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1. Introduction

Various trace minimization principles have served as the theoretical foundations for
computing eigenvalues of special kinds of matrix pairs and played important roles in
numerical linear algebra [1-11]. Fan’s trace minimization principle [12] [13, p.248] is
perhaps the earliest and the most well-known one:

XIEI)I(H:II,Q tr(XTAX) = Z i,

where A € C™*" is Hermitian with its eigenvalues denoted by A\; < Ay < --- < Ay, tr(+)
takes the trace of a matrix, and Iy is the k x k identity matrix. Moreover, any minimizer
Xmin is an orthonormal basis matrix of the invariant subspace of A associated with its
eigenvalues A1,..., A\;. It has since been generalized to many broader cases:

L. The most straightforward generalization is _ min tr(X" AX) for a Hermitian ma-
XHBX=I

trix pair (A, B), where B is positive definite (see, e.g., [10]).
2. For a Hermitian matrix pair (A, B) with indefinite and possibly singular B, in [14—16]

_inf tr( X" AX) is investigated, where Jj, is a k x k diagonal matrix with diagonal
XHBX=J,

entries £1. It is shown that the infimum is finite if and only if (A, B) is a positive
semidefinite matrix pair, by which we mean there exists A\g € R such that A — M\¢B is
positive semidefinite.

3. From the perspective of optimization, in [17] nin tr(/AlX HAX) is analyzed, where
XHX=I,

both A and A are Hermitian matrices.
4. More recently, the authors of [18] investigated two more general cases:

(a) in tr(gXHAX) where A, B and A are Hermitian matrices and B is posi-
XHBX=I,

tive definite;

(b) inf tr(gXHAX) where Jy = {I’”

~_[A
dA=|"" .
XHBX=Jj — I, } an [ A

same block-diagonal structure, ﬁi are of size k4 x k4, A, B and A are Hermitian

} have the

matrices, and (A, B) is a positive semidefinite matrix pair.

Our goal in this paper, as a continuation of [18], is to investigate yet an even more general
case:

inf tr(AXTAX), (1.1)
BXHBX=],

where A, B, A and B are Hermitian of apt sizes. It is understood that the infimum in
(1.1) is taken over all X of apt sizes subject to BXYBX = I;.. Evidently, both problems
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in items 4(a) and 4(b) above are special cases of (1.1). Our main result relates this
infimum to the eigenvalues of two matrix pairs (A, B) and (A\, E)

The rest of this paper is organized as follows. We review the basics about a positive
semidefinite matrix pair in section 2, and state our main result of this in paper in
section 3. The proof of the main result spreads in the next two sections: section 4 deals
with the simple case when n = 7 and both pairs (A4, B) and (A, B) are diagonalizable
while section 5 handles the main result in its generality, with the help of the result for
the simple case. We draw our concluding remarks in section 6.

Notation Throughout this paper, C™*™ is the set of n X m complex matrices, C" =
C™*1 and C = C!, and their real counterparts are denoted similarly by replacing
C with R. By U, Pn, D, € C™*" denote the sets of unitary, permutation, diagonal
matrices, respectively (and by U, P, D if their sizes are clear from the context); and, by
Py, D;f € C™™" denote the set of permutation matrices in structure but with nonzero
entries being any unit complex number e'? and that of diagonal matrices with nonnegative
diagonal entries, respectively (and by P% DT if their sizes are clear from the context).
I,, (or simply I if its dimension is clear from the context) is the n x n identity matrix.
For a matrix X € C™*"™

NX)={zeC": Xa=0}, R(X)={Xz:zecC"}

are the null space and the range of X (also known as the column space of X), respec-
tively. XT and XH are the transpose and the conjugate transpose of a vector or matrix,
respectively. A > 0 (A = 0) means that A is Hermitian positive (semi)definite, and
A=<0(A=0)if —A >0 (—A > 0). The eigenvalues of an n x n Hermitian matrix A
are written, according to either increasing or decreasing order, as

AT(A) < M(A) < <AT(A), or AT(A) > A5(A4) > -+ > ML (A),

respectively. Hence )\lT(A) = AfkiH(A).

Other notational convention will be introduced as they appear for the first time.
2. Preliminaries on a positive semidefinite matrix pair

We review some of related concepts and results about a positive semidefinite matrix
pair (4, B) [15].

Given Hermitian B € C™*™ the inertia of B is the integer triplet (i+(B),io(B),i—(B)),
meaning B has i (B) positive, ig(B) zero, and i_(B) negative eigenvalues, respectively.
Necessarily

1 A Hermitian matrix pair (A, B) is diagonalizable if it admits the decomposition A = YHAY and
B =YY JY where Y is nonsingular and A and J are diagonal.
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r:=rank(B) =i (B) +i_(B).

Consider an n x n matrix pair (A, B). We say that u # oo is a finite eigenvalue of
(A4, B) if

rank(A — pB) < maxrank(A — AB).
reC

As in [19,20], for a finite eigenvalue u of (A, B), letting

2,4.8) = {at

x(\) € C™ is a vector-valued polyno-
mial in A such that (A — AB)xz(\) =0 [’

we say that £ € C" is a corresponding eigenvector if 0’ # ', where ', 0/ € N (A —
uB) /N, (A, B) (the quotient space of N'(A— uB) over N,,(A, B)) are the elements in the
quotient space that contain  and 0, respectively. The geometric multiplicity of y is the
dimension of N'(A—uB) /N, (A, B). Together (p, ) is called a finite eigenpair of (A, B).
The infinite eigenvalue (eigenpair), if any, of (A, B), is defined through the eigenvalue 0,
if any, of (B, A).

Definition 2.1 (/15,14]). For A, B € C™*" matrix pair (A, B) is a Hermitian matriz pair
of order n if both A and B are Hermitian, and a positive (semi)definite matriz pair of
order n if it is a Hermitian matrix pair and if there exists A\g € R such that A — \¢B is
positive (semi)definite, in notation, (A, B) = 0 (> 0). (A,B) <0 (=<0)if (-A,—B) >0
(= 0).

Given a finite eigenpair (u,x) of a Hermitian matrix pair (A, B), we say p is an
eigenvalue of positive type if 28 Bz > 0 and of negative type if 8 Bx < 0.

Let (A, B) be a positive semidefinite matrix pair of order n and Ao € R be as in the
definition such that A — A\gB > 0. It is known [15, Lemma 3.8] that (A, B) has only
r = rank(B) finite eigenvalues and all of them are real. Denote these finite eigenvalues,
according to either increasing or decreasing order, by

AT(AB) < <A

o (AB) SATAB) < <AL (A, B),

ir(B)

or

AMHAB) > > A L (A B) > ATHAB) > > A

i+ (B) i_(B)(A7B)'

Here, eigenvalues )\;rT(A,B) (and )\ji(A,B) too) are those of positive type (accord-
ing to their associated eigenvectors & that make "' Bz > 0), whereas /\J-_T(A, B) (and

)\jfi(A, B) too) are those of negative type (according to their associated eigenvectors @
that make z Bz < 0).
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Since both {)\;T(A, B), )\;H(A, B)}, ; and {)\i_l(A B), )\;w(A, B)}, ; are the same set
of finite eigenvalues of (A, B), we have

-1 _ + _
AT(A,B) =X (4,B), A (A, B) =

i_(B)—i+1 1+(B)—j+1(A’B)

for 1 <i<i_(B)and 1< j <iy(B).It has been proved [15] that for all i, j,
N TAB) <X < AT(AB), AHAB) 2 Mo 2 N H(A,B).

