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ABSTRACT

Recent language models generate false but plausible-sounding text

with surprising frequency. Such “hallucinationsž are an obstacle to

the usability of language-based AI systems and can harm people

who rely upon their outputs. This work shows that there is an

inherent statistical lower-bound on the rate that pretrained lan-

guage models hallucinate certain types of facts, having nothing

to do with the transformer LM architecture or data quality. For

“arbitraryž facts whose veracity cannot be determined from the

training data, we show that hallucinations must occur at a certain

rate for language models that satisfy a statistical calibration con-

dition appropriate for generative language models. Specifically, if

the maximum probability of any fact is bounded, we show that the

probability of generating a hallucination is close to the fraction of

facts that occur exactly once in the training data (a “Good-Turingž

estimate), even assuming ideal training data without errors.

One conclusion is that models pretrained to be sufficiently good

predictors (i.e., calibrated) may require post-training to mitigate

hallucinations on the type of arbitrary facts that tend to appear

once in the training set. However, our analysis also suggests that

there is no statistical reason that pretraining will lead to halluci-

nation on facts that tend to appear repeatedly in the training data

(like references to publications such as articles and books, whose

hallucinations have been particularly notable and problematic) or

on systematic facts (like arithmetic calculations). Therefore, differ-

ent architectures and learning algorithms may mitigate these latter

types of hallucinations.
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1 INTRODUCTION

The surprisingly high rate at which Language Models (LMs) gen-

erate false information, such as references to non-existent article

titles, has recently emerged as a critical issue. The popular term

hallucination is defined in the Merriam-Webster [25] dictionary

as “a plausible but false or misleading response generated by an

artificial intelligence algorithm.ž In one case, lawyers were fined

$5,000 for submitting legal research containing hallucinated legal

cases that they believed were correct [30]. In healthcare, halluci-

nations could be life threatening to patients and physicians are

concerned about malpractice cases [24]. Furthermore, hallucina-

tions have been widely reported on by the media [34], and the U.S.

President recently put out an Executive Order calling for, among

other things, safeguards against misleading outputs from genera-

tive AI systems [5]. This paper presents statistical lower-bounds

on the rate of hallucination for LMs that are calibrated predictors

of facts. This helps illuminate the nature of hallucination. It should

not be taken to mean that hallucination is inevitable. Rather, as we

discuss it is consistent with the fact that practitioners have increas-

ingly been augmenting “pretrainingž procedures by “post-trainingž

procedures that reduce hallucination rates at the cost of reducing

calibration as well.

An LM is simply a probability distribution𝐷 over sequences of to-

kens, i.e., words or other character sequences. Clearly any LMwhich

predicts every string with positive probability (a common property

of LMs) will necessarily hallucinate with positive probability. How-

ever, if this probability is small, then hallucinations will be rare.

Thus it is crucial to quantify the rate of hallucinations. Every distri-

bution 𝐷 can equivalently be represented by its log-probabilities

over entire sequences or conditional log-probabilities of the subse-

quent token given previous ones, log𝐷 (𝑡1 . . . 𝑡𝑚) = ∑𝑚
𝑖=1 log𝐷 (𝑡𝑖 |

𝑡1 . . . 𝑡𝑖−1) . This mathematically trivial equivalence1 has a profound

implication: any LM can be used either to generate text or predict the

next token in naturally occurring text conditioned on the previous

tokens, though prediction and generation have different desiderata.

For instance, consider the sentence:

łAlexa Wilkins had a tuna sandwich at Salumeria for lunch last

Tuesday because the reviews said that it was divine."

Sentences of this sort could be likely under a predictive LM, for

example, to offer suggestions to reduce typing on phones [e.g., 32]. It

may be desirable to predict sandwich as an option of a word to type

after the word tuna, along with other likely words such as salad. On

the other hand, the vast majority of sentences of this sort would be

false if randomly fabricated by a generative LM. This paper shows

LMswith good predictive text performance should hallucinate, even

1The equivalence between next-token-prediction and document generation holds only
if one disregards computational costs. It is similar to the statement that book can
be output one word at a time, in order, in a single pass, even though writing a book
generally involves many iterations.
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under ideal conditions. Notably in the first stage of pretraining,

common today, the generative LM is optimized for predictive text

performance [9, 27]. Moreover, it gives a lower-bound on the rate of

hallucination, which can shed light on the different rates at which

different types of facts should be hallucinated.

What is common to both potential references and the example

above (which we shall refer to as 5W = Who-Ate-What-When-

Where-Why factoids), above is that they are arbitrary in the sense

that neither one can be determined systematically by rulesÐone

cannot determine the veracity ofmost such facts that are not present

in the training data. This in contrast to facts whose veracity can

be determined systematically. We quantify how much LMs should

hallucinate even in an simplified setting with several ideal properties.

Because we are giving statistical lower-bounds, we favor simplicity

over generality as the point of our lower bounds is to identify a

fundamental cause of LM hallucination. Similar to classification,

where one seeks a lower-bound for the difficulty of classification in

noiseless settings (but noise-tolerant classifications algorithms), we

seek a hallucination lower-bound that holds in the simplest setting

where training data is i.i.d. without factual errors.

Calibration for generative models. Calibration is a natural require-

ment of a probabilistic predictor meaning that its probabilities can

be interpreted as accurate confidences in its own predictions. Dawid

[10] introduced the notion with the example of a weather forecaster:

among days when they predict 30% chance of rain, it rains approxi-

mately 30% of the time. Calibration metrics have been extensively

studied for LMs [see, e.g., 7, 17, 38]. Fig. 1 illustrates multi-class

calibration for GPT-4, a large modern LM, on a multiple choice

exam. Post-training alignment was applied to reduce hallucination

(among other factors) but was also found to reduce calibration [27].

Calibration is both meaningful, since a calibrated predictor’s proba-

bilities are interpretable as accurate confidences, and statistically

achievable.2 In contrast, the perfectly accurate predictor would also

be calibrated but may be impossible to learn. However, calibration

is only a minimal requirement for predictors, as not all calibrated

models are useful predictors: the predictor which always outputs

the annual average probability of rain is trivially calibrated.

We provide a natural generalization of calibration to generative

models. Our notion differs from prior uses of calibration in LMs

which were at the token-level. The problem with analyzing raw

token probabilities is that there are many ways to describe any fact

in natural language, and thus having calibrated token probabilities

is not particularly meaningful. To illustrate, consider the old tri-

gram LMs, which predict next-token probabilities based only on

the previous two tokens (e.g., words). Trigram models are naturally

calibrated at the token level, and yet hallucination was not a major

problem for trigram models. This is because they mostly gener-

ate gibberish. Instead, our semantic-level calibration considers the

probability distribution over pieces of information (facts or halluci-

nations) contained in the text. We say an LM is calibrated if, for any

probability 𝑧 ∈ [0, 1], among the pieces of information it generates

with probability ≈ 𝑧, such information occurs on average in a ≈ 𝑧

2Simple post-hoc probability modification procedures can calibrate any uncalibrated
predictor and simultaneously increase its accuracy under metrics such as cross-entropy
[see, e.g., 7, 8].

fraction of naturally occurring language (ideally the distribution

from which training data was drawn).

Why LMs hallucinate. Hallucinations have mystified LM users

and some researchers alike. Section 2 surveys numerous hypotheses

that have been studied for why LMs hallucinate, ranging from in-

accurate or outdated training data to the next-token log-likelihood

objective in training. Hallucination can also be due to an adversarial

or out-of-distribution prompt: a textual prefix provided for the LM

to complete which establishes context. For example, there may be

no factual completion to a fabricated prompt such as, The 15 Elves

of San Salami are named. . . .3 In contrast, our work shows that even

in an ideal, unchanging world with perfect training data and no

prompts,4 one should expect hallucinations from LMs which are

calibrated.

Simplified setting. We consider a stationary language distribu-

tion 𝐷𝐿 ∈ Δ(𝑋 ) over documents (i.e., strings of text) 𝑥 ∈ 𝑋 , and a

learning algorithmA which takes training data xtrain ∈ 𝑋𝑛 consist-

ing of 𝑛 documents sampled independently from 𝐷𝐿 , and outputs

an LM, i.e., a distribution 𝐷𝐿𝑀 := A(xtrain) ∈ Δ(𝑋 ). For simplicity,

we assume that there are only facts in the training data, and at most

one per document, i.e., no training hallucinations. We focus on

arbitrary facts such as the above examples, whose truth is usually

undetermined from the training set, rather than systematic facts

such as 572 < 120523 predictable from a training set by learning the

underlying rules governing correctness. There is no statistical rea-

son that LMs should hallucinate on systematic facts. Additionally,

mistakes on systematic facts may not be considered hallucinations

at all Ð they are often categorized as reasoning or arithmetic errors.

We assume that each document 𝑥 ∈ 𝑋 contains at most one

factoid 𝑓 (𝑥) ∈ 𝑌 , where factoids are arbitrary pieces of information

which are each either true (facts) or false (hallucinations) and whose

truth is statistically hard to determine from the training data. We

also simplify matters by considering unconditional generation [e.g.,

31] in which the LM is sampled to generate text without any prompt

(equivalently, the empty-string prefix). Again, compared to our

simplified setting, hallucination may be even more likely in the

more realistic case where the LM is prompted with contexts that

come from a different distribution than the training data.

Results. Consider 𝑛 i.i.d. samples from an unknown distribution

𝑝 over a large number of arbitrary factoids, such as the 5W example

and references. The missing mass, or in our case missing facts 𝑝 (𝑈 ),
is the fraction of future samples from this fact distribution 𝑝 that

were not observed in the 𝑛 training samples, where 𝑈 is the subset

of facts that were unobserved in training data. The Good-Turing

estimate of the missing mass [14] is the fraction of samples (in our

case facts) that appear exactly once in the training data. In our

context, we call this the MonoFacts estimator,

𝑀𝐹 :=
Number of facts appearing exactly once in training data

𝑛
.

