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1. Introduction

Various trace minimization principles have served as the theoretical foundations for 
computing eigenvalues of special kinds of matrix pairs and played important roles in 
numerical linear algebra [1–11]. Fan’s trace minimization principle [12] [13, p.248] is 
perhaps the earliest and the most well-known one:

min
XHX=Ik

tr(XHAX) =
k∑

i=1
λi,

where A ∈ Cn×n is Hermitian with its eigenvalues denoted by λ1 ≤ λ2 ≤ · · · ≤ λn, tr( · )
takes the trace of a matrix, and Ik is the k × k identity matrix. Moreover, any minimizer 
Xmin is an orthonormal basis matrix of the invariant subspace of A associated with its 
eigenvalues λ1, . . . , λk. It has since been generalized to many broader cases:

1. The most straightforward generalization is min
XHBX=Ik

tr(XHAX) for a Hermitian ma-

trix pair (A, B), where B is positive definite (see, e.g., [10]).
2. For a Hermitian matrix pair (A, B) with indefinite and possibly singular B, in [14–16]

inf
XHBX=Jk

tr(XHAX) is investigated, where Jk is a k×k diagonal matrix with diagonal 

entries ±1. It is shown that the infimum is finite if and only if (A, B) is a positive 
semidefinite matrix pair, by which we mean there exists λ0 ∈ R such that A − λ0B is 
positive semidefinite.

3. From the perspective of optimization, in [17] min
XHX=Ik

tr(ÂXHAX) is analyzed, where 

both A and Â are Hermitian matrices.
4. More recently, the authors of [18] investigated two more general cases:

(a) min
XHBX=Ik

tr(ÂXHAX) where A, B and Â are Hermitian matrices and B is posi-
tive definite;

(b) inf
XHBX=Jk

tr(ÂXHAX) where Jk =
[

Ik+
−Ik−

]
and Â =

[
Â+

Â−

]
have the 

same block-diagonal structure, Â± are of size k± ×k±, A, B and Â are Hermitian 
matrices, and (A, B) is a positive semidefinite matrix pair.

Our goal in this paper, as a continuation of [18], is to investigate yet an even more general 
case:

inf
B̂XHBX=Ik

tr(ÂXHAX), (1.1)

where A, B, Â and B̂ are Hermitian of apt sizes. It is understood that the infimum in
(1.1) is taken over all X of apt sizes subject to B̂XHBX = Ik. Evidently, both problems 
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in items 4(a) and 4(b) above are special cases of (1.1). Our main result relates this 
infimum to the eigenvalues of two matrix pairs (A, B) and (Â, B̂).

The rest of this paper is organized as follows. We review the basics about a positive 
semidefinite matrix pair in section 2, and state our main result of this in paper in 
section 3. The proof of the main result spreads in the next two sections: section 4 deals 
with the simple case when n = n̂ and both pairs (A, B) and (Â, B̂) are diagonalizable1

while section 5 handles the main result in its generality, with the help of the result for 
the simple case. We draw our concluding remarks in section 6.

Notation Throughout this paper, Cn×m is the set of n × m complex matrices, Cn =
Cn×1, and C = C1, and their real counterparts are denoted similarly by replacing 
C with R. By Un, Pn, Dn ∈ Cn×n, denote the sets of unitary, permutation, diagonal 
matrices, respectively (and by U , P, D if their sizes are clear from the context); and, by 
Pu

n , D+
n ∈ Cn×n, denote the set of permutation matrices in structure but with nonzero 

entries being any unit complex number eiθ and that of diagonal matrices with nonnegative 
diagonal entries, respectively (and by Pu, D+ if their sizes are clear from the context). 
In (or simply I if its dimension is clear from the context) is the n × n identity matrix.

For a matrix X ∈ Cm×n,

N (X) = {x ∈ Cn : Xx = 0}, R(X) = {Xx : x ∈ Cn}

are the null space and the range of X (also known as the column space of X), respec-
tively. XT and XH are the transpose and the conjugate transpose of a vector or matrix, 
respectively. A � 0 (A � 0) means that A is Hermitian positive (semi)definite, and 
A ≺ 0 (A � 0) if −A � 0 (−A � 0). The eigenvalues of an n × n Hermitian matrix A
are written, according to either increasing or decreasing order, as

λ↑
1(A) ≤ λ↑

2(A) ≤ · · · ≤ λ↑
n(A), or λ↓

1(A) ≥ λ↓
2(A) ≥ · · · ≥ λ↓

n(A),

respectively. Hence λ↑
i (A) = λ↓

n−i+1(A).
Other notational convention will be introduced as they appear for the first time.

2. Preliminaries on a positive semidefinite matrix pair

We review some of related concepts and results about a positive semidefinite matrix 
pair (A, B) [15].

Given Hermitian B ∈Cn×n, the inertia of B is the integer triplet (i+(B), i0(B), i−(B)), 
meaning B has i+(B) positive, i0(B) zero, and i−(B) negative eigenvalues, respectively. 
Necessarily

1 A Hermitian matrix pair (A, B) is diagonalizable if it admits the decomposition A = Y HΛY and 
B = Y HJY where Y is nonsingular and Λ and J are diagonal.
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r := rank(B) = i+(B) + i−(B).

Consider an n × n matrix pair (A, B). We say that μ 	= ∞ is a finite eigenvalue of 
(A, B) if

rank(A − μB) < max
λ∈C

rank(A − λB).

As in [19,20], for a finite eigenvalue μ of (A, B), letting

Nμ(A, B) =
{

x(μ)
∣∣∣∣ x(λ) ∈ Cn is a vector-valued polyno-

mial in λ such that (A − λB)x(λ) ≡ 0

}
,

we say that x ∈ Cn is a corresponding eigenvector if 0′ 	= x′, where x′, 0′ ∈ N (A −
μB)/Nμ(A, B) (the quotient space of N (A −μB) over Nμ(A, B)) are the elements in the 
quotient space that contain x and 0, respectively. The geometric multiplicity of μ is the 
dimension of N (A −μB)/Nμ(A, B). Together (μ, x) is called a finite eigenpair of (A, B). 
The infinite eigenvalue (eigenpair), if any, of (A, B), is defined through the eigenvalue 0, 
if any, of (B, A).

Definition 2.1 ([15,14]). For A, B ∈ Cn×n, matrix pair (A, B) is a Hermitian matrix pair
of order n if both A and B are Hermitian, and a positive (semi)definite matrix pair of 
order n if it is a Hermitian matrix pair and if there exists λ0 ∈ R such that A − λ0B is 
positive (semi)definite, in notation, (A, B) � 0 (� 0). (A, B) ≺ 0 (� 0) if (−A, −B) � 0
(� 0).

Given a finite eigenpair (μ, x) of a Hermitian matrix pair (A, B), we say μ is an 
eigenvalue of positive type if xHBx > 0 and of negative type if xHBx < 0.

Let (A, B) be a positive semidefinite matrix pair of order n and λ0 ∈ R be as in the 
definition such that A − λ0B � 0. It is known [15, Lemma 3.8] that (A, B) has only 
r = rank(B) finite eigenvalues and all of them are real. Denote these finite eigenvalues, 
according to either increasing or decreasing order, by

λ−↑
1 (A, B) ≤ · · · ≤ λ−↑

i−(B)(A, B) ≤ λ+↑
1 (A, B) ≤ · · · ≤ λ+↑

i+(B)(A, B),

or

λ+↓
1 (A, B) ≥ · · · ≥ λ+↓

i+(B)(A, B) ≥ λ−↓
1 (A, B) ≥ · · · ≥ λ−↓

i−(B)(A, B).

Here, eigenvalues λ+↑
j (A, B) (and λ+↓

j (A, B) too) are those of positive type (accord-
ing to their associated eigenvectors x that make xHBx > 0), whereas λ−↑

j (A, B) (and 

λ−↓
j (A, B) too) are those of negative type (according to their associated eigenvectors x

that make xHBx < 0).
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Since both {λ−↑
i (A, B), λ+↑

j (A, B)}i,j and {λ−↓
i (A, B), λ+↓

j (A, B)}i,j are the same set 
of finite eigenvalues of (A, B), we have

λ−↑
i (A, B) = λ−↓

i−(B)−i+1(A, B), λ+↓
j (A, B) = λ+↑

i+(B)−j+1(A, B)

for 1 ≤ i ≤ i−(B) and 1 ≤ j ≤ i+(B). It has been proved [15] that for all i, j,

λ−↑
i (A, B) ≤ λ0 ≤ λ+↑

j (A, B), λ+↓
j (A, B) ≥ λ0 ≥ λ−↓

i (A, B).

As a consequence, eigenvalues of positive type are no smaller than those of negative type, 
i.e.,

λ+↑
j (A, B) − λ−↑

i (A, B) ≥ 0, λ+↓
j (A, B) − λ−↓

i (A, B) ≥ 0.

