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Abstract. Given sample data points {(xj , fj)}Nj=1, in [Brubeck, Nakatsukasa,

and Trefethen, SIAM Review, 63 (2021), pp. 405-415], an Arnoldi-based pro-

cedure is proposed to accurately evaluate the best fitting polynomial, in the

least squares sense, at new nodes {sj}Mj=1, based on the Vandermonde ba-

sis. Numerical tests indicated that this procedure can in general achieve high

accuracy. The main purpose of this paper is to perform a forward rounding

error analysis in finite precision. Our result establishes sensitivity factors re-
garding the accuracy of the algorithm, and provides a theoretical justification

for why the algorithm works. For least-squares approximation on an interval,

we propose a variant of this Arnoldi-based evaluation by using the Chebyshev
polynomial basis. Numerical tests are reported to demonstrate our forward

rounding error analysis.

1. Introduction. Approximation by polynomials and rational functions lies in the
core of classical approximation theory. From the most general and basic tasks of
designing subroutines for evaluating elementary functions and special functions, ap-
plications of approximation theory are across all spectra of sciences and engineering,
including digital filters, eigenvalues and eigenvectors of matrices, model reduction
and optimal control, numerical solution of PDEs (see e.g., [28, Chapter 23]) and
other new areas (e.g., [4, 6, 12, 21, 29]).

Given a function f(x) on a domain, a wealth of fundamental theories and efficient
numerical algorithms for the best fitting polynomials in the L2-norm as well as the
L∞-norm have been established (see, e.g., [20, 25, 28]). In the discrete situation,
because f is either unknown or too complicated to deal with, sample data points
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Algorithm 1 PFEvA: Polynomial fitting and evaluation via Arnoldi [5]

Input: interpolating points {(xj , fj)}Nj=1, new nodes {sj}Mj=1 to be evaluated at,
integer 0 ≤ n ≤ N .

Output: values yj = pn−1(sj) for 1 ≤ j ≤ M of the best fitting polynomial of
degree n− 1:

pn−1 = argmin
p∈Pn−1

‖f − pn−1(x)‖2,

where x = [x1, . . . , xN ]T and f = [f1, . . . , fN ]T.

Construction stage
1: call the Arnoldi/Lanczos process with X = diag(x) on Qe1 = 1N to produce
XQ = QH + βn+1qn+1e

T
n such that1 QHQ = N In, where H ∈ Cn×n is upper-

Hessenberg;
2: compute d = argminz ‖f −Qz‖2;

Evaluation stage
3: recursively compute W , one column at a time, such that SW = WH +
βn+1wn+1e

T
n , where s = [s1, . . . , sM ]T, S = diag(s), and We1 = 1n;

4: return y = [y1, . . . , yM ]T = Wd.

{(xj , f(xj)}Nj=1 are available, and least-squares approximation is a powerful tool to
generate polynomials or rational functions that well approximate the underlying
function f(x) [25]. Often noise is inevitable and, as a result, the best fitting poly-
nomial in the sense of minimizing the least squares error is a common and efficient
approach for many practical situations.

Let pn−1(x) ∈ Pn−1 be the best fitting polynomial of degree n− 1 at given data
points {(xj , fj)}Nj=1, where Pn−1 is the set of polynomials of degree no greater than
n − 1. There are numerous polynomial bases to express pn−1 in. The monomial
basis {1, x, . . . , xn−1} is the most natural one, but unfortunately, in order to com-
pute the associated coefficients, one needs to deal with a notoriously ill-conditioned
Vandermonde linear system (see e.g., [2, 16, 17, 18]). However, in many application-
s, pn−1 is only a vehicle to produce values pn−1(sj) ≈ f(sj) at new nodes {sj}Mj=1,
while the explicit form of pn−1 is not necessarily required. Recently, in [5], an
effective Arnoldi/Lanczos-based procedure is proposed to evaluate {pn−1(sj)}Mj=1

without computing the monomial coefficients explicitly. It is in fact a realization of
the on-the-fly construction of discrete orthogonal polynomials by Stieltjes orthogo-
nalization. Algorithm 1 outlines the method in [5], where numerical examples are
presented to demonstrate that the procedure in general computes {pn−1(sj)}Mj=1

more accurately than through first forming pn−1 in the monomial basis and then
evaluating it at the new nodes.