As a consequence, eigenvalues of positive type are no smaller than those of negative type,
i.e.,

+1 -1 + —+
M B) = AT (A4, B) >0, ATHA,B) = ATHA, B) > 0.

There is an important comment about the types of the eigenvalues of this matrix pair
(A, B) = 0. When )¢ in the definition is an eigenvalue, there is a possibility that (A, B)
may have 2-by-2 Jordan block pairs associated with eigenvalues )y (see Remark 5.1

later):
(% ¥ a]): @)

which corresponds to one eigenvector & with ™ Bz = 0. Each of such Jordan block pairs
brings two copies of \g as eigenvalues. In [15,16], one copy is artificially regarded as of
positive type while the other of negative type. Although seemingly artificial, it can be

justified by perturbing the first block in the pair (2.1) to {/\60 )\10] for € > 0 and letting

€ — 0T. The perturbation breaks the two copies of )¢ into A\g + /2 of positive type
and \g — /¢ of negative type. Any other eigenvalues different from ) are all associated
with Jordan block pairs of 1-by-1. It can be seen that if (A, B) > 0 does have a 2-by-2
Jordan block pair (2.1), then A\[ (4, B) = A T(4, B) = \o. In view of this discussion,
we conclude that

A—XB =0 forany Ao € [A\{“(4, B),\[T(4, B)]. (2.2)
In fact, if \]*(4, B) < A\] (4, B), then (A4, B) can only have 1-by-1 Jordan block pairs.
Similar statements can be made about the eigenvalues of a negative semidefinite ma-
trix pair.
3. Main result

Once again, we are interested in a minimization principle for

inf tr(AXTAX), (3.1)
BXHBX=I,
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where A, B € C™*" and .21\7 B € C™" are all Hermitian matrices, and 7 < n. As
we pointed out earlier, the infimum in (3.1) is taken over all X € C™ ™ subject to
BXHUBX = I;. Henceforward the notation k in section 1 is changed to 7 to align with
our overall notation structure.

The constraint BXTBX = I necessarily implies that both B and X"BX are non-
singular and also

~

i(B) =i, (B") = 1, (X"BX) <i,(B), i_(B)<i (B), (3.2)

Before stating our main result on (3.1), we introduce a new notion on Hermitian
matrix triplet (B, A, B), which we need to express our conditions for the infimum in
(3.1) to be finite.

Definition 3.1. Given a Hermitian positive semidefinite pair (ﬁ’ E) and a Hermitian
matrix B, the triplet (B, A, B) is said proper if one of the following statements holds,
where the proper index pair (04 (B),0_(B)) is defined along the way:

(i) i4(B) =iy (B) and i_(B) =i_(B), in which case (34(B),2(B)) = (0,0);
(ii) i+(B) = i+(B), i-(B) > i_(B) and )\+T(A B) > 0, in which case 04 (B) = 0 and
0_(B) is the number of positive Ay (A,B),1<j<i_(B);
(iii) i+(@ > iy(B),i-(B) =i_(B) and \; *(4, B) < 0, in which case 9_(B) = 0 and
04 (B) is the number of negative )\j(A,B), 1<j<iy(B);
(iv) ix(B) > i4(B), i-(B) > i_(B) and \;*(4, B) < 0 < A\{"(4, B), in which case
(24(B),2-(B)) = (0,0).

Here the dependency of (94 (B),9_(B)) on B and A is suppressed for clarity. The triplet
(B, A, B) is said improper if it is not proper.

In light of (3.2), the properness in Definition 3.1 simply imposes )\ILT(/T, é) >0 or
ATH(A, B) < 0 or both, depending on which inequalities or both in (3.2) are strict or
not.

As a corollary of our discussions at the end of section 2, the condition Aﬁ(ﬁ, E) <
0< /\TT(A\, B) in the case (iv) in the definition is the same as A = 0.

Theorem 3.1. Given four Hermitian matrices A, B € C"*" A B € C™" yhere n >
suppose that A #0, A# uB for any p € R, and A #+ ,uB for any i € R when n =
Then

_inf tr(ﬁXHAX) > —00,
BXHBX=I;

i.e., the infimum is finite, if and only if one of the following two cases occurs:



14 X. Liang, R.-C. Li / Linear Algebra and its Applications 687 (2024) 8-37
) are positive semidefinite pairs and (B, A, B) is proper;

) are negative semidefinite pairs and (— B, ﬁ’ —B) is proper.

Moreover, in the first case, we have’

_inf tr(AXTAX)
BXHUBX=I,

i (B)—04(B) 24 (B)

+ AHA,BYAT(A B) + A T(A, B)A (A, B). (3.3)

Similarly, for the second case, the formula for the infimum can be gotten by applying (3.3)
to matriz pairs (—A, —B) and (— A, —B). The infimum can be attained, when (A, B) and
(A, B) are diagonalizable.

The three excluded cases in the conditions of the theorem are not particularly inter-
esting:

1) if A =0, then tr(AXHAX) =0 for any X;

( ; y X;

(2) if A = uB for some pu € R, then any X such that BX"YBX = I yields X!BX =
B~1, and hence

tr(AXTAX) = utr(EXHBX) = ptr(AB™Y);

(3) if A = [iB for some i € R when n = 7, then any X such that BXUBX = I, = I,,
which yields X BX" = B~! and hence

tr(AXTAX) = itr(BX"AX) = fitr(XBX"A) = fitr(B~' A).

We will comment on the attainability of the infimum in (3.3) in a moment.

The proof of this theorem spreads out in the next two sections: first for a special case
in section 4 and then for the general case of the theorem in section 5. One common step
is to simplify the infimum by transforming (A, B) and (A, B) into their canonical forms
(A4, J) and (//1\, f), respectively:

A=Y"AY,B=Y"JY, and A=YPAY, B=Y"JY, (3.4)

where Y € C™*" Y € C?*" are nonsingular. Exactly, what the canonical forms (A, J)
and (4, J) look like is not important for the time being, but will be given in Lemma 5.1

2 We adopt the convention >0_ (-) = 0.
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when we need them in section 5. In particular, (A, B) is diagonalizable if A and J are
diagonal. We have by (3.4)

tr(AXTAX) = tr(YHAY XHY P AY X)
= tr(AY X"y T Ay X V)
= tr(AXTAX),

where X = Y XYH. Notice also that BXHEBX = I can be turned into
I; = BX"BX = YRy X"y )y x = YIIXH XY " o JXTIX = I,
with the same X = Y XYH as above. Hence

inf tr(AXTAX) =  inf  tr(AXPAX)=  inf  tr(AXPAX).  (3.5)
BXHUBX=I, JXHIX=I; TXHIX=I;

We now comment on the attainability of the infimum in (3.3) when A, J, A, and J
are dlagonal Suppose that both (A B) and (A B) are also positive semidefinite pairs,
and B is nonsingular (because of BXUBX = I;). The other case when both pairs are
nonnegative semidefinite can be handled in the same way. Since any singularity in B can
also be eliminated by a congruence transformation (see Remark 5.1 later), we may also
assume that B is nonsingular as well. So we can write

