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Second-Order Unsupervised Feature Selection via
Knowledge Contrastive Distillation

Han Yue ", Jundong Li

Abstract—Unsupervised feature selection aims to select a subset
from the original features that are most useful for the downstream
tasks without external guidance information. While most unsuper-
vised feature selection methods focus on ranking features based
on the intrinsic properties of data, most of them do not pay much
attention to the relationships between features, which often leads to
redundancy among the selected features. In this paper, we propose a
two-stage Second-Order unsupervised Feature selection via knowl-
edge contrastive disTillation (SOFT) model that incorporates the
second-order covariance matrix with the first-order data matrix
for unsupervised feature selection. In the first stage, we learn a
sparse attention matrix that can represent second-order relations
between features by contrastively distilling the intrinsic structure.
In the second stage, we build a relational graph based on the learned
attention matrix and perform graph segmentation. To this end, we
conduct feature selection by only selecting one feature from each
cluster to decrease the feature redundancy. Experimental results on
12 public datasets show that SOFT outperforms classical and recent
state-of-the-art methods, which demonstrates the effectiveness of
our proposed method. Moreover, we also provide rich in-depth
experiments to further explore several key factors of SOFT.

Index Terms—Neural networks, second order, unsupervised
feature selection.

1. INTRODUCTION

N THE digital world, huge amounts of high-dimensional

data [1], [2], [3], [4], [5], [6] are captured every day. Due
to the existence of irrelevant or redundant features, data in high
dimensions may significantly increase computational costs and
bring challenges for efficient and effective data management.
Dimensionality reduction is one of the most well-known tech-
niques to address the above issue, which can be categorized into
feature transformation and feature selection. Feature transfor-
mation, also known as representation learning, aims to project
the original high-dimensional features into a low-dimensional
feature space. The new feature space is usually a nonlinear com-
bination of the original features. Although achieving promising
performance, it is hard to be interpreted. On the other hand,

Manuscript received 7 November 2022; revised 18 July 2023; accepted 27
August 2023. Date of publication 4 September 2023; date of current version
3 November 2023. The work of Jundong Li was supported by the National
Science Foundation under Grants I1S-2006844, 11S-2144209, and 11S-2223769.
Recommended for acceptance by X. Li. (Corresponding author: Han Yue.)

Han Yue and Hongfu Liu are with the Michtom School of Computer Science,
Brandeis University, Waltham, MA 02453 USA (e-mail: hanyue@brandeis.
edu; hongfuliu@brandeis.edu).

Jundong Li is with the Department of Electrical and Computer Engineering,
Department of Computer Science, and School of Data Science, University of
Virginia, Charlottesville, VA 22904 USA (e-mail: jundong @virginia.edu).

Digital Object Identifier 10.1109/TPAMI.2023.3311617

, Member;, IEEE, and Hongfu Liu

, Member, IEEE

feature selection methods select a subset of relevant features
from all original features based on a predefined criterion to
serve the downstream tasks, maintaining physical meanings of
the original features for acceleration and interpretability. With
the dramatically increasing computational power, acceleration
is no more the focus of feature selection, while interpretability
becomes the major benefit of feature selection.

Without label information, unsupervised feature selection
methods aim to select a feature subset that can preserve the intrin-
sic structure of the whole feature set accurately. There are many
algorithms designed to solve the unsupervised feature selection
problem. ReliefF [7], HSIC [8], Laplacian Score [9], SPEC[10],
SPFS [11] evaluate features by their capability in preserving
the pairwise sample similarity. UDFS [12], FSASL [13], and
TSFS [14] employ pseudo labels as the supervision to guide the
feature selection along with a sparse constraint. Most of these
methods apply the linear feature selection matrices and select the
representative features by ranking their feature weight vector.
Such operations treat the feature set independently and fail to
tackle the complex high-order relationship [15], [16] among
original features, which inevitably brings in redundancy among
selected features.

Contributions: We propose a two-stage Second-Order
unsupervised Feature selection via knowledge contrastive
disTillation (SOFT) model that incorporates the second-order
covariance matrix with the first-order data. In the first stage,
SOFT learns a sparse attention matrix to explore the second-
order feature relationships. In the second stage, we perform
graph segmentation on the learned attention matrix for feature
selection. In summary, we highlight our contributions as follows:
(1) We consider the second-order feature relationship in the
unsupervised feature selection problem and propose the SOFT
algorithm to distill knowledge from both original features and
their second-order feature covariance matrix; (2) Our SOFT
learns a mask matrix on or off the covariance matrix and obtains
the attention matrix and masked matrix. Throughout distilling
the structural knowledge, the sparse attention matrix contains
such knowledge as much as possible while excluding that from
the masked matrix as well; (3) Different from selecting features
according to weights, we propose a graph segmentation-based
feature selection method on the attention matrix, where only one
representative feature is selected from each segment to avoid
redundancy; and (4) Experimental results validate that SOFT
outperforms classical and recent state-of-the-art models on 12
public datasets. We also provide in-depth explorations for both
stages to demonstrate the effectiveness of SOFT.
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II. RELATED WORK

We briefly review related work on unsupervised feature se-
lection and deep feature selection below.

