t MF —

o7 ~ IOI
case, Misw (g, p) is at most

or no E 1f they are equal then Mise (g, p) = 0. In any

2p(U) = 90|+ 51p(0) - 9(0)| = |p(U) ~ (V)] = [p(V) - ATF.

Since MF is a Good-Turing estimator, by Corollary 6, with proba-
bility > 1 — & the above quantity is at most 34/ =1~ ln(4/ 9) | At the same
time, with certainty,

MF —
—_|HNU| < MF.

g(H) = 0]
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8 PROOFS OF COROLLARIES

To prove Corollaries 1 to 3, we use Markov’s inequality on the
expectation of a non-negative random variable W, which states
that Pr[W > E[W]/8] < §.Inour case, W := (p(U)—”PH - .‘7||TV_
g(H))+ and thus using § — (2/3)d and Theorem 1 imply that for
any partition I, the probability that for a random p ~ v, we have

p()-[p™ - | -9t > (gleaxPPrv[y € Fl+ 0l maxElp(y)]
is at most 2—5. Rearranging terms, with probability at least 1 — 2

- (,;Eagppr [y & F1 + 0] maxElp(y)]
©)

Also, Corollary 6 of Appendix A with § — §/3 implies that for any
é € (0,1] and any Dy,

_ [6In(6/9)

It is now straightforward to prove the corollaries.

g(H) = p(U)-[[p™ - 4|

1)
>1-. (10)

D

Xtmm

L

Proor oF COROLLARY 1. For a regular Dy,.,14, because it has 1-
regular-facts and 1-regular-probabilities, with probability 1 the
posterior satisfies:

E[(lIFnUll , |0l
Pr [y € F] + |0 maxE < - U
Iyneagpjv[y 1+1 Irgleagv[p(y)] o T E[p(U)]
< 2—|F| < 2e”
= e
U]

In the above we have used the fact that O € F and U 2 H. The
proof follows immediately from this, Egs. (9) and (10) and the union
bound, using IT = V,(g). O

The proofs of Corollary 2 and Corollary 3 also follow directly,
where in Corollary 2 we use the fact that |O| < n.

9 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

When one first encounters LM hallucinations, it is perhaps surpris-
ing that a system which clearly embeds such a rich diverse array
of detailed knowledge at the same time creates complete fabrica-
tions with no basis in fact or the training data. This work aims to
demystify this phenomenon by showing that pretraining LMs for
predictive accuracy leads to hallucination even in an ideal world
where the training data is perfectly factual, there is no blur between
facts and hallucinations, each document contains at most one fact,
and there is not even a prompt that would encourage hallucina-
tion. Moreover, our theory explains why modern LMs hallucinate
more than older LMs such as trigram models, even though both are
trained on similar types of data with similar objectives.

The monofact rate may shed light on the rates at which calibrated
LMs must hallucinate for different types of facts. One expects hal-
lucination for facts that have a high monofact rate, i.e., the types of
facts which often occur just once in the training data. Interestingly,
this would not be common for references to books or articles, a
problematic type of hallucination discussed today. Therefore, these
may arise from other issues such as model capacity, when one con-
siders the shear number of facts including references and others

|
)
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that an LM encounters in training. Furthermore, correcting for hal-
lucinated references may be doable by modifying the pre-training
pipeline without post-training, though this will not address other
types of arbitrary facts where the monofacts are common, as in our
5W example.

There are several limitations to our work. First, we only study
one statistical source of hallucination. There are many other types
of hallucination and reasons LMs may hallucinate beyond pure
statistics. Second, our semantic notion of calibration is different
from the standard token-based ones used in classification. While
natural and simple to define, our notion has the disadvantage of
being computationally intractable to evaluate for many models.
Third, factuality is not always clear-cut, facts are not all disjoint,
and our regularity assumptions may not hold for facts that have
a mild systematic component. As an example, if the training data
contains the Alex Wilkins 5W fact from the introduction, then it
is also follows that Alex Wilkins has eaten at Salumeria at some
point, which is a different but overlapping fact. Finally, it could be
the case that aspects of the real world, messy and different from our
idealized setting, actually reduce the minimal hallucination rates.
For instance, it could be that having multiple facts in a document
makes models less likely to hallucinate and thus our lower bounds
do not apply. In the arXiv version of this paper’, we also discuss
alternatives and generalizations.

In future work, it would be interesting to use the insights pre-
sented here to further reduce hallucination in LMs. An interesting
question is how to convert a pretrained (calibrated) model to one
that is good at factual prediction. A step in this process may be to
distinguish systematic facts from arbitrary ones, which LMs may
be capable of at some point in the future if not today. For example,
for generation, one would not desire fabricated book titles, but
one would like mathematical statements. What is the difference
between fabricating a non-existent book title from generating an
inequality such as 17 < 124398, if neither has ever been written
down? Humans know that the latter can be manufactured (as long
as it is mathematically correct) while the former cannot, which
presumably is how we avoid hallucinating. It seems conceivable
that LMs can similarly represent this distinction, and the work
mentioned showing that LMs “know” when they are hallucinating
suggests that this may indeed be possible with today’s LMs.
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A  GOOD-TURING ESTIMATOR BOUNDS

The distribution bounds here are stated for a general set S, i.i.d.
sample s = (s1,82,...,5p) € S" from an arbitrary distribution
D e A(S).