There is an important comment about the types of the eigenvalues of this matrix pair 
(A, B) � 0. When λ0 in the definition is an eigenvalue, there is a possibility that (A, B)
may have 2-by-2 Jordan block pairs associated with eigenvalues λ0 (see Remark 5.1
later): ([

0 λ0
λ0 1

]
,

[
0 1
1 0

])
, (2.1)

which corresponds to one eigenvector x with xHBx = 0. Each of such Jordan block pairs 
brings two copies of λ0 as eigenvalues. In [15,16], one copy is artificially regarded as of 
positive type while the other of negative type. Although seemingly artificial, it can be 

justified by perturbing the first block in the pair (2.1) to 
[

ε λ0
λ0 1

]
for ε > 0 and letting 

ε → 0+. The perturbation breaks the two copies of λ0 into λ0 +
√

ε of positive type 
and λ0 − √

ε of negative type. Any other eigenvalues different from λ0 are all associated 
with Jordan block pairs of 1-by-1. It can be seen that if (A, B) � 0 does have a 2-by-2
Jordan block pair (2.1), then λ−↓

1 (A, B) = λ+↑
1 (A, B) = λ0. In view of this discussion, 

we conclude that

A − λ0B � 0 for any λ0 ∈ [λ−↓
1 (A, B), λ+↑

1 (A, B)]. (2.2)

In fact, if λ−↓
1 (A, B) < λ+↑

1 (A, B), then (A, B) can only have 1-by-1 Jordan block pairs.
Similar statements can be made about the eigenvalues of a negative semidefinite ma-

trix pair.

3. Main result

Once again, we are interested in a minimization principle for

inf̂ H
tr(ÂXHAX), (3.1)
BX BX=In̂



X. Liang, R.-C. Li / Linear Algebra and its Applications 687 (2024) 8–37 13
where A, B ∈ Cn×n and Â, B̂ ∈ Cn̂×n̂ are all Hermitian matrices, and n̂ ≤ n. As 
we pointed out earlier, the infimum in (3.1) is taken over all X ∈ Cn×n̂ subject to 
B̂XHBX = In̂. Henceforward the notation k in section 1 is changed to n̂ to align with 
our overall notation structure.

The constraint B̂XHBX = In̂ necessarily implies that both B̂ and XHBX are non-
singular and also

i+(B̂) = i+(B̂−1) = i+(XHBX) ≤ i+(B), i−(B̂) ≤ i−(B). (3.2)

Before stating our main result on (3.1), we introduce a new notion on Hermitian 
matrix triplet (B, Â, B̂), which we need to express our conditions for the infimum in
(3.1) to be finite.

Definition 3.1. Given a Hermitian positive semidefinite pair (Â, B̂) and a Hermitian 
matrix B, the triplet (B, Â, B̂) is said proper if one of the following statements holds, 
where the proper index pair (d+(B̂), d−(B̂)) is defined along the way:

(i) i+(B) = i+(B̂) and i−(B) = i−(B̂), in which case (d+(B̂), d−(B̂)) = (0, 0);
(ii) i+(B) = i+(B̂), i−(B) > i−(B̂) and λ+↑

1 (Â, B̂) ≥ 0, in which case d+(B̂) = 0 and 
d−(B̂) is the number of positive λ−

j (Â, B̂), 1 ≤ j ≤ i−(B);
(iii) i+(B) > i+(B̂), i−(B) = i−(B̂) and λ−↓

1 (Â, B̂) ≤ 0, in which case d−(B̂) = 0 and 
d+(B̂) is the number of negative λ+

j (Â, B̂), 1 ≤ j ≤ i+(B);
(iv) i+(B) > i+(B̂), i−(B) > i−(B̂) and λ−↓

1 (Â, B̂) ≤ 0 ≤ λ+↑
1 (Â, B̂), in which case 

(d+(B̂), d−(B̂)) = (0, 0).

Here the dependency of (d+(B̂), d−(B̂)) on B and Â is suppressed for clarity. The triplet 
(B, Â, B̂) is said improper if it is not proper.

In light of (3.2), the properness in Definition 3.1 simply imposes λ+↑
1 (Â, B̂) ≥ 0 or 

λ−↓
1 (Â, B̂) ≤ 0 or both, depending on which inequalities or both in (3.2) are strict or 

not.
As a corollary of our discussions at the end of section 2, the condition λ−↓

1 (Â, B̂) ≤
0 ≤ λ+↑

1 (Â, B̂) in the case (iv) in the definition is the same as Â � 0.

Theorem 3.1. Given four Hermitian matrices A, B ∈ Cn×n, Â, B̂ ∈ Cn̂×n̂ where n ≥ n̂, 
suppose that Â 	= 0, A 	= μB for any μ ∈ R, and Â 	= μ̂B̂ for any μ̂ ∈ R when n = n̂. 
Then

inf
B̂XHBX=In̂

tr(ÂXHAX) > −∞,

i.e., the infimum is finite, if and only if one of the following two cases occurs:
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(i) both (A, B) and (Â, B̂) are positive semidefinite pairs and (B, Â, B̂) is proper;
(ii) both (A, B) and (Â, B̂) are negative semidefinite pairs and (−B, −Â, −B̂) is proper.

Moreover, in the first case, we have2

inf
B̂XHBX=In̂

tr(ÂXHAX)

=
i+(B̂)−d+(B̂)∑

i=1
λ+↓

i (Â, B̂) λ+↑
i (A, B) +

d+(B̂)∑
i=1

λ+↑
i (Â, B̂) λ+↓

i (A, B)

+
d−(B̂)∑

j=1
λ−↓

j (Â, B̂) λ−↑
j (A, B) +

i−(B̂)−d−(B̂)∑
j=1

λ−↑
j (Â, B̂) λ−↓

j (A, B). (3.3)

Similarly, for the second case, the formula for the infimum can be gotten by applying (3.3)
to matrix pairs (−A, −B) and (−Â, −B̂). The infimum can be attained, when (Â, B̂) and 
(A, B) are diagonalizable.

The three excluded cases in the conditions of the theorem are not particularly inter-
esting:

(1) if Â = 0, then tr(ÂXHAX) ≡ 0 for any X;
(2) if A = μB for some μ ∈ R, then any X such that B̂XHBX = In̂ yields XHBX =

B̂−1, and hence

tr(ÂXHAX) = μ tr(ÂXHBX) ≡ μ tr(ÂB̂−1);

(3) if Â = μ̂B̂ for some μ̂ ∈ R when n = n̂, then any X such that B̂XHBX = In̂ = In

which yields XB̂XH = B−1 and hence

tr(ÂXHAX) = μ̂ tr(B̂XHAX) = μ̂ tr(XB̂XHA) ≡ μ̂ tr(B−1A).

We will comment on the attainability of the infimum in (3.3) in a moment.
The proof of this theorem spreads out in the next two sections: first for a special case 

in section 4 and then for the general case of the theorem in section 5. One common step 
is to simplify the infimum by transforming (A, B) and (Â, B̂) into their canonical forms 
(Λ, J) and (Λ̂, Ĵ), respectively:

A = Y HΛY, B = Y HJY, and Â = Ŷ HΛ̂Ŷ , B̂ = Ŷ HĴ Ŷ , (3.4)

where Y ∈ Cn×n, Ŷ ∈ Cn̂×n̂ are nonsingular. Exactly, what the canonical forms (Λ, J)
and (Λ̂, Ĵ) look like is not important for the time being, but will be given in Lemma 5.1

2 We adopt the convention ∑0
i=1( · ) ≡ 0.
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when we need them in section 5. In particular, (A, B) is diagonalizable if Λ and J are 
diagonal. We have by (3.4)

tr(ÂXHAX) = tr(Ŷ HΛ̂Ŷ XHY HΛY X)

= tr(Λ̂Ŷ XHY HΛY XŶ H)

= tr(Λ̂X̃HΛX̃),

where X̃ = Y XŶ H. Notice also that B̂XHBX = In̂ can be turned into

In̂ = B̂XHBX = Ŷ HĴ Ŷ XHY HJY X = Ŷ HĴX̃HJX̃Ŷ − H ⇔ ĴX̃HJX̃ = In̂,

with the same X̃ = Y XŶ H as above. Hence

inf
B̂XHBX=In̂

tr(ÂXHAX) = inf
ĴX̃HJX̃=In̂

tr(Λ̂X̃HΛX̃) = inf
ĴXHJX=In̂

tr(Λ̂XHΛX). (3.5)

We now comment on the attainability of the infimum in (3.3) when Λ, J , Λ̂, and Ĵ
are diagonal. Suppose that both (A, B) and (Â, B̂) are also positive semidefinite pairs, 
and B̂ is nonsingular (because of B̂XHBX = In̂). The other case when both pairs are 
nonnegative semidefinite can be handled in the same way. Since any singularity in B can 
also be eliminated by a congruence transformation (see Remark 5.1 later), we may also 
assume that B is nonsingular as well. So we can write

J =
[

In+
−In−

]
, Λ =

[ n+ n−

n+ Λ+
n− −Λ−

]
, (3.6a)

Ĵ =
[

In̂+
−In̂−

]
, Λ̂ =

[ n̂+ n̂−

n̂+ Λ̂+

n̂− −Λ̂−

]
, (3.6b)

where n+ + n− = n, n̂+ + n̂− = n̂, and Λ, Λ̂ are real diagonal matrices. It can be seen 
that

eig(A, B) = eig(Λ, J) = eig(Λ+) ∪ eig(Λ−),

eig(Â, B̂) = eig(Λ̂, Ĵ) = eig(Λ̂+) ∪ eig(Λ̂−),

where and, in what follows, eig( · ) and eig( · , · ) are the spectrum of a matrix and that 
of a matrix pair, respectively. Each eigenvalue λ+ ∈ eig(Λ+) is of positive type, i.e., 
xH

+Bx+ > 0 for its associated eigenvector x+, and each eigenvalue λ− ∈ eig(Λ−) is 
of positive type, i.e., xH

−Bx− < 0 for its associated eigenvector x−. The same can be 



16 X. Liang, R.-C. Li / Linear Algebra and its Applications 687 (2024) 8–37
said about (Â, B̂). For X̃ = P(:,1:n̂)P̂
T where P ∈ Pn and P(:,1:n̂) stands for the first n̂

columns of P , and P̂ ∈ Pn̂, we have

tr(Λ̂X̃HΛX̃) = tr(
[
P̂ TΛ̂P̂

][
P T

(:,1:n̂)ΛP(:,1:n̂)
]
).