The main purpose of this paper is to perform a forward rounding error analysis in
finite precision arithmetic. In particular, we will establish sensitivity factors of Al-
gorithm 1 and provide a theoretical justification for its effectiveness. As our second
contribution, for least-squares approximation on an interval, we propose to extend
this Arnoldi/Lanczos-based evaluation in Algorithm 1 by using the Chebyshev poly-
nomials of the first kind as the polynomial basis, which is known to yield better
accuracy [13]. Numerical tests are reported to verify our forward rounding error
analysis, and also to illustrate the performance of two Arnoldi-based evaluation on
an interval.
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The rest of the paper is organized as follows. In section 2, we explain how
Algorithm 1 works in exact arithmetic. In section 3, we perform a rounding error
analysis for Algorithm 1. We then extend the approach to the case of using the
Chebyshev polynomials as the polynomial basis in section 4 for the least-squares real
approximation on an interval. Also in section 4, two implementations are presented,
along with their rounding error analyses. Numerical demonstration of how good our
rounding error analysis is for the three implementations is carried out in section 5.
Finally conclusions are drawn in section 6.

Notation. Throughout this paper, Cn×m is the set of all n×m complex matrices,
Cn = Cn×1, and C = C1. Similarly Rn×m, Rn, and R are defined by replacing the
word complex with real. Vectors are typeset in bold lower case letters. In ≡
[e1, e2, . . . , en] ∈ Rn×n is the n× n identity matrix, where ei is its ith column. For
A ∈ Cm×n, AT, AH, and A† are the transpose, the complex conjugate transpose,
and the Moore-Penrose inverse of A, respectively. R(A) represents the column space
of A. For convenience, we adopt MATLAB notation: A(i,j) is the (i, j)th entry of A,
and A(k:`,i:j) is the submatrix of A that consists of intersections from row k to row
` and column i to column j. ‖ · ‖2 denotes the vector 2-norm or the matrix spectral
norm, and and ‖ · ‖F denotes the matrix Frobenius norms. The set of polynomials
of degrees no higher than n − 1 is denoted by Pn−1 and the kth Krylov subspace
generated by a matrix A on a vector b is defined as

Kk(A, b) = R([b, Ab, . . . , Ak−1b]).

2. Evaluation in exact arithmetic. Throughout {xj}Nj=1 is reserved for the in-

terpolating nodes, while {sj}Mj=1 are the nodes to be evaluated at. Let x = [xj ] ∈
CN be the vector formed by the interpolating nodes, and similarly s = [sj ] ∈ CM
the vector formed by the evaluating nodes. Denote by

Vx = [e, Xe, . . . , Xn−1e] =


1 x1 . . . xn−11

1 x2 . . . xn−12

. . . . . .
1 xN . . . xn−1N

 (2.1)

the N ×n rectangular Vandermonde matrix generated by the nodes {xj}Nj=1, where
X = diag(x) is the diagonal matrix with the entries of x as the diagonal entries.
Similarly, we define Vs ∈ CM×n. Before analyzing Algorithm 1 in finite precision
arithmetic, we first provide a diagram to explain the process in Algorithm 1. The
key is an unknown triangular matrix R that provides an implicit link between step
1 and step 3 of Algorithm 1, and it is this connection in R that ensures yj = pn(sj)
in theory. We point out that this connection is already stated in [5], but we provide
much more detail here to aid our later rounding error analysis.

To understand the process in Figure 2.1, we first establish a relation between the
QR decomposition of Vx and the Arnoldi/Lanczos process with X (see, e.g., [27,
pp. 298] and [1, Lemma 2.2]). Theorem 2.1 is stated more generally in the complex
domain. It holds true if all C is replaced by R.

1This is done by slightly modifying the usual Arnoldi/Lanczos process by normalizing each

new Arnoldi/Lanczos vector to have norm
√
N instead of 1. We point out that Algorithm 1 as

stated does not require that xj and fj be real. In the case when all xj are real, it is the Lanczos

process in the construction stage and, as a result, H is a real symmetric tridiagonal matrix.
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x

step 1: Arnoldi

XQ = QH + βn+1qn+1e
T
n

(Q,H)

Vx = QR

step 2

d = Q†f

W
SW = WH + βn+1wn+1eTn

step 3

(s, H)

Vs = WR

y = Wd

step 4

Figure 2.1. Diagram illustration of Algorithm 1 where H at step
3 is from step 1.

Theorem 2.1. Given q1 ∈ CN , A ∈ CN×N , and an integer 1 < n ≤ N , let

K = [q1, Aq1, . . . , A
n−1q1] ∈ CN×n. (2.2)

Suppose rank(K) = n.