3A completion such as . . . actually never mind, I have no idea is unlikely given training
data that does not have such retractions.
4Equivalently, one could consider there being a fixed constant prompt, such as the
string “Document:ž, that begins every document.
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The Good-Turing estimator was shown to be within |𝑝 (𝑈 ) −𝑀𝐹 | =
𝑂̃ (

√︁
1/𝑛) of the missing mass, with high probability [22, 23], for

any distribution 𝑝 .

If the correctness of arbitrary factoids not contained in the train-

ing cannot be determined, the missing fact rate can provide a lower-

bound on the rate of hallucination. This in turn gives us a lower-

bound close to𝑀𝐹 . In particular, under a “regularityž assumption

on the factoid distribution, our simplest bound (Corollary 1) implies

that, for any algorithm, with probability ≥ 99% over training sets,

the Hallucination rate is at least

𝑀𝐹 −Miscalibration − 300|Facts|
|Possible hallucinations| −

7
√
𝑛
,

where the “Hallucination ratež is the rate at which the LM gener-

ates hallucinations, the next term is “monofactž estimator of the

missing facts. The subsequent term is a “miscalibration ratež which

quantifies how close to calibration the distribution is. We also have

a term involving the ratio of the number of arbitrary facts to similar

pieces of information that are false, which is exponentially small

for many types of information. The final 7/
√
𝑛 term is small for

the large training set sizes 𝑛 used in today’s LM. The regularity

assumption means that all unobserved factoids have, on average,

equal probability of being true. More generally, the bound holds

with probability ≥ 1 − 𝛿 where the constant 60 can be replaced by

a term which is inversely proportional to 𝛿 and proportional to a

regularity term on the distribution of factoids. The regularity term

measures the ratio of the most likely factoid (that was not observed

in training data) to the average unobserved factoid probability. This

constant is 1 for symmetric distributions and other types of simple

distributions. We relax it to consider bounded regularity, which

permits there to be certain negative correlations such as the fact

that a person does not eat 1000 lunches in 1000 different places

on the same day and allows for some factoids to have conditional

probability 0, but it prohibits unobserved factoids from having very

large probability.

Interpretation. Our lower-bounds have the following interpre-

tation. First, one should identify a large set of factoids: arbitrary,

plausible, regular factoids. These could be posts about 5W and plau-

sible research article citations. Intuitively, there are exponentially

more plausible factoids that are incorrect (which we call halluci-

nations), than those that are facts. One can then consider what

fraction of such factoids might appear exactly once in the training

data. In the case of 5W, one could imagine that half of the posts

occur exactly once. This would suggest that a calibrated-factoid

model would hallucinate on about half of its generations on 5W

factoids. On the other hand, one could imagine that there are many

many fewer than 𝑛 articles and since the goal of publication is

advertising, each reference might be expected to appear multiple

times in the training data5 (i.e., have probability ≫ 1/𝑛) except for
perhaps very recent publications (e.g., within the last day before

they other references begin to appear). This would suggest that

the missing mass for articles is low and that there is no inherent

statistical necessity to hallucinate reference titles. There may be

5Even papers that are never cited often appear on an authors’ CVs and institutional
web pages and are cross-posted and listed in multiple publication indexes since the
authors and institutions often wish to publicize their output and indices such as
Google/Semantic Scholar may compete for completeness.

Figure 1: GPT-4 calibration curves before (left) and after

(right) reinforcement learning [27, Figure 8, reprinted with

permission]. As suggested by our model, post-training re-

duces hallucination rates at the cost of increasing calibration

error. Note that calibration here is on a multiple-choice test

rather than generative calibration which we study.

other causes of such hallucinations such as limited model capacity

(even if the number of LM parameters is much greater than the

number of articles, these parameters must encode many types of

information beyond article titles). This also justifies the mitigation

of consulting a fact database at generation time, even if that fact

database is constructed solely from training data [6]. Corollary 4

gives a simple generalization of our analysis to multiple types of

facts.

Conversely, one may wonder what if any facts appear only once

in a large training corpus that might encompass the entire web.

First, it is worth noting that significant efforts are made, in con-

structing LM corpora, to remove duplicates [see, e.g. 29]. And in

other contexts, such as Zipfian and other power-law distributions, it

is often observed that a constant fraction of entities appear exactly

once, even as the datasets scale. While most facts that come to mind

may be well-known, many public meeting notes and other posts

may contain unremarkable facts that are not mentioned in other

places.

Despite this tension between factuality and predictive accuracy,

the parameters of both types of LMs are typically trained or “pre-

trainedž to maximize likelihood on a corpus, or equivalently to

minimize the “KL divergencež, a strong statistical discrepancy met-

ric between the LM and the distribution of data on which it was

trained.

The arXiv version of this paper6 has further elaboration.

2 RELATED WORK

As discussed in the introduction, the concept of calibration was

introduced by Dawid [10] and has been extensively studied in

statistics and machine learning and even specifically for LMs [7,

17, 38] and other related fields of deep learning and generative AI

[21, 28]. Błasiok et al. [8] argue that calibration happens naturally

as a byproduct of minimizing log-loss for deep neural networks,

though their results are for a different architecture and different

notion of calibration.

Unfortunately, there is not clear agreement on what counts as

a hallucination. This is why we consider an idealized model in

6https://arxiv.org/abs/2311.14648
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which there are clear-cut facts, where statements that violate these

facts would generally be categorized as hallucinations by most

definitions.

Open- vs. closed-domain hallucinations. Interestingly, many stud-

ies focus on hallucinationwith respect to a specific source document

that is given to an LM, such as in translation [35] or summarization

[21]. There, LMs are also found to fabricate facts not present in

the source document even when instructed to use only informa-

tion present in the source. This is referred to as closed-domain

hallucination in contrast to our open-domain setting, where the

LM generates hallucinations which are not factually grounded in

its training data. There is no clear statistical argument for why

closed-domain hallucinations must occur, since if one can verify

such hallucinations from the source text and generation one can

avoid them by filtering out generations with such mistakes. Con-

sistent with this, [27] reports a greater reduction in closed-domain

hallucinations over open-domain ones.

Honesty vs. factuality. Evans et al. [12] points out that there is

a difference between factuality and truthfulness (i.e., honesty). An

LM which states something that disagrees with its training data

may be said to lie, whereas factuality may be much harder to deter-

mine for a variety of reasons, including the possibility that what is

considered factual may change as scientists make new discoveries

and rebuke old theories. Nonetheless, in worlds where there is an

absolute notion of facts, and the training data only contain facts,

then any falsehood is also untruthful. Thus in ideal worlds where

training data is perfectly consistent with an internally consistent

ground-truth notion of facts, our bounds on non-factuality directly

imply bounds on the rate at which LMs must generate untruthful

information or “lie.ž

Hypotheses for why LMs hallucinate. There have been many ex-

planations of why LMs hallucinate. The primary reason proposed

for hallucinations is inadequacies in training data. This can be bro-

ken into two issues. First are falsehoods contained in the training

data [11, 13, 16, 19], which Lin et al. [19] refer to as “imitative false-

hoods.ž Second is the temporal nature of data, i.e., the fact that

training data is no longer relevant and is missing current events

[2, 33]. While both of these are certainly factors in hallucination,

our work shows that it is not the only cause of LM hallucinations.

An additional reason given for why LMs may hallucinate is the

fact that they are trained to produce tokens one at a time may lead

to hallucination [36] because the LM may generate a plausible-

sounding sequence of tokens which is impossible to complete factu-

ally. While this may be true for transformers due to computational

limitations, this is not simply a statistical byproduct of their being

trained on the next-token prediction task. Since document log-

likelihood is simply the sum of next-token log-likelihood, the two

objectives are identical and thus from a statistical perspective this is

not a factor. Mathematically, any probability distribution over doc-

uments can be represented as a conditional next-token probability

distribution.

Another line of work that sheds light on the nature of hallucina-

tions shows that LMs know when they’re hallucinating [1, 3, 18, 20].

Various techniques may be used to identify LM hallucinations

purely from the LM itself, either the internal weights, its token

probabilities, or by querying it with additional questions. This is

consistent with our work in the sense that one would expect even

an ideal “super-intelligentž model should hallucinate if its goal is

predictive accuracy.

A bevy of additional reasons have been proposed and studied

for why LMs may hallucinate. These fall under headings such as

duplicates in training data, biases, architecture, overconfidence and

various types of knowledge failures, among others. A complete

listing of these is beyond this scope of this work. For further details,

see the recent surveys of Huang et al. [15], Ji et al. [16], Zhang et al.

[37].

3 MATHEMATICAL PRELIMINARIES

We first define preliminary notation and concepts, including statis-

tical distance and our notion of generative calibration.

3.1 Standard Definitions and Notation

Let Δ(𝑆) denote the set of probability distributions over 𝑆 . For dis-

tribution D ∈ Δ(𝑆) and 𝑅 ⊆ 𝑆 , let D(𝑅) := ∑
𝑥∈𝑅 D(𝑥). The Total

Variation distance (TV) (also called statistical distance) between

distributions D,D′ ∈ Δ(𝑆) has multiple equivalent definitions (for

finite or countably infinite sets 𝑆):

∥D − D′∥TV := max
𝑅⊆𝑆

|D(𝑅) − D′ (𝑅) | (1)

=
1

2

∑︁

𝑥∈𝑆
|D(𝑥) − D′ (𝑥) | =

∑︁

𝑥∈𝑆

(
D(𝑥) − D′ (𝑥)

)
+ ,

where (𝑧)+ = max(0, 𝑧) for 𝑧 ∈ R. It satisfies ∥D − D′∥TV =

∥D′ − D∥TV ∈ [0, 1]. The support of distribution D is supp(𝐷) =
{𝑥 ∈ 𝑆 | D(𝑥) > 0}, as long as 𝑆 is finite or countably infinite.