- n+ n— -
I, ny | Ay
J:[ + —In]’ A:: L (3.6a)
_P R
J= | A="r0F (3.6b)
—In_ |’ A_ —A_ |’
where n,. +n_ =n,ny. +n_ =n, and A, A are real diagonal matrices. It can be seen

that

eig(A, B) = eig(4,
eig(;l\, E) = eig(4,

<

) = eig(A4) Ueig(A-),

— cig(A4) Ueig(A_),

=

where and, in what follows, eig(-) and eig(-, - ) are the spectrum of a matrix and that
of a matrix pair, respectively. Each eigenvalue AT € eig(A,) is of positive type, i.e.,
xEB:ch > 0 for its associated eigenvector x,, and each eigenvalue A\~ € eig(A_) is
of positive type, i.e., i Bx_ < 0 for its associated eigenvector _. The same can be
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said about (g, f?) For X = P(:ylzﬁ)ﬁT where P € P,, and P, 1.5) stands for the first 7
columns of P, and P € P;, we have

tr(AXTAX) = te([PTAP] [P} 1.0 AP 1))

Hence with X = P(:71:,ﬁ)ﬁT, tr(//l\)?H/l)?) is the sum of products between the diagonal
entries of A, i.e., the eigenvalues of (A, B), and some of the those of A, the eigenvalues
of (4, B). Certainly, there is X,p that can be explicitly constructed to give the right-
hand side of (3.3). Observe that each product there is for two eigenvalues of the same
type: positive or negative, and hence P(T vy T Pen) = PTJP for that particular X,
yielding
[PYIPIPL i) T Pevay) = In = JXI, T Xop = I

Hence )?Opt yields the second infimum in (3.5). Finally, X,p, = Y_l)zoptf/_ H vields the

infimum in (3.3).
4. The simple case

In this section, we prove Theorem 3.1 for the simple case: n = 1, and both pairs (A, B)
and (A, B) are diagonalizable, namely, we have (3.4) with (3.6) and also ny 4+ n_ = n,
ny = ny, n_ = n_, where A, A are real diagonal matrices. Note that, necessarily, B,
B, and X are nonsingular because of constraint BXHBX = I; = I,,, and that, by the
Sylvester inertia law, iy (B) = iz (B~!) = i (B) upon noticing X"BX = B!,

We have J = J = J~! and hence the last infimum in (3.5) becomes

inf  tr(AXTAX). (4.1)
XHJX=J]

When J = %1, both (A, B) and (A, B) are positive semidefinite pairs because A —
AoB = 0 and A- )\OB > 0 for any Ay < 0 with suﬁimently large |[Ao| if J = I, or for any
sufficiently large Ao € R if J = —1I,,. Also (4, B) and (A B) are negative semidefinite
pairs, too, because (—A) — \g(—B) > 0 and (— A) Ao(— ) >~ 0 for any sufficiently large
Ao € Rif J =1, or for any A\g < 0 with sufficiently large [Ao| if J = —1,

As for (4.1), the case when® J = =£I,, has been resolved in the literature, e.g., [13,
Theorem 4.3.53] as stated in the next lemma.

Lemma 4.1 ([13, Theorem 4.3.53]). Given Hermitian matrices A; = U;A,UR € C™xn
with U; € Uy, A; € Dy, fori=0,1, we have

i Hy _ i Hy _ 4 )
min tr(4oVA V) = Jain tr(AgV AL V) = Z:)\i (Ao)A; (A1)

Veu,

3 When J = —1,, XHJX = J becomes X7 X = I,,, the same as for J = I,.
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Lemma 4.1 can be proved by using an important result on doubly stochastic matrices,
namely the Birkhoff theorem. A matrix Y € R™*"™ is doubly stochastic if entrywise Y > 0,
and Y1, = 1, and 11Y = 1} where 1,, € R" is the vector of all ones. The Birkhoff
theorem says that a doubly stochastic matrix is a convex combination of permutation
matrices. Next, we will use this theorem to prove a result in Lemma 4.3, related to
Lemma 4.1.

Lemma 4.2 (/21]). Let X = [z;5] € C™*" and Y = [|z;;|*] € R™*". Then there exist
doubly stochastic matrices Y1, Yo € R™ ™ such that entrywise

[Tmin(X)]? Y1 <V < [omax(X)]? Ya,

where omin(X) and omax(X) are the smallest and largest singular values of X, respec-
tively.

Lemma 4.3. Given positive semidefinite matrices A; = U; A,UE € C™" with U; € Uy,
A; € Dy, fori=0,1, we have

tr(Ag X T A1 X) < [omax (X)) ax tr(AgV A VH))

= [omax(X)]? D NF (A0)AT (A1),

tI‘(AoXHAlX> 2 [Umin<X)]2 ‘;Ié%l tI‘(A()VAlVH))

= [omin (X)]* D N (Ao)A] (Av),
i=1

Proof. It can be seen that
tr(Ag X T A X) = tr(Up AUS XHU M U X) = tr(A[UF XU A, [UF X TUY)).

Write UP XUy = [z;5] which has the same singular values as X and let Y = [|z;;|%]. We
get

tI‘(AQXHAlX) — Z A](AO))‘l(Al)"erF

ij=1

Notice that all \;(Ag), Ai(41) > 0. Now use Lemma 4.2 and the Birkhoff theorem to
complete the proof, following the standard technique that has been used frequently in
the matrix eigenvalue perturbation theory [22,23]. O

The key tool to analyze the infimum in (4.1) is the structure of matrix X € C™*"
satisfying X" JX = J. Such matrix X is said J-unitary in literature.
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Lemma 4.4 ([2/, Example 6.3]). Let J = diag(I,,,—1I,_) and n = ny +n_. A matriz
X € C™" satisfies XBJIX = J if and only if it is of the form

Uy, +WWHL2 W v,
X = T4+ WH ([n7 +WHW)1/2 V.| (42)
where Vi €Uy, , Vo €U, _, and W € Cm+X"—,

Lemma 4.4 can be found in [25,14], where (4.2) is called a (hyperbolic) polar decom-
position of X. In what follows, we will limit our consideration to the case ny >n_ > 1,
and the other case 1 < ny < mn_ can be handled in a similar way.

A direct consequence of Lemma 4.4, through the SVD of W, is Lemma 4.5 below, in
which (4.3) is the so-called ChSh decomposition of a J-unitary matrix X, an analogue of
the CS decomposition of a unitary matrix [26].

Lemma 4.5 (ChSh Decomposition). Let J = diag([,

7L+’
ny > n_. A matric X € C™*" is J-unitary if and only if it is of the form

—I, ) and n = ny +n_, where

X = [U+ U} e (In_ JFEEz)l/2 o +222)1/2 {V+ V}
- [U+ U} [(LH +§§H)1/2 - +§H§)1/2] [V+ V], w3

where Uy, Vi € Up, and U_,V_ € U, _, Y= [g} € R™ "= with X € R"*"~ being

diagonal and having nonnegative diagonal entries.
Lemma 4.6. Let (A, J) be as in (3.6a) where ny > 1 and A is real diagonal. Then

(i) (A,J) = 0 if and only if \j” — A; =0 for any A€ eig(Ay), A; €eig(A-);
(if) (A,J) =0 df and only if [ — X7 <0 for any A € eig(Ay), A € eig(A_).