(i) If K = QR with Q ∈ CN×n (not necessarily orthonormal) having q1 as its
first column and upper triangular R ∈ Cn×n, then

AQ = QH + qn+1e
T
n , (2.3a)

where

qn+1 =
[In −Q(QHQ)−1QH]Anq1

rn,n
⊥ R(K), (2.3b)

H = R[e2, . . . , en,v]R−1 with v = R−1Q(QHQ)−1QHAnq1, (2.3c)

and rn,n is the (n, n)th entry of R. In particular, H is upper-Hessenberg.
(ii) Conversely, if (2.3a) holds for upper Hessenberg H ∈ Cn×n and Q ∈ CN×n

(not necessarily orthonormal), then K = QR where

R = [e1, He1, . . . ,H
n−1e1] ∈ Cn×n (2.4)

is upper triangular.

Proof. For item (i), we note that rank(Q) = rank(R) = n because rank(K) = n.
We have

AQR = AK = [Aq1, . . . , A
n−1q1, A

nq1] = [Ke2, . . . ,Ken, A
nq1]. (2.5)

Since Anq1 ∈ R(K)
⊕
R(K)⊥ and rank(K) = n, there are unique v ∈ Cn and

q̃n+1 ∈ R(K)⊥ such that

Anq1 = Kv + q̃n+1.

In fact, it can be seen that

v = (KHK)−1KHAnq1 = R−1(QHQ)−1QHAnq1, q̃n+1 = Anq1 −Kv.

Thus, we have from (2.5) that

AQR = K[e2, . . . , en,v] + q̃n+1e
T
n ,

and, then, plugging in K = QR, we get

AQ = QR[e2, . . . , en,v]R−1 + q̃n+1e
T
nR
−1,
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yielding (2.3) upon noticing eTnR
−1 = en/rn,n and letting qn+1 = q̃n+1/rn,n. Fi-

nally, it can be verified that H = R[e2, . . . , en,v]R−1 is upper Hessenberg because
both R and R−1 are upper triangular.

For item (ii), we first note Ke1 = QRe1 = Qe1 = q1. It follows from n > 1,
(2.3a), and (2.4) that eTne1 = 0 and

Ke2 = Aq1 = (AQ− qn+1e
T
n )e1 = QHe1 = QRe2.

In summary, we have proved

Ai−1q1 = QHi−1e1, Kei = QRei (2.6)

for i = 1, 2. Assume now that (2.6) holds for i = k ≤ n − 1. We claim it will also
hold for i = k + 1 ≤ n. To this end, with the help of (2.3a), we have

Akq1 = A(Ak−1q1) = A(QHk−1e1) = (AQ)Hk−1e1

= (QH + qn+1e
T
n )Hk−1e1

= QHke1 + qn+1e
T
nH

k−1e1

= QHke1,

where we have used the fact eTnH
je1 = 0 for 1 ≤ j < n − 1 because Hj is a

left-banded matrix with left-bandwidth j. Now use (2.2) and (2.4) to get

Kek+1 = Akq1 = Q(Hke1) = QRek+1.

This completes the proof of (2.6) for i = k + 1 ≤ n. By induction, (2.6) holds for
all 1 ≤ i ≤ n, yielding K = QR.

Remark 2.1. We emphasize that in Theorem 2.1, Q does not have to have mu-
tually orthogonal columns, although in theory for Q in step 1 of Algorithm 1,
QHQ = NIN . However, the columns of W in step 3 of Algorithm 1 does not have
mutually orthogonal columns even in theory, but Theorem 2.1 still applies so long
as rank(W ) = n which is guaranteed because rank(Vs) = n.

Suppose for the moment that the entries of f = [f1, . . . , fN ]T are values of a
polynomial

pn−1(x) = [1, x, . . . , xn−1]Ta = anx
n−1 + an−1x

n−2 + · · ·+ a1 (2.7)

at the nodes {xj}Nj=1, where a ∈ Cn is the coefficient vector, i.e., fj = pn−1(xj)
exactly for j = 1, 2, . . . , N . By Theorem 2.1, we know that in step 1 of Algorithm 1
there is a triangular matrix R as in (2.4) such that

Vx = QR, f = Vxa = Q(Ra) =: Qd, (2.8)

where d = Ra. Observe that f has the coordinate vector d in the orthonormal
basis composed of the columns of Q, modulo a constant scaling factor

√
N . By

Theorem 2.1(ii), step 3 of Algorithm 1 implies that

Vs = WR, y = Vsa = W (Ra) = Wd. (2.9)