Hence with X̃ = P(:,1:n̂)P̂
T, tr(Λ̂X̃HΛX̃) is the sum of products between the diagonal 

entries of Λ̂, i.e., the eigenvalues of (Â, B̂), and some of the those of Λ, the eigenvalues 
of (A, B). Certainly, there is X̃opt that can be explicitly constructed to give the right-
hand side of (3.3). Observe that each product there is for two eigenvalues of the same 
type: positive or negative, and hence P T

(:,1:n̂)JP(:,1:n̂) = P̂ TĴ P̂ for that particular X̃opt, 
yielding

[P̂ TĴ P̂ ][P T
(:,1:n̂)JP(:,1:n̂)] = In̂ ⇒ ĴX̃H

optJX̃opt = In̂.

Hence X̃opt yields the second infimum in (3.5). Finally, Xopt = Y −1X̃optŶ
− H yields the 

infimum in (3.3).

4. The simple case

In this section, we prove Theorem 3.1 for the simple case: n = n̂, and both pairs (A, B)
and (Â, B̂) are diagonalizable, namely, we have (3.4) with (3.6) and also n+ + n− = n, 
n̂+ = n+, n̂− = n−, where Λ, Λ̂ are real diagonal matrices. Note that, necessarily, B̂, 
B, and X are nonsingular because of constraint B̂XHBX = In̂ = In, and that, by the 
Sylvester inertia law, i±(B̂) = i±(B̂−1) = i±(B) upon noticing XHBX = B̂−1.

We have J = Ĵ = J−1 and hence the last infimum in (3.5) becomes

inf
XHJX=J

tr(Λ̂XHΛX). (4.1)

When J = ±In, both (A, B) and (Â, B̂) are positive semidefinite pairs because A −
λ0B � 0 and Â − λ0B̂ � 0 for any λ0 < 0 with sufficiently large |λ0| if J = In or for any 
sufficiently large λ0 ∈ R if J = −In. Also (A, B) and (Â, B̂) are negative semidefinite 
pairs, too, because (−A) −λ0(−B) � 0 and (−Â) −λ0(−B̂) � 0 for any sufficiently large 
λ0 ∈ R if J = In or for any λ0 < 0 with sufficiently large |λ0| if J = −In.

As for (4.1), the case when3 J = ±In has been resolved in the literature, e.g., [13, 
Theorem 4.3.53] as stated in the next lemma.

Lemma 4.1 ([13, Theorem 4.3.53]). Given Hermitian matrices Ai = UiΛiU
H
i ∈ Cn×n

with Ui ∈ Un, Λi ∈ Dn for i = 0, 1, we have

min
V ∈Un

tr(A0V A1V H) = min
V ∈Pn

tr(Λ0V Λ1V H) =
n∑

i=1
λ↓

i (A0)λ↑
i (A1).

3 When J = −In, XHJX = J becomes XHX = In, the same as for J = In.
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Lemma 4.1 can be proved by using an important result on doubly stochastic matrices, 
namely the Birkhoff theorem. A matrix Y ∈ Rn×n is doubly stochastic if entrywise Y ≥ 0, 
and Y 1n = 1n and 1T

n Y = 1T
n where 1n ∈ Rn is the vector of all ones. The Birkhoff 

theorem says that a doubly stochastic matrix is a convex combination of permutation 
matrices. Next, we will use this theorem to prove a result in Lemma 4.3, related to 
Lemma 4.1.

Lemma 4.2 ([21]). Let X = [xij ] ∈ Cn×n and Y = [|xij |2] ∈ Rn×n. Then there exist 
doubly stochastic matrices Y1, Y2 ∈ Rn×n such that entrywise

[σmin(X)]2 Y1 ≤ Y ≤ [σmax(X)]2 Y2,

where σmin(X) and σmax(X) are the smallest and largest singular values of X, respec-
tively.

Lemma 4.3. Given positive semidefinite matrices Ai = UiΛiU
H
i ∈ Cn×n with Ui ∈ Un, 

Λi ∈ Dn for i = 0, 1, we have

tr(A0XHA1X) ≤ [σmax(X)]2 max
V ∈Pn

tr(Λ0V Λ1V H))

= [σmax(X)]2
n∑

i=1
λ↓

i (A0)λ↓
i (A1),

tr(A0XHA1X) ≥ [σmin(X)]2 min
V ∈Pn

tr(Λ0V Λ1V H))

= [σmin(X)]2
n∑

i=1
λ↓

i (A0)λ↑
i (A1),

Proof. It can be seen that

tr(A0XHA1X) = tr(U0Λ0UH
0 XHU1Λ1UH

1 X) = tr(Λ0[UH
1 XU0]HΛ1[UH

1 XU0]).

Write UH
1 XU0 = [xij ] which has the same singular values as X and let Y = [|xij |2]. We 

get

tr(A0XHA1X) =
n∑

i,j=1
λj(A0)λi(A1)|xij |2.

Notice that all λj(A0), λi(A1) ≥ 0. Now use Lemma 4.2 and the Birkhoff theorem to 
complete the proof, following the standard technique that has been used frequently in 
the matrix eigenvalue perturbation theory [22,23]. �

The key tool to analyze the infimum in (4.1) is the structure of matrix X ∈ Cn×n

satisfying XHJX = J . Such matrix X is said J-unitary in literature.
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Lemma 4.4 ([24, Example 6.3]). Let J = diag(In+ , −In−) and n = n+ + n−. A matrix 
X ∈ Cn×n satisfies XHJX = J if and only if it is of the form

X =
[

(In+ + WW H)1/2 W
W H (In− + W HW )1/2

] [
V+

V−

]
, (4.2)

where V+ ∈ Un+ , V− ∈ Un− , and W ∈ Cn+×n− .

Lemma 4.4 can be found in [25,14], where (4.2) is called a (hyperbolic) polar decom-
position of X. In what follows, we will limit our consideration to the case n+ ≥ n− ≥ 1, 
and the other case 1 ≤ n+ < n− can be handled in a similar way.

A direct consequence of Lemma 4.4, through the SVD of W , is Lemma 4.5 below, in 
which (4.3) is the so-called ChSh decomposition of a J-unitary matrix X, an analogue of 
the CS decomposition of a unitary matrix [26].

Lemma 4.5 (ChSh Decomposition). Let J = diag(In+ , −In−) and n = n+ + n−, where 
n+ ≥ n−. A matrix X ∈ Cn×n is J-unitary if and only if it is of the form

X =
[

U+
U−

]⎡⎣In+−n−

(In− + Σ2)1/2 Σ
Σ (In− + Σ2)1/2

⎤⎦[
V+

V−

]

=
[

U+
U−

] [
(In+ + Σ̃Σ̃H)1/2 Σ̃

Σ̃ (In− + Σ̃HΣ̃)1/2

] [
V+

V−

]
, (4.3)

where U+, V+ ∈ Un+ and U−, V− ∈ Un− , Σ̃ =
[

0
Σ

]
∈ Rn+×n− with Σ ∈ Rn−×n− being 

diagonal and having nonnegative diagonal entries.

Lemma 4.6. Let (Λ, J) be as in (3.6a) where n± ≥ 1 and Λ is real diagonal. Then

(i) (Λ, J) � 0 if and only if λ+
i − λ−

j ≥ 0 for any λ+
i ∈ eig(Λ+), λ−

j ∈ eig(Λ−);
(ii) (Λ, J) � 0 if and only if λ+

i − λ−
j ≤ 0 for any λ+

i ∈ eig(Λ+), λ−
j ∈ eig(Λ−).

Proof. If (Λ, J) � 0, then there exists λ0 ∈ R such that Λ − λ0J � 0, i.e., λ−
j ≤ λ0 ≤ λ+

i

for any λ+
i ∈ eig(Λ+), λ−

j ∈ eig(Λ−) and thus λ+
i − λ−

j ≥ 0. On the other hand if 
λ+

i − λ−
j ≥ 0 for any λ+

i ∈ eig(Λ+), λ−
j ∈ eig(Λ−), then

max{λ−
j : λ−

j ∈ eig(Λ−)} ≤ min{λ+
i : λ+

i ∈ eig(Λ+)}

and hence any λ0 that lies between the maximum and minimum in this inequality makes 
Λ − λ0J � 0. This proves item (i). For item (ii), by definition, (Λ, J) � 0 if and only if 
(−Λ, −J) � 0, and we then can use item (i). �
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With Lemma 4.5, we have

inf
XHJX=J

tr(Λ̂XHΛX)

= inf
0�Σ∈Dn−

U±,V±∈Un±

tr
([

V+Λ̂+V H
+

−V−Λ̂−V H
−

][
I

(I+Σ2)1/2 Σ

Σ (I+Σ2)1/2

]
×

[
UH

+ Λ+U+

−UH
−Λ−U−

][
I

(I+Σ2)1/2 Σ

Σ (I+Σ2)1/2

])
. (4.4)

By Lemma 4.6, if (Λ, J) and (Λ̂, J) are not both positive semidefinite pairs, or not both 
negative definite pairs, then4 there exist λ̂+

î
∈ eig(Λ̂+), λ̂−

ĵ
∈ eig(Λ̂−), λ+

i ∈ eig(Λ+), 
and λ−

j ∈ eig(Λ−) with

(
λ̂+

î
− λ̂−

ĵ

)
(λ+

i − λ−
j ) < 0.