Unsupervised Feature Selection: In the past decades, a large
amount of unlabeled data has been generated. To solve the
feature selection problem for the unlabeled data, researchers
have proposed many unsupervised feature selection methods,
which can be divided into three main categories: Filter, Wrapper,
and Hybrid. Filter methods evaluate features based on the data
itself. [17] propose one of the earliest filter unsupervised feature
selection methods, the Sequential backward selection method
for Unsupervised Data (SUD). SUD introduces a similarity
matrix representing the pair-wise similarity between objects.
By measuring the entropy of the data, the relevance of each
feature is quantified as a ranking score. Features with the highest
scores are selected. Another example is Laplacian Score [9],
which weights features according to their ability to preserve
a predefined manifold structure represented by the Laplacian
matrix. Similarly, SPECtrum decomposition (SPEC) [10] also
introduces an object similarity matrix. SPEC measures the con-
sistencies between features and nontrivial eigenvectors of the
Laplacian matrix and ranks features based on the consistencies.
Wrapper methods select the most relevant features by using a
clustering algorithm. [18] introduce a method to select feature
subsets using Expectation Maximization (EM) [19] clustering
and evaluate them with maximum likelihood and the scat-
ter separability criterion. [20] present an evolutionary multi-
objective local selection algorithm to search feature subsets
with K-means [21] and EM [19] clustering. Instead of selecting
feature subsets, [22] propose to estimate a set of real-valued
quantities carried out by an EM algorithm through adopting
a minimum message length [23] penalty. Hybrid methods try
to take advantage of both approaches by adopting a two-stage
process: filter stage and wrapper stage. In the filter stage, the
features are scored based on the intrinsic properties of the
data. And in the wrapper stage, feature sets are generated by
a specific clustering algorithm. For instance, [24] adopts the
method of [17] for the filter stage to sort the features and the
method of [18] for the wrapper stage to build clusters. [25]
combine the spectral feature selection framework using the
Laplacian Score [9] ranking and a modified Calinski-Harabasz
index [26]. Different from the above-mentioned methods, which
are based on ranking, [27] propose a method that starts with
the wrapper stage by Least-Square-Estimation based evaluation
and then selects feature set through a Bayesian network in the
filter stage. InfFS [28] is a graph-based filtering approach, which
evaluates the values of paths in a graph and selects discrete input
features by exploiting properties of power series of matrices and
the concept of absorbing Markov chains. GLLE [29] proposes
to preserve the local linear reconstruction relationship among
neighboring data points in the feature subspace. and adopts
manifold regularization to find the relevant and representative
features. MGF 2 WL [30] introduces a feature weight matrix to
learn the weights of different feature dimensions directly, and
uses a graph fusion term to fuse multiple predefined similarity
graphs for learning a unified similarity graph.
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Deep Feature Selection: Recently, deep learning techniques
have gained much attention and brought in some studies on
deep feature selection [31], [32]. DFS [33] adds a weight
layer to Multi-layer Perceptron (MLP) together with a sparse
regularization term so as to take advantage of deep structures
to model nonlinearity. [34] propose to combine deep neural
networks with sparse representation for grouped heterogeneous
feature selection. The model first converts the multi-modal
data into a unified representation, then selects features through
solving a sparse group lasso [35] problem. In recent years,
some studies have also involved data reconstruction error in
deep unsupervised feature selection. AEFS [36] jointly learns a
self-representation autoencoder model and importance weights
of each feature for feature selection. Furthermore, GAFS [37]
not only adopts a single-layer autoencoder but also incorporates
spectral graph analysis for learning. UDSFS [38] selects the
most discriminative features and meanwhile designates appro-
priate weights to feature dimensions by utilizing group sparsity
of features. TSFS [14] presents a teacher-student scheme for
deep feature selection, in which a teacher network is used to
learn low-dimensional representations, and a student network is
employed for feature selection by minimizing the reconstruction
error. CAE [39] uses a concrete selector layer as encoder and a
standard neural network as decoder, stochastically selecting dis-
crete features by concrete random variables and reparametriza-
tion trick to get a subset of features. AARC [40] integrates
unsupervised feature selection and determination of a compact
network structure into a single framework, and applies a penalty
based on dependency between features to control the level of
redundancy in the selected features.