Hence yj = pn−1(sj) exactly in theory. It also reveals that what Algorithm 1
tries to do is to find a proper basis composed of the columns of W so that y has
the same coordinate vector d in the basis as f has in (2.8), as oppose to use the
columns of Vandermonde matrix Vs as the basis, which is notoriously ill-conditioned
[2, 16, 17, 18]. For that reason, better accuracy in computed yj should be expected.
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3. Evaluation in finite precision. We now establish our rounding error analysis
for Algorithm 1. We assume that the nodes {xj}Nj=1 and {sj}Mj=1 are all real and
floating point numbers in the working precision, in notation xj ∈ FPN, sj ∈ FPN, but
the interpolating function values fj , also real, may contain errors. But we point that
our results in this section can be made valid for complex nodes and function values
by a few corresponding modifications: 1) all occurrences of machine unit roundoff
u need to be replaced by 7u to account at most 7 flops in the real or imaginary
part of +, −, ×, and ÷ of two complex numbers; 2) tridiagonal matrices as a result

of the Lanczos process, e.g., Ĥ in Lemmas 3.1 and 3.4, become upper Hessenberg

matrices as a result of the Arnoldi process; 3) error estimations involving Ĥ will
then depend on n (see Remark 3.1). For demonstrating the idea, we restrict our
following analysis to the real case.

3.1. Rounding error analysis in the construction stage. When f(x) is not a
polynomial of degree n − 1, pn−1 is determined by the least squares fitting and as
a result pn−1(sj) is most likely very different from f(sj). Since this paper concerns
with how to accurately evaluate the interpolating/best fitting polynomial at new
nodes, everything else being equal, for the purpose of error analysis and numerical
demonstrations later, it makes sense to assume values {fj} are from some polyno-
mial f(x) of degree n− 1 so that we can compare pn−1(sj) against f(sj). Even so,
in general f(xj) cannot be represented exactly as in FPN in the working precision.

Let FPN 3 f̂j ≈ f(xj) and f(x) =
∑n−1
i=0 aix

i. If evaluated by Horner’s rule for
f(xj) ∈ R, we have [7, section 1.6]

|f(xj)− f̂j | ≤ u

(
2(n− 1)

n−1∑
i=0

|aixij |

)
=: ε0fj , (3.1)

where u is the unit machine roundoff.
In view of this, in what follows, we model the input data as {(xj , f̂j)}Nj=1 where

|f(xj)− f̂j | ≤ ε0fj . Equivalently,

f̂ = [f̂1, . . . , f̂N ]T = f + ε0f , with ε0f = [ε0f1 , . . . , ε
0
fN ]T. (3.2)

With this setting, we attempt to establish the error |yj − ŷj | for the computed
output ŷj ∈ FPN of Algorithm 1 where yj = f(sj).

As our notation convention, in what follows, we will use ξ̂ ∈ FPN to denote the
computed value of its corresponding ξ. The following lemma summarizes an error
analysis of the Arnoldi process in finite precision [11, 23, 24].

Lemma 3.1. In finite precision, the Arnoldi process in Algorithm 1, for real

{xj}Nj=1, produces Q̂, Ĥ, and q̂n+1, satisfying

XQ̂ = Q̂Ĥ + β̂n+1q̂n+1e
T
n + F, (3.3)

where Ĥ ∈ Rn×n is tridiagonal and F ∈ RN×n satisfies ‖F‖F ≤
√
n‖X‖2u.

Based on this preliminary result and the connection in Theorem 2.1(ii), we can

estimate the difference Vx − Ṽx, where

Ṽx = Q̂R̃, with R̃ = [e1, Ĥe1, . . . , Ĥ
n−1e1]. (3.4)

Here we put tildes in Ṽx and R̃ instead of hats because there is no need to compute
them, but rather their very existence is for the purpose of our error analysis. This
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convention will be adopted in what follows, too, i.e., a symbol with a tilde denote
some quantity not needed during computations but for analysis only.

Lemma 3.2. Let ∆x := Vx− Ṽx =: [δv1, . . . , δvn]. Then δv1 = 0, δv2 = Fe1, and

δvi =
(
Xi−2F +Xi−3FĤ + · · ·+XFĤi−3 + FĤi−2

)
e1, 3 ≤ i ≤ n, (3.5a)

‖δvi‖2 ≤

√n i−2∑
j=0

‖X‖j+1
2 · ‖Ĥ‖i−j−22

 u =: cX,i · u, i ≥ 2, (3.5b)

‖∆x‖F ≤

√√√√ n∑
i=2

c2X,i · u =: cv,x · u. (3.5c)

Proof. We will show (3.5a) only. Both (3.5b) and (3.5c) are consequences of (3.5a)
and Lemma 3.1 together with ‖F‖2 ≤ ‖F‖F. Note that (3.5a) is true for i = 2, 3.
Assume now it also holds for i, and consider δvi+1. By (3.3),

δvi+1 = Xie− Q̂Ĥie1 = Xie− (Q̂Ĥ)Ĥi−1e1

= Xie− (XQ̂− β̂n+1q̂n+1e
T
n − F )Ĥi−1e1

= X(Xi−1e− Q̂Ĥi−1e1) + FĤi−1e1

= Xδvi + FĤi−1e1.

