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ARTICLE INFO ABSTRACT

Keywords: Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification
Hyperpolarized MRI By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyper-
zig":gdmgen polarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received sig-

nificant attention in the scientific community since its inception because of its relative experimental simplicity
and its broad applicability to a wide range of molecules, however, in vivo detection of molecular probes
hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized
contrast detected in vivo, specifically using hyperpolarized [1—13C]pyruvate. Biocompatible formulations of
hyperpolarized [1-'3C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with
saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective
hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization.
Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was
also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-
resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements
were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI sys-
tems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.

Metabolic imaging

Introduction

Traditional NMR and MRI approaches, which rely on thermal nu-
clear spin polarization, face significant sensitivity limitations compared
to other analytical chemistry or medical imaging techniques, and
require relatively high concentrations of detected molecules. To address
the sensitivity challenge faced by MR approaches, hyperpolarization
methods have been developed to align much larger fractions of nuclear

spins and to improve the sensitivity limits of NMR and MRI by several
orders of magnitude[1-6]. Indeed, the first hyperpolarized (HP) contrast
agent (12°Xe gas)[7-11] has been FDA approved for ventilation lung
imaging. Other HP molecular probes are also emerging for molecular
imaging, including [1—13C]pyruvate[1 2]. HP [1-3C] pyruvate is similar
to the ['F] fluorodeoxyglucose PET[13,14] tracer in that it allows mo-
lecular sensing of aberrant energy pathways in cancer[2,3] and many
other diseases[15,16]. Currently in over 30 clinical trials, dissolution

Abbreviations: NMR, Nuclear Magnetic Resonance; MRI, Magnetic Resonance Imaging; SABRE, Signal Amplification By Reversible Exchange; HP, Hyperpolarized,;
PET, Positron Emission Tomography; D-DNP, dissolution Dynamic Nuclear Polarization.
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Dynamic Nuclear Polarization (p-DNP)[17] is the hyperpolarization
method employed for production of HP [1-'3C]pyruvate for molecular
imaging applications. Hyperpolarized MRI can directly track and image
metabolic events at any depth inside tissue at modest sub-mM concen-
trations and it is relatively safe because HP MRI uses injectable contrast
agents that are endogenous biomolecules, instead of radioactive mate-
rial. The disadvantages of p-DNP are that it is infrastructure-intensive
and relatively slow to build up hyperpolarization (~1 hour). A faster
and perhaps simpler approach to hyperpolarize [1—13C]pyruvate is
parahydrogen-induced polarization (PHIP)[5,18-20]. One possibility is
side-arm hydrogenation PHIP (SAH-PHIP)[21,22], which has been
successfully used to hyperpolarize [1—13C]pyruvate[23—25], the most
common hyperpolarized MRI tracer. In SAH-PHIP an unsaturated side
arm of a pyruvate ester is hydrogenated with parahydrogen, the polar-
ization is transferred to the 3C nucleus, and the pyruvate is then cleaved
via hydrolysis of the ester. Although SAH-PHIP is a successful approach
for PHIP hyperpolarization of [1-'3C]pyruvate, the synthesis of the
unsaturated pyruvate ester precursors is relatively complex and storage
is not trivial. Unlike any existing method, Signal Amplification By
Reversible Exchange (SABRE) hyperpolarizes sodium [1-'3C]pyruvate
directly and without the need for chemical modifications[26,27]. As
depicted in Fig. 1, SABRE relies on reversible exchange of parahydrogen
and a to-be-hyperpolarized substrate, [1-'3C]pyruvate in the present
case, on an Ir-catalyst to create a spin network connecting parahydrogen
and the target substrate. Continuous reversible exchange of para-
hydrogen and the substrate leads to rapid polarization build-up within
the bulk [1-'3C]pyruvate molecules in solution. In principle, the
resulting HP agent can be processed to quickly obtain biocompatibility
for subsequent injection into the subject to monitor metabolic changes.
Since its inception[26-28], SABRE hyperpolarization chemistry has
undergone significant developments[29-32]. First, SABRE was primar-
ily optimized to hyperpolarize protons in target substrates[26-28,33].
With the invention of the SABRE-SHEATH (SABRE in Shield Enables
Alignment Transfer to Heteronuclei) variant, it became possible to
efficiently hyperpolarize '°N and '3C nuclei that are associated with
longer hyperpolarization lifetimes[34-42]—such as in [1-13¢] pyruvate
[43,44]. Subsequent developments enabled polarization levels
exceeding 10% using temperature cycling[45,46] and/or various
pulsed-field approaches[47-50]. Building on these recent advances,
here we show the first detection of a SABRE-hyperpolarized substrate,
[1-'3Clpyruvate, in vivo. Using a rat model, spectroscopic tracking of
metabolic turnover and Chemical Shift Imaging (CSI) are demonstrated
for kidney, liver, and whole body at multiple experimental sites,
pointing towards the development of a truly scalable molecular imaging
technique resulting from the combination of fast, simple SABRE hy-
perpolarization chemistry with low-cost, cryogen-free MRI[51-55].
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Methods
Sample preparation