III. METHODOLOGY

Motivation: Unsupervised feature selection aims to select a
small portion of the original features that are most useful for
the downstream tasks without external guidance. Most previous
methods focus on ranking features based on the values of in-
dividual features [9], [10], [12] while neglecting the high-order
relationships between features. Unfortunately, this might lead to
the redundancy of the selected features and further deteriorate
downstream tasks. Fig. 1 provides an illustrative example of
selection results on Sonar [41] and Waveform [42] by Laplacian
Score (LapScore) [9]. The heatmap shows the initial relation-
ships between features based on the covariance matrix of fea-
tures. We remove the diagonal values and calculate the absolute
values of covariance, which are normalized for visualization.
In this example, we select the top four features on Sonar and
Waveform by LapScore, which are highlighted with red lines in
Fig. 1. Obviously, features a and b, features c and d on Sonar are
from two groups within of high similarity, indicating that one
feature might be denoted by the other. Similarly, On Waveform,
features e, f, g, and h contain highly relevant information as
well. However, features from the same feature group might lead
to redundancy, which disobeys the purpose of feature selection.
This drives us to explore the complex relationships derived from
the second-order feature covariance matrix in the unsupervised
feature selection problem. Motivated by the above situation, we
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Fig. 1. Visualization of feature relations of Sonar and Waveform datasets by
LapScore [9] with red lines.

design a method that can avoid such redundancy by considering
both first-order data and second-order data.

Framework Overview: To incorporate the correlation feature
information, we propose a two-stage model SOFT, which takes
the first-order data matrix and second-order feature correlation
matrix as inputs. In the first stage, SOFT learns a mask on the
feature correlation matrix via knowledge contrastive distillation
to preserve the data structure. In the second stage, we select the
features on the masked correlation matrix via graph segmenta-
tion.

Fig. 2 shows the overview of our SOFT framework. With
the first-order data matrix and second-order correlation feature
matrix as inputs, we aim to learn a mask matrix applying to
the feature correlation matrix for feature selection. By this
means, we can obtain the attention matrix and masked matrix
by the learnable mask on or off the feature matrix, respectively.
The key idea of SOFT is to distill the structural knowledge
by making the attention matrix contain such knowledge as
much as possible while excluding that from the masked ma-
trix as well. The green and red lines in Fig. 2 demonstrate
the knowledge contrastive distilling process. To achieve this,
we adopt a shared Graph Convolution Network (GCN) [43]
to generate attention/original/masked representations from the
attention/feature/masked matrices, respectively. Then we use
pseudo labels generated by attention representation as posi-
tive guidance for original representation and negative guidance
for masked representation so that attention representation and
original representation are close to each other and far away
from masked representation. Throughout the above knowledge
contrastive distilling process, we can get a sparse and effective
feature relation matrix that represents the second-order correla-
tion, where each node denotes a feature and weights of edges are
the corresponding values in the learned attention matrix. In the
second stage, different from the existing work, which calculates
the weight of each feature and suffers from the redundant feature
issue (shown in Fig. 1), our attention matrix delivers weights
for pairs of features. To proceed with feature selection, we use
graph segmentation to cut the attention matrix into partitions
and select one feature that has the highest relationship to others

15579

TABLEI
NOTATIONS AND DESCRIPTION

Notation Dimension Description
n scalar Number of input samples
d scalar Number of features
c scalar Number of clusters
X nxd Input data matrix
Mg dxd Input feature matrix
Ma dxd Attention matrix
Mps dxd Masked matrix
GF nxd Representations generated by X and Mg
Ga nxd Representations generated by X and M4
Gur nxd Representations generated by X and My
Pr nxe Predictions of samples by G'p
Pa nxec Pseudo labels generated by G 4
Py nxec Predictions of samples by G s

from each partition as the final selection result. By this means,
the redundancy among selected features can be mitigated.

Attention Matrix Learning: Given n data instances with d
features, we have the first-order n x d data matrix X and the
d x d second-order feature matrix Mp = X" - X. Our SOFT
model calculates a learnable mask for feature selection. In the
first stage, SOFT consists of four components, attention layer,
shared GCN, pseudo label generation, and contrastive learning.
We use © = {0y, 0¢c, 0} to denote the learnable parameters
set in the SOFT model, where 6y, fg, and 6o denote the
parameters of the learnable mask, shared GCN and contrastive
learning, respectively. Note that the pseudo labels are generated
from the attention matrix and shared GCN, which are controlled
by far and f¢. Therefore, no learnable parameters are needed
for pseudo label generation. Table I shows the notations used in
our SOFT model and their descriptions. Each part is detailed as
follows.