The relation (3.5a) then follows by induction.

Now, we consider step 2 of Algorithm 1. With computed Q̂ ∈ FPN, output

d̂ ∈ FPN is an approximation of Q̂†f̂ , that is, d̂ is the computed solution to

d = argmin
z∈Rn

‖f̂ − Q̂z‖2. (3.6)

It is known (see, e.g., [3, Remark 2.4.8]) that any standard method for the least

squares problem (3.6) is normwise backward stable. In particular, the computed d̂
is indeed the exact solution of a slightly perturbed one, namely,

d̂ = argmin
z∈Rn

‖(f̂ + δf)− (Q̂+ δQ̂)z‖2, (3.7)

where

‖δQ̂‖2 ≤ u · cls
√
n‖Q̂‖2, ‖δf̂‖2 ≤ u · cls‖f̂‖2, (3.8)

with cls = (6N − 3n + 41)n which often overestimates the error due to an artifact
of analysis. We have the following key lemma.

Lemma 3.3. Let f̂ = f +ε0f where f = Vxa, ã = R̃−1d̂ where R̃ is given by (3.4),

and ra := R̃(a− ã). Then

‖ra‖2 ≤
cau + 2‖ε0f‖2
σmin(Q̂)

, (3.9)

where σmin(Q̂) is the smallest singular value of Q̂,

ca = 2cv,x‖a‖2 + cls(
√
n‖Q̂‖2(‖d‖2 + ‖d̂‖2) + 2‖f̂‖2), (3.10)

cls = (6N − 3n+ 41)n as in (3.8), and cv,x is given in Lemma 3.2.
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Proof. Recall (3.7). We have

ξls := min
z∈Rn

‖(f̂ + δf)− (Q̂+ δQ̂)z‖2 ≤ ‖(f̂ + δf)− (Q̂+ δQ̂)d‖2

≤ ‖f̂ − Q̂d‖2 + ‖δf‖2 + ‖δQ̂‖2‖d‖2
≤ εd + u · cls(

√
n‖Q̂‖2 · ‖d‖2 + ‖f̂‖2).

Notice that

εd := ‖f̂ − Q̂d‖2 = min
z
‖f̂ − Q̂z‖2

= min
z
‖f + ε0f − Q̂z‖2

≤ ‖f + ε0f − Q̂R̃a‖2 (by choosing a particular z = R̃a)

≤ ‖(Vx − Ṽx)a‖2 + ‖ε0f‖2 (Ṽx = Q̂R̃ as in (3.4))

≤ u · cv,x‖a‖2 + ‖ε0f‖2. (by Lemma 3.2)

Therefore,

ξls ≤ u · cv,x‖a‖2 + ‖ε0f‖2 + u · cls(
√
n‖Q̂‖2 + ‖f̂‖2). (3.11)

Note from (3.11) and

ξls = ‖(f̂ + δf)− (Q̂+ δQ̂)d̂‖2 ≥ ‖f − Q̂d̂‖2 − (‖ε0f‖2 + ‖δf‖2 + ‖δQ̂‖2‖d̂‖2)

that

‖f − Q̂d̂‖2 ≤ ξls + ‖ε0f‖2 + ‖δf‖2 + ‖δQ̂‖2‖d̂‖2
≤ u · cv,x‖a‖2 + 2‖ε0f‖2 + u · cls(

√
n‖Q̂‖2(‖d‖2 + ‖d̂‖2) + 2‖f̂‖2).

(3.12)

On the other hand, we have

‖f − Q̂d̂‖2 = ‖Vxa− Ṽxã‖2
= ‖Vxa− Ṽxa+ Ṽxa− Ṽxã‖2
≥ ‖Q̂ra‖2 − ‖∆xa‖2 (Ṽx = Q̂R̃ given in (3.4))

≥ ‖Q̂ra‖2 − u · cv,x‖a‖2,

which combining with (3.12) gives

σmin(Q̂) · ‖ra‖2 ≤ ‖Q̂ra‖2
≤ u · 2cv,x‖a‖2 + 2‖ε0f‖2 + u · cls(

√
n‖Q̂‖2(‖d‖2 + ‖d̂‖2) + 2‖f̂‖2),

as expected.