DEFINITION 5 (MISSING MASS). For distribution D € A(S),n > 1,
and sample s € S", the missing mass is:

Mgp(s) =D (S\ {s1,82....8n}).

https://arxiv.org/abs/2311.14648
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THEOREM 4 ([4, 23]). For any distribution D € A(S) and any
n>1¢e20, letﬁ% = Eg.pn[Mgp(s)]. Then:

PZJS [Mgp(s) = M% +e] < emen
s~Dn

(11)
Pzr) [Mgp(s) < M% —¢] < e~ 192¢'n (12)

s~Pn
Eq. (11) is Theorem 16 of McAllester and Ortiz [23] and Theorem
2.1 of Berend and Kontorovich [4]. Eq. (12) is Theorem 2.2 of Berend
and Kontorovich [4], though for simplicity we use the worse bound
—Ezn

of e which was also present in McAllester and Ortiz [23].

DEFINITION 6 (GooD TURING ESTIMATOR). Forn > 1, set S, and
sample s € S™, the Good-Turing estimator [14] is,

GT(s) = %|{i e [n] | Vj#isi#s;}

In words, the estimator above is defined as the fraction of el-
ements of a sample each of which appears exactly once in the
sample.

LEMMA 5 ([23]). For any distribution D € A(S) and anyn > 1,
5 €(0,1], let GT'q, := By_pyn [GTp (s)]. Then:

Pr GTD(s)zﬁ;’)h/zml/é] ) (13)
s~Dn n

Pr GTD(s)sﬁrz’)—,lzml/(s} ) (14)
s~Pn n

Eq. (13) is Theorem 16 of McAllester and Ortiz [23] and Eq. (14)
has the identical 1-line proof using McDiarmid’s inequality.

The next lemma says that the expected values of the missing
mass and unique elements in training data are very close.

LEMMA 6. Foranyn > 1 and any D € A(S),
— — — 1
Mg, < GTq < Mg + -
for]\_/Irzl) as defined in Theorem 4 and ﬁz) as defined in Lemma 5.

COROLLARY 5. For any set S, distribution D € A(S), any n >
1,6 € (0, 1], the Good-Turing estimator (Def. 6) satisfies:

Pr | [Mp(s) = GT(s)| < ~ +2.42 In(4/9) ] >1-6. (15
s~Dn n n

Pr |Mp(s) = GT(s) - & — 2.14¢) /D ] >1-6. (16)
s~Dn n n

Proor. Eq. (15) is established by setting ¢ = +/In(4/8)/n in
Egs. (11) and (12), which by the union bound implies,

In(4/5) }

n

6 &6 6
<—4-==

> .
4 4 2

Pr
s~Dn

Moy (5) -

Plugging 6’ = §/4 in Eqs. (13) and (14) and the union bound gives,

N [21n(4/5)
n

Combining the above two with Lemma 6, the triangle inequality,
and the fact that 1+ V2 < 2.41 give Eq. (15).

5§ &5 6
<-4-==

Pr .
s~Dn 4 4 2

‘GT(S) ~GTy
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Similarly, Eq. (16) follows by using ¢ = +/In(2/6)/(1.92n) in
Eq. (12) and Lemma 6 and Eq. (13) with /2 and summing the
corresponding three inequalities to give,

1 In(2/6 2In(2/5 )
Pr MD(S)ZGT(S)———\/D( /%) —\/ ne/o| 8.8
n 1.92n n 2 2
Using the fact that 4/1/1.92 + V2 < 2.14 completes the proof. O

We now simplify the above expression.

COROLLARY 6. For any set S, distribution D € A(S), anyn > 1,

Vé € (0,1] Pzr)n [Mg(s) = GT(s)| <3 @ } >1-6.
(17)
e x> o0 - (| 1

(18)

Proor. We first show Eq. (17). Note that Eq. (17) holds trivially
for n < 9 because GT(s), Mg (s) € [0,1] and 3+/In(4)/9 > 1. Thus,
from Cor. 5, it suffices to verify that forn > 9, < 1:

L \/111(4/5) <3 \/ln(4/§)
n n

n

In other words, we need

0.58\/ M
n

Squaring and simplifying, this is

(\2

1
e

1
n> —————.
(0.58)21In(4/6)
Since the RHS is a monotonic increasing function of §, we can use
its largest value of § = 1, and it suffices to have n > 4.29.
For Eq. (18), it holds trivially for n < 6 because /6 In(2/6)/n >

y61n(6)/6 > 1. Thus, from Cor. 5, it suffices to verify that for
n>668<1/3

l+2‘14\/ln(2/5) S\/61n(z/5)
n n

n

In other words, we need (V6 — 2.14)/ w > % Squaring and
simplifying, this is

n ! .
(V6 —2.14)21In(2/6)