Under inert gas conditions, [1—13C]pyruvate, [Ir(IMes)(COD)Cl]
(IMes= 1,3 bis(2,4,6-trimethylphenyl)imidazole-2-ylidene,
COD=cyclooctadiene) polarization-transfer pre-catalyst, and DMSO
were mixed to give absolute concentrations of 65 mM [1-!3C]pyruvate,
24 mM DMSO, and 6 mM Ir-IMes in CD3OD. Ir-IMes catalyst was syn-
thesized using literature methods[56,57]. Dry CD3OD was used as pro-
vided from the supplier (Cambridge Isotopes) and degassed with 5
freeze-pump-thaw cycles. All other chemicals used were purchased
from Millipore Sigma.

Hyperpolarization and sample processing

[1-'3C]lpyruvate was hyperpolarized by bubbling parahydrogen
through a 500 pL solution containing 6 mM iridium-IMes catalyst, 24
mM DMSO, and 65 mM [1-!3C]pyruvate at 100 psi inside a standard
NMR tube using a previously described bubbling setup[46]. The sample
is pre-cooled to 0 °C and then, as illustrated in Fig. 2, placed into a
Polarization Transfer Field (PTF) of 0.3 uT established in mu-metal
shields provided by MagneticShield Corp. (ZG-203). After 90 s of
bubbling parahydrogen, at room temperature and 0.3 uT field, hyper-
polarization of about 10% is achieved, and the sample is manually
transferred into a 0.3 T Halbach array, where the parahydrogen pressure
is released. The sample is subsequently pulled into a syringe prefilled
with saline solution, creating a saline-methanol mixture. For the ex-
periments at 4.7 T at Massachusetts General Hospital (MGH), 1.5 mL
saline was used creating at total injectable volume of 2 mL, with a
methanol-to-saline ratio of 1:3. These concentrations correspond to a
pyruvate dosage of 11.3 mg/kg (0.13 mmol/kg) injected into ~250 g
Sprague Dawley rats. For the experiments at 1.5 T (at NC State) using the
cryogen-free MRI system, only 1 mL of saline was used, creating a total
injectable volume of 1.5 mL with a methanol-to-saline ratio of 1:2. These
concentrations correspond to a pyruvate dosage of 14.1 mg/kg (0.16
mmol/kg) injected into ~200 g Wistar rats. These dosages of hyper-
polarized and injected pyruvate are lower than those in typical p-DNP
hyperpolarized MRI studies, which are closer to (0.75 to 1 mmol/kg)
[58-62]. For all animal studies, the rats were sedated with isoflurane
before placing them in the MRI scanner. Isoflurane was continuously
provided via a nose cone in the MRI scanner during experimentation,
and the heart and breathing rates were continuously monitored. The
vitals remained stable after injection, and the animals were euthanized
before waking from anaesthesia, approximately 10 min after completion
of the experiment. While the injected quantities of methanol in these
proof-of-concept studies were near the LD50, the toxic effects of meth-
anol are delayed well past the timepoint of euthanasia, allowing the
described experiments. All animal handling procedures were conducted
under the appropriate IACUC protocols at NC State and MGH. At NC