We now restrict Σ, U±, and V± in (4.4) to special ones and doing so will increase the 
infimum there. Specifically, we let Σ = σe1eT

1 where σ is free to vary and e1 is the first 
column of I of apt size, and let V± and U± as products of permutation matrices

V+ = P2+P̂ H
1+, V− = P2−P̂ H

1−, U+ = P1+P H
2+, U+ = P1−P H

2−

such that [
P̂ H

1+Λ̂+P̂1+
]

(1,1) = λ̂+
î

,
[
P H

1+Λ+P1+
]

(1,1) = λ+
i ,[

P̂ H
1−Λ̂−P̂1−

]
(1,1) = λ̂−

ĵ
,

[
P H

1−Λ−P1−
]

(1,1) = λ−
j ,[

P H
2+ diag

(
I, (I + Σ2)1/2)P2+

]
(1,1) = (1 + σ2)1/2,[

P H
2−(I + Σ2)1/2P2−

]
(1,1) = (1 + σ2)1/2,

where [· · · ](1,1) is the (1, 1)st entry of a matrix. We get from (4.4)

inf
XHJX=J

tr(Λ̂XHΛX)

≤ inf
σ>0

tr
([

λ̂+
î ∗

−λ̂−
ĵ

∗

][
(1+σ2)1/2 σ

I 0
σ (1+σ2)1/2

0 I

]
×

4 Besides the condition just mentioned, this claim also requires the condition given in the theorem: A 	= μB
for any μ ∈ R and Â 	= μ̂B̂ for any μ̂ ∈ R, which is equivalent to Λ 	= μJ for any μ ∈ R and Λ̂ 	= μ̂J for 
any μ̂ ∈ R because of (3.4). Otherwise if Λ = λ0J for some λ0 ∈ R, then (Λ, J) 
 0 and λ+

i − λ−
j = 0 for 

any λ+
i ∈ eig(Λ+) and λ−

j ∈ eig(Λ−) and hence 
(
λ̂+

î
− λ̂−

ĵ

)
(λ+

i − λ−
j ) = 0, regardless whether (Λ̂, J) 
 0 or 

not.
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[
λ+

i ∗
−λ−

j
∗

][
(1+σ2)1/2 σ

I 0
σ (1+σ2)1/2

0 I

])

= inf
σ>0

tr
([

λ̂+
î

−λ̂−
ĵ

][
(1+σ2)1/2 σ

σ (1+σ2)1/2

]
×[

λ+
i

−λ−
j

][
(1+σ2)1/2 σ

σ (1+σ2)1/2

])
+ (constant)

= inf
σ>0

(
λ̂+

î
− λ̂−

ĵ

)
(λ+

i − λ−
j ) σ2 + (constant)

= −∞. (4.5)

Suppose now that (Λ, J) and (Λ̂, J) are both positive semidefinite or both negative 
semidefinite. Since we can switch to considering (−Λ, −J) and (−Λ̂, −J) instead if both 
(Λ, J) and (Λ̂, J) are negative semidefinite, it suffices to consider the case when both 
(Λ, J) and (Λ̂, J) are positive semidefinite, which we now assume. Then there exist 
λ0, ̂λ0 ∈ R such that Λ − λ0J � 0 and Λ̂ − λ̂0J � 0. Consider first the case λ0 = λ̂0 = 0
for which both Λ̂ and Λ are positive semidefinite, i.e., Λ+, Λ̂+ � 0 and −Λ−, −Λ̂− � 0. 
We have

inf
XHJX=J

tr(Λ̂XHΛX)

= inf
0�Σ∈Dn−

U±,V±∈Un±

tr
([

V+Λ̂+V H
+

−V−Λ̂−V H
−

][
(I+Σ̃Σ̃H)1/2 Σ̃

Σ̃ (I+Σ̃HΣ̃)1/2

]
×

[
UH

+ Λ+U+

−UH
−Λ−U−

][
(I+Σ̃Σ̃H)1/2 Σ̃

Σ̃ (I+Σ̃HΣ̃)1/2

])

= inf
0�Σ∈Dn−

U±,V±∈Un±

[
tr

(
V+Λ̂+V H

+ (I + Σ̃Σ̃H)1/2UH
+ Λ+U+(I + Σ̃Σ̃H)1/2

)
︸ ︷︷ ︸

=:τ1

+ tr
(

V+Λ̂+V H
+ Σ̃HUH

− [−Λ−]U−Σ̃
)

︸ ︷︷ ︸
=:τ2

+ tr
(

V−[−Λ̂−]V H
− Σ̃UH

+ Λ+U+Σ̃H
)

︸ ︷︷ ︸
=:τ3

+ tr
(

V−[−Λ̂−]V H
− (I + Σ̃HΣ̃)1/2UH

− [−Λ−]U−(I + Σ̃HΣ̃)1/2
)

︸ ︷︷ ︸
=:τ4

]

≥ inf
0�Σ∈Dn−

U+,V+∈Un+

τ1 + inf
0�Σ∈Dn−

U−∈Un− ,V+∈Un+

τ2 + inf
0�Σ∈Dn−

U+∈Un+ ,V−∈Un−

τ3 + inf
0�Σ∈Dn−

U−,V−∈Un−

τ4.
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Next we bound these four infima from below. By Lemma 4.3 (with X = (I + Σ̃Σ̃H)1/2), 
we have

inf
0�Σ∈Dn−

U+,V+∈Un+

τ1 ≥ inf
U±,V±∈Pn

tr(V+Λ̂+V H
+ UH

+ Λ+U+)

=
n+∑
i=1

λ↓
i (Λ̂+)λ↑

i (Λ+),

and, again by Lemma 4.3 (with X = [ 0
Σ ]),

inf
0�Σ∈Dn−

U−∈Un− ,V+∈Un+

τ2 ≥ inf
0�Σ∈Dn−

Ũ−,V+∈Un+

tr(V+Λ̂+V H
+ [ 0

Σ ]ŨH
−
[ 0

−Λ−

]
Ũ−[ 0

Σ ])

≥ 0.

Similarly, we can bound τ3 and τ4 from below. Put all together to get

inf
XHJX=J

tr(Λ̂XHΛX) ≥
n+∑
i=1

λ↓
i (Λ̂+)λ↑

i (Λ+) +
n−∑
j=1

λ↓
j (Λ̂−)λ↑

j (Λ−).

Since the right-hand side is achieved by tr(Λ̂XHΛX) at Σ = 0, and U±, V± ∈ Pn±

such that the diagonal values of Λ± and Λ̂± are in the increasing and decreasing order, 
respectively, we conclude that

min
XHJX=J

tr(Λ̂XHΛX) =
n+∑
i=1

λ↓
i (Λ̂+)λ↑

i (Λ+) +
n−∑
j=1

λ↓
j (Λ̂−)λ↑

j (Λ−). (4.6)

We now claim (4.6) remains valid for the case when at least one of λ0 and λ̂0 is not 0. 
With XHJX = J , we have

tr(Λ̂XHΛX)

= tr(Λ̂XH[Λ − λ0J ]X) + λ0 tr(Λ̂J)

= tr([Λ̂ − λ̂0J ]XH[Λ − λ0J ]X) + λ̂0 tr(JXH[Λ − λ0J ]X) + λ0 tr(Λ̂J)

= tr([Λ̂ − λ̂0J ]XH[Λ − λ0J ]X) + λ̂0 tr((JX)−1[Λ − λ0J ]X) + λ0 tr(Λ̂J)

= tr([Λ̂ − λ̂0J ]XH[Λ − λ0J ]X) + λ̂0 tr(JΛ) − λ̂0λ0 tr(I) + λ0 tr(Λ̂J), (4.7)

where only the first term varies with X. Since

Λ − λ0J =
[

Λ+ − λ0In+
−(Λ − λ I )

]
� 0,
− 0 n−
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Λ̂ − λ̂0J =
[

Λ̂+ − λ̂0In+

−(Λ̂− − λ̂0In−)

]
� 0,

Similarly to (4.6), we can get, for the first term in (4.7),

min
XHJX=J

tr([Λ̂ − λ̂0J ]XH[Λ − λ0J ]X)

=
n+∑
i=1

[λ↓
i (Λ̂+) − λ̂0][λ↑

i (Λ+) − λ0] +
n−∑
j=1

[λ↓
j (Λ̂−) − λ̂0][λ↑

j (Λ−) − λ0]. (4.8)

Plug this expression into (4.7) to yield (4.6) for the case when at least one of λ0 and λ̂0

is not 0.
We summarize what we just proved into Lemma 4.7.

Lemma 4.7. Given Hermitian matrix pairs (A, B) and (Â, B̂) with nonsingular B, B̂ ∈
Cn×n, suppose that both pairs are diagonalizable and that A 	= μB for any μ ∈ R, and 
Â 	= μ̂B̂ for any μ̂ ∈ R. Then

inf
B̂XHBX=In

tr(Λ̂XHΛX) > −∞

if and only if either both (A, B) and (Â, B̂) are positive semidefinite pairs or both are 
negative semidefinite pairs. Moreover, in the first case, i.e., when both (A, B) and (Â, B̂)
are positive semidefinite pairs,

min
B̂XHBX=In̂

tr(ÂXHAX) =
i+(B)∑

i=1
λ+↓

i (Â, B̂)λ+↑
i (A, B) +

i−(B)∑
j=1

λ−↓
j (Â, B̂)λ−↑

j (A, B). (4.9)

A similar expression for the infimum for the case when both (A, B) and (Â, B̂) are 
negative semidefinite pairs can be gotten by applying (4.9) to (−A, −B) and (−Â, −B̂).