Let the set of partitions of set 𝑆 be denoted by P(𝑆) := {Π ⊆ 2𝑆 |
∀𝑥 ∈ 𝑆 |{𝐵 ∈ Π | 𝑥 ∈ 𝐵}| = 1}. For a function 𝑓 : 𝑋 → 𝑌 and set

𝑆 ⊆ 𝑋 , let 𝑓 (𝑆) := {𝑓 (𝑥) | 𝑥 ∈ 𝑆}. For a distribution D ∈ Δ(𝑋 ),
let 𝑓 ◦ D denote the induced distribution of 𝑓 (𝑥) for 𝑥 ∼ D, i.e.,

𝑓 (𝑦) := ∑
𝑥 :𝑓 (𝑥 )=𝑦 D(𝑥). Finally, let D×𝑛 denote the distribution

over 𝑛 independent samples from D.

3.2 Generative (Mis)calibration

This section defines a notion of miscalibration Mis𝑏 (𝑝,𝑔) ∈ [0, 1]
for a generative model 𝑔 that measures how accurate its own prob-

abilities are with respect to future examples drawn from a given

pretraining distribution 𝑝 , using 𝑏 ≥ 1 bins. It is a natural exten-

sion of existing notions of calibration to generative models, and

can be skipped on first read for those who want to get straight

to the model. Appendix B discusses the relationship between this

and existing notions of calibrated classifiers. The definitions in this

section apply to any distributions 𝑝,𝑔 ∈ Δ(𝑌 ) for any finite set 𝑌 .

In other words, there is only assumed to be a generative distribu-

tion 𝑔 over information 𝑦 ∈ 𝑌 , and calibration is with respect to a

“truež distribution 𝑝 . Finiteness of 𝑌 is only assumed at this point to

avoid measure-theoretic technicalities. We first define a calibrated

distribution 𝑔 as any coarsening of 𝑝 .

Definition 1 (Coarsening and calibration). For partition

Π ∈ P(𝑌 ) and D ∈ Δ(𝑌 ), DΠ ∈ Δ(𝑌 ) is the Π-coarsening of D if,

∀𝐵 ∈ Π ∀𝑦 ∈ 𝐵 DΠ (𝑦) = D(𝐵)
|𝐵 | .

163



Calibrated Language Models Must Hallucinate STOC ’24, June 24ś28, 2024, Vancouver, BC, Canada

Distribution 𝑔 is said to be calibrated to 𝑝 if 𝑔 = 𝑝Π for some partition

Π.

Clearly 𝑔 = 𝑝 is calibrated to 𝑝 , and so is the uniform distribution

𝑔(𝑦) = 𝑢 (𝑦) := 1/|𝑌 |. To define miscalibration, let 𝐵
𝑔
𝑧 := {𝑦 ∈ 𝑌 |

𝑔(𝑦) = 𝑧} and omit 𝑔, writing 𝐵𝑧 = 𝐵
𝑔
𝑧 when clear from context. It is

also clear that 𝑔 is calibrated to 𝑝 iff 𝑔 = 𝑝B(𝑔) for partition B(𝑔) :=
{𝐵𝑧 | 𝑧 ∈ [0, 1]} and thus a natural definition of miscalibration

(which is 0 iff 𝑔 is calibrated to 𝑝) is:

Mis∞ (𝑔, 𝑝) :=


𝑝B(𝑔) − 𝑔




TV =

1

2

∑︁

𝐵∈B(𝑔)

∑︁

𝑦∈𝐵

����
𝑝 (𝐵)
𝐵

− 𝑔(𝑦)
���� . (2)

The ∞ in the above notation refers to the fact that there is no

limit on the number of bins. This also explains why it is called

“calibrationž: the average probability over each bin that shares a

common value of 𝑔(𝑦) is 𝑔(𝑦). This can be written as,

∀𝑧 ∈ [0, 1] E
𝑦∼𝑔

[
𝑝 (𝑦) | 𝑔(𝑦) = 𝑧

]
= 𝑧. (3)

We next generalize B(𝑔) to intervals. For 𝐼 ⊆ [0, 1], define:

𝐵𝐼 = 𝐵
𝑔
𝐼
:= {𝑦 ∈ 𝑌 | 𝑔(𝑦) ∈ 𝐼 }.

The definition below uses 𝑏 ≥ 1 adaptively sized bins which each

have roughly equal probability mass in terms of generations 𝑦 ∼ 𝑔.

Appendix B gives an alternate definition using bins of equal width

in terms of log-probability.

Definition 2 (Miscalibration). Let 𝑏 ∈ N and define the adap-

tive partition, V𝑏 (𝑔) :=
{
𝐵 [0,𝑡1 ] , 𝐵 (𝑡1,𝑡2 ] , . . . , 𝐵 (𝑡𝑏−1,𝑡𝑏 ]

}
where

𝑡𝑖 = sup



𝑧 ∈ [0, 1]

������

∑︁

𝑦:𝑔 (𝑦)≤𝑧
𝑔(𝑦) ≤ 𝑖

𝑏



.

Themiscalibration of𝑔with respect to 𝑝 isMis𝑏 (𝑔, 𝑝) :=



𝑝V𝑏 (𝑔) − 𝑔





TV

.

Adaptive binning has been used in supervised classification [e.g.,

26]. Note that Mis1 (𝑔, 𝑝) = ∥𝑔 − 𝑢∥TV is the total variation to the

uniform distribution, which shows thatMis𝑏 (𝑔, 𝑝) is not monotonic

in 𝑏 because 𝑏 = 1 is the minimum for 𝑔 = 𝑢 (regardless of 𝑝) while

𝑏 = ∞ minimizes Mis𝑏 (𝑝, 𝑝) = 0 for 𝑔 = 𝑝 . Also, Mis𝑏 (𝑔, 𝑝) =

Mis∞ (𝑔, 𝑝) for 𝑏 is large enough that 1/𝑏 ≤ min𝑦∈supp(𝑔) 𝑔(𝑦).
Finally note that necessarily 𝑡𝑏 = 1 in the above definition.

Advantages and limitations. An advantage of semantic-level cal-

ibration is that it naturally models the exponentially many ways

there are to describe any given fact, unlike token-level calibration

models. This is also a disadvantage, however, because it means that

it may be intractable to measure calibration rates, and thus experi-

mental validation may be easier in synthetic settings where facts

have canonical descriptions. One nice property of the above adap-

tive binning is thatMis𝑏 (𝑔, 𝑝) = 0 iff 𝑔 is calibrated to 𝑝 , regardless

of𝑏, whereas other definitions give 0 miscalibration whenever there

is a single bin. Nonetheless, Appendix B shows how our analysis

applies to other binning strategies.

4 THE MODEL AND GUARANTEES

Our notation is summarized in Table 1. Let Σ denote the set of

tokens and Σ
∗ denote the set of finite token sequences, i.e., strings.

Let 𝑋 ⊆ Σ
∗ denote the set of documents (this could be finite, e.g., if

a length restriction is imposed or countably infinite if 𝑋 = Σ
∗).

The world is assumed to contain randomness, which is modeled

by a distribution 𝐷world ∈ Δ(Δ(𝑋 )) over language (document)

distributions 𝐷𝐿 ∼ 𝐷world. (More generally, a full world model

would contain lot of other information but language distributions

suffices for our purposes.) The training data consists of𝑛 documents

xtrain ∼ 𝐷×𝑛
𝐿

sampled independently from this distribution. It will

be convenient to denote by 𝐷train ∈ Δ(𝑋𝑛) the distribution over

training data, where the probability of any training document is:

𝐷train (xtrain) := E
𝐷𝐿∼𝐷world

[
𝑛∏

𝑖=1

𝐷𝐿
(
𝑥
(𝑖 )
train

)
]
.

This model requires a static world that does not change. Of course,

real-world distributions are non-stationary and dynamic, and real-

world training data contains duplicates and is not i.i.d. However, our

lower bounds imply hallucination even in this ideal static setting.

4.1 Factoid Assumptions

We assume there is a large but finite set 𝑌 of “factoidsž by which

we mean arbitrary plausible pieces of information, each of which

could be true (facts) or false (hallucinations), as determined by some

world distribution. Their arbitrary nature means that, given the

facts observed in training data, one cannot infer any likely facts

among the unobserved factoids. Of course, many real-world facts

are systematic, not arbitrary. For instance, mathematical inequal-

ities such as 17 < 252395 are systematic and should thus not be

included in 𝑌 . Note that 𝑌 is not intended to capture all world facts

but rather a large set of arbitrary ones. It could contain the 5W

factoids (except for people who eat the same lunch every day in the

same location, as their eating behaviors are too systematic). There

is no statistical reason an LM must hallucinate on systematic facts.

We will make a few assumptions about factoids.