Fig. 1. SABRE hyperpolarization chemistry: both parahydrogen and the
[1-'3Clpyruvate substrate are in reversible exchange with the polarization
transfer catalyst, [IrHo(IMes)(DMSO)(pyruvate)]. During the lifetime of
the polarization-transfer complex, comprising the catalyst, substrate, and
parahydrogen (tens to hundreds of milliseconds), the polarization is
transferred from the parahydrogen singlet state on the hydrides to the 13C
nucleus in pyruvate transiently bound on the catalyst. Continuous ex-
change leads to hyperpolarization build-up on the free pyruvate in solu-
tion. This build-up process requires roughly 1.5 min to reach steady-state
hyperpolarization.
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D] hctate )O: - Fig. 2. Experimental procedure of MRI
ﬁ’ in vivo studies. [A] SABRE hyperpolar-

3 ization takes place inside of a mu-

pyruvate alanine “~on  magnetic shield at a polarization trans-
Mgttty e fer field of 0.3 uT. The sample is pre-

pyruvtate )L“b o cooled to 0 °C and then parahydrogen
hydrate ol is bubbled through the solution for 90 s
| allowing for polarization buildup in the

magnetic shields. [B] The sample is
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i 120s bicarbonateHo/ﬂc
Aquistion Time [T,] transferred to a 0.3 T Halbach array (to

help slow relaxation of the hyperpolar-
ization) for depressurization and ejec-
tion into a syringe pre-filled with saline,
taking 10 s. [C] After ejection the sam-

ple is moved across the room and attached to the catheter for injection, requiring ~10 s. [D] After injection, a two-minute scan is applied with 20° pulses and
repetition time of 2 s to detect the metabolic products of pyruvate—namely lactate, alanine, and bicarbonate. (Pyruvate-hydrate is also detected).

State, hyperpolarized '3C MR data were acquired from the whole body
of the animals. The cryogen-free, variable-field MRI system at NC State
used whole body transmit/receive 13¢ volume coils (5.2 cm RF window
length and 6.5 cm in diameter). The spectroscopic data were obtained
using 20° non-selective 0.314 ms hard pulses, a repetition time (TR) of 2
s including a 0.68 s acquisition time, 12 kHz spectral bandwidth, and
8192 spectral points.

At MGH, the hyperpolarized 13C animal experiment was conducted
on a 4.7 T animal MRI scanner (Bruker Biospin, Billerica, USA) using a
commercial transmit/receive proton volume coil (Bruker, Billerica,
USA) for localization and shimming. 13C experiments used a custom-
made transmit/receive 13C surface coil with a 6 cm inner diameter for
13C acquisitions. In the dynamic spectroscopy experiments, a pulse-and-
acquire sequence was used with a non-selective 0.11 ms hard pulse,
centred at 180 ppm with a 30° nominal flip angle and a repetition time
(TR) of 3 s. For all chemical shift imaging (CSI) experiments, a sinc pulse
with 11,000 Hz bandwidth and 0.56 ms length was used to selectively
excite a single axial slice of 15 mm thickness. CSI parameters were: TR
410 ms, echo time (TE) 1.05 ms, 20° nominal flip angle, spectral
bandwidth 10,080 Hz, 4096 spectral points, field of view (FOV) of 80
mm x 40 mm, and matrix size 8 x 8. Fig. 2 provides a general overview
of the experimental procedures.