For the factor ca in (3.10), since in general d ≈ d̂, we have

ca ≈ 2cv,x‖a‖2 + 2cls(
√
n‖Q̂‖2 · ‖d̂‖2 + ‖f̂‖2), (3.13)

which can be computed with the data from Algorithm 1.
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3.2. Rounding error analysis in the evaluation stage. We next analyze the
rounding errors occurring in steps 3 and 4 of Algorithm 1 which involve new nodes
{sj}Mj=1.

In step 3, we first compute Ŵ with S and Ĥ whose entries are floating point
numbers. Similarly to Lemma 3.1, in this stage, we are concerned with the rounding
errors during recursively calculating W accordingly to the equation SW = WH +
βn+1wn+1e

T
n . For this purpose, we use the following standard models for vectors

v and z, scalar α, matrices A and B that are exactly representable in the working
precision (see, e.g., [10, Section 2.7.8]).

fl(z + v) = z + v + δ, |δ| ≤ u · (|z|+ |v|),
fl(αA) = αA+ E1, |E1| ≤ u · |αA|,
fl(AB) = AB + E2, |E2| ≤ u · n|A| · |B|+O(u2),

where | · | on a vector/matrix is interpreted as taking entrywise absolute value.

Lemma 3.4. Given diagonal S ∈ FPN, β̂n+1 ∈ FPN and tridiagonal Ĥ ≡ [ĥij ] ∈ FPN

with ĥi,i+1 6= 0 for 1 ≤ i ≤ n, computed Ŵ ≡ [ŵ1, . . . , ŵn] satisfies

SŴ = Ŵ Ĥ + β̂n+1ŵn+1e
T
n +G, (3.14)

where G = [g1, g2, . . . , gn] satisfies g1 = 0, and ‖gi‖2 ≤ cw,i · u +O(u2) and

cw,i = 3
∥∥∥|S| · |ŵi|+ |ŵi−1ĥi−1,i|+ |ĥi,iŵi|

∥∥∥
2
, 2 ≤ i ≤ n. (3.15)

In particular, ‖G‖F ≤ cw · u +O(u2), where cw =
√∑n

i=2 c
2
w,i.

Proof. For i = 1, we always have ŵ1 = e1. For i > 1, it follows from the recursive
relation Swi = wi−1hi−1,i + hi,iwi + hi+1,iwi+1 that

ŵi+1 = fl

(
Sŵi − ŵi−1ĥi−1,i − ĥi,iŵi

ĥi+1,i

)
(3.16)

=
Sŵi − ŵi−1ĥi−1,i − ĥi,iŵi + E1 + E2 + E3 + E4

ĥi+1,i

+ E5,

where (by the diagonal matrix S)

|E1| ≤ u|S| · |ŵi|,

|E2| ≤ u|ŵi−1ĥi−1,i|,

|E3| ≤ u|ĥi,iŵi|,

|E4| ≤ u(|S| · |ŵi|+ |ŵi−1ĥi−1,i|+ |ĥi,iŵi|) +O(u2),

|E5| ≤ u

∣∣∣∣∣Sŵi − ŵi−1ĥi−1,i − ĥi,iŵi

ĥi+1,i

∣∣∣∣∣+O(u2).

Thus,

|gi| = |Sŵi − ŵi−1ĥi−1,i − ĥi,iŵi − ĥi+1,iŵi+1|

≤ |E1|+ |E2|+ |E3|+ |E4|+ |ĥi+1,i| · |E5|+O(u2)

≤ cw,i · u +O(u2),

where cw,i is given by (3.15).
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Remark 3.1. The proof of Lemma 3.4 can be easily modified to cover the case

when Ĥ is an upper Hessenberg matrix. It starts by modifying the numerator in

(3.16) to Sŵi −
∑i
j=1 ŵj ĥji and the rest of the proof accordingly.