Attention Layer: The initialized feature matrix Mz may not be
good enough to represent the relationship between features, so
we add an attention layer to better capture second-order feature
interactions by highlighting the important relations and reducing
others through a learnable mask ;. The attention matrix M 4,
which represents the important part of Mp, is calculated as
follows:

ﬂfA:ﬂ{fF®9J\(f; (])

where ® is the element-wise product. Due to the symmetry of
M, 8, is forced to be symmetric by multiplying a parameter
matrix with its transpose. With the learnable mask 6, and the
attention matrix M4, We assume that the input feature matrix
M can be decomposed as a summation formulation of attention
matrix M 4 and masked matrix M 5. Then we define the masked
matrix My by:

My = Mp — Ma. @)

To make the learned attention matrix M4 sparse enough to
identify crucial and principle relations, we apply £2 ;-norm to
learnable mask 6, on both row and column level:

Lo1 = [10arll21 + 162sl2,1- ©)

Shared Graph Convolutional Network: GCN [43] helps gen-
erate embeddings that contain both data information and feature

Authorized licensed use limited to: University of Virginia Libranes. Downloaded on October 05,2024 at 19:32:11 UTC from IEEE Xplore. Restrictions apply.



15580

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 12, DECEMBER. 2023

Input ¥ Attention Matrix M, Shared GCN+MLP
| S
Attention Representation G
) . AN
Feature Matrix My Learnable Mask &,, L @4_ 3 M,
A O“‘ A ,",EI
@D I 0 oyro
< [TTI111 o i B, O
I I I I I I O" 0O 0o
ey e s -e— — — - Original Representation G, PseL:do Label P,
1 v
' Y~ VR
+

Masked Matrix M,

Fig. 2.

tif:‘]“'

- - - -

Masked Representation G,

Shared GCN+MLP

SOFT model framework. The inputs of our SOFT model consist of the first-order data matrix and second-order correlation feature matrix. The green line

shows that attention representation is expected to preserve the intrinsic information from the pseudo labels and get close to original representation, while the red
line presents that the masked representation contains little structural information and gets away from the attention representation. Finally, we could get a sparse

and effective feature relation matrix to represent the second-order correlation.

relationship information. We apply a shared 2-layer GCN to
extract the attention/original/masked representations from the
attention/feature/masked matrices, respectively. In [43], nodes
of graphs denote samples, while in our case, nodes of graphs are
features. Therefore, the computation of the GCN layer is a little
different from [43] and is described by the following equation:

Go ) = ReLU (G DD %6Y), @)

where M is the input relationship matrix, M=M+1;I;€
R?*9 is the identity matrix, D is the degree matrix of M, and
6% is a layer-specific trainable weight matrix. G® denotes the
embeddings in the Ith layer, and G(©) = X. In our case, we
use a shared 2-layer GCN to process samples with different
input relationship matrices M 4, M, and My,. Thus we have
attention representation G 4, original representation G, and
masked representation Gy, respectively.

Pseudo Label Generation: In unsupervised feature selection,
pseudo labels are usually used as the criterion to guide feature
selection. In our experiments, we use Deep Embedded Clus-
tering (DEC) [44] to generate pseudo labels. The embedding
processed by the clustering part is G 4, which is generated by
attention matrix M 4, the matrix we expect to learn in the SOFT
model. DEC helps learns feature representations, and assigns
pseudo cluster labels P4 for the input samples X.

Contrastive Learning: With the above representations, we
expect that attention representation and original representation
are close to each other but far away from masked representation.
To achieve such contrastive learning, we design two losses
to measure the predictive abilities of different representations
and compare them with pseudo labels. Specially, we employ a
2-layer Multi-Layer Perceptron (MLP) to get predictions of the

Algorithm 1: Second-Order Unsupervised Feature
Selection Via Knowledge Contrastive Distillation.

Input: Input Data Matrix X'; Feature Matrix
Mp=X"-X;

Output: £ selected features;

1: TInitialize © = {0yr,0c,0c};

2: repeat

3: Generate Attention Matrix M 4 and Masked Matrix
M s by applying Learnable Mask on or off Mp;

4: Use GCN to process X with M 4, M and M), to
generate Attention/Original/Masked Representation
G A,"‘G FfG M

5:  Adopt clustering on G 4 to get pseudo labels Py;

6: Employ MLP on Original/Masked Representation
G /G to get predictions Pr/Pyy;

7:  Use Py as positive guidance for P, and negative

guidance for P, to train the objective function;

until the model is converged.

9: Build a graph based on M 4 via removing noisy

features;

Apply graph segmentation on the graph to get k

partitions and select one feature from each partition.