Proof. If (A, J) = 0, then there exists Ay € R such that A —XgJ = 0, i.e., )\; <) < )\;r
for any A\ € eig(Ay),A; € eig(A-) and thus N - A; = 0. On the other hand if
A — A; 20 for any A € eig(Ay), A; € eig(A_), then

max{\; : A; € eig(A-)} < min{\ : \]" € eig(44)}
and hence any \g that lies between the maximum and minimum in this inequality makes

A — XoJ = 0. This proves item (i). For item (ii), by definition, (4, J) = 0 if and only if
(=A,—J) = 0, and we then can use item (i). O
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With Lemma 4.5, we have

inf  tr(AXTAX)
XHIX=J

~ I
. ViALvE
= inf  tr AR PO (I+z2  z X
0=XX€eD,, —V_A_VZ x (I+22)1/2

Ut, Vi euni

UEAJrUJr I 2\1/2
[ _UHAU] [ (42 <1+):22)1/2 : (4.4)

By Lemma 4.6, if (A4, J) and (A, J) are not both positive semidefinite pairs, or not both
negative definite pairs, then* there exist )\; € eig(Ay), )\3,_ € eig(A_), \[ € eig(Ay),
and \; € eig(A-) with

(M =X) (= a7) <o.

J

We now restrict X, Uy, and V4 in (4.4) to special ones and doing so will increase the
infimum there. Specifically, we let X = oe;el where o is free to vary and e; is the first
column of I of apt size, and let VL and U4 as products of permutation matrices

Vi=P P, V.=pP Pl U =P,Pl, U =P Pl

such that
[ﬁﬁ-‘//l\JrﬁlJr] (1,1) = X;a [P1}I+A+P1+} (1,1) = )‘jv
[PRAPL] =2, [PRACPL] =),
[PY diag (I, (I + Z2)Y/2) Py ] o =1+ o2)1/2,

[PLI+2%)2P ] ) = (14 0%) 2,

where [---](1,1) is the (1,1)st entry of a matrix. We get from (4.4)

inf tr(/TXHAX)
XHJX=J

Xg’ (1402)t/2 o
< i * I 0
< o 35 o ety |”
*

4 Besides the condition just mentioned, this claim also requires the condition given in the theorem: A # uB
for any p € R and A # B for any i € R, which is equivalent to A # uJ for any u € R and A # pJ for
any i1 € R because of (3.4). Otherwise if A = AoJ for some A\g € R, then (A, J) > 0 and )\j' —A; =0 for
any A\ € eig(A4) and A; € eig(A_) and hence (X;r — X;)(/\j — ) = 0, regardless whether (A,J) = 0or
not. ’
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A+ (1+02)1/2 o
Yok I 0
,)\J— . (1+02)1/2
* 0 I
A 2\1/2
_ i (1407) o
= e ([ [ ]

At &2)1/2 -
|: i _)\;:| |:(1+ U) (1+02)1/2:|) + (COHSt&Ht)

= inf (Xj' - Xj_)(/\j_ -A7) o? + (constant)

(4.5)

Suppose now that (A, J) and (/T, J) are both positive semidefinite or both negative
semidefinite. Since we can switch to considering (—A, —J) and (—A, —J) instead if both
(A,J) and (//1\, J) are negative semidefinite, it suffices to consider the case when both
(A, J) and (/T, J) are positive semidefinite, which we now assume. Then there exist
)\o,xo € R such that A — X\gJ > 0 and A- XOJ = 0. Consider first the case A\g = XO =0
for which both A and A are positive semidefinite, i.e., A4, /T+ =0and —A_, —A_=o.

We have
inf tr(/TXHAX)
XHJX=J
_ . Vi A v {(HEEH)W b5 }
- ojx”elfm, u ([ V/Tv_H] b (145152 |
Ui,ViEL{ni
vl Uy [(1+§§H)1/2 b5) }
—UvHA_U_ ) (I+EH5)1/2
— : 1T H vy HN\1/277H vy HY1/2
st | (V+A+V+ (I + ZZMV20H A, U, (1 + Z5M) )
Ut, Vi €Un =
+tr (V+/T+V§§HU§[—A,]U, E)
=T2
+tr (V,[—/T,]VPEUEA+U+§H)
=T3
+tr (v_[—/T_]V_H(I + SV E AU (I + EHE)U?) ]
=IT4
> inf 71 + inf T9 + inf T3 + inf T4.
0<Y€D, _ 0<Y€D, _ 0<Y€D, _ 0<%€eD, _

U+,V+€Z/ln+ U_eU, 7V+ Eun+ U+EZ/17L+ Ve, U_,V_eU, _
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Next we bound these four infima from below. By Lemma 4.3 (with X = (I + Y XH)1/2),

we have

inf 7> inf (VA VEURALUL)

0=XXeD,, T UL, VL€EP,
U+,V+€Z/tn+
4
=Y M (Ap)Al (A,
=1

and, again by Lemma 4.3 (with X = [0 _]),

inf > inf AV GJoH[° U_[°
ot w2 gf (VA V| SIUE[Y 4 JU-[0 5))
U_€Un_,Vi€Un U_ Vi €Un,
> 0.

Similarly, we can bound 73 and 74 from below. Put all together to get

n+ n_—
inf  tr(AXTAX) > 3TN AN (40) + DT XA (A).

XHJX=J ‘
i=1

Since the right-hand side is achieved by tr(//l\XHAX) at ¥ = 0, and Uy, Vi € Py,
such that the diagonal values of AL and AL are in the increasing and decreasing order,

respectively, we conclude that

n4

: H i A i
it AXTAX) ZA (AN +Z>\ A). (4.6)

We now claim (4.6) remains valid for the case when at least one of Ag and Xo is not 0.
With XHJX = J, we have

tr(AXTAX)
= tr(AX [/1 Ao J]X) + Ao tr(AJ)
= tr([A — A JJXT[A = Ao J]X) + Ao tr(JXT[A — A J]X) + A tr(AT)
= tr([A — X JIXT[A = XN J)X) + Ao tr((JX)7HA = M J]X) + Ao tr(AT)
= tr([A = N J] XA = Ao J]X) + Ao tr(JA) — NoXo tr(I) + A tr(AJ), (4.7)

where only the first term varies with X. Since

[ Af = ol
A_)\OJ— + —(Af_)\()[n_) EO,
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-~ Ay —Nol
A= N = | TF 7 700+ ~ < =0
0 —(A_ =N, )] T

Similarly to (4.6), we can get, for the first term in (4.7),

min  tr([A — Ao J] XA = Ao J]X)

XHJX=J
= SN — Rl (40 = Aol + ) - RN (40) ). (49)

Plug this expression into (4.7) to yield (4.6) for the case when at least one of Ao and A
is not 0.
We summarize what we just proved into Lemma 4.7.

Lemma 4.7. Given Hermitian matriz pairs (A, B) and (2, E) with nonsingular B,§ €
Cn*™ suppose that both pairs are diagonalizable and that A # uB for any u € R, and
A # B for any i € R. Then

_inf tr(//l\XHAX) >
BXHBX=I,

if and only if either both (A, B) and (ﬁ, é) are positive semidefinite pairs or both are
negative semidefinite pairs. Moreover, in the first case, i.e., when both (A, B) and (A, B)
are positive semidefinite pairs,

i (B) i(B)

_ min r(AXTAX) =" AHA B)AT(4,B) Z A HA,B)A (A, B). (4.9)
BXHBX=I; =1

A similar expression for the infimum for the case when both (A, B) and (ﬁ’ )
negative semidefinite pairs can be gotten by applying (4.9) to (—A,—DB) and (—A, —

Lemma 4.7 is a special case of Theorem 3.1, and it with B = B= I, yields Lemma 4.1.
5. The general case

In this section we prove Theorem 3.1 in its generality. We will assume that B is
indefinite, except in Remark 5.2 later where we will comment on how the case when B
is positive or negative semidefinite can be handled in a simpler way.