Results and discussion
In vivo spectroscopy at 4.7 T

Fig. 3 shows the data obtained for the first observation of metabolic

hyperpolarized [1-'3C]pyruvate. The surface coil was placed either on
the liver or the kidney of the rat, the hyperpolarization was started,
followed by dilution with saline, injection, and data acquisition. As seen
in Fig. 3, the data clearly show peaks for lactate, alanine, pyruvate-
hydrate, and bicarbonate. Figs. 3A-C show the data acquired from the
liver, and Figs. 3D-F from the kidney. In comparison, the data from the
liver clearly shows a higher metabolic rate as expected[58], while noting
that in the presented pilot studies significant quantities of methanol
were injected, which is known to alter metabolism[63,64]. Future work
will use ethanol/water as described below, or fully aqueous injectables
[65]. Figs. 3A and D show spectra created by summing the data across
the full time duration for liver and kidney, respectively. Most metabolic
turnover is observed to lactate and alanine, whereas conversion to
pyruvate-hydrate and bicarbonate is less pronounced. Figs. 3B and E
show the full time-resolved spectra. Figs. 3C and F show the corre-
sponding projection of the signals for pyruvate, lactate, and alanine as a
function of time, revealing the time course of pyruvate perfusion con-
voluted with metabolic conversion and T; relaxation for the individual
metabolites—as expected from previous p-DNP work[58]. As can be
seen, metabolic tracking for about one minute was possible in these first
proof-of-concept studies.

In vivo spectroscopic imaging at 4.7 T

In addition to in vivo spectroscopy, we implemented Chemical Shift
Imaging (CSI) to visualize the spatial distribution of the SABRE-
hyperpolarized [1-'3Clpyruvate within the kidney and liver as dis-

conversion using dynamic spectroscopy employing SABRE- played in Fig. 4. The individual spectra were integrated and turned into
a heat map superimposed on an anatomical proton-MRI slice of the
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Fig. 4. Chemical Shift Imaging (CSI)
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(shown in separate rows) with two
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kidney, row 2). [A, D] 8 x 8 array of the
64 spectra acquired in the respective
CSI experiments. [B, E] Integration of
the peaks shown in the spectra to obtain
a intensity map overlayed on top of the
centre anatomical slice of the imaged
region. [C, F] zero-filled intensity map
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results. CSI results are acquired linearly
in a 8 x 8 matrix using a 20° flip angle
and a 0.41 s TR.

imaged region. Figs. 4A-C show the data acquired with the surface coil
placed on the liver, whereas Figs. 4D-E show the data acquired when the
surface coil was placed on the kidney. Figs. 4A and D show the respective
raw CSI data displaying the spectra acquired in a 8 x 8 grid covering a
field of view (FOV) of 8 x 4 cm?. Figs. 4B and E each show a heatmap
over the corresponding anatomical image, which was then smoothed by
zero-filling the data to assist with visualization—as shown in Figs. 4C
and F. In this work, the excitation pulses were selectively applied on the
[1-'3Clpyruvate peaks to ensure visibility and sufficient signal-to-noise.
The liver image shows most pyruvate signal primarily centred around
the heptic vein, whereas the kidney image shows most pyruvate signal
centred around the renal vein. The current imaging data does not
contain information on the metabolic products and only visualized the
SABRE-hyperpolarized [1-'3C]pyruvate; nevertheless, the CSI approach
will be critical in future studies imaging disease models, where the
production of metabolites may be strongly modulated. For example, the
production of lactate is often greatly increased in the presence of tumors
because of the Warburg effect[3,66-70].

Cryogen-free 1.5 T hyperpolarized in vivo spectroscopy

In tandem with the work performed at MGH, experiments were
conducted at NC State using a cryogen-free variable-field MRI scanner.
The use of a cryogen-free MRI and lower magnetic fields circumvents the
need for large amounts of helium, reducing installation and mainte-
nance costs. Examples of p-DNP detected with 1 T permanent magnets
have been described [71]. With SABRE, even the combination with
portable bedside (“point-of-care”) MRI[51,52] becomes imaginable. The
variable field of our unique MRI (5 mT - 3 T) assists with the broader