Lemma 4.7 is a special case of Theorem 3.1, and it with B = B̂ = In yields Lemma 4.1.

5. The general case

In this section we prove Theorem 3.1 in its generality. We will assume that B is 
indefinite, except in Remark 5.2 later where we will comment on how the case when B
is positive or negative semidefinite can be handled in a simpler way.

We still have the decompositions in (3.4) and simplification in (3.5), with (Λ, J) to be 
specified as in Lemma 5.1 and similarly for (Λ̂, Ĵ).
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Lemma 5.1 ([27, Theorem 5.1]). Let p be a positive integer and

Kp(τ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

τ
τ 1

. .
.

1

. .
.

. .
.

τ 1
τ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
p×p

, Fp =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

. .
.

. .
.

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
p×p

.

Any Hermitian matrix pair (A, B) is congruent to (Λ, J) in the sense that

A = Y HΛY, B = Y HJY,

where Y is nonsingular and Λ and J are block-diagonal matrices with corresponding 
diagonal blocks coming from block pairs of types:

T-o: (0, 0),

T-s(2p + 1):
(

K2p+1(0),
[

Fp

0
Fp

])
,

T-∞(p): (ηFp, ηKp(0)) with η ∈ {±1}, associated with an infinite eigenvalue,

T-c(p): (
[

0 Kp(α + iβ)
Kp(α − iβ)

]
, F2p), associated with a pair of conjugate complex 

eigenvalues α ± iβ with α ∈ R, β > 0,
T-r(p): (ηKp(α), ηFp) with η ∈ {±1}, associated with a finite real eigenvalue α.

Moreover, (Λ, J) is unique up to a simultaneous permutation of the corresponding diag-
onal block pairs.

Although Lemma 5.1 lists five possible types of block pairs that each of (Λ, J) and 
(Λ̂, Ĵ) may contain, we can quickly exclude some types of block pairs from (Λ, J) and 
(Λ̂, Ĵ), based on the conditions of Theorem 3.1.

• (Λ̂, Ĵ) possibly contains block pairs of types T-c(p) and T-r(p) only. This is because 
B̂ is nonsingular and so is Ĵ , and hence block pairs of type T-o, T-s(2p + 1), or
T-∞(p) do not show up in pair (Λ̂, Ĵ). For that reason, we will have Ĵ−1 = Ĵ and 
hence constraint ĴXHJX = In̂ is equivalent to XHJX = Ĵ . It follows from (3.5)
that

inf
B̂XHBX=In̂

tr(ÂXHAX) = inf
ĴXHJX=In̂

tr(Λ̂XHΛX) = inf
XHJX=Ĵ

tr(Λ̂XHΛX). (5.1)

In the rest of this section, we will investigate the last infimum in (5.1).
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• We can also exclude block pairs of type T-o from (Λ, J). In fact, if (Λ, J) contains 

block pairs of type T-o, then we can write Λ =
[

Λr

0

]
, J =

[
Jr

0

]
, and partition 

X =
[

Xr

Xs

]
accordingly to get

inf
XHJX=Ĵ

tr(Λ̂XHΛX) = inf
XH

r JrXr=Ĵ
tr(Λ̂XH

r ΛrXr),

which falls into the case that (Λ, J) contains no block pair of type T-o.

In summary, possible types of block pairs in (Λ, J) and (Λ̂, Ĵ) to consider henceforward 
are

(Λ, J) : T-s(2p + 1), T-∞(p), T-c(p), T-r(p); (5.2a)

(Λ̂, Ĵ) : T-c(p), T-r(p). (5.2b)

In our later analysis, we will also replace any block pair of type T-c(p) with

([
Kp(α) −iβFp

iβFp −Kp(α)

]
,

[
Fp

−Fp

])
. (5.3)

This is because they are congruent:

1√
2

[
I I
I −I

]
·
[

0 Kp(α + iβ)
Kp(α − iβ)

]
· 1√

2

[
I I
I −I

]
=

[
Kp(α) −iβFp

iβFp −Kp(α)

]
,

1√
2

[
I I
I −I

]
·
[

Fp

Fp

]
· 1√

2

[
I I
I −I

]
=

[
Fp

−Fp

]
.

Remark 5.1. When (A, B) is positive semidefinite, possible block pairs in its canonical 
form are considerably limited [15, Lemma 3.8]. In fact, if A − λ0B � 0 for some λ0 ∈ R, 
then its canonical form possibly contains (0,0) of type T-o, (ηK1(α), ηF1) of type T-r(1)
such that η(α − λ0) ≥ 0, (K2(λ0), F2) of type T-r(2), and (1, 0) of type T-∞(1).

The next lemma will be used in subsection 5.1 to reduce the case n > n̂ to the case 
n = n̂. It may be of interest in its own and it also sheds light on why Definition 3.1 reads 
the way it is.

Lemma 5.2. Let B ∈ Cn×n, Â, B̂ ∈ Cn̂×n̂ be Hermitian matrices. Suppose that B and 
B̂ are nonsingular, and n̂± := i±(B̂) ≤ n± := i±(B), and let

Ã =
[

Â
]

∈ Cn×n, Jc =
[

In+−n̂+
−I

]
, B̃ =

[
B̂

]
.
0 n−−n̂− Jc
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(i) If (Ã, B̃) � 0, then (Â, B̂) � 0 and (B, Â, B̂) is proper; conversely, if (Â, B̂) � 0
and (B, Â, B̂) is proper, then (Ã, B̃) � 0.

(ii) If (Ã, B̃) � 0, then (Â, B̂) � 0 and (−B, −Â, −B̂) is proper; conversely, if (Â, B̂) �
0 and (−B, −Â, −B̂) is proper, then (Ã, B̃) � 0.

Proof. We will prove item (i) only. Item (ii) becomes item (i) by simply considering 
(−Â, −B̂) instead. No proof is necessary if n̂ = n. Suppose that n̂ < n. There are three 
subcases to consider: (1) both n̂± < n±, (2) n̂+ < n+ and n̂− = n−, and (3) n̂+ = n+
and n̂− < n−.

Consider subcase (1). Suppose that (Ã, B̃) � 0, i.e., Ã − λ0B̃ � 0. Then Â − λ0B̂ � 0
and −λ0Jc � 0, implying (Â, B̂) � 0 and λ0 = 0. That λ0 = 0 implies that λ−↓

1 (Â, B̂) ≤
0 ≤ λ+↑

1 (Â, B̂) and thus (B, Â, B̂) is proper. Conversely, if (Â, B̂) � 0 and (B, Â, B̂)
is proper, then by Definition 3.1, we find that λ−↓

1 (Â, B̂) ≤ 0 ≤ λ+↑
1 (Â, B̂) and hence 

Â − λ0B̂ � 0 for λ0 = 0, i.e., Â � 0, and hence Ã − λ0B̃ � 0, i.e., (Ã, B̃) � 0.
Consider subcase (2). Suppose that (Ã, B̃) � 0, i.e., Ã − λ0B̃ � 0. Then Â − λ0B̂ � 0

and −λ0Jc � 0, implying (Â, B̂) � 0 and λ0 ≤ 0. Hence λ−↓
1 (Â, B̂) ≤ λ0 ≤ 0 and 

(B, Â, B̂) is proper. Conversely, if (Â, B̂) � 0 and (B, Â, B̂) is proper, then by Defini-
tion 3.1, we find that λ−↓

1 (Â, B̂) ≤ 0. By (2.2), Â − λ0B̂ � 0 for some λ0 ≤ 0 and hence 
−λ0Jc � 0 and Ã − λ0B̃ � 0, i.e., (Ã, B̃) � 0.

Subcase (3) can be handled in the same way as handling subcase (2). �
We now prove Theorem 3.1 in an order of increasing complexity of (Λ, J) and (Λ̂, Ĵ) in 

terms of possible combinations of block pairs of types listed in (5.2), and hence conclude 
the proof at the end.

5.1. Involving block pairs of type T-r(1), T-c(1) only

In this case, we have

J =
[

In+
−In−

]
, Ĵ =

[
In̂+

−In̂−

]
.

Recall n̂+ ≤ n+ and n̂− ≤ n− by (3.2). Let Jc =
[

In+−n̂+
−In−−n̂−

]
. For any X such 

that XHJX = Ĵ , we can complement X to a square matrix X̃ = [X Xc ] such that 
X̃HJX̃ = diag(Ĵ , Jc) and then (X̃P )HJ(X̃P ) = J upon permuting the columns of X̃ by 
some permutation matrix P . This is guaranteed by Lemma 5.3 below that can be found 
in many classical monographs, e.g., [28,29].

Lemma 5.3 ([24, Corollary 5.12]). Let J = diag(In+ , −In−) and n = n+ + n−. Any set 
of vectors u1, . . . , uk satisfying uH

i Juj = ±δij for i, j = 1, . . . , k can be complemented 
to a basis {u1, . . . , un} of Cn satisfying uH

i Juj = ±δij for i, j = 1, . . . , n, where δij is 
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the Kronecker delta which is 1 for i = j and 0 otherwise, and the numbers of 1 and −1
among uH

i Jui for 1 ≤ i ≤ n are n+ and n−, respectively.