One-per-doc: First, we assume that there is at most one factoid

per document by defining a surjective function 𝑓 : 𝑋 ↠ 𝑌 which

extracts a single factoid with each document, where 𝑓 (𝑥) = ⊥
represents the empty fact (to allow for documents with no facts)

and assume ⊥ ∈ 𝑌 . This makes the notation simpler as one can

define the induced factoid distribution 𝑝 = 𝑓 ◦ 𝐷𝐿 ∈ Δ(𝑌 ) defined
by 𝑝 (𝑦) := ∑

𝑥 :𝑓 (𝑥 )=𝑦 𝐷𝐿 (𝑥). Similarly, we can take 𝑔 = 𝑓 ◦𝐷𝐿𝑀 to

be the induced distribution over generated factoids, where 𝐷𝐿𝑀 ∈
Δ(𝑋 ) is the distribution over documents generated by the LM. The

surjective requirement simply means that every factoid is describ-

able by some document 𝑥 ∈ 𝑋 , and if this didn’t hold one could

always shrink𝑌 . Our model does permit many documents to encode

the same factoid, since there are typically many ways to describe

any given piece of information. Again, this assumption may be

generalized to a model where documents contain sets of factoids

with further notation, but we show that calibrated LMs hallucinate

even in a simple idealized setting with one factoid per document.

Good-training-data: Second, we assume that the set of facts

𝐹 := supp(𝑝) ∪ {⊥} where supp(𝑝) = {𝑦 ∈ 𝑌 | 𝑝 (𝑦) > 0} =

𝑓 (supp(𝐷𝐿)), i.e., the training data consists solely of facts and

every fact has non-zero probability of being described under 𝐷𝐿 .

Both of these assumptions can be removed at the cost of addi-

tional notation without changing the results in the slightestÐthe
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world distribution would need to determine an arbitrary 𝐹 ⊆ 𝑌 and

𝐷𝐿 ∈ Δ(𝑌 ). Keeping in the spirit of the ideal training data model,

we choose to simplify notation and take 𝐹 := supp(𝑝) ∪ {⊥}. The
set of hallucinations is 𝐻 := 𝑌 \ 𝐹 , i.e., every non-fact.

More-false-than-true: Third, Assumption 1 below requires that

there are many more falsehoods in 𝑌 than facts, which makes sense

for many types of information. For example, consider those factoids

which describe a paper citation including the paper title, authors,

and further details. There are vastly more plausible citations than

existing ones. In this case, one may choose to include in 𝑌 a some-

what smaller sparse set, i.e., not include author middle names or

other minor variations in 𝑌 which would make a reference in the

“grey areaž between fact and hallucination. Similarly, for 5W fac-

toids, there are many more combinations of people who did not eat

a given food on at a given time than people who did.

Assumption 1 (𝑠-Sparse facts). There are many fewer facts

than hallucinations. Specifically, there exists 𝑠 ∈ R such that, with

probability 1 over 𝐷𝐿 ∼ 𝐷world: |𝐹 | ≤ 𝑒−𝑠 |𝐻 |. Recall that 𝐹 :=

𝑓 (supp(𝐷𝐿)) ∪ {⊥} and 𝐻 = 𝑌 \ 𝐹 .

We write sparsity as an exponential to reflect the general expo-

nentially nature of natural language facts.

(Semi)Regularity: Finally, and most importantly, we assume that

no single factoid is very likely. Specifically, perfect regularity re-

quires that after observing the training data, all unobserved factoids

are equally likely to appear as facts in the language distribution,

and we also provide a relaxed 𝑟 -regular notion, which we refer to

as a “semi-regularityž assumption.

Definition 3 (Regular facts). 𝐷world has regular facts if for

all xtrain ∈ supp(𝐷train):

∀𝑦,𝑦′ ∈ 𝑈 Pr[𝑦 ∈ 𝐹 | xtrain] = Pr[𝑦′ ∈ 𝐹 | xtrain] .

For 𝑟 ≥ 1, 𝐷world has 𝑟 -regular-facts if for all xtrain ∈ supp(𝐷train),

∀𝑦 ∈ 𝑈 Pr[𝑦 ∈ 𝐹 | xtrain] ≤
𝑟

|𝑈 | E
[
|𝐹 ∩𝑈 |

�� xtrain

]
.

Having regular facts will suffice to prove the lower bound Corol-

lary 2, but stronger lower bounds will be possible if we also have

regular probabilities.

Definition 4 (Regular probabilities). 𝐷world has regular prob-

abilities if for all xtrain ∈ supp(𝐷train):

∀𝑦,𝑦′ ∈ 𝑈 E[𝑝 (𝑦) | xtrain] = E[𝑝 (𝑦′) | xtrain] .

For 𝑟 ≥ 1, 𝐷world has 𝑟 -regular-probabilities if for all xtrain ∈
supp(𝐷train),

∀𝑦 ∈ 𝑈 E[𝑝 (𝑦) | xtrain] ≤
𝑟

|𝑈 | E[𝑝 (𝑈 ) | xtrain] .

Finally, we say𝐷world is regular if it has regular facts and regular

probabilities. It is not difficult to see that a distribution is regular iff

it has 1-regular-facts and 1-regular-probabilities. We also note that

our regularity assumptions could be modified to only holds with

high-probability over xtrain and not for all xtrain ∈ supp(𝐷train).
We illustrate with a simple family of regular world distributions,

followed by one which is only 𝑟 -regular, does not have indepen-

dence, and has anti-correlations between facts.

Table 1: Summary of notation. Symbols below the line are all

derived quantities in terms of symbols above the line.

Symbol Meaning

𝑋 ⊆ Σ
∗ The set of documents (strings)

𝑌 Factoids, arbitrary plausible information

⊥ ∈ 𝑌 Special “emptyž fact

𝑓 : 𝑋 ↠ 𝑌 Each document 𝑥 contains

one factoid 𝑓 (𝑥) and 𝑓 (𝑋 ) = 𝑌

𝐷world ∈ Δ(Δ(𝑋 )) Distribution over document distributions

𝐷𝐿 ∈ Δ(𝑋 ) Language distribution over documents

xtrain ∈ 𝑋𝑛 Training data (i.i.d.)

xtrain =

〈
𝑥
(1)
train

, 𝑥
(2)
train

, . . . , 𝑥
(𝑛)
train

〉
∼ D×𝑛

𝐿
A : 𝑋𝑛 → Δ(𝑋 ) Algorithm that learns an LM from data

𝑝 ∈ Δ(𝑌 ) Distribution over factoids 𝑓 (𝑥) for
𝑥 ∼ 𝐷𝐿 , i.e., 𝑝 := 𝑓 ◦ 𝐷𝐿

𝐹 ⊆ 𝑌 Facts 𝐹 := supp(𝑝) ∪ {⊥}
𝐻 ⊆ 𝑌 Hallucinations 𝐻 := 𝑌 \ 𝐹
𝐷train ∈ Δ(𝑋𝑛) Distribution over xtrain ∼ D×𝑛

𝐿
induced by 𝐷𝐿 ∼ 𝐷world.

𝑂 ⊆ 𝑌 Set of observed factoids

𝑂 :=
{
𝑓
(
𝑥
(𝑖 )
train

)
| 𝑖 = 1, 2, . . . , 𝑛

}
∪ {⊥} ⊆ 𝐹

𝑈 ⊆ 𝑌 Unobserved factoids𝑈 := 𝑌 \𝑂 ⊇ 𝐻

𝜈 Posterior over 𝑝 given training data xtrain
𝐷𝐿𝑀 ∈ Δ(𝑋 ) Distribution over documents

generated by the LM, 𝐷𝐿𝑀 := A(xtrain)
𝑔 ∈ Δ(𝑌 ) Distribution over factoids 𝑓 (𝑥) for

𝑥 ∼ 𝐷𝐿𝑀 , i.e., 𝑔 := 𝑓 ◦ 𝐷𝐿𝑀

Regular example: Permuted power-law world. Suppose 𝑋 = 𝑌 and

𝑓 is the identity. The world distribution 𝐷world first picks 𝐹 ⊆ 𝑌

uniformly random over such that |𝐹 | = 𝑁 (where 𝑁 ≤ |𝑌 |/(1 + 𝑒𝑠 )
so that |𝐹 |/|𝐻 | ≤ 𝑒−𝑠 so facts are 𝑠-sparse) and then picks 𝑝 to

be a power-law distribution supported on a random ordering on

𝐹 . That is, it picks a random permutation 𝜎 : {1, 2, . . . , 𝑁 } ↩→ 𝐹

and defines 𝑝 so that 𝑝 (𝜎 (𝑖)) ∝ 𝑖−𝑘 for some constant 𝑘 ≥ 0. The

uniform distribution over 𝐹 (𝑘 = 0) and Zipfian distributions (𝑘 = 1)

are special cases.

Semi-regular example: W5 with negative correlations. The set of

factoids is the product of fixed sets of people, dates, foods, and

locations. 𝐷world chooses the set of facts 𝐹 randomly by: for each

person on each date, there is a single fact which consists of that

person eating a random food at a random location, and 𝑝 is uniform

over 𝐹 . This creates anti-correlations between factoids because the

knowledge about what and where a person ate a specific meal rules

out any possible alternatives for that meal. Nonetheless, it can be

seen that 𝑟 -regularity holds for 𝑟 ≤ 𝑛people𝑛dates.

The above model can be enriched in various ways by adding

reasons and by modeling people’s preferences, geographic con-

straints, and behaviors. However the regularity parameter 𝑟 will

be prohibitively large if there are predictable eaters, and indeed

LMs might hallucinate less if there are large numbers of predictable

eaters because an LM learning algorithm may learn these patterns

and hallucinate less often.
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5 GUARANTEES

Our results are stated in terms of missing facts, a term inspired

by the missing mass in data drawn from a probability distribution

[14]. The missing facts rate is the fraction of facts (according to

the pretraining fact distribution 𝑝) that were not observed in the

training data. Specifically, it is defined to be 𝑝 (𝑈 ) where𝑈 is the

set of unobserved facts in the training data. Formally, define the

observed and unobserved factoids as,

𝑂 = 𝑂xtrain :=
{
𝑓
(
𝑥
(𝑖 )
train

) ��� 𝑖 = 1, 2, . . . , 𝑛
}
∪ {⊥} ⊆ 𝑌, (4)

𝑈 = 𝑈xtrain := 𝑌 \𝑂xtrain ,

respectively. The monofact estimate of the missing fact rate is de-

fined to be the fraction of facts that appear exactly once in the

training data:

𝑀𝐹 = 𝑀𝐹xtrain :=

��{𝑦 ∈ 𝑌 \ {⊥} | 𝑦 = 𝑓
(
𝑥
(𝑖 )
train

)
for single 𝑖 ∈ [𝑛]

}��
𝑛

.