Lastly, we analyze the forward rounding errors in computing y = Vsa:

εy = y − fl(Ŵ d̂) = Vsa− Ŵ d̂+ E, (3.17)

where |E| ≤ u2n|Ŵ | · |d̂|. Noting in Lemma 3.3, we have defined ã = R̃−1d̂, and
thus

‖εy‖2 = ‖Vsa− Ŵ d̂+ E‖2
≤ ‖Vsa− Ŵ d̂‖2 + ‖E‖2
= ‖Vsa− Ṽsa+ Ṽsa− Ṽsã‖2 + ‖E‖2 (Ṽs = Ŵ R̃ with R̃ as in (3.4))

≤ ‖(Vs − Ṽs)a‖2 + ‖Ṽs(a− ã)‖2 + ‖E‖2
≤ ‖∆s‖2 · ‖a‖2 + ‖Ŵ R̃(a− ã)‖2 + ‖E‖2 (∆s := Vs − Ṽs)

≤ ‖∆s‖2 · ‖a‖2 + ‖Ŵ‖2 · ‖R̃(a− ã)‖2 + ‖E‖2
= ‖∆s‖2 · ‖a‖2 + ‖Ŵ‖2 · ‖ra‖2 + u · 2n‖Ŵ‖2 · ‖d̂‖2 (‖ra‖2 as in (3.9)).

(3.18)

In view of (3.18), we can finally have an upper bound for ‖εy‖2 if we can bound
‖∆s‖2. This is done in the following lemma.

Lemma 3.5. For Ṽs = Ŵ R̃ with R̃ = [e1, Ĥe1, . . . , Ĥ
n−1e1] given in (3.4), let

∆s := Vs − Ṽs ≡ [δu1, . . . , δun].

We have δu1 = 0, δu2 = Ge1 and

δui =
(
Si−2G+ Si−3GĤ + Si−4GĤ2 + · · ·+ SGĤi−3 +GĤi−2

)
e1, 3 ≤ i ≤ n,

(3.19)
where G is given in (3.14). As a result,

‖δui‖2 ≤

cw · i−2∑
j=0

‖S‖j2 · ‖Ĥ‖
i−j−2
2

 u+O(u2) =: cS,i ·u+O(u2), i ≥ 2, (3.20)

and ‖∆s‖F ≤ u·cv,s+O(u2) where cw is given in Lemma 3.4 and cv,s =
√∑n

i=2 c
2
S,i.

Proof. It can be proved in the same way as that for Lemma 3.2 upon replacing X
and F by S and G, respectively.

Finally, we are now able to bound the forward error ‖εy‖2 in (3.17).

Theorem 3.1. In finite precision, computed vector ŷ by Algorithm 1 satisfies

‖εy‖2 = ‖y − ŷ‖2 ≤ u ·

(
cv,s‖a‖2 + ‖Ŵ‖2

[
ca + 2‖ε0f‖2/u

σmin(Q̂)
+ 2n‖d̂‖2

])
+O(u2),

(3.21)
where cv,s and ca are given in Lemma 3.5 and (3.10), respectively, a in (2.7) is the
coefficient vector of the underlying polynomial in the monomial basis, ε0f is given in

(3.2), and (Ŵ , Q̂, d̂) are the computed quantities of (W,Q,d).
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Proof. It is a consequence of (3.18), Lemmas 3.3 and 3.5.

Remark 3.2. (1) It is noticed in (3.21) that no condition number of either Van-
dermonde matrix Vx or Vs is involved. By taking a closer look at the factor

ca in (3.10), it turns out the condition number κ2(Q̂) := ‖Q̂‖2‖Q̂†‖2 plays a

role. As Q̂ is the computed “orthonormal matrix”, Q with QHQ = NIN , of

the Krylov subspace Kn(X, e), the orthogonality in Q̂ can be good initially,
and gradually becomes worse as some of Ritz values (i.e., the eigenvalues of

Ĥ) converge to ones of the true eigenvalues of X, i.e., some xj [11, 23, 24], but

here very rough orthogonality suffices as only the condition number κ2(Q̂) is

concerned, e.g., Q̂HQ̂−NIn ≈ 10−2 still gives κ2(Q̂) ≈ 1.02.

(2) In (3.21), the factor
‖ε0f‖2

u also plays a role. As we have mentioned in subsec-
tion 3.1, when the underlying f(x) = pn−1(x), by (3.1), it holds that

|ε0fj |
u
≤ 2(n− 1)

n−1∑
i=0

|aixij |. (3.22)

(3) The quantity ‖a‖2 being not too large is important.
(4) Overall, (3.21) reveals that when Algorithm 1 can in general deliver yj accu-

rately.

4. Chebyshev polynomial basis. For the case of approximation on an interval,
in this section, we will present a variant of Algorithm 1 using a well-known orthog-
onal polynomial basis, namely, the Chebyshev polynomials of the 1st kind after a
proper transformation.

The original Chebyshev polynomials of the 1st kind are defined as, for m ≥ 0,

Tm(t) =

{
cos(m arccos t), for |t| ≤ 1,

1
2

(
t+
√
t2 − 1

)m
+ 1

2

(
t−
√
t2 − 1

)m
, for |t| ≥ 1.