&

10:

samples with original representation G and masked represen-

tation G5y about which clusters they belong to,
(1+1) _ (0 g0

P = o (P -62), 5)

where Sg) is a layer-specific trainable weight matrix, p®

denotes the embeddings in the Ith layer, and P(®) = G or

P©) = Gy for the original representation and masked repre-

sentation, respectively. We use &(-) = ReLU(-) as the activation
function for layers before the last layer, and ®(-) = Softmax(-)
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for the last layer. In our experiments, we adopt a shared 2-layer
MLP and obtain Pr and P for original representation G and
masked representation Gpy.

Pseudo labels P4 generated by the clustering part are used
for the following positive and negative training. By positive
guidance for Pp, we get a cross-entropy loss L for Pp, which
is defined as:

Lr == (Paijlog Pi; + (1 — Pai;)log(1 — Pry;)),

i=1 j=1
©6)
where Pr;; denotes the probability that the ith sample belongs
to cluster j based on Gp. P4,; = 1 if the ith sample belongs
to cluster j based on the clustering result, otherwise Pa;; = 0.
Eq. (7) is designed to make Py similar to pseudo labels P,.
While by negative guidance for predictions of the masked part
Py, we apply attention loss described in [45] to reduce the
weights of unimportant relations, which is stated as follows
based on our notations:
n c
Ly = Z Z Paij Pprij, )
i=1 j=1
where Pys;; denotes the probability that the ith instance belongs
to cluster j based on Gps. Through minimizing (7), the model
tends to put instances to a cluster that they do not belong to,
thus driving predictions Pjs generated by masked representa-
tion different from pseudo labels P4, which would finally lead
to the difference of masked representation Gs and attention
representation G 4.
Objective Function: Combining (3), (6), and (7), Our overall
objective function of SOFT can be written as:

ming Lp + aly + BLy 4, (8)

where o and 3 are hyperparameters for £,, and L, ;, respec-
tively. We adopt Adam optimizer [46] to minimize the objective
function.

Feature Selection on Attention Matrix: Different from tra-
ditional feature selection methods that return a weight vector
to choose the top-ranked features, here, our attention matrix
provides the weight of feature pairs. To proceed with the feature
selection, we build one graph based on the attention matrix
learned from the whole data. Nodes of the graph denote features,
and edges are the relationship between features in the attention
matrix. All nodes are linked to each other. Then we perform
graph segmentation for feature selection.

Graph Construction: Instead of transforming the attention
matrix M 4 to a graph immediately, we add two additional
processes so that the generated graph is more suitable for graph
segmentation and feature selection. The first one is to set all
values in M 4 to their absolute values to make sure no negative
edges would exist in the constructed graph. The second step
is to build a scoring list. We calculate a score for each feature
by S = S°% | M 4;, where S is the summation of each row or
column of the attention matrix, which measures the importance
of each feature.

Graph Segmentation: With the processed graph, we apply the
graph segmentation method provided by [47] and cut the graph
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TABLEII
STATISTICS OF DATASETS

Dataset Type #Sample  #Feature  #Class Ratio  Density
COIL20 Face Image 1440 1024 20 141 0.656
Colon Biological 62 2000 2 0.03 0.584
Gisette Handwritten 13500 5000 2 270 0.130
L.Cancer Biological 32 56 2 0.57 0.940
Madelon Artificial 2600 500 2 5.20 1.000
Mouv Libras ~ Gesture 360 90 15 4.00 1.000
NCI9 Biological 60 9712 9 0.01 0.503
ORL Face Image 400 1024 40 0.39 1.000
Sonar Sonar Signal 208 60 2 347 0999
uAvi Traffic 19380 54 2 358.89 0972
UAV2 Traffic 17256 54 2 319.56 0.983
Wave. Artificial 5000 40 3 125.00 0.997

into k parts, where k is the number of features we aim to select.
From each partition, we choose the feature that has the largest
value in S since we consider features in the same partition are
highly related.

Through learning attention matrix in the first stage of our
method, we incorporate both first-order data and second-order
data and get a refined feature relation matrix that can better
reflect feature relations. Then in the second stage, we build a
graph based on the learned attention matrix and perform graph
segmentation, which groups high-correlated features together.
Therefore, by selecting features from each partition, our method
reduces redundancies among the selected features. Our proposed
method focuses on learning pair-wise relationships of features
and uses graph segmentation to select features. The time com-
plexity of our method is O(nd?). If the number of samples is
larger than the number of features (n > d), the space complexity
of our method is O(nd), otherwise O(d?). Algorithm 1 describes
the whole process of SOFT.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Datasets: We select 12 public feature selection benchmark
datasets of different types for evaluation including COIL20 [48],
Colon [49], Gisette [1], Lung-Cancer (L.Cancer) [50], Made-
lon [51], MovementLibras (M.Libras) [52], NCI9 [53],
ORL [54], Sonar [41], UAVI and UAV2 [55], and Waveform
(Wave.) [42]. The instance numbers of these datasets range from
32 to 19937, the feature numbers range from 40 to 9712, and the
true cluster numbers are from 2 to 40. The sample/feature ratios
of these datasets range from 0.01 to more than 350, indicating
the diversity of the datasets. Table II shows the statistics of these
datasets.