translation into clinical settings, as the common clinical fields are be-
tween 1.5 - 3 T. Studies closely comparable to those performed on the
preclinical 4.7T MGH scanner are shown here. Differences reside in the
use of a whole body volume coil instead of surface coils, slightly smaller
animals (~200 g versus ~250 g), and operation at 1.5 T. The selection of
1.5 T helps to establish direct correlation to more clinical settings often
operating at this field. Fig. 5A shows summed spectra of the hyper-
polarized pyruvate, along with its downstream metabolic products
lactate and alanine, as well as the bicarbonate as minor metabolite and
pyruvate-hydrate as minor byproduct. Since the 1.5 T data is acquired
using a full-body coil, the signal represents an average across the whole
rat, showing lower metabolic activity in comparison to the [1-'3C]py-
ruvate signal from the liver and kidney (which are more metabolically
active organs). In addition, shimming the magnetic field over a full body
is more challenging than over individual organs, which is reflected in
broader spectral features visible in Fig. 5A, in contrast to those from
Figs. 3A and C. Despite these challenges hyperpolarized signal is
detectable for over one minute, and time-resolved metabolism could be
observed as illustrated in Figs. 5B and C—presented in analogy to Fig. 3.
Overall, the experiments shown in Fig. 5 indicate the successful com-
bination of low-cost hyperpolarization with low-cost MRI to achieve in
vivo detection of metabolic transformations, advancing this technology
and setting the stage for future developments and biomedical
applications.
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Cryogen-free 1.5 T hyperpolarized in vivo spectroscopy using [1-'3C]
pyruvate hyperpolarized in an ethanol-water mixture followed by catalyst
filtration

Although SABRE has seen significant advances as leveraged in the
above sections, there are still barriers to clinical translation because of
the usage of methanol, and the presence of the iridium catalyst. The
SABRE community has put effort into moving towards biocompatibility
(i.e. a catalyst free, aqueous solution), including developments in water
soluble catalysts [40,72-74], heterogenous catalysts[75-77], and
dissolution schemes. [65,78,79] However, none of the described
methods have established in vivo use. In this section, we showcase the
first methanol free solution with catalyst filtration of hyperpolarized
pyruvate detected in vivo employing SABRE. To attain sufficient solu-
bility of [1-'3C]pyruvate in ethanol, a 9-to-1 ethanol-water mixture was
used, which balances solubility restrictions of both sodium [1-'3C]py-
ruvate and the [Ir(IMes)(COD)CI] SABRE pre-catalyst. Sodium pyruvate
is essentially insoluble in pure ethanol and the SABRE catalyst is insol-
uble in water. The 9-to-1 ethanol water mixture was found to work well
providing sufficient hyperpolarization for in vivo detection as described
in the following.

First, a 500pL solution of an ethanol and water medium with 6 mM
Ir-IMes catalyst, 20 mM dimethyl sulfoxide, and 30 mM [1—13C] pyruvate
was prepared. Next, hyperpolarized [1-13C]pyruvate was generated by
bubbling parahydrogen at 200 sccm and 150 psi for 60 s at 0.4 uT during
active temperature cycling initialized at 0 °C, as previously demon-
strated in methanol[45]. The reproducibility was assessed across mul-
tiple days and ten samples, resulting in an average polarization of p =
4.5 + 0.7% on free [1—13C]pyruvate. The polarization achieved in this
work is significantly higher than previous reports in ethanolic media
[65]. The spectrum with the largest observed polarization on free
[1-'3C]pyruvate, p = 5.8%, is shown in Fig. 6A.

To further reduce the toxicity of the SABRE sample, we utilized a
filtration method for catalyst removal prior to injection. Specifically, we
employed commercially available C18 silica cartridges (Waters, SepPak
Plus), where the non-polar nature of the column has strong interactions
with the non-polar portion of the SABRE catalyst (IMes ligand), whereas

Journal of Magnetic Resonance Open 16-17 (2023) 100129

the highly polar pyruvate ion remains in the mobile, polar phase. We
used mass spectrometry to quantify the efficacy of the filters. Encour-
agingly, the filters were able to remove > 95% of the iridium from the
sample, as summarized in Table 1, with no additional optimization. This
corresponds to an average iridium content of 6 &+ 2 ppm in the injected
solution (1.5 mL total, experiment repeated 3 times). Future optimiza-
tion of the non-polar filtration phase is expected to reduce the catalyst
content further.