Set

Λ̃ =
[

Λ̂
0

]
∈ Cn×n, J̃ =

[
Ĵ

Jc

]
. (5.4)

It can be seen that

inf
X̃HJX̃=J̃

tr(Λ̃X̃HΛX̃) = inf
XHJX=Ĵ

XH
c JX=0,XH

c JXc=Jc

tr(Λ̂XHΛX) = inf
XHJX=Ĵ

tr(Λ̂XHΛX).

This and Lemma 5.2 show that we can consider (Λ, J) and (Λ̃, J̃) instead, for which 
n = n̂.

In the rest of this subsection, we will assume n = n̂. We consider three subcases:

(1) Only block pairs of type T-r(1) are involved;
(2) Λ̂ = μ̂Ĵ for some μ̂ ∈ R;
(3) Besides possibly block pairs of type T-r(1), at least one block pair of type T-c(1) is 

also involved and Λ̂ 	= μ̂Ĵ for any μ̂ ∈ R.

Subcase (1) has already been taken care of in section 4. Subcase (2) falls into the excluded 
cases of the theorem: Â 	= μ̂B̂ for any μ̂ ∈ R if n = n̂ to begin with, i.e., without the 
expansions in (5.4), or if with the expansions then 0 = μ̂Jc ⇒ μ̂ = 0, yielding Â = 0.

We now turn our attention to subcase (3). Now J, Ĵ ∈ Cn×n are nonsingular, and 
i±(J) = i±(Ĵ). Notice that the direct sum of pairs of type T-r(1) is a diagonal pair, 
and each block pair of type T-c(1) can be turned into (5.3) for p = 1 by a congruent 
transformation. Thus we can assume

Λ =
[

Λc
+ −iΩc

iΩc −Λc
−

]
, J =

[
In+

−In−

]
, Λ̂ =

[
Λ̂c

+ −iΩ̂c

iΩ̂c −Λ̂c
−

]
, Ĵ = J,

where Λc
±, Λ̂c

± ∈ D, and Ωc, Ω̂c ∈ Rn+×n− are leading diagonal matrices with nonnega-
tive diagonal entries. As a result,

inf
XHJX=Ĵ

tr(Λ̂XHΛX) = inf
Σ∈D+

U±,V±∈U

tr(Λ̂XHΛX) ≤ inf
Σ∈D+

U±,V±∈Pu

tr(Λ̂XHΛX).

In a way similar to that in (4.5), we will select concrete U±, V± ∈ Pu to establish a 
necessary condition such that the infimum is not −∞.

First we consider the case n = n̂ = 2. Note that[√
1 + σ2 σ√

2

] [
α

−α

] [√
1 + σ2 σ√

2

]
=

[
α

−α

]
.

σ 1 + σ σ 1 + σ
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There are three mutually exclusive subcases:

(i) both (Λ̂, Ĵ) and (Λ, J) are block pairs of type T-c(1). We have

inf
Σ∈D+

U±,V±∈Pu

tr(Λ̂XHΛX)

= inf
σ≥0

θ,θ̂∈[0,2π)

tr
([

α̂ −iβ̂eiθ̂

iβ̂e−iθ̂ −α̂

][ √
1+σ2 σ

σ
√

1+σ2

][
α −iβeiθ

iβe−iθ −α

][ √
1+σ2 σ

σ
√

1+σ2

])

= inf
σ≥0

θ,θ̂∈[0,2π)

ββ̂
[
(1 + σ2)(ei(θ−θ̂) + ei(θ̂−θ)) − σ2(ei(θ+θ̂) + e−i(θ̂+θ))

]
+ 2αα̂

= inf
σ≥0

θ,θ̂∈[0,2π)

2ββ̂
[
(1 + σ2) cos(θ − θ̂) − σ2 cos(θ + θ̂)

]
+ 2αα̂

= inf
σ≥0

θ,θ̂∈[0,2π)

2ββ̂
[
cos(θ − θ̂) + 2σ2 sin θ sin θ̂

]
+ 2αα̂

= −∞;

(ii) (Λ̂, Ĵ) is a block pair of type T-c(1) and (Λ, J) consists of two pairs of type T-r(1). 
We have

inf
Σ∈D+

U±,V±∈Pu

tr(Λ̂XHΛX)

= inf
σ≥0

θ̂∈[0,2π)

tr
([

α̂ −iβ̂eiθ̂

iβ̂e−iθ̂ −α̂

][ √
1+σ2 σ

σ
√

1+σ2

][
λ+

−λ−

][ √
1+σ2 σ

σ
√

1+σ2

])

= inf
σ≥0

θ̂∈[0,2π)

(λ+ − λ−)β̂i(e−iθ̂ − eiθ̂)σ
√

1 + σ2 + α̂(λ+ + λ−)

= inf
σ≥0

θ̂∈[0,2π)

2(λ+ − λ−)β̂σ
√

1 + σ2 sin θ̂ + α̂(λ+ + λ−)

= −∞,

because λ+ 	= λ−; otherwise Λ = λ+J which has been excluded from subcase (3) 
above;

(iii) (Λ, J) is a block pair of type T-c(1) and (Λ̂, Ĵ) consists of two pairs of type T-r(1). 
This is similar to subcase (ii) we just considered, with the same conclusion: the 
infimum is −∞.

Consider, in general, n = n̂ > 2 and at least one block pair of type T-c(1) is contained 
in (Λ, J) or (Λ̂, Ĵ) or both. Suppose for the moment that (Λ̂, Ĵ) contains a block pair of 
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type T-c(1) with α̂, β̂ ∈ R and β̂ > 0. With the same reasoning we have employed in
(4.5), picking Σ = σe1eT

1 and suitable permutation matrices V±, U± of apt sizes, we get

inf
Σ∈D+

U±,V±∈Pu

tr(Λ̂XHΛX)

= inf
Σ∈D+

U±,V±∈Pu

tr
([

V+Λ̂c
+V H

+ −iV+Ω̂cV H
−

iV−Ω̂cV H
+ −V−Λ̂−V H

−

][
(I+Σ̃Σ̃H)1/2 Σ̃

Σ̃ (I+Σ̃HΣ̃)1/2

]
×

[
UH

+ Λc
+U+ −iUH

+ ΩcU−

iUH
−ΩcH U+ −UH

−Λc
−U−

][
(I+Σ̃Σ̃H)1/2 Σ̃

Σ̃ (I+Σ̃HΣ̃)1/2

])

≤ inf
σ>0

tr
([

α̂ −iβ̂eiθ̂

∗
iβ̂e−iθ̂ −α̂

∗

][
(1+σ2)1/2 σ

I 0
σ (1+σ2)1/2

0 I

]
×

[ + +
∗

+ +
∗

][ (1+σ2)1/2 σ
I 0

σ (1+σ2)1/2

0 I

])
(

where
[ + +

+ +
]

is either
[

α −iβeiθ

iβe−iθ −α

]
or

[
λi

−λj

])
= −∞.

In summary, the infimum is −∞ as long as block pairs of type T-c(1) are involved, while 
if only T-r(1) block pairs are involved, it is turned into the case already considered in 
section 4.

5.2. Involving block pairs of types T-r(1), T-c(1), and T-∞(1)

It suffices to consider the case that at least one pair of type T-∞(1) is contained in 
(Λ, J) because the case of involving block pairs of types T-r(1) and T-c(1) has already 
been dealt with in subsection 5.1 and our discussion prior to the subsection excludes any 
possibility that (Λ̂, Ĵ) may contain any block pair of type T-∞(1). We write

Λ =
[

Λr

Λ∞

]
, J =

[
Jr

0

]
, X =

[
Xr

X∞

]
, (5.5)

where Λ∞ is diagonal with diagonal entries ±1, to get

inf
XHJX=Ĵ

tr(Λ̂XHΛX) = inf
XH

r JrXr=Ĵ
tr

(
Λ̂
[
XH

r ΛrXr + XH
∞Λ∞X∞

])
= inf

XH
r JrXr=Ĵ

tr(Λ̂XH
r ΛrXr) + inf

X∞
tr(Λ̂XH

∞Λ∞X∞). (5.6)

Consider the second term in (5.6), which is an infimum over X∞ without any con-
straint. Without loss of generality, we may assume that Λ̂ is real diagonal; otherwise, 



X. Liang, R.-C. Li / Linear Algebra and its Applications 687 (2024) 8–37 29
since Λ̂ is Hermitian, we let Λ̂ = QΛ̃QH where Q is an orthogonal matrix and Λ̃ is 
diagonal, and we get

tr(Λ̂XH
∞Λ∞X∞) = tr(QΛ̃QHXH

∞Λ∞X∞) = tr(Λ̃(X∞Q)HΛ∞(X∞Q)).

Let Λ̂ = diag(λ̂1, . . . , ̂λn̂) and Λ∞ = diag(λ∞,1, . . . , λ∞,t) where t ≥ 1. We have

inf
X∞

tr(Λ̂XH
∞Λ∞X∞) = inf

X∞

∑
i,j

λ̂jλ∞,i|x∞;ij |2,

where we have written X∞ = [x∞;ij ]. Since X∞ is arbitrary, each |x∞;ij |2 ≥ 0 can be 
made 0 or arbitrarily large. Hence

inf
X∞

tr(Λ̂XH
∞Λ∞X∞) > −∞ if and only if all λ̂jλ∞,i ≥ 0,

in which case, the infimum is 0. Notice that λ∞,i = ±1. There are three possible situations 
for all λ̂jλ∞,i ≥ 0:

1. all λ̂j = 0 if both ±1 appear among all λ∞,i;
2. all λ̂j ≥ 0 if all λ∞,i = 1;
3. all λ̂j ≤ 0 if all λ∞,i = −1.