(5)

Note that the facts in the training data are distributed according

to the distribution 𝑝 . Appendix A states classical results asserting

that |𝑀𝐹 − 𝑝 (𝑈 ) | = 𝑂̃ (
√︁
1/𝑛) with high probability over 𝑛 samples

from any distribution 𝑝 .

An algorithm A : 𝑋𝑛 → Δ(𝑋 ) takes as input 𝑛 training docu-

ments and outputs a document distribution𝐷𝐿𝑀 = 𝐴(xtrain), which
determines 𝑔 = 𝑓 ◦ 𝐷𝐿𝑀 , i.e., 𝑓 (𝑥) for 𝑥 ∼ 𝐷𝐿𝑀 . We now state our

main results, which will all follow from Theorem 1. The first result

relies on a regular 𝐷world defined in Definitions 3 and 4 above.

Corollary 1. Fix any 𝛿 ∈ [0, 1], 𝑏, 𝑛 ∈ N, 𝑠 ∈ R and any 𝑠-sparse

regular 𝐷world. Then for any algorithm A : 𝑋𝑛 → Δ(𝑋 ), with
probability ≥ 1 − 𝛿 over 𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛

𝐿
,

𝑔(𝐻 ) ≥ 𝑀𝐹 −Mis𝑏 (𝑔, 𝑝) −
3𝑒−𝑠

𝛿
−
√︂

6 ln(6/𝛿)
𝑛

,

where 𝐷𝐿𝑀 = 𝐴(xtrain), 𝑔(𝐻 ) is the LM hallucination rate, and𝑀𝐹

is defined in Eq. (5).

Next, we can state a weaker guarantee for semi-regular facts

alone.

Corollary 2. Fix any 𝛿 ∈ [0, 1], 𝑏, 𝑛 ∈ N, 𝑟 , 𝑠 ∈ R and any 𝑠-

sparse𝐷world with 𝑟 -regular-facts. Then for any algorithmA : 𝑋𝑛 →
Δ(𝑋 ), with probability ≥ 1 − 𝛿 over 𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛

𝐿
,

𝑔(𝐻 ) ≥ 𝑀𝐹 −Mis𝑏 (𝑔, 𝑝) −
3𝑟𝑛𝑒−𝑠

𝛿
−
√︂

6 ln(6/𝛿)
𝑛

.

The above is meaningful when sparsity 𝑠 ≫ log𝑛 is larger than

the log of the number of training data. Otherwise, following bound

uses semi-regularity of facts and probabilities.

Corollary 3. Fix any 𝛿 ∈ [0, 1], 𝑏, 𝑛 ∈ N, 𝑟 , 𝑠 ∈ R and any 𝑠-

sparse 𝐷world with 𝑟 -regular-facts and 𝑟 -regular-probabilities. Then

for any algorithm A : 𝑋𝑛 → Δ(𝑋 ), with probability ≥ 1 − 𝛿 over

𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛
𝐿

,

𝑔(𝐻 ) ≥ 𝑀𝐹 −Mis𝑏 (𝑔, 𝑝) −
3𝑟𝑒−𝑠

𝛿
−
√︂

6 ln(6/𝛿)
𝑛

.

It is easy to see that Corollary 1 is a special case of this corollary

for 𝑟 = 1.

5.1 Different Types of Facts

Our analysis immediately generalizes to multiple distinct types

of facts (e.g., article references and social media posts). Suppose

there are 𝑘 > 1 sets of factoids, 𝑌1, 𝑌2, . . . , 𝑌𝑘 and functions 𝑓𝑖 :

𝑋 → 𝑌𝑖 , with corresponding sets of facts and hallucinations 𝐹𝑖 ∪
𝐻𝑖 = 𝑌𝑖 , monofact estimates𝑀𝐹 𝑖 ∈ [0, 1] and miscalibration rates

Mis𝑖,𝑏 (𝑔, 𝑝). One also would generalizes the notion of 𝑠-sparse to

include the fact that, for each type of fact, |𝐹𝑖 | ≤ 𝑒−𝑠 |𝐻𝑖 | with
probability 1 and similarly generalize regular facts to hold for each

type of fact. Then Corollary 1 implies:

Corollary 4. Fix any 𝛿 ∈ [0, 1], 𝑏, 𝑘, 𝑛 ∈ N, 𝑠 ∈ R and any 𝑠-

sparse regular𝐷world. Then for any algorithmA : 𝑋𝑛 → Δ(𝑋 ), with
probability ≥ 1 − 𝛿 over 𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛

𝐿
,

𝑔(𝐻𝑖 ) ≥ 𝑀𝐹 𝑖−Mis𝑖,𝑏 (𝑔, 𝑝)−
3𝑘𝑒−𝑠

𝛿
−
√︂

6 ln(6𝑘/𝛿)
𝑛

for 𝑖 = 1, 2, . . . , 𝑘 .

The proof follows trivially from Corollary 1 using the union

bound and 𝛿/𝑘 failure probability for each type of fact.

5.2 Analysis Approach

While our model supposes 𝐷𝐿 ∼ 𝐷world followed later by xtrain ∼
D×𝑛

𝐿
, for analysis purposeswe imagine first selecting xtrain ∼ 𝐷train

and then selecting 𝑝 ∼ 𝜈xtrain where 𝜈 = 𝜈xtrain is defined to be the

posterior distribution on 𝑝 given xtrain. These two procedures result

in identical joint distributions on 𝑝, xtrain, but the latter is easier to

analyze. In particular, we show:

Theorem 1. For any𝜈 ∈ Δ(Δ(𝑌 )), any𝑂 ⊆ 𝐹 ⊆ 𝑌 , any𝑔 ∈ Δ(𝑌 ),
and any partition Π ∈ P(𝑌 ), we have
E𝑝∼𝜈

[(
𝑝 (𝑈 ) −



𝑝Π − 𝑔



TV

− 𝑔(𝐻 )
)
+

]
≤ max𝑦∈𝑈 Pr𝑝∼𝜈 [𝑦 ∈ 𝐹 ] +

|𝑂 |max𝑦∈𝑈 E𝜈 [𝑝 (𝑦)], where 𝐻 := 𝑌 \ 𝐹 and𝑈 := 𝑌 \𝑂 .

The corollaries stated earlier follow directly from this theo-

rem together with the definition of Mis𝑏 (𝑔, 𝑝) :=



𝑝V𝑏 (𝑔) − 𝑔





TV

,

Markov’s inequality for a non-negative random variable to show

that the quantity in the expectation is small with high probability,

which we combine with existing bounds on the Good-Turing estima-

tor from Appendix A that show that |𝑀𝐹 − 𝑝 (𝑈 ) | = 𝑂̃ (
√︁
1/𝑛). The

quantities on the right hand side correspond to the arbitrary facts

and arbitrary probability notions. The above theorem is enough to

show the result for various binning strategies, such as fixed-width,

which depend arbitrarily on 𝑔 (but not on 𝑝).

6 PROOF OF THEOREM 1

This section proves Theorem 1.

Lemma 2. Let 𝑆 ⊆ 𝑌 and let 𝑝Π be any coarsening of 𝑝 . Then,

E
𝜈

[(
𝑝 (𝑆) − 𝑝Π (𝑆)

)
+

]
≤ |𝑌 \ 𝑆 | ·max

𝑦∈𝑆
E
𝜈
[𝑝 (𝑦)] .
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Proof. Suppose 𝑞 = 𝑝Π for some partition Π ∈ P(𝑌 ). Then,

𝑝 (𝑆) − 𝑞(𝑆) =
∑︁

𝐵∈Π
𝑝 (𝑆 ∩ 𝐵) − 𝑞(𝑆 ∩ 𝐵)

=

∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵) − 𝑝 (𝐵)
|𝐵 | |𝑆 ∩ 𝐵 |

≤
∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵) − 𝑝 (𝑆 ∩ 𝐵)
|𝐵 | |𝑆 ∩ 𝐵 |

=

∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵) |𝐵 | − |𝑆 ∩ 𝐵 |
|𝐵 |

=

∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵) |𝐵 \ 𝑆 |
|𝐵 |

≤
∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵)
|𝑆 ∩ 𝐵 | |𝐵 \ 𝑆 |.

Since 𝑎 ≤ 𝑏 ⇒ (𝑎)+ ≤ (𝑏)+ and this last quantity is non-negative,

(𝑝 (𝑆) − 𝑞(𝑆))+ ≤
∑︁

𝐵

𝑝 (𝑆 ∩ 𝐵)
|𝑆 ∩ 𝐵 | |𝐵 \ 𝑆 |

E
𝜈

[
(𝑝 (𝑆) − 𝑞(𝑆))+

]
≤
∑︁

𝐵

E
𝜈

[
𝑝 (𝑆 ∩ 𝐵)
|𝑆 ∩ 𝐵 |

]
|𝐵 \ 𝑆 |

≤
∑︁

𝐵

|𝐵 \ 𝑆 | max
𝑦∈𝑆

E
𝜈
[𝑝 (𝑦)]

= |𝑌 \ 𝑆 | max
𝑦∈𝑆

E
𝜈
[𝑝 (𝑦)] .