To validate the utility of using methanol free solutions with catalyst
filtration, we performed an in vivo spectroscopic study using the variable
field, cryogen free MRI set at 1.5 T as described above. We followed a
similar experimental procedure to the pilot SABRE in vivo studies pre-
sented above. In this procedure, highly polarized [1-!3C]pyruvate is first
generated in an NMR tube. The tube is then inserted into a Halbach array
to ensure adiabaticity during depressurization and ejection into a sy-
ringe. We note that magnetic field control in this step is vital to retain the
polarization. The syringe, which is prefilled with 1 mL saline, is then
quickly transported to the catheterized rat injection line. In contrast to
the methods described above, a filter was added to the injection line for
catalyst removal, as illustrated in Fig. 6B. Following injection, we
employed a temporal pulse sequence using 20° excitation pulses every 2
s to monitor pyruvate resonance signals in vivo. The result of the
described method is displayed in Fig. 6C, where pyruvate resonance
signals were detected for over 30 s. Fig. 6D showcases the summed
spectra of the complete temporal series, where production of pyruvate
metabolites could be observed.

Table 1
Quantification of SABRE catalyst removal using commer-
cially available C18 silica cartridges.

Sample Iridium content [ppm]
Blank 1

Unfiltered 256

Filtered 6+2

Free Pyruvate
in ethanol-water (9:1) —»

[A]

fo) (P=5.8%) Sample: Conditions:
6 mM catalyst @0°C
o 20 mM DMSO 150 psi
30 mM pyruvate 200 sccm
o 600 plL of 90% EtOH 0.4 uT
u 60s
i »‘3C]Pyruvate Coordinating
Pyruvate
(P=5.5%)
I T T T T T T 1
190 185 180 175 170 165 160 155

Chemical Shift [ppm]

pyruvate-hydrate / alanine | | ——— pyruvate

lactate

[D]

10
W pyruvate
M lactate

T T T T T 1
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Chemical Shift [ppm]
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Fig. 6. [A] Hyperpolarized pyruvate generated in an 9:1 ethanol water mixture. [B] Schematic incorporating a C-18 filter into the experimental procedure. [C]
Summed and [D] stacked spectra of experimental results from a temporal acquisition using 20° flip angles (TR = 2 s) of hyperpolarized pyruvate, generated in an
ethanol-water medium with subsequent catalyst filtration, detected in a healthy Wistar rat.
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Conclusion

The first in vivo metabolic hyperpolarized MRI experiments were
demonstrated using SABRE hyperpolarization chemistry and [1-'3C]
pyruvate as an exogenous molecular probe. [1-'3Clpyruvate is the
leading molecular probe because it is a key metabolite that is often
dysregulated in many disease states. In vivo studies were performed on
two different instruments at two different sites to provide multi-site
validation of the emerging SABRE technology: a 4.7 T magnet at MGH
and a 1.5 T cryogen-free magnet at NC State. We also note that further
multi site validation is provided by a group from Freiburg University
that was able to provide first in vivo data using SABRE-polarized pyr-
uvtate at the same time [80]. Both MRI systems showed good
signal-to-noise for the detection of SABRE-hyperpolarized [1-'3C]py-
ruvate and enabled real-time metabolic tracking of the formation of
lactate, alanine, and bicarbonate. (The formation of pyruvate-hydrate is
also observed.) The presented work is a milestone in the translation of
SABRE hyperpolarization chemistry—which has been under develop-
ment for almost 15 years since inception—to pre-clinical applications
focused on biomedical questions.

The presented work includes injections of methanol-water mixtures
that still contain hyperpolarization catalyst showing clear conversion of
pyruvate to alanine, lactate and bicarbonate. These experiments also
enable Chemical Shift Imaging. For ultimate preclinical or clinical
translation, methanol and iridium catalyst are not acceptable, therefore
we also presented hyperpolarization in ethanol-water mixtures followed
by dilution with saline and filtration, while retaining the polarization
such that in vivo detection was still possible. Yet for widespread use
further improvements to the sample processing protocol are still needed.

The facile nature of SABRE hyperpolarization chemistry makes
SABRE based technology a good candidate for broader dissemination
with the potential to become competitive in the landscape of existing
molecular imaging technologies, and medical imaging at large. Specif-
ically, the combination of portable, low-field MRI approaches that
otherwise suffer from significant sensitivity limitations could be com-
bined with relatively simple SABRE hyperpolarization chemistry work-
ing towards broadly available molecular imaging with the ability to
track individual metabolic pathways.
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