We still have the decompositions in (3.4) and simplification in (3.5), with (4, J) to be
specified as in Lemma 5.1 and similarly for (A,.J )
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Lemma 5.1 (/27, Theorem 5.1]). Let p be a positive integer and

- - pXp - - pXp

Any Hermitian matriz pair (A, B) is congruent to (A, J) in the sense that
A=YHAYy, B=Y")Y,

where Y is nonsingular and A and J are block-diagonal matrices with corresponding
diagonal blocks coming from block pairs of types:
T-o:  (0,0),

T-s(2p + 1): <K2p+1(0)7 )
FP

T-co(p): (nF,,nK,(0)) with n € {£1}, associated with an infinite eigenvalue,

T-c(p): ({Kp(ao— i8) Kp(a+i6) , Fap), associated with a pair of conjugate complex

Ey
0

etgenvalues o = 1if with o € R, 8 > 0,
T-r(p): (nK,(a),nF,) with n € {£1}, associated with a finite real eigenvalue .

Moreover, (A, J) is unique up to a simultaneous permutation of the corresponding diag-

onal block pairs.

Although Lemma 5.1 lists five possible types of block pairs that each of (A,J) and
(A, J ) may contain, we can quickly exclude some types of block pairs from (4, J) and
(A, J), based on the conditions of Theorem 3.1.

. (/1 J) possibly contains block pairs of types T-c(p) and T-r(p) only. This is because
B is nonsingular and so is J and hence block pairs of type T-o, T-s (2p + 1),
T-0o(p) do not show up in pair (A, ). For that reason, we will have J~* = J and
hence constraint JXHJX = I is equivalent to X®JX = J. It follows from (3.5)
that

inf  tr(AX"AX)= inf tr(AX"AX)= inf tr(AXYAX). (5.1)
BXHBX=I, TXHIX=I, XHiX=]

In the rest of this section, we will investigate the last infimum in (5.1).
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o We can also exclude block pairs of type T-o from (A, J). In fact, if (4, J) contains
block pairs of type T-o0, then we can write A = [AT 0} ,J = [JT 0] , and partition

X = [))?] accordingly to get

S

inf Atr(//l\XHAX): inf Atr(//l\XEATXT),
XHJX=] XHJ, X =

which falls into the case that (A, J) contains no block pair of type T-o.

~

In summary, possible types of block pairs in (A, J) and (//1\, ) to consider henceforward

are

(A, J): T-s(2p+ 1), T-co(p), T-c(p), T-r(p); (5.2a)
(A, J): T-c(p), T-r(p). (5.2b)

In our later analysis, we will also replace any block pair of type T-c(p) with

(Vi%%;) —Iifﬂp%z)} ’ {Fp —F,,D : (5.3)

This is because they are congruent:

i 1| 0 Ky(a+ip)| 1
NoR L Kp(a—1ip) V2
1 {1 I F, 1 (I I|_ |F
EI—I'FP 'EI—I_ —F, |-
Remark 5.1. When (A, B) is positive semidefinite, possible block pairs in its canonical
form are considerably limited [15, Lemma 3.8]. In fact, if A — X\gB > 0 for some \g € R,

then its canonical form possibly contains (0,0) of type T-o, (nK1(a),nFy) of type T-r(1)
such that n(a — Ag) > 0, (K2(Ag), F2) of type T-r(2), and (1, 0) of type T-co(1).

Y=L )

~ o~

The next lemma will be used in subsection 5.1 to reduce the case n > n to the case
n = n. It may be of interest in its own and it also sheds light on why Definition 3.1 reads

the way it is.

~ ~ o~

Lemma 5.2. Let B € C™*™, ﬁ, €

C™*™ be Hermitian matrices. Suppose that B and
B are nonsingular, and ny =iy (B) < ny =iy (B), and let

1 A\ nxn _ In+7ﬁ+ o E
A_[ O]E(C y o Je= I, .| B = 7|
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(i) If (A,B) = 0, then (A,B) = 0 and (B, A, B) is proper; conversely, if (A, B) = 0
and (B, A, B) is proper, then (A,B) = 0.

(ii) If( ,B) =0, hen(A B) <0 and (— B,—A

B)

E) is proper; conversely, if (2’ §) =
0 and (—B,—A,—B) is proper, then (A, 0.

)
=

Proof. We will prove item (i) only. Item (ii) becomes item (i) by simply considering
(—/T, —ﬁ) instead. No proof is necessary if n = n. Suppose that n < n. There are three
subcases to consider: (1) both ny < ny, (2) Ny <ng and i =n_, and (3) Ny = ny
and n_ < mn_.

Consider subcase (1). Suppose that (A,B) = 0,i.e., A= \oB = 0. Then A — )\0 =0
and —\gJ, = 0, implying (A B) > 0and \g = 0. That Ao = 0 implies that A] (A B) <
0< XH(A\ B) and thus (B, A, B) is proper. Conversely, if (A, B) = 0 and (B, A, B)
is proper, then by Definition 3.1, we find that A} (A\ ﬁ) <0< )\;FT(A\, ﬁ) and hence
A-— /\0B>-Ofor)\0—0 ie., A>~O and hence A — )\OB>-O ie. (/Nl §)

Consider subcase (2). Suppose that (4, B) = 0, i.c., A— \gB = 0. Then A XoB =0
and —XoJ, = 0, implying (4, B) *= 0 and Ay < 0. Hence AL YA,B) < Ao < 0 and
(B,A\,ﬁ) is proper. Conversely, if (/Al,ﬁ) = 0 and (B,/T,B) is proper, then by Defini-
tion 3.1, we find that A;¥(4, B) < 0. By (2.2), A — AoB = 0 for some Ag < 0 and hence
~XoJ. = 0and A—XB =0, i.e., (A,B) = 0

Subcase (3) can be handled in the same way as handling subcase (2). O

We now prove Theorem 3.1 in an order of increasing complexity of (A, J) and (/T7 J ) in
terms of possible combinations of block pairs of types listed in (5.2), and hence conclude
the proof at the end.

5.1. Involving block pairs of type T-r(1), T-c(1) only

In this case, we have

Recall iy <ny and n_ < n_ by (3.2). Let J. = [IM_ﬁ* } For any X such

n_—m-—
that XHJX = f, we can complement X to a square matrix X = [X X.] such that
XX = diag(J, J,) and then (X P)H.J(X P) = J upon permuting the columns of X by
some permutation matrix P. This is guaranteed by Lemma 5.3 below that can be found
in many classical monographs, e.g., [28,29].

Lemma 5.3 (/2/, Corollary 5.12]). Let J = diag(],

n4
of vectors ua, ..., wy satisfying ulJu; = £6;; fori,j = 1,...,k can be complemented

—I, ) and n =ny +n_. Any set

to a basis {u1,...,u,} of C" satisfying ullJu; = £8;; fori,j =1,...,n, where §;; is
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the Kronecker delta which is 1 for i = j and 0 otherwise, and the numbers of 1 and —1
among ull Ju; for 1 <i <n aren, and n_, respectively.

Set
T //1\ nxn _ j
i[i e 727 ] ”
It can be seen that
inf tr(AXMAX) = inf tr(AXTAX) = inf Atr(/TXHAX).
XHjX=J XHix=J XHJX=J

X0rx=0,x"7X.=J.