□

We are no ready to prove Theorem 1.

Proof of Theorem 1. Let 𝑞 = 𝑝Π . By the definition of TV,

𝑔(𝑈 ) ≥ 𝑞(𝑈 ) − ∥𝑞 − 𝑔∥TV . (6)

Since 𝑌 \ 𝐹 = 𝐻 ⊆ 𝑈 , we have 𝐻 = 𝑈 \ (𝐹 ∩𝑈 ) and,
𝑔(𝐻 ) = 𝑔(𝑈 ) − 𝑔(𝐹 ∩𝑈 )

≥ 𝑞(𝑈 ) − ∥𝑞 − 𝑔∥TV − 𝑔(𝐹 ∩𝑈 ) by Eq. (6)

= 𝑝 (𝑈 ) − (𝑝 (𝑈 ) − 𝑞(𝑈 )) − ∥𝑞 − 𝑔∥TV − 𝑔(𝐹 ∩𝑈 )
= 𝑝 (𝑈 ) − ∥𝑞 − 𝑔∥TV −

(
𝑝 (𝑈 ) − 𝑞(𝑈 ) + 𝑔(𝐹 ∩𝑈 )

)
.

Rearranging terms gives 𝑝 (𝑈 ) −𝑔(𝐻 ) − ∥𝑞 − 𝑔∥TV ≤ 𝑝 (𝑈 ) −𝑞(𝑈 ) +
𝑔(𝐹 ∩𝑈 ). Applying 𝑎 ≤ 𝑏 ⇒ (𝑎)+ ≤ (𝑏)+,

(
𝑝 (𝑈 ) − 𝑔(𝐻 ) − ∥𝑞 − 𝑔∥TV

)
+ ≤ (𝑝 (𝑈 ) − 𝑞(𝑈 ) + 𝑔(𝐹 ∩𝑈 ))+
≤ (𝑝 (𝑈 ) − 𝑞(𝑈 ))+ + 𝑔(𝐹 ∩𝑈 ) .

Thus, it suffices to prove:

E
𝜈

[
𝑔(𝐹 ∩𝑈 ) +

(
𝑝 (𝑈 ) − 𝑞(𝑈 )

)
+
]
≤ max

𝑦∈𝑈
Pr
𝜈
[𝑦 ∈ 𝐹 ]+|𝑂 |max

𝑦∈𝑈
E
𝜈
[𝑝 (𝑦)] .

(7)

To this end, linearity of expectation implies that,

E
𝜈
[𝑔(𝐹 ∩𝑈 )] =

∑︁

𝑦∈𝑈
𝑔(𝑦) Pr

𝜈
[𝑦 ∈ 𝐹 ] ≤ max

𝑦∈𝑈
Pr
𝜈
[𝑦 ∈ 𝐹 ] . (8)

By Lemma 2 (with 𝑆 = 𝑈 ),

E
𝜈

[ (
𝑝 (𝑈 ) − 𝑞(𝑈 )

)
+
]
≤ |𝑂 |max

𝑦∈𝑈
E
𝜈
[𝑝 (𝑦)] .

Combining this with Eq. (8) gives Eq. (7), as required. □

7 UPPER BOUNDS ON HALLUCINATION

Could one prove a much better lower bound than 𝑀𝐹? If not in

general, are there better lower bounds under various assumptions

on 𝐷world? In this section, we argue that a significantly better

lower-bound is not possible by showing that for any 𝐷world, there

is a algorithm that is calibrated and hallucinates at a rate near

the missing facts rate, equivalent its Good-Turing estimate. The

conceptually simple algorithm is neither efficient nor a good LM,

but it suffices to show that a better lower-bound is not possible.

The algorithm memorizes the facts in the training data and gen-

erates random facts from the training data and random unseen

factoids uniformly at random, but at different rates.

(1) Inputs: xtrain ∈ 𝑋𝑛 .

(2) Let 𝑂,𝑈 = 𝑌 \ 𝑂 be the sets of observed and unobserved

factoids in the training data, respectively, as defined in Sec-

tion 5 and compute𝑀𝐹 , the fraction of factoids that appear

exactly once in the training data, as defined in Eq. (5). Let

𝑔 ∈ Δ(𝑌 ) be defined as

𝑔(𝑦) :=



𝑀𝐹
|𝑈 | if 𝑦 ∈ 𝑈 ,

1−𝑀𝐹
|𝑂 | if 𝑦 ∈ 𝑂.

(3) For each factoid 𝑦 ∈ 𝑌 , select a corresponding document

𝑑 (𝑦) ∈ 𝑋 such that 𝑓 (𝑑 (𝑦)) = 𝑦. To be specific, one can take

𝑑 (𝑦) to be the lexicographically first document in {𝑥 ∈ 𝑋 |
𝑓 (𝑥) = 𝑦}.

(4) Output 𝐷𝐿𝑀 = 𝑑 ◦ 𝑔, i.e., the distribution which samples

𝑦 ∼ 𝑔 and then outputs 𝑑 (𝑦) .
It is easy to see that, by design, 𝑔 = 𝑓 ◦ 𝐷𝐿𝑀 .

Lemma 3. For any 𝛿, 𝜆 ∈ [0, 1], 𝐷world, 𝑛 ≥ 1,

Pr
xtrain∼Dtrain

[
𝑔(𝐻 ) ≤ 𝑀𝐹 and Mis∞ (𝑔, 𝑝) ≤ 3

√︂
ln(4/𝛿)

𝑛

]
≥ 1 − 𝛿,

where 𝑔 = 𝑓 ◦𝐷𝐿𝑀 for the above algorithm, 𝑔(𝐻 ) is its hallucination
rate, and Mis∞ (𝑔, 𝑝) is defined in Eq. (2).

In other words, with high probability one can have a calibrated

LM that hallucinates with probability close to𝑀𝐹 .

Proof. There can either be one or two bins 𝐵
𝑔
𝑧 based on whether

or not 𝑀𝐹
|𝑈 | =

1−𝑀𝐹
|𝑂 | . If they are equal then Mis∞ (𝑔, 𝑝) = 0. In any

case, Mis∞ (𝑔, 𝑝) is at most

1

2
|𝑝 (𝑈 ) −𝑔(𝑈 ) | + 1

2
|𝑝 (𝑂) −𝑔(𝑂) | = |𝑝 (𝑈 ) −𝑔(𝑈 ) | = |𝑝 (𝑈 ) −𝑀𝐹 |.

Since𝑀𝐹 is a Good-Turing estimator, by Corollary 6, with proba-

bility ≥ 1 − 𝛿 the above quantity is at most 3

√︃
ln(4/𝛿 )

𝑛 . At the same

time, with certainty,

𝑔(𝐻 ) = 𝑀𝐹

|𝑈 | |𝐻 ∩𝑈 | ≤ 𝑀𝐹 .

□
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8 PROOFS OF COROLLARIES

To prove Corollaries 1 to 3, we use Markov’s inequality on the

expectation of a non-negative random variable𝑊 , which states

that Pr[𝑊 ≥ E[𝑊 ]/𝛿] ≤ 𝛿 . In our case,𝑊 := (𝑝 (𝑈 )−


𝑝Π − 𝑔




TV

−
𝑔(𝐻 ))+ and thus using 𝛿 → (2/3)𝛿 and Theorem 1 imply that for

any partition Π, the probability that for a random 𝑝 ∼ 𝜈 , we have

𝑝 (𝑈 )−



𝑝Π − 𝑔





TV

−𝑔(𝐻 ) ≥ 3

2𝛿

(
max
𝑦∈𝑈

Pr
𝑝∼𝜈

[𝑦 ∈ 𝐹 ] + |𝑂 |max
𝑦∈𝑈

E
𝜈
[𝑝 (𝑦)]

)

is at most 2𝛿
3 . Rearranging terms, with probability at least 1 − 2𝛿

3 ,

𝑔(𝐻 ) ≥ 𝑝 (𝑈 )−



𝑝Π − 𝑔





TV

− 3

2𝛿

(
max
𝑦∈𝑈

Pr
𝑝∼𝜈

[𝑦 ∈ 𝐹 ] + |𝑂 |max
𝑦∈𝑈

E
𝜈
[𝑝 (𝑦)]

)
.

(9)

Also, Corollary 6 of Appendix A with 𝛿 → 𝛿/3 implies that for any

𝛿 ∈ (0, 1] and any 𝐷𝐿 ,

Pr
xtrain∼𝐷×𝑛

𝐿

[
𝑝 (𝑈 ) ≥ 𝑀𝐹 −

√︂
6 ln(6/𝛿)

𝑛

]
≥ 1 − 𝛿

3
. (10)

It is now straightforward to prove the corollaries.

Proof of Corollary 1. For a regular 𝐷world, because it has 1-

regular-facts and 1-regular-probabilities, with probability 1 the

posterior satisfies:

max
𝑦∈𝑈

Pr
𝑝∼𝜈

[𝑦 ∈ 𝐹 ] + |𝑂 |max
𝑦∈𝑈

E
𝜈
[𝑝 (𝑦)] ≤ E[|𝐹 ∩𝑈 |]

|𝑈 | + |𝑂 |
|𝑈 | E[𝑝 (𝑈 )]

≤ 2
|𝐹 |
|𝑈 | ≤ 2𝑒−𝑠 .

In the above we have used the fact that 𝑂 ⊆ 𝐹 and 𝑈 ⊇ 𝐻 . The

proof follows immediately from this, Eqs. (9) and (10) and the union

bound, using Π = V𝑏 (𝑔). □

The proofs of Corollary 2 and Corollary 3 also follow directly,

where in Corollary 2 we use the fact that |𝑂 | ≤ 𝑛.