Since the RHS is a monotonic increasing function of §, we can use
its largest value of § = 1/3, and it suffices to have n > 5.83. O

B ALTERNATIVE CALIBRATION
DEFINITIONS

In this section, we define a more standard alternative definition of

calibration based on log-probability bins of equal width. Recall that

B, ={yeY|g(y) =z}and B; :={y € Y | g(y) € I}. We now

define bins of fixed width in probability space.
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DEFINITION 7 (BINNING). Fore € (0,1), the binning B(g, €) with
equally spaced bins in log-probability space, is the following partition:
(19)
Fore € {0,1}, let B(g,0) := B(g) = {B; | z € [0,1]} and B(g, 1) :=
{Blo)} = {¥}.

Thus ¢ determines the bin widths on a log-scale, with small ¢

B(ge) _
P Iy
as a definition of miscalibration and the corresponding corollary
would follow directly from our previous analysis.

B(g,¢€) = {B((lfg)u-l’(l,g)i] i=01,2,.. } U{Bo}.

corresponding to narrow bins. Thus one could use

COROLLARY 7. Fixany§ € [0,1],n € N,s € R ¢ € (0,1) and any
s-sparse regular D14 Then for any algorithm A : X" — A(X),
with probability > 1 — § over Dp, ~ Dy,or1d and Xerain ~ D;j",

g(H) > MF - ”pmg,e) _ 9HTV _ SeT ~ \/@ .

Proor. The proof of this Corollary follows exactly the same
proofs as that of Corollary 1 except that we use p% (9:¢) in place of

Vi (9)- m

We next use an even more standard definition which is not based
on statistical distance. Recall that our first definition of calibration,
without limits on bins as in Eq. (2), can be written as,

B
Misao (9. p) = [[p59 — gl 1y :% > }% -g(y)‘
BeB(g) yeB
== > Ip(B) - g(B)|.
BEB(g)

This is the most obvious definition and the question is how to gen-
eralize it to bins. The above also suggests the following alternative
generative definition of calibration error.

DEFINITION 8 (GENERATIVE CALIBRATION ERROR). Fore € [0,1],
and distributions p, g € A(Y), the e-generative calibration error s,

1
GCE:(9.p) =5 >, |p(B)-9(B)]
BeB(g.¢)

This definition means that GCE(g, p) = Misw (g, p). Note that
these two definitions of calibration error are related by the following
lemma.

LEMMA 7. Let ¢ € [0,1]. Then,
R
Hp 9|y ~ € < GCEelg.p) < |Ip Ilhpy -

Before we prove Lemma 7, we observe that Corollary 7 implies
the following.

COROLLARY 8. Fixanyd € [0,1],n € N,s € R e € (0,1) and any
s-sparse regular Dy,o1q- Then for any algorithm A : X" — A(X),
with probability > 1~ & over Dy, ~ Dyor1q and Xirain ~ DI,

3¢S

[61n(6/)
s n

g(H) > MF - GCE(g,p) — ¢ -

We now return to prove Lemma 7.
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ProOF oF LEMMA 7. Let IT = B(g, ¢). Then,

GCRe(g.p) = 5 3 Ip(B) - g(B)|
Bell
1 1
= EBZH]T;BE Ip(B) - g(B)|
1y v |e® e
2 ;[_;3 B~ 1B
= %%%‘Pn(y) -9
- % 2.2, ‘Pn(y) - 9(y) +9(y) —gn(y)‘
Bell yeB

>3 3 ) - 9| - o w) - 9v)
BTl yeB
by a+b| > [b| - |a|

—|pT — — g =

- Hp gHTV ”g g”Tv'
This proves the RHS inequality of the lemma. Thus it suffices to
show “gn - g”TV < e. We first claim that for all y:

9 () - 9(y) < g™ (y). (20)

Let B € II be the bin containing y € B. Now, recall that each bucket
can be written as:

B? = {y | g(y) € I} for some interval I C [0, 1].

If I = [0,0], then Eq. (20) is trivially true because g(y) = 0 = g'(y).
Otherwise, say I = ((1 - &)li+1), (1 - ¢)] for some i > 0. Then,
by definition of g,

B
M = L
|B|

because the weighted average of an numbers in an interval is also
contained in the interval. Since this interval has (multiplicative)
width e7¢, g(y) > (1 - £)¢g™ (). Equivalently,

9" () - 9(y) < eg" ().
Thus we have established Eq. (20) which trivially implies that,

Vyey (gH(y) —g(y))+ < eg'(y).

9 (y) =

Therefore,

[, = > (" -9w) <> g =-

yey yey

which is all that remained to prove the lemma.
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