This and Lemma 5.2 show that we can consider (A,J) and (A,J) instead, for which
n=n.
In the rest of this subsection, we will assume n = n. We consider three subcases:

(1) Only block pairs of type T-r(1) are involved,;

(2) A =7iJ for some Ji € R;

(3) Besides possibly block pairs of type T-r(1), at least one block pair of type T-c(1) is
also involved and A # fiJ for any i € R.

Subcase (1) has already been taken care of in section 4. Subcase (2) falls into the excluded
cases of the theorem: A #+ ﬁ§ for any 2 € R if n = 1 to begin with, i.e., without the
expansions in (5.4), or if with the expansions then 0 = uJ. = [ = 0, yielding A=0.

We now turn our attention to subcase (3). Now J, J € C™" are nonsingular, and
ir(J) = ii(j). Notice that the direct sum of pairs of type T-r(1) is a diagonal pair,
and each block pair of type T-c(1) can be turned into (5.3) for p = 1 by a congruent
transformation. Thus we can assume

_ Ai —if¢ _ In T /Ti_ —1@0 >
A[ch AC_:|;J|: * In_:|7A|:i.§C _/’1\0_:|7JJ5

where A9, Aci € D, and {2°, ¢ € Rn+X"= are leading diagonal matrices with nonnega-
tive diagonal entries. As a result,

inf  tr(AX"AX)= inf tr(AXTAX)<  inf  tr(AXTAX).
XHyX=] rept zept
Ut ,VieU Ug,VieP"
In a way similar to that in (4.5), we will select concrete Uy, Vi € P to establish a
necessary condition such that the infimum is not —oo.
First we consider the case n = n = 2. Note that

Y ] | N s
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There are three mutually exclusive subcases:

~ o~

(i) both (A,J) and (A, J) are block pairs of type T-c¢(1). We have

inf tr(/TXHAX)

»eDpt
Uy, Viep®
— inf tr a R —iaeié |:\/1+a'2 o :| |: a —iBei0:| |:\/1+7 o :|
a>0 iﬁe_ie —a o V1+o2 iBeﬂS —a o V1+o2
0,0€[0,2n)
_ 12% Bﬁ[ﬂs+o2x€w_@—kdﬁ;”)—OQ@““ﬁ)+e_“@ﬁU}+2aa
0,0€[0,27)
= ir;f0 288 {(1 +02) cos(f — 6) — o2 cos(6 + 5)] + 20
9,§€[_0,27r)

= igf(’) 288 [cos(@ —6) + 202 sin O sin é\} + 20
9,§€[_0,27r)

= —00;

(i) (A,.J) is a block pair of type T-¢(1) and (A,.J) consists of two pairs of type T-r(1).

We have
inf  tr(AXTAX)
yept
Uyt,VieP®
— inf (] &, P {¢1+a2 o HM Hm o }
>0 ife® _—a o Vito? —A- o 1+02
6el0,2)
= inf (- A)Bi(e™? — e)o\/T+ 02 + a(As + A_)
§€[0_,27r)
= inf 200 - A)BoV/1+02sind+ @A, + A_)
§€[07,27r)
= —00

)

because Ay # A_; otherwise A = Ay J which has been excluded from subcase (3)
above;

(i) (4, J) is a block pair of type T-c(1) and (A, J) consists of two pairs of type T-r(1).
This is similar to subcase (ii) we just considered, with the same conclusion: the
infimum is —oo.

Consider, in general, n =7 > 2 and at least one block pair of type T-¢(1) is contained
in (A4, J) or (A,J) or both. Suppose for the moment that (A, .J) contains a block pair of
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type T-c(1) with a, 3 € R and B\ > (0. With the same reasoning we have employed in
(4.5), picking X = cejel and suitable permutation matrices Vi, U of apt sizes, we get

inf  tr(AXTAX)

IS
Ut VL €P™
1Tc H . Hci/H e =
= inf g | HARYE TVREVE LRI B X
sept ivoQevy —v_oA_vH z (I+ZHE)/?
Uy, ViepP®
UlAsuy —iUfQeU_ | [ (1+55M)1/2 5
ivheHy, —utacu_ 55) (I+£85)1/2
a —iBei? (1+0%)1/2 o
<inftr{| . % 4 01 x
~ >0 iBe1? —a o (1+02)1/2
* 0 I
+ o+ (1+0%)'/2 o
* I 0
+ + N o (1+02)1/2
0 I
+ +7 g Al a —iBe'? g
(where [+ +] is either |:iﬁe_i9 - ] or [ 7)\],])
= —00.

In summary, the infimum is —oco as long as block pairs of type T-c¢(1) are involved, while
if only T-r(1) block pairs are involved, it is turned into the case already considered in
section 4.

5.2. Involving block pairs of types T-r(1), T-c(1), and T-oo0(1)

It suffices to consider the case that at least one pair of type T-oo(1) is contained in
(A, J) because the case of involving block pairs of types T-r(1) and T-¢(1) has already
been dealt with in subsection 5.1 and our discussion prior to the subsection excludes any
possibility that (A, J) may contain any block pair of type T-0o(1). We write

P I P N -

where A is diagonal with diagonal entries +1, to get

inf  tr(AXTAX) = inf  tr (A[XFAX, + XD ALXL])
XHJX=] XHJ,.X,=]
= inf  tr(AXFA,X,) + inf tr(AXE A X)), (5.6)
XHj. X,.=J Koo

T

Consider the second term in (5.6), which is an infimum over X, without any con-
straint. Without loss of generality, we may assume that A is real diagonal; otherwise,
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since A is Hermitian, we let A= Q/TQH where ( is an orthogonal matrix and A is
diagonal, and we get

tr(AXE Ao Xoo) = tr(QAQT X Aoe X o) = tr(A(X oo Q)M oo (X oo Q).
Let A = diag(xl, .. ,Xﬁ) and Ao, = diag(Aoc 1, .-+, Aoo,t) Where t > 1. We have
_%?i tI’(AXgIOAOOXOO) = _%?OE Z )\J>\007Z|£L'0071]|2,
i,j

where we have written Xoo = [Too;ij]. Since Xoo is arbitrary, each |Zoo;i;]?> > 0 can be
made 0 or arbitrarily large. Hence

}glf tr(/TX?OAOOXOO) > —oo if and only if all Xj)\oo’i >0,

in which case, the infimum is 0. Notice that Ay, ; = 1. There are three possible situations
for all AjA; > O:

1. all Xj = 0 if both 1 appear among all A ;;
2.all \; > 0if all Aoy =15
3. all A; <0ifall Ao ; = —1.

The first situation is not allowed because it implies A = 0 and hence A = 0 which is
excluded to begin with. Therefore, we conclude

nf tr(AXE A X o) > —00 & either A =0, Ay =1, or A 20, Ao = —I.  (5.7)

Consider now the first term in (5.6), which falls into the case in subsection 5.1. In
light of (5.7), to see when

inf  tr(AXMA,X,) > —o0 (5.8)
XHJ,. X,.=]

and what the infimum is, it suffices to investigate what will happen when either A =0,
Ao =1, 0r A <0, Ay = —I. We have the following:

1. Suppose A= 0, Asc = I. Then (/T, f) > 0 and, by the result of subsection 5.1, (5.8)
holds if and only if (4,,J,) = 0 and (JT,/T, j) is proper, which is the same as that
(A,J) = 0 and (J, A, J) is proper because of (5.5) and Ay = I.