9 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

When one first encounters LM hallucinations, it is perhaps surpris-

ing that a system which clearly embeds such a rich diverse array

of detailed knowledge at the same time creates complete fabrica-

tions with no basis in fact or the training data. This work aims to

demystify this phenomenon by showing that pretraining LMs for

predictive accuracy leads to hallucination even in an ideal world

where the training data is perfectly factual, there is no blur between

facts and hallucinations, each document contains at most one fact,

and there is not even a prompt that would encourage hallucina-

tion. Moreover, our theory explains why modern LMs hallucinate

more than older LMs such as trigram models, even though both are

trained on similar types of data with similar objectives.

Themonofact rate may shed light on the rates at which calibrated

LMs must hallucinate for different types of facts. One expects hal-

lucination for facts that have a high monofact rate, i.e., the types of

facts which often occur just once in the training data. Interestingly,

this would not be common for references to books or articles, a

problematic type of hallucination discussed today. Therefore, these

may arise from other issues such as model capacity, when one con-

siders the shear number of facts including references and others

that an LM encounters in training. Furthermore, correcting for hal-

lucinated references may be doable by modifying the pre-training

pipeline without post-training, though this will not address other

types of arbitrary facts where the monofacts are common, as in our

5W example.

There are several limitations to our work. First, we only study

one statistical source of hallucination. There are many other types

of hallucination and reasons LMs may hallucinate beyond pure

statistics. Second, our semantic notion of calibration is different

from the standard token-based ones used in classification. While

natural and simple to define, our notion has the disadvantage of

being computationally intractable to evaluate for many models.

Third, factuality is not always clear-cut, facts are not all disjoint,

and our regularity assumptions may not hold for facts that have

a mild systematic component. As an example, if the training data

contains the Alex Wilkins 5W fact from the introduction, then it

is also follows that Alex Wilkins has eaten at Salumeria at some

point, which is a different but overlapping fact. Finally, it could be

the case that aspects of the real world, messy and different from our

idealized setting, actually reduce the minimal hallucination rates.

For instance, it could be that having multiple facts in a document

makes models less likely to hallucinate and thus our lower bounds

do not apply. In the arXiv version of this paper7, we also discuss

alternatives and generalizations.

In future work, it would be interesting to use the insights pre-

sented here to further reduce hallucination in LMs. An interesting

question is how to convert a pretrained (calibrated) model to one

that is good at factual prediction. A step in this process may be to

distinguish systematic facts from arbitrary ones, which LMs may

be capable of at some point in the future if not today. For example,

for generation, one would not desire fabricated book titles, but

one would like mathematical statements. What is the difference

between fabricating a non-existent book title from generating an

inequality such as 17 < 124398, if neither has ever been written

down? Humans know that the latter can be manufactured (as long

as it is mathematically correct) while the former cannot, which

presumably is how we avoid hallucinating. It seems conceivable

that LMs can similarly represent this distinction, and the work

mentioned showing that LMs “knowž when they are hallucinating

suggests that this may indeed be possible with today’s LMs.
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A GOOD-TURING ESTIMATOR BOUNDS

The distribution bounds here are stated for a general set 𝑆 , i.i.d.

sample 𝑠 := (𝑠1, 𝑠2, . . . , 𝑠𝑛) ∈ 𝑆𝑛 from an arbitrary distribution

D ∈ Δ(𝑆).

Definition 5 (Missing mass). For distribution D ∈ Δ(𝑆), 𝑛 ≥ 1,

and sample 𝑠 ∈ 𝑆𝑛 , the missing mass is:

𝑀D (𝑠) := D (𝑆 \ {𝑠1, 𝑠2 . . . , 𝑠𝑛}) .

7https://arxiv.org/abs/2311.14648
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Theorem 4 ([4, 23]). For any distribution D ∈ Δ(𝑆) and any

𝑛 ≥ 1, 𝜀 ≥ 0, let𝑀
𝑛
D := E𝑠∼D𝑛 [𝑀D (𝑠)]. Then:

Pr
𝑠∼D𝑛

[𝑀D (𝑠) ≥ 𝑀
𝑛
D + 𝜀] ≤ 𝑒−𝜀

2𝑛 (11)

Pr
𝑠∼D𝑛

[𝑀D (𝑠) ≤ 𝑀
𝑛
D − 𝜀] ≤ 𝑒−1.92𝜀

2𝑛 (12)

Eq. (11) is Theorem 16 of McAllester and Ortiz [23] and Theorem

2.1 of Berend and Kontorovich [4]. Eq. (12) is Theorem 2.2 of Berend

and Kontorovich [4], though for simplicity we use the worse bound

of 𝑒−𝜀
2𝑛 which was also present in McAllester and Ortiz [23].

Definition 6 (Good Turing estimator). For 𝑛 ≥ 1, set 𝑆 , and

sample 𝑠 ∈ 𝑆𝑛 , the Good-Turing estimator [14] is,

𝐺𝑇 (𝑠) := 1

𝑛

��{𝑖 ∈ [𝑛] | ∀𝑗 ≠ 𝑖 𝑠𝑖 ≠ 𝑠 𝑗 }
��.

In words, the estimator above is defined as the fraction of el-

ements of a sample each of which appears exactly once in the

sample.

Lemma 5 ([23]). For any distribution D ∈ Δ(𝑆) and any 𝑛 ≥ 1,

𝛿 ∈ (0, 1], let 𝐺𝑇𝑛
D := E𝑠∼D𝑛 [𝐺𝑇D (𝑠)]. Then:

Pr
𝑠∼D𝑛

[
𝐺𝑇D (𝑠) ≥ 𝐺𝑇

𝑛
D +

√︂
2 ln 1/𝛿

𝑛

]
≤ 𝛿 (13)

Pr
𝑠∼D𝑛

[
𝐺𝑇D (𝑠) ≤ 𝐺𝑇

𝑛
D −

√︂
2 ln 1/𝛿

𝑛

]
≤ 𝛿 (14)

Eq. (13) is Theorem 16 of McAllester and Ortiz [23] and Eq. (14)

has the identical 1-line proof using McDiarmid’s inequality.

The next lemma says that the expected values of the missing

mass and unique elements in training data are very close.

Lemma 6. For any 𝑛 ≥ 1 and any D ∈ Δ(𝑆),

𝑀
𝑛
D ≤ 𝐺𝑇

𝑛
D ≤ 𝑀

𝑛
D + 1

𝑛

for𝑀
𝑛
D as defined in Theorem 4 and 𝐺𝑇

𝑛
D as defined in Lemma 5.

Corollary 5. For any set 𝑆 , distribution D ∈ Δ(𝑆), any 𝑛 ≥
1, 𝛿 ∈ (0, 1], the Good-Turing estimator (Def. 6) satisfies:

Pr
𝑠∼D𝑛

[
|𝑀D (𝑠) −𝐺𝑇 (𝑠) | ≤ 1

𝑛
+ 2.42

√︂
ln(4/𝛿)

𝑛

]
≥ 1 − 𝛿. (15)

Pr
𝑠∼D𝑛

[
𝑀D (𝑠) ≥ 𝐺𝑇 (𝑠) − 1

𝑛
− 2.14

√︂
ln(2/𝛿)

𝑛

]
≥ 1 − 𝛿. (16)

Proof. Eq. (15) is established by setting 𝜀 =

√︁
ln(4/𝛿)/𝑛 in

Eqs. (11) and (12), which by the union bound implies,

Pr
𝑠∼D𝑛

[ ���𝑀D (𝑠) −𝑀
𝑛
D
��� ≥

√︂
ln(4/𝛿)

𝑛

]
≤ 𝛿

4
+ 𝛿

4
=
𝛿

2
.

Plugging 𝛿 ′ = 𝛿/4 in Eqs. (13) and (14) and the union bound gives,

Pr
𝑠∼D𝑛

[ ���𝐺𝑇 (𝑠) −𝐺𝑇
𝑛
D
��� ≥

√︂
2 ln(4/𝛿)

𝑛

]
≤ 𝛿

4
+ 𝛿

4
=
𝛿

2
.

Combining the above two with Lemma 6, the triangle inequality,

and the fact that 1 +
√
2 ≤ 2.41 give Eq. (15).

Similarly, Eq. (16) follows by using 𝜀 =

√︁
ln(2/𝛿)/(1.92𝑛) in

Eq. (12) and Lemma 6 and Eq. (13) with 𝛿/2 and summing the

corresponding three inequalities to give,

Pr

[
𝑀D (𝑠) ≥ 𝐺𝑇 (𝑠) − 1

𝑛
−
√︂

ln(2/𝛿)
1.92𝑛

−
√︂

2 ln(2/𝛿)
𝑛

]
≤ 𝛿

2
+𝛿
2
≤ 𝛿.

Using the fact that
√︁
1/1.92 +

√
2 < 2.14 completes the proof. □

We now simplify the above expression.

Corollary 6. For any set 𝑆 , distribution D ∈ Δ(𝑆), any 𝑛 ≥ 1,

∀𝛿 ∈ (0, 1] Pr
𝑠∼D𝑛

[
|𝑀D (𝑠) −𝐺𝑇 (𝑠) | ≤ 3

√︂
ln(4/𝛿)

𝑛

]
≥ 1 − 𝛿.

(17)

∀𝛿 ∈ (0, 1/3] Pr
𝑠∼D𝑛

[
𝑀D (𝑠) ≥ 𝐺𝑇 (𝑠) −

√︂
6 ln(2/𝛿)

𝑛

]
≥ 1 − 𝛿.