The first situation is not allowed because it implies Λ̂ = 0 and hence Â = 0 which is 
excluded to begin with. Therefore, we conclude

inf
X∞

tr(Λ̂XH
∞Λ∞X∞) > −∞ ⇔ either Λ̂ � 0, Λ∞ = I, or Λ̂ � 0, Λ∞ = −I. (5.7)

Consider now the first term in (5.6), which falls into the case in subsection 5.1. In 
light of (5.7), to see when

inf
XH

r JrXr=Ĵ
tr(Λ̂XH

r ΛrXr) > −∞ (5.8)

and what the infimum is, it suffices to investigate what will happen when either Λ̂ � 0, 
Λ∞ = I, or Λ̂ � 0, Λ∞ = −I. We have the following:

1. Suppose Λ̂ � 0, Λ∞ = I. Then (Λ̂, Ĵ) � 0 and, by the result of subsection 5.1, (5.8)
holds if and only if (Λr, Jr) � 0 and (Jr, Λ̂, Ĵ) is proper, which is the same as that 
(Λ, J) � 0 and (J, Λ̂, Ĵ) is proper because of (5.5) and Λ∞ = I.

2. Suppose Λ̂ � 0, Λ∞ = −I. Then (Λ̂, Ĵ) � 0 and, by the result of subsection 5.1, (5.8)
holds if and only if (Λr, Jr) � 0 and (−Jr, −Λ̂, −Ĵ) is proper, which is the same as 
that (Λ, J) � 0 and (−J, −Λ̂, −Ĵ) is proper because of (5.5) and Λ∞ = −I.
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5.3. Involving block pairs of types T-r(p) with p ≤ 2, T-c(1), and T-∞(1)

It suffices to consider there are some block pairs of type T-r(2) in the mix; otherwise 
the situation has already been taken care of in subsection 5.2. Let ε > 0 be arbitrary 
tiny, and perturb each block pair (ηK2(α), ηF2) of type T-r(2) according to

K2(α) → K2(α) + εe1eT
1 , (5.9)

which turns the block pair (ηK2(α), ηF2) to two block pairs T-r(1) with eigenvalues 
α ± √

ε, respectively, and both are continuous in ε and go to α as ε → 0+. As a result, 
both Λ and Λ̂ are possibly perturbed to Λε and Λ̂ε, satisfying

Λε

{
≡ Λ, if no block pair of type T-r(2) in (Λ, J),
→ Λ, as ε → 0+.

The same holds true for (Λ̂ε, Ĵ). Consider now (Λε, J) and (Λ̂ε, Ĵ) in which only block 
pairs of types T-r(1), T-c(1), and T-∞(1) are possibly involved. It is important to note 
that both J and Ĵ are not perturbed, leaving i±(J) and i±(Ĵ) unaffected. Note that, for 
any α ∈ R, 

(
K2(α), F2

)
� 0 but 

(
K2(α), F2

)
	� 0.

Lemma 5.4. Given ε > 0, 
(
K2(α) +εe1eT

1
)
−λ0F2 � 0 if and only if α−√

ε ≤ λ0 ≤ α+
√

ε.

Proof. Notice that

K2(α) + εe1eT
1 − λ0F2 =

[
ε α − λ0

α − λ0 1

]
.

Since ε > 0, the matrix is positive semidefinite if and only if its determinant ε −(α−λ0)2 ≥
0. �

The next lemma is stated in terms of (Λ, J). It is clearly valid if (Λ, J) is replaced 
with (Λ̂, Ĵ).

Lemma 5.5. Suppose that (Λ, J) is a direct sum of block pairs of types T-r(p) with p ≤ 2,
T-c(1), and T-∞(1) and that each block pair of type T-r(2) is perturbed according to
(5.9) where ε > 0.

(a) If there is a positive sequence {εi}∞
i=1 converging to 0, i.e., 0 < εi → 0 as i → ∞, 

such that (Λεi
, J) � 0 for all i, then (Λ, J) � 0, and (Λ, J) can only contain block 

pairs 
(
ηK2(α), ηF2

)
with η = 1 and the same α for all block pairs of type T-r(2), in 

which case Λ − λ0J � 0 with λ0 = α and only with λ0 = α.
Conversely, if (Λ, J) � 0, then (Λε, J) � 0.
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(b) If there is a positive sequence {εi}∞
i=1 converging to 0, i.e., 0 < εi → 0 as i → ∞, 

such that (Λεi
, J) � 0 for all i, then (Λ, J) � 0, and (Λ, J) can only contain block 

pairs 
(
ηK2(α), ηF2

)
with η = −1 and the same α for all block pairs of type T-r(2), 

in which case Λ − λ0J � 0 with λ0 = α and only with λ0 = α.
Conversely, if (Λ, J) � 0, then (Λε, J) � 0.

Proof. We will only prove item (a). The same argument with minor modifications can 
be used to prove item (b).

Suppose that (Λεi
, J) � 0 for all i, which means that for each i there exists μi such that 

Λεi
−μiJ � 0. By [15, Lemma 3.8], |μi| can be taken no bigger than the absolute values of 

the finite eigenvalues of (Λεi
, J). Under the perturbation, the finite eigenvalues of matrix 

pairs (Λεi
, J) are uniformly bounded because they converge to the finite eigenvalues of 

(Λ, J). Hence {μi}∞
i=1 is bounded and thus has a convergent subsequence {μi}i∈I, say 

converging to λ0, where I is an infinite subset of {1, 2, . . . , }. Letting I � i → ∞ in 
Λεi

− μiJ � 0 yields Λ − λ0J � 0.
If (Λ, J) ever contains a block pair 

(
ηK2(α), ηF2

)
, then we will have

η(K2(α) + εie1eT
1 − μiF2) = η

[
εi α − μi

α − μi 1

]
� 0

for all i, which implies η = 1 and α − √
εi ≤ μi ≤ α + √

εi. Letting i → ∞ yields μi → α. 
If (Λ, J) also contains another block pair 

(
η̃K2(α̃), ̃ηF2

)
of the same type. Using the 

same argument as we just did, we find η̃ = 1 and also μi → α̃ yielding α̃ = α.
Conversely, suppose that (Λ, J) � 0. If no block pair of type T-r(2) is involved in 

(Λ, J), then Λε ≡ Λ and hence no proof is necessary. If (Λ, J) does contain block pairs of
T-r(2), then these block pairs must be 

(
K2(α), F2

)
with the same α. Therefore the only 

λ0 that makes Λ − λ0J � 0 is λ0 = α which also makes 
(
K2(α) + εe1eT

1
)

− λ0F2 � 0 for 
any ε > 0. By the way how Λ is perturbed to Λε, we find Λε − λ0J � 0. �

By the results of subsections 5.1 and 5.2, we conclude that

inf
XHJX=Ĵ

tr(Λ̂εXHΛεX) > −∞ (5.10)

if and only if one of the following two scenarios occurs:

(1) both (Λε, J) and (Λ̂ε, Ĵ) are positive semidefinite pairs and (J, Λ̂ε, Ĵ) is proper;
(2) both (Λε, J) and (Λ̂ε, Ĵ) are negative semidefinite pairs and (−J, −Λ̂ε, −Ĵ) is proper.

Let {εi}∞
i=1 be a positive sequence that converges to 0, i.e., 0 < εi → 0 as i → ∞. Since 

there are only two scenarios here, there is a subsequence {εi}i∈I such that one of the 
two scenarios holds true for all i ∈ I. In the case when

for all i ∈ I, both (Λεi
, J) � 0, (Λ̂εi

, Ĵ) � 0, and (J, Λ̂εi
, Ĵ) is proper,
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we have both (Λ, J) � 0, (Λ̂, Ĵ) � 0, and (J, Λ̂, Ĵ) is proper, as a consequence of 
Lemma 5.5. Similarly, we can conclude that if

for all i ∈ I, both (Λεi
, J) � 0, (Λ̂εi

, Ĵ) � 0, and (−J, −Λ̂εi
, −Ĵ) is proper,

then both (Λ, J) � 0, (Λ̂, Ĵ) � 0, and (−J, −Λ̂, −Ĵ) is proper.
With either scenario, the infimum in (5.10) has a closed formula as in (3.3), or it 

applied to (−Λε, −J) and (−Λ̂ε, −Ĵ). Because of the continuity of these eigenvalues 
with respect to ε, the limit of the infimum exists as ε → 0+. Since the perturbation does 
not affect i±(J) and i±(Ĵ) at all, the limit takes the same form as (3.3), or it applied to 
(−Λ, −J) and (−Λ̂, −Ĵ).

5.4. Involving block pairs of all possible types in (5.2)

In this subsection, we will allow all block pairs of types in (5.2) to possibly appear in 
(Λ, J) and (Λ̂, Ĵ). Block pairs of types in

type T-s(2p + 1) T-c(p) T-r(p) T-∞(p)
p p ≥ 1 p ≥ 2 p ≥ 3 p ≥ 2

(5.11)

remain to be included for considerations, as we have already considered T-r(p) with 
p ≤ 2, T-c(1), and T-∞(1),

Notice that a positive/negative semidefinite matrix pair does not contain any block 
pair of these types in (5.11) in its canonical form (see Remark 5.1). In what follows, we 
will show that

inf
XHJX=Ĵ

tr(Λ̂XHΛX) = −∞ (5.12)

if any block pair of these types in (5.11) is contained in either (Λ, J) or (Λ̂, Ĵ) or both, 
besides T-r(p) with p ≤ 2, T-c(1), and T-∞(1). The idea is to perturb (Λ, J) and/or 
(Λ̂, Ĵ) to (Λε, J) and/or (Λ̂ε, Ĵ) such that

1. Λε → Λ and Λ̂ε → Λ̂ as ε → 0,
2. for sufficiently tiny ε > 0, the canonical forms of (Λε, J) and (Λ̂ε, Ĵ) contain block 

pairs of types T-r(1), T-c(1), and T-∞(1) only, and that has been investigated in 
subsection 5.2, and either

inf
XHJX=Ĵ

tr(Λ̂εXHΛεX) = −∞, (5.13)

or

lim inf tr(Λ̂εXHΛεX) = −∞.