2. Suppose A= 0, Aoo = —I. Then (//1\, j) = 0 and, by the result of subsection 5.1, (5.8)
holds if and only if (A, J,) < 0 and (—J,, ,/T’ ,j) is proper, which is the same as
that (A,J) =0 and (—J, —/T, —f) is proper because of (5.5) and A, = —1.
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5.3. Involving block pairs of types T-r(p) with p < 2, T-c(1), and T-oo(1)

It suffices to consider there are some block pairs of type T-r(2) in the mix; otherwise
the situation has already been taken care of in subsection 5.2. Let € > 0 be arbitrary
tiny, and perturb each block pair (nKsy(«),nF») of type T-r(2) according to

Ki(a) — Ko(a) +cejel, (5.9)

which turns the block pair (nKs(«),nFs) to two block pairs T-r(1) with eigenvalues
a + /g, respectively, and both are continuous in € and go to o as € — 0%. As a result,
both A and A are possibly perturbed to A, and A., satisfying
A = A, if no block pair of type T-r(2) in (4, J),
i . A, as e — 0t.
The same holds true for (//1\57 j) Consider now (A, J) and (//1\5, j) in which only block
pairs of types T-r(1), T-c(1), and T-co(1) are possibly involved. It is important to note

that both J and J are not perturbed, leaving i+ (.J) and i+ (J) unaffected. Note that, for
any a € R, (Kz(a), F2) = 0 but (Kz(a), F2) £ 0.

Lemma 5.4. Givene > 0, (K2(a)+€elelf)—A0Fg = 0 if and only if a—+/e < Ao < a++/z.

Proof. Notice that

- A
Kg(a)+eelelf—AOF2: |:Oé—€/\0 @ 1 0:|.

Since e > 0, the matrix is positive semidefinite if and only if its determinant e—(a—Xg)? >
0. O

The next lemma is stated in terms of (A, J). It is clearly valid if (4, J) is replaced
with (4, J).

Lemma 5.5. Suppose that (A, J) is a direct sum of block pairs of types T-r(p) with p < 2,
T-c(1), and T-co(1) and that each block pair of type T-r(2) is perturbed according to
(5.9) where € > 0.

(a) If there is a positive sequence {&;},o, converging to 0, i.e., 0 < &; — 0 as i — oo,
such that (Ag,,J) »= 0 for all i, then (A,J) = 0, and (A, J) can only contain block
pairs (an(a),an) with n = 1 and the same « for all block pairs of type T-r(2), in
which case A — AgJ = 0 with \g = « and only with Ao = a.

Conversely, if (A, J) = 0, then (Az,J) = 0.
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(b) If there is a positive sequence {&;};—, converging to 0, i.e., 0 < &; = 0 as i — o0,
such that (Ag,,J) =X 0 for all i, then (A,J) 20, and (A, J) can only contain block
pairs (nKa(a),nFy) with n = —1 and the same a for all block pairs of type T-r(2),
in which case A — XgJ <0 with \yg = a and only with Ao = «.

Conversely, if (A, J) <0, then (As,J) < 0.

Proof. We will only prove item (a). The same argument with minor modifications can
be used to prove item (b).

Suppose that (A,, J) = 0 for all 4, which means that for each ¢ there exists u; such that
Ae, —piJ = 0. By [15, Lemma 3.8], |u;| can be taken no bigger than the absolute values of
the finite eigenvalues of (A.,, J). Under the perturbation, the finite eigenvalues of matrix
pairs (A.,,J) are uniformly bounded because they converge to the finite eigenvalues of
(A,J). Hence {p;};2; is bounded and thus has a convergent subsequence {s;}, y, say
converging to A9, where I is an infinite subset of {1,2,...,}. Letting T > ¢ — oo in
Ag, — pid = 0 yields A — AoJ = 0.

If (A, J) ever contains a block pair (an(oz), an), then we will have

n(Ka(a) +eierel —piFy) =1 [a iim “ 1 Mi] =0

for all 4, which implies = 1 and o — /&; < p; < a+,/€;. Letting ¢ — oo yields u; — «a.
If (A4,J) also contains another block pair (ﬁKg(&),ﬁFz) of the same type. Using the
same argument as we just did, we find 7 = 1 and also p; — & yielding a = a.

Conversely, suppose that (A4,J) = 0. If no block pair of type T-r(2) is involved in
(A, J), then A, = A and hence no proof is necessary. If (A, J) does contain block pairs of
T-r(2), then these block pairs must be (K2(c), F2) with the same «. Therefore the only
Ao that makes A —XgJ = 0 is A\g = a which also makes (K3(a) +eejel) — XgFy = 0 for
any € > 0. By the way how A is perturbed to A., we find A. — A\gJ = 0. O

By the results of subsections 5.1 and 5.2, we conclude that

inf  tr(A.X"A.X) > —oo (5.10)

XHJX=]
if and only if one of the following two scenarios occurs:

~

(1) both (A¢,J) and (/T8 J) are positive semidefinite pairs and (J, /Tg, ) is proper;

(2) both (A, J) and (A, J) are negative semidefinite pairs and (—J, —A¢, —J) is proper.

Let {51'}?21 be a positive sequence that converges to 0, i.e., 0 < ¢; — 0 as i — oco. Since
there are only two scenarios here, there is a subsequence {¢;},.; such that one of the
two scenarios holds true for all ¢ € 1. In the case when

~ ~

for all ¢ € I, both (A.,,J) = 0, (/Tgi7 ) = 0, and (J, /TE,” J) is proper,
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~

we have both (A,J) > 0, (//1\, j) = 0, and (J, A, ) is proper, as a consequence of
Lemma 5.5. Similarly, we can conclude that if

~ ~

for all i € I, both (A.,,J) <0, (A,,J) <0, and (—J, —A,,, —J) is proper,

then both (A,J) <0, (/T, f) <0, and (—J, —/T, —f) is proper.
With either scenario, the infimum in (5.10) has a closed formula as in (3.3), or it

applied to (—A.,—J) and (f/TE, —J ). Because of the continuity of these eigenvalues
with respect to ¢, the limit of the infimum exists as ¢ — 0™. Since the perturbation does

~

not affect iy (J) and i (J) at all, the limit takes the same form as (3.3), or it applied to

o~

(=A,—J) and (—A, —J).
5.4. Involving block pairs of all possible types in (5.2)

In this subsection, we will allow all block pairs of types in (5.2) to possibly appear in
(A, J) and (4, J). Block pairs of types in

type T-s(2p+1) T-c(p) T-r(p) T-oo(p)
P p=1 p=2 p=3 p=2

(5.11)

remain to be included for considerations, as we have already considered T-r(p) with
p <2, T-c(1), and T-00(1),

Notice that a positive/negative semidefinite matrix pair does not contain any block
pair of these types in (5.11) in its canonical form (see Remark 5.1). In what follows, we
will show that

inf  tr(AX"AX) = —00 (5.12)
XHIX=]
if any block pair of these types in (5.11) is contained in either (A, J) or (A, A) or both,
besides T-r(p) with p < 2, T-¢(1), and T-oo(1). The idea is to perturb (A, J) and/or
(A, J) to (A, J) and/or (A, J) such that

1. AE—>Aand/TE—>/Tass—>0,

2. for sufficiently tiny e > 0, the canonical forms of (A.,.J) and (A.,.J) contain block
pairs of types T-r(1), T-c(1), and T-oo(1) only, and that has been investigated in
subsection 5.2, and either

inf  tr(A.X"A.X) = oo, (5.13)
XHJX=J
or

lim inf  tr(A.XTA.X) = —occ.
e=0xHyx—T
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Hence, we justify our claim (5.12) for the case of interest.
Specifically, we perturb the first block elements in block pairs of the types in (5.11)

as follows:
KP(O) Kp(ig)
Kopi1(0) = 0 ef ] - [ e ef 17
K,(0) e; K,(—ie) e;
0 Ky(a+1B) . 0 Ky(a+iB) +cerel
Kp(a+ip) Ky(a+iB) +cerel ’

T
b, = F, +ceey,

K,y(a) = K,(a) +cere].
We restrict € > 0, except for T-00(2), for which ¢ < 0 is also allowed.