Comparative Methods and Implementation: We choose 10
classical and recent state-of-the-art unsupervised feature selec-
tion methods for comparison. Laplacian Score (LapScore) [9]
selects features by scoring features with a Gaussian Laplacian
matrix. SPEC [10] is a more general framework for feature
selection based on spectral graph theory, where LapScore is a
special case of it. MCFS [56] uses spectral analysis and sparse
regression to select features and capture the multi-cluster data
structure. UDFS [12] selects features by discriminative analysis
and /> ; minimization. NDFS [57] selects the most discrimi-
native features with a nonnegative constraint and £ ; regular-
ization. LRPFS [58] adopts a low-rank constraint to preserve
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TABLE III
RESULTS OF DIFFERENT UFS METHODS ON SELECTED 10% FEATURES IN TERMS OF ACCURACY

Dataset | LapScore SPEC MCFS UDFS NDFS LRPFS NSSLFS TSFS CAE InfFS SOFT
COIL20 0.56:4003 0.59+002 0.63+002  055+008 061+ooz 0574002 064+o004 06l+0m  0.65+002 0584005  0.74+003
Colon 0.54400 055+000  0.53+0m  052+000 0554000 055400 055+000 0544008 0.53+om  0.55+007  0.58+0.00
Gisette 0.67 +0.00 0.704000  0.80+000 0.58+000  0.74+0m N/A N/A 0.57+000  0.62+000 0.61+00¢  0.75+000
L.Cancer 0.75+000  059+oo0 0694000  0.65+0m 0694000 0784000  0.78+oo00 0604005 0564002 0694010 0.72+0m
Madelon 0.514000 0514000 053+o00  051+oo00  0.60+o00 0504000 0534000 0574003 0564000 0524003 0.57 4000
M.Libras 0.27 +00m 029+0mm  038+0m 0354002 0434+0m 0394100 03710 0364008 0434002 0444008 0.51+o02
NCI9 0444002 0434002 038+0m  044d+oms  043+002 0424003 0374003 0444002 0464004 0404003 0.53+003
ORL 0.49+0.02 0.56+002 056400  047+002 0574002 0434002 0564003 057+0m  051+om 0524002 0.63+002
Sonar 0.57 000 0.54+000  0.58x000  0.54x000  0.52+000 0524000  0.64xo00 056004 0562000 058000  0.59xo00
UAVI 0.56+000  067+too0 0.54z0m0  0.55x000  0.65+000 N/A 0.60+000  0.65+0m  0.56x000  0.55+o000  0.80+o000
uAvz2 0.80+o00  0.60+oo0  076xoo  0.8ltooo  0.58+o00 055000 056000  0.64+om  0.8l+tooo 0584002  0.83o000
Wave, 0.51+000 0.34+to00  051zom0  052+o000  049+oo0 048+o000 037xoo0 052+om 051+oo0 0514000 0.56+000
Average | 0.55 0.53 0.57 0.54 0.57 0.52 0.54 0.55 0.56 0.54 0.65

N/ A indicates the out-of-64GB-memory error.

the subspace structure information. NSSLFS [59] learns the
feature weight matrix with the ¢ ;-norm and the non-negative
constraint based on the low-dimensional sparse subspace learn-
ing. TSFS [14] employs a teacher-student scheme for deep
feature selection. CAE [39] uses the concrete distribution and the
reparametrization trick to differentiate through a reconstruction
loss and select input features. InfFS [28] is a fast graph-based
approach that ranks and selects features by considering the
possible subsets of features as paths on a graph.

For LapScore, SPEC, MCFS, UDFS, and NDFS, we adopt
implementations and default settings provided by scikit-
feature [60]. For LRPFS and NSSLFS, we set the values of
hyperparameters in their objective functions to 1.0. For TSFS,
CAE (non-linear version), and InfFS, we use default settings
provided in their open-source codes. The settings of our SOFT
model are as follows. In the stage of Attention Matrix learning,
we implement the networks by PyTorch. The Learnable Mask is
initialized by the normal distribution. The weights « and 3 in the
objective function are 1 and 0.001 by default, respectively. We
adopt Adam optimizer [46] to minimize the objective function
and set the learning rate to 1e-4. We run a total of 300 epochs to
learn the attention matrix. In the stage of graph segmentation,
we first build a graph based on the learned attention matrix, then
perform graph segmentation [47] and segment the graph into k&
partitions, where k is the target number of selected features. We
choose one feature from each partition as our selected feature.