(18)

Proof. We first show Eq. (17). Note that Eq. (17) holds trivially

for 𝑛 ≤ 9 because 𝐺𝑇 (𝑠), 𝑀D (𝑠) ∈ [0, 1] and 3
√︁
ln(4)/9 > 1. Thus,

from Cor. 5, it suffices to verify that for 𝑛 > 9, 𝛿 ≤ 1:

1

𝑛
+ 2.42

√︂
ln(4/𝛿)

𝑛
≤ 3

√︂
ln(4/𝛿)

𝑛

In other words, we need

0.58

√︂
ln(4/𝛿)

𝑛
≥ 1

𝑛
.

Squaring and simplifying, this is

𝑛 ≥ 1

(0.58)2 ln(4/𝛿)
.

Since the RHS is a monotonic increasing function of 𝛿 , we can use

its largest value of 𝛿 = 1, and it suffices to have 𝑛 > 4.29.

For Eq. (18), it holds trivially for 𝑛 ≤ 6 because
√︁
6 ln(2/𝛿)/𝑛 ≥√︁

6 ln(6)/6 > 1. Thus, from Cor. 5, it suffices to verify that for

𝑛 > 6, 𝛿 ≤ 1/3:

1

𝑛
+ 2.14

√︂
ln(2/𝛿)

𝑛
≤
√︂

6 ln(2/𝛿)
𝑛

In other words, we need (
√
6 − 2.14)

√︃
ln(2/𝛿 )

𝑛 ≥ 1
𝑛 . Squaring and

simplifying, this is

𝑛 ≥ 1

(
√
6 − 2.14)2 ln(2/𝛿)

.

Since the RHS is a monotonic increasing function of 𝛿 , we can use

its largest value of 𝛿 = 1/3, and it suffices to have 𝑛 > 5.83. □

B ALTERNATIVE CALIBRATION
DEFINITIONS

In this section, we define a more standard alternative definition of

calibration based on log-probability bins of equal width. Recall that

𝐵𝑧 := {𝑦 ∈ 𝑌 | 𝑔(𝑦) = 𝑧} and 𝐵𝐼 := {𝑦 ∈ 𝑌 | 𝑔(𝑦) ∈ 𝐼 }. We now

define bins of fixed width in probability space.
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Definition 7 (Binning). For 𝜀 ∈ (0, 1), the binning B(𝑔, 𝜀) with
equally spaced bins in log-probability space, is the following partition:

B(𝑔, 𝜀) :=
{
𝐵 ( (1−𝜀 )𝑖+1,(1−𝜀 )𝑖 ]

��� 𝑖 = 0, 1, 2, . . .
}
∪ {𝐵0} . (19)

For 𝜀 ∈ {0, 1}, let B(𝑔, 0) := B(𝑔) = {𝐵𝑧 | 𝑧 ∈ [0, 1]} and B(𝑔, 1) :={
𝐵 [0,1]

}
= {𝑌 }.

Thus 𝜀 determines the bin widths on a log-scale, with small 𝜀

corresponding to narrow bins. Thus one could use



𝑝B(𝑔,𝜀 ) − 𝑔





TV

as a definition of miscalibration and the corresponding corollary

would follow directly from our previous analysis.

Corollary 7. Fix any 𝛿 ∈ [0, 1], 𝑛 ∈ N, 𝑠 ∈ R, 𝜀 ∈ (0, 1) and any
𝑠-sparse regular 𝐷world. Then for any algorithm A : 𝑋𝑛 → Δ(𝑋 ),
with probability ≥ 1 − 𝛿 over 𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛

𝐿
,

𝑔(𝐻 ) ≥ 𝑀𝐹 −



𝑝B(𝑔,𝜀 ) − 𝑔





TV

− 3𝑒−𝑠

𝛿
−
√︂

6 ln(6/𝛿)
𝑛

.

Proof. The proof of this Corollary follows exactly the same

proofs as that of Corollary 1 except that we use 𝑝B(𝑔,𝜀 ) in place of

V𝑏 (𝑔). □

We next use an even more standard definition which is not based

on statistical distance. Recall that our first definition of calibration,

without limits on bins as in Eq. (2), can be written as,

Mis∞ (𝑔, 𝑝) :=


𝑝B(𝑔) − 𝑔




TV =

1

2

∑︁

𝐵∈B(𝑔)

∑︁

𝑦∈𝐵

����
𝑝 (𝐵)
𝐵

− 𝑔(𝑦)
����

=
1

2

∑︁

𝐵∈B(𝑔)
|𝑝 (𝐵) − 𝑔(𝐵) | .

This is the most obvious definition and the question is how to gen-

eralize it to bins. The above also suggests the following alternative

generative definition of calibration error.

Definition 8 (Generative calibration error). For 𝜀 ∈ [0, 1],
and distributions 𝑝,𝑔 ∈ Δ(𝑌 ), the 𝜀-generative calibration error is,

GCE𝜀 (𝑔, 𝑝) :=
1

2

∑︁

𝐵∈B(𝑔,𝜀 )

��𝑝 (𝐵) − 𝑔(𝐵)
��.

This definition means that GCE0 (𝑔, 𝑝) = Mis∞ (𝑔, 𝑝). Note that
these two definitions of calibration error are related by the following

lemma.

Lemma 7. Let 𝜀 ∈ [0, 1]. Then,



𝑝B(𝑔,𝜀 ) − 𝑔





TV

− 𝜀 ≤ GCE𝜀 (𝑔, 𝑝) ≤



𝑝B(𝑔,𝜀 ) − 𝑔





TV

.

Before we prove Lemma 7, we observe that Corollary 7 implies

the following.

Corollary 8. Fix any 𝛿 ∈ [0, 1], 𝑛 ∈ N, 𝑠 ∈ R, 𝜀 ∈ (0, 1) and any
𝑠-sparse regular 𝐷world. Then for any algorithm A : 𝑋𝑛 → Δ(𝑋 ),
with probability ≥ 1 − 𝛿 over 𝐷𝐿 ∼ 𝐷world and xtrain ∼ 𝐷×𝑛

𝐿
,

𝑔(𝐻 ) ≥ 𝑀𝐹 − GCE𝜀 (𝑔, 𝑝) − 𝜀 − 3𝑒−𝑠

𝛿
−
√︂

6 ln(6/𝛿)
𝑛

.

We now return to prove Lemma 7.

Proof of Lemma 7. Let Π = B(𝑔, 𝜀). Then,

GCE𝜀 (𝑔, 𝑝) =
1

2

∑︁

𝐵∈Π
|𝑝 (𝐵) − 𝑔(𝐵) |

=
1

2

∑︁

𝐵∈Π

∑︁

𝑦∈𝐵

1

|𝐵 | |𝑝 (𝐵) − 𝑔(𝐵) |

=
1

2

∑︁

𝐵∈Π

∑︁

𝑦∈𝐵

����
𝑝 (𝐵)
|𝐵 | − 𝑔(𝐵)

|𝐵 |

����

=
1

2

∑︁

𝐵∈Π

∑︁

𝑦∈𝐵

���𝑝Π (𝑦) − 𝑔Π (𝑦)
���

=
1

2

∑︁

𝐵∈Π

∑︁

𝑦∈𝐵

���𝑝Π (𝑦) − 𝑔(𝑦) + 𝑔(𝑦) − 𝑔Π (𝑦)
���

≥ 1

2

∑︁

𝐵∈Π

∑︁

𝑦∈𝐵

���𝑝Π (𝑦) − 𝑔(𝑦)
��� −

���𝑔Π (𝑦) − 𝑔(𝑦)
���

by |𝑎 + 𝑏 | ≥ |𝑏 | − |𝑎 |

=




𝑝Π − 𝑔




TV

−



𝑔Π − 𝑔





TV

.

This proves the RHS inequality of the lemma. Thus it suffices to

show


𝑔Π − 𝑔




TV

≤ 𝜀. We first claim that for all 𝑦:

𝑔Π (𝑦) − 𝑔(𝑦) ≤ 𝜀𝑔Π (𝑦) . (20)

Let 𝐵 ∈ Π be the bin containing 𝑦 ∈ 𝐵. Now, recall that each bucket

can be written as:

𝐵
𝑔
𝐼
=

{
𝑦

�� 𝑔(𝑦) ∈ 𝐼
}
for some interval 𝐼 ⊆ [0, 1] .

If 𝐼 = [0, 0], then Eq. (20) is trivially true because 𝑔(𝑦) = 0 = 𝑔Π (𝑦).
Otherwise, say 𝐼 = ((1 − 𝜀) (𝑖 + 1), (1 − 𝜀)𝑖 ] for some 𝑖 ≥ 0. Then,

by definition of 𝑔Π ,

𝑔Π (𝑦) = 𝑔(𝐵)
|𝐵 | ∈ 𝐼 ,

because the weighted average of an numbers in an interval is also

contained in the interval. Since this interval has (multiplicative)

width 𝑒−𝜀 , 𝑔(𝑦) ≥ (1 − 𝜀)𝑔Π (𝑦) . Equivalently,

𝑔Π (𝑦) − 𝑔(𝑦) ≤ 𝜀𝑔Π (𝑦) .

Thus we have established Eq. (20) which trivially implies that,

∀𝑦 ∈ 𝑌
(
𝑔Π (𝑦) − 𝑔(𝑦)

)
+
≤ 𝜀𝑔Π (𝑦) .

Therefore,



𝑔Π − 𝑔





TV

=

∑︁

𝑦∈𝑌

(
𝑔Π (𝑦) − 𝑔(𝑦)

)
+
≤ 𝜀

∑︁

𝑦∈𝑌
𝑔Π (𝑦) = 𝜀,

which is all that remained to prove the lemma. □
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