(i) A block pair of type T-c(p) with p > 2 and eigenvalues « & i3 generates p block
pairs of type T-c(1) with eigenvalues

o
aﬁ:iﬁ:l:el/pexp(iﬂ),j:0,...,p—1.
p

Among them there are conjugate complex eigenvalues.

(ii) A block pair of type T-s(2p 4+ 1) with p > 1 generates a block pair of type T-co(1)
and a block pair of type T-c(p) with a pair of conjugate complex eigenvalues, and
eventually generates a block pair of type T-oo0(1) and 2p block pairs of type T-c(1)
with eigenvalues some of which are conjugate complex eigenvalues.

(iii) A block pair of type T-r(p) with p > 3 and eigenvalues a generates p block pairs of
type T-c¢(1) or T-r(1) with eigenvalues

9
a+51/pexp(il‘7),j =0,...,p— 1.
p
Among them there are conjugate complex eigenvalues.

(iv) A block pair of type T-oo(p) with p > 2 generates a block pair of type T-oo(1) and
p — 1 block pairs of type T-c(1) or T-r(1) with eigenvalues

g~ /=1 exp(i 27le)7j =0,....,p—2.

Among them there are conjugate complex eigenvalues if p > 3.

After perturbations, (A, J) and (A, J) themselves are no longer in their canonical forms
as the ones specified in Lemma 5.1. But they can be turned into their canonical forms, in
which only possible block pairs of types T-c(1), T-r(1), and T-oo(1) show up. When any
one of (i), (ii), (iii), and (iv) with p > 2 occurs, we will have at least one block pair of type
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T-c(1) in the canonical forms, and hence (5.13) holds by the results in subsection 5.2,
which implies (5.12).

It remains to consider (iv) with p = 2 and only block pairs of type T-00(2), besides
T-r(p) with p < 2 and T-00(1), can show up. We exclude any block pair of type T-c(1)
because if such a block pair exists, we will have, after perturbations, (5.13) and hence
(5.12). Note that block pair of type T-00(2) can only be contained in (A, J) according
to (5.2), while (A, J) contains possibly block pairs of type T-r(p) with p < 2. Without
needing to perturb any block pair of type T-r(2) in (A,J), if any, Lemma 5.6 below
shows that (5.12) holds.

Lemma 5.6. If (A, J) contains a block pair of type T-00(2), then (5.12) holds.

Proof. We perturb any block pair of type T-00(2) in (4, J) as
e 1| |0 O

oo S )~ Al

where stands for “is congruent to”. Without loss of generality, we may assume that
n(Fz, K2(0)) is the last block pair in (4, J). As a result,

an=(% o) |5 o))

S (A, d) = (H o(F +056161T)]7[°(])T an(o)D

W

A0 0 J. 0 0
0 0 sign(ne) 0 00
_. Aa;r 0 lr 0
o 0 sign(ne)|’| 0 0])°
the canonical form of (A, J). Similarly to (5.6), we have
inf Atr(//l\XH/ng)
XHJX=]
= inf tr(AX"A_X)
XHIX=]
= inf  tr(AXPA., X))+ inf tr(AXE sign(ne) Xoo). (5.14)
XHJ, X,.=J ’ Xoo

T <r

As in our argument after (5.6), we will consider the last infimum in (5.14). For that
purpose we may assume A is diagonal. Because the freedom in making either £ > 0 or
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e < 0, we can show the infimum over X, is —oo, unless A = 0 which is excluded in
Theorem 3.1. Hence we have (5.13) and hence (5.12). O

Summarizing what we have done so far leads to the main result in Theorem 3.1.

Remark 5.2. So far, we have been assumed that B is indefinite. We now comment on
the proof for the case when B is positive or negative semidefinite. It suffices to consider
the case B > 0, because when B =< 0, we can consider the infimum of interest for
(=A,—B) and (—g, —§), instead. Suppose that B > 0. Then B = 0 because B is
always nonsingular and i, (B) < i, (B) and i_(B) < i_(B) by (3.2). We again transform
matrix pairs (A, B) and (/Al,g) to their canonical forms as in Lemma 5.1. We will still
have (5.1) but with fewer possible types of block pairs to consider in (A, J) and (/T7 J )
than those in (5.2). Specifically,

~

(A, J) : T-00(p) with p < 2, T-r(1); (A, J): T-r(1).

Also J = I;; always. If no block pair of type T-00(2) shows up in (4, J), then it falls into
a special situation of subsection 5.2 where, though under the scope of B being indefinite,
no argument there relies on that. If, however, T-00(2) is involved, we can use Lemma 5.6.

6. Concluding remarks

We have established a trace minimization principle for two Hermitian matrix pairs
(A, B) and (A, B):

_inf tr(AXTAX), (6.1)
BXHBX=I,

where A, B € C"*" and A\, B € C7*7 are all Hermitian, and 7 < n. It is the most gen-
eral one up to date, encompassing Fan’s trace minimization principle [12] (for A=B= I;
and B = I,,) and its straightforward extension (for A = B = I and positive definite
B), and most recent ones [14,15,18] reviewed in section 1. In those recent investigations,
the notion of positive semidefinite matrix pair was introduced: a Hermitian matrix pair
(A, B) is positive (negative) semidefinite if there exists Ay € R such that A — A\gB is
positive (negative) semidefinite.

For investigating (6.1), we introduced yet another notion for a Hermitian matrix triplet
(B, 21\, §) being proper in Definition 3.1. We showed that the infimum in (6.1) is finite if
and only if either both (A, B) and (ﬁ, E) are positive semidefinite pairs and (B, A, E) is
proper, or both are negative semidefinite pairs and (—B, _;[, —E) is proper, assuming
A # 0, A# uB for any 4 € R, and A # ﬁé for any i1 € R when n = n. A closed formula
for the infimum is given in terms of the finite eigenvalues of the two semidefinite matrix
pairs.
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In [18, Example 3.1], the following example (in the notation in this paper):

1 1 5
P O T

V18 — 612 1 Vi—o2 o n
U:T7Q:|: 1/4:|,Q:|: o m},A:QHQQ,

was given to demonstrate that the infimum in (6.1) may not be any sum of the products
between the eigenvalues of A and some of the ones of (A, B), as a justification for an
assumption of [18, Theorem 3.2]. This now can be well explained by our Theorem 3.1
in this paper, i.e., it is the eigenvalues of (;1\, E), not A alone, that should appear in the
infimum. For the example, the eigenvalues of (//1\, E) and of (A4, B) are

A= %\/5 A = —i\/i and A\f =1, \] = -2,
respectively. Hence the infimum, by Theorem 3.1, is /):1")\1' + Xl_ A =2,
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