Evaluation Mefric: We employ k-means++ [61] on samples
with selected features, and compare the obtained partition with
ground truth by clustering accuracy, settings of which follow
scikit-feature [60]. Additionally, we propose to measure the
redundancy of selected features by the proportion of feature
pairs that are highly correlated, written as #pairs of features with
high correlation/#ipairs of features. While there is no generally
acknowledged threshold for high correlation, we evaluate the
compared methods with thresholds of 0.5, 0.6, 0.7, and 0.8 based
on the correlation coefficient matrix calculated from features
selected by the methods.

B. Algorithmic Performance

Table III shows the experimental results of different unsu-
pervised feature selection methods on selected 10% features in

terms of accuracy. The best results are highlighted in bold. “N/A”
means the corresponding method cannot process the dataset
successfully due to out-of-memory error. We can see that our
SOFT model achieves the best on 8 of the 12 datasets. One
of the possible reasons is that SOFT explores the second-order
relationships among features, while other competitive methods
only use the first-order data. By grouping features based on the
learned attention matrix, our method can avoid the redundancy
described in Section III. Moreover, the average accuracy of
SOFT is significantly better than other methods with large
margins of 5% to 10%, which demonstrates the positive effects
of second-order feature exploration on the unsupervised feature
selection problem.

Then for each method on each dataset, we calculate the
proportion of feature pairs with high correlation when selecting
10% features, which is shown in Fig. 3. Obviously, as the
threshold increases, the proportion of highly correlated feature
pairs decreases. We can see from the results that with all four
thresholds from 0.5 to 0.8, our proposed SOFT achieves the
lowest proportion of highly correlated feature pairs on average,
indicating that SOFT is effective in reducing redundancy in the
feature selection process, which by our analysis comes from the
advantage of adopting graph segmentation on learned attention
matrix.

Next, we show the performance of all the methods on selecting
different percents of features in Fig. 4. LRPFS achieves the best
performance with selected 25% features on Madelon, MCFS
is always the best among these methods on Gisetfe, NSSLFS
outperforms other methods with selected 15% and 30% features
on Colon, and UDFS with selected 20% and 25% features is
ranked the first on Waveform. It is worth noting that sometimes
the performance of SOFT is not as stable as other methods,
such as on Waveform when the number of selected features
increases. This is because the comparison methods generate
a ranking list for features and select features based on the
feature ranking scores, while SOFT selects features based on
the graph segmentation result. With the number of selected
features increasing, the feature partitions might change notably,
which results in a different selection. In general, SOFT delivers
compromising features with different percentages compared
with others, especially when the percentage of selected features
is relatively small. For results with all percentages and datasets,
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Fig. 3.

SOFT outperforms all other methods with an average accuracy
of 66%, which is significantly better than two recent methods
(CAE achieves 54%, and InfFS gets 51%).

C. In-Depth Exploration of SOFT

Parameter Analysis: There are two parameters in the objective
function of SOFT, a and 3, denoting the weight of attention loss
and £, 1-norm loss, respectively. We vary a and 3 from le — 3
to le + 3 to explore the impact of these two parameters on the
final performance. Fig. 6(a) shows the results on C'olon with
selected 10% features. We can see that despite the large range of
parameter values, the final performance does not change much
except when S is significantly larger than «, indicating that the
Learnable Mask is well learned and SOFT might not be sensitive
to the value of v and /3 in a large range.

Visualization of Attention Matrix and Learnable Mask: To fur-
ther analyze the performance of SOFT, we visualize the Atten-
tion Matrix and the corresponding Learnable Mask in different
epochs on MovementLibras, which is shown in Fig. 5. The darker
color indicates the stronger correlation of the corresponding pair
of features. To better recognize feature relations, we remove the
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Proportion of feature pairs with high correlation by different UFS methods on selected 10% features.

diagonal values for visualization. In the beginning, there is no
identified pattern in the Learnable Mask because the learnable
mask is randomly initialized. As the training epochs increase, the
learnable mask becomes sparser and seeks the dataset-dependent
patterns. While the attention matrix is generated by an element-
wise product of the original feature matrix and the learnable
mask, the attention matrix became sparser as well. Therefore,
the most important part of the attention matrix for representing
samples was highlighted through network training.