ε→0 XHJX=Ĵ
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Hence, we justify our claim (5.12) for the case of interest.
Specifically, we perturb the first block elements in block pairs of the types in (5.11)

as follows:

K2p+1(0) =
[

Kp(0)
0 eT

1
Kp(0) e1

]
→

[
Kp(iε)

ε eT
1

Kp(−iε) e1

]
,

[
0 Kp(α + iβ)

Kp(α + iβ)

]
→

[
0 Kp(α + iβ) + εe1eT

1
Kp(α + iβ) + εe1eT

1

]
,

Fp → Fp + εe1eT
1 ,

Kp(α) → Kp(α) + εe1eT
1 .

We restrict ε > 0, except for T-∞(2), for which ε < 0 is also allowed.

(i) A block pair of type T-c(p) with p ≥ 2 and eigenvalues α ± iβ generates p block 
pairs of type T-c(1) with eigenvalues

α ± iβ ± ε1/p exp(i2πj

p
), j = 0, . . . , p − 1.

Among them there are conjugate complex eigenvalues.
(ii) A block pair of type T-s(2p + 1) with p ≥ 1 generates a block pair of type T-∞(1)

and a block pair of type T-c(p) with a pair of conjugate complex eigenvalues, and 
eventually generates a block pair of type T-∞(1) and 2p block pairs of type T-c(1)
with eigenvalues some of which are conjugate complex eigenvalues.

(iii) A block pair of type T-r(p) with p ≥ 3 and eigenvalues α generates p block pairs of 
type T-c(1) or T-r(1) with eigenvalues

α + ε1/p exp(i2πj

p
), j = 0, . . . , p − 1.

Among them there are conjugate complex eigenvalues.
(iv) A block pair of type T-∞(p) with p ≥ 2 generates a block pair of type T-∞(1) and 

p − 1 block pairs of type T-c(1) or T-r(1) with eigenvalues

ε−1/(p−1) exp(i 2πj

p − 1), j = 0, . . . , p − 2.

Among them there are conjugate complex eigenvalues if p ≥ 3.

After perturbations, (Λε, J) and (Λ̂ε, Ĵ) themselves are no longer in their canonical forms 
as the ones specified in Lemma 5.1. But they can be turned into their canonical forms, in 
which only possible block pairs of types T-c(1), T-r(1), and T-∞(1) show up. When any 
one of (i), (ii), (iii), and (iv) with p > 2 occurs, we will have at least one block pair of type
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T-c(1) in the canonical forms, and hence (5.13) holds by the results in subsection 5.2, 
which implies (5.12).

It remains to consider (iv) with p = 2 and only block pairs of type T-∞(2), besides
T-r(p) with p ≤ 2 and T-∞(1), can show up. We exclude any block pair of type T-c(1)
because if such a block pair exists, we will have, after perturbations, (5.13) and hence
(5.12). Note that block pair of type T-∞(2) can only be contained in (Λ, J) according 
to (5.2), while (Λ̂, Ĵ) contains possibly block pairs of type T-r(p) with p ≤ 2. Without 
needing to perturb any block pair of type T-r(2) in (Λ̂, Ĵ), if any, Lemma 5.6 below 
shows that (5.12) holds.

Lemma 5.6. If (Λ, J) contains a block pair of type T-∞(2), then (5.12) holds.

Proof. We perturb any block pair of type T-∞(2) in (Λ, J) as

η(F2, K2(0)) → η

([
ε 1
1 0

]
,

[
0 0
0 1

])
∼ η

([
ε 0
0 −1

ε

]
,

[
0 0
0 1

])
∼

([
sign(ηε) 0

0 −1
ε

]
,

[
0 0
0 η

])
,

where “~“stands for “is congruent to”. Without loss of generality, we may assume that 
η(F2, K2(0)) is the last block pair in (Λ, J). As a result,

(Λ, J) =
([

Λr 0
0 ηF2

]
,

[
Jr 0
0 ηK2(0)

])
→ (Λε, J) =

([
Λr 0
0 η(F2 + εe1eT

1 )

]
,

[
Jr 0
0 ηK2(0)

])

∼ (Λε, J) =

⎛⎝⎡⎣Λr 0 0
0 −1

ε 0
0 0 sign(ηε)

⎤⎦ ,

[
Jr 0 0
0 η 0
0 0 0

]⎞⎠
=:

([
Λε;r 0

0 sign(ηε)

]
,

[
Jr 0
0 0

])
,

the canonical form of (Λε, J). Similarly to (5.6), we have

inf
XHJX=Ĵ

tr(Λ̂XHΛεX)

= inf
XHJX=Ĵ

tr(Λ̂XHΛ̂εX)

= inf
XH

r JrXr=Ĵ
tr(Λ̂XH

r Λε;rXr) + inf
X∞

tr(Λ̂XH
∞ sign(ηε)X∞). (5.14)

As in our argument after (5.6), we will consider the last infimum in (5.14). For that 
purpose we may assume Λ̂ is diagonal. Because the freedom in making either ε > 0 or 
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ε < 0, we can show the infimum over X∞ is −∞, unless Λ̂ = 0 which is excluded in 
Theorem 3.1. Hence we have (5.13) and hence (5.12). �

Summarizing what we have done so far leads to the main result in Theorem 3.1.

Remark 5.2. So far, we have been assumed that B is indefinite. We now comment on 
the proof for the case when B is positive or negative semidefinite. It suffices to consider 
the case B � 0, because when B � 0, we can consider the infimum of interest for 
(−A, −B) and (−Â, −B̂), instead. Suppose that B � 0. Then B̂ � 0 because B̂ is 
always nonsingular and i+(B̂) ≤ i+(B) and i−(B̂) ≤ i−(B) by (3.2). We again transform 
matrix pairs (A, B) and (Â, B̂) to their canonical forms as in Lemma 5.1. We will still 
have (5.1) but with fewer possible types of block pairs to consider in (Λ, J) and (Λ̂, Ĵ)
than those in (5.2). Specifically,

(Λ, J) : T-∞(p) with p ≤ 2, T-r(1); (Λ̂, Ĵ) : T-r(1).

Also Ĵ = In̂ always. If no block pair of type T-∞(2) shows up in (Λ, J), then it falls into 
a special situation of subsection 5.2 where, though under the scope of B being indefinite, 
no argument there relies on that. If, however, T-∞(2) is involved, we can use Lemma 5.6.

6. Concluding remarks

We have established a trace minimization principle for two Hermitian matrix pairs 
(A, B) and (Â, B̂):

inf
B̂XHBX=In̂

tr(ÂXHAX), (6.1)

where A, B ∈ Cn×n and Â, B̂ ∈ Cn̂×n̂ are all Hermitian, and n̂ ≤ n. It is the most gen-
eral one up to date, encompassing Fan’s trace minimization principle [12] (for Â = B̂ = In̂

and B = In) and its straightforward extension (for Â = B̂ = In̂ and positive definite 
B), and most recent ones [14,15,18] reviewed in section 1. In those recent investigations, 
the notion of positive semidefinite matrix pair was introduced: a Hermitian matrix pair 
(A, B) is positive (negative) semidefinite if there exists λ0 ∈ R such that A − λ0B is 
positive (negative) semidefinite.

For investigating (6.1), we introduced yet another notion for a Hermitian matrix triplet 
(B, Â, B̂) being proper in Definition 3.1. We showed that the infimum in (6.1) is finite if 
and only if either both (A, B) and (Â, B̂) are positive semidefinite pairs and (B, Â, B̂) is 
proper, or both are negative semidefinite pairs and (−B, −Â, −B̂) is proper, assuming 
Â 	= 0, A 	= μB for any μ ∈ R, and Â 	= μ̂B̂ for any μ̂ ∈ R when n = n̂. A closed formula 
for the infimum is given in terms of the finite eigenvalues of the two semidefinite matrix 
pairs.
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In [18, Example 3.1], the following example (in the notation in this paper):

μ = 2, A =
[

1
μ

]
, B =

[
1

−1

]
, B̂ = B,

σ =
√

18 − 6
√

2
6 , Ω =

[
1

1/4

]
, Q =

[√
1 − σ2 −σ

σ
√

1 − σ2

]
, Â = QHΩQ,

was given to demonstrate that the infimum in (6.1) may not be any sum of the products 
between the eigenvalues of Â and some of the ones of (A, B), as a justification for an 
assumption of [18, Theorem 3.2]. This now can be well explained by our Theorem 3.1
in this paper, i.e., it is the eigenvalues of (Â, B̂), not Â alone, that should appear in the 
infimum. For the example, the eigenvalues of (Â, B̂) and of (A, B) are

λ̂+
1 = 1

2
√

2, λ̂−
1 = −1

4
√

2, and λ+
1 = 1, λ−

1 = −2,

respectively. Hence the infimum, by Theorem 3.1, is λ̂+
1 λ+

1 + λ̂−
1 λ−

1 =
√

2.
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