Then we do a further step to explore the effectiveness of
the learned attention matrix by comparing our results with two
designated baseline methods. The first one is First Order method,
which only uses intrinsic properties of the data. We remove
the GCN part of SOFT and utilize a vectorial learnable mask
for First Order. The First Order learns the ranking scores for
features, which are denoted by the Learnable Mask. The second
one is Covariance method, which uses the original feature matrix
directly for the second stage of SOFT. Fig. 6(b) shows the exper-
imental result in terms of accuracy. On almost all datasets, both
SOFT and Covariance performed better than First Order, which
demonstrates the effectiveness of incorporating feature rela-
tion in feature selection. While Covariance sometimes achieved
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Fig. 4. Performance of 12 UFS methods on different percents of selected features. On each dataset, only top 5 methods on average performance are displayed

for better visualization.

better results than SOFT, SOFT performed the best in most cases
and achieved the best on average, proving that SOFT could learn
a sparse and effective feature relation matrix to represent the
second-order correlation.

Feature Selection Strategy: We adopt two baseline methods
for feature selection from Attention Matrix as the comparison
with the graph segmentation method in SOFT. The first baseline
method, Weight Sum, utilizes a row-sum method to get the total
relation value of each feature to all other features as the ranking

scores for features. Features with the highest scores are selected.
The second baseline method, Largest Weight, each time finds the
largest value in Attention Matrix and selects the corresponding
feature pair until k£ features are selected. Comparison results
among Weight Sum, Largest Weight, and the graph segmentation
in SOFT are shown in Fig. 6(c). Overall, the graph segmen-
tation method in SOFT has a significant advantage over the
baseline methods. This results from that SOFT avoids selecting
highly correlated features by graph segmentation, thus reducing
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(a) Sonar

Fig. 7.

redundancies and bringing in more complementary features for
performance boosting.

Verification: To verify that SOFT can select less-redundant
features as mentioned in Section III, we visualize the selected
10% features on Sonar and Wave. in Fig. 7. Same to Fig. 1,
we highlight the selected features by redlines. The darker area
denotes higher relations of features. The highest correlations of
selected feature pairs on Sonar and Wave. are 1.00 and 0.99 by
LapScore, respectively, and 0.62 and 0.20 by SOFT, respectively.
Obviously, features selected by SOFT have less redundancy
than features selected by LapScore on these two datasets, which
verifies that SOFT can achieve our target.

Stability: We further demonstrate the algorithmic stability,
which means how a small change in data leads to large changes

oo B0 o o et

(b) Attention matrices

L.Cancer

Udvi

(c) Strategies

In-depth exploration of SOFT. (a) Parameter analysis of v and 3 on Celon, (b-c) performance of feature selection with different attention matrices and

-0.4

-0.2

| SOFT

LapScore
L -0.0

(b) Wave.

Visualization of feature relations. Red lines denote the features selected by LapScore and SOFT.

in the chosen feature subset [62]. A typical approach to measure
stability is to first take M bootstrap samples of the provided data
set, apply feature selection to each one of them, and then measure
the variability in the M feature sets obtained. Here we conduct
the stability tests on COIL20 and L.Cancer. Specifically, we
generate M = 50 bootstrap folds and run different unsupervised
selection methods on these bootstrap folds. And then, we use
the stability measurement proposed by [62] ranging from —1
to 1, which returns the stability score with confidence intervals.
The large value means more stable. Fig. 8 shows the stability
test of different feature selection methods on COIL20 and L.
Cancer. SOFT performs very stable with high scores and small
intervals and excels others by a large margin in terms of stability
scores.
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Fig. 8. Stability of different methods with selected 10% features on COIL20
and L.Cancer.

V. CONCLUSION

In this paper, we proposed a two-stage framework named
SOFT for unsupervised feature selection, which incorporated
second-order data with first-order data. Specifically, in the first
stage, we first obtained the attention matrix and masked matrix
by applying a learnable mask on and off the input feature matrix.
Then we generated attention/original/masked representations
from attention/feature/masked matrices by a shared GCN. To
train the learnable mask, we used pseudo labels generated by
attention representation as positive guidance for original rep-
resentation and negative guidance for masked representation,
such that attention representation and original representation
were similar to each other and different from masked represen-
tation. In the second stage, we constructed a graph based on the
well-learned attention matrix and utilized graph segmentation
to separate the graph into several parts. We chose one feature
from each partition as the feature selection result. Experiments
on public datasets demonstrated that our method outperformed
classical and recent state-of-the-art methods on tackling the
unsupervised feature selection problem.

Limitation: We ran experiments on a physical machine with a
memory of 64 GB, an AMD Ryzen Threadripper 2920X 12-Core
Processor, and an NVIDIA GP102 GPU, honestly, it cannot han-
dle millions of features due to computing resource limitations.
The scalability can be handled by more computing resources,
using a sparse matrix [63], or focusing on the relationship of
local features instead of global features [64].
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