(4.1)

They satisfy recursively

T0(t) = 1, T1(t) = t,

Tm+1(t) = 2t Tm(t)− Tm−1(t) for m ≥ 1.

Suppose the nodes {xj}Nj=1 and {si}Mi=1 fall in the interval [a, b], i.e., xj , si ∈ [a, b]
for 1 ≤ j ≤ N and 1 ≤ i ≤M . We can perform a linear transformation

t(x) =
x

ω
+ τ, with ω =

b− a
2

and τ = −b+ a

b− a
, (4.2)

to translate x ∈ [a, b] into t ∈ [−1, 1], and use the translated Chebyshev polynomi-
als2 in x defined by

Tm(x;ω, τ) = Tm(x/ω + τ)

to span the fitting polynomial on [a, b], namely

Pn−1[x] =

{
n−1∑
i=0

aiTi(x;ω, τ) : ai ∈ R ∀i

}
.

2Although we present our extension in this section for real nodes {xj}. It can be further
extended to complex nodes that are enclosed in some ellipse for which transformed Chebyshev

polynomials (see [26, Section 6.11.2], [9] and [14]) can be designed as previously done for solutions
of linear systems of equations [26].
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By the recursive relation on Tm, we have

T0(x;ω, τ) = 1, T1(x;ω, τ) = x/ω + τ, (4.3a)

Tm+1(x;ω, τ) = 2(x/ω + τ) Tm(x;ω, τ)−Tm−1(x;ω, τ) for m ≥ 1. (4.3b)

The mth Chebyshev-Vandermonde matrix of order N with nodes {xj}Nj=1 is
defined as

[T0(x;ω, τ),T1(x;ω, τ), . . . ,Tm(x;ω, τ)] ∈ RN×(m+1).

Recall X = diag(x) and S = diag(s). Define

X =

[
(2/ω)X + 2τIN −IN

IN 0

]
, u =

[
T1(x;ω, τ)
T0(x;ω, τ)

]
, (4.4a)

S =

[
(2/ω)S + 2τIM −IM

IM 0

]
. (4.4b)

It can be verified that

[u,X u, . . . ,X n−1u] =

[
T1(x;ω, τ) T2(x;ω, τ) . . . Tn(x;ω, τ)
T0(x;ω, τ) T1(x;ω, τ) . . . Tn−1(x;ω, τ)

]
=: K

(4.5)
whose bottom half

Vx = [T0(x;ω, τ),T1(x;ω, τ), . . . ,Tn−1(x;ω, τ)] ∈ RN×n (4.6)

is the (n− 1)st Chebyshev-Vandermonde matrix of order N with nodes {xj}Nj=1.

Using the basis {Ti(x;ω, τ)}n−1i=0 , we express the fitting polynomial pn−1 by

pn−1(x) =

n−1∑
i=0

aiTi(x;ω, τ), (4.7)

and thus f ≈ Vxa. At new nodes {si}, we will have to evaluate

y = [pn−1(s1), . . . , pn−1(sM )]T = Vsa, (4.8)

where Vs = [T0(s;ω, τ),T1(s;ω, τ), . . . ,Tn−1(s;ω, τ)] ∈ RM×n. The evaluation
can be done in the same way as in Algorithm 1; that is, we first compute a well-
condition basis Q for Vx and obtain a QR-type decomposition Vx = QR, from
which a QR-type decomposition Vs = WR can be computed for new Chebyshev-
Vandermande matrix Vs. For this purpose, we have two different implementations.

4.1. Chebyshev with Arnoldi. Apply the Arnoldi process (see, e.g., [7, 11, 23])
with X on [xT,1T

N ]T, assuming no breakdown occurs, to get

X U = UH + βn+1un+1e
T
n with Ue1 = [xT,1T

N ]T, (4.9)

such that3 UTU = γ20I2N where γ0 = ‖[xT,1T
N ]‖2. By (4.5), we know that the

columns of Q := U(N+1:2N,:) form a basis ofR(Vx) for Vx as in (4.6). Now, according

to Theorem 2.1, K = UR where R = [e1, He1, . . . ,H
n−1e1] ∈ R2N×n is an upper

triangular matrix. This yields Vx = QR. Similarly, by Theorem 2.1 again, we can
construct matrix Z ∈ R2M×n based on the relation

SZ = ZH + βn+1zn+1e
T
n with Ze1 = [sT, eT]T.

3This is done by slightly modifying the usual Arnoldi process in normalizing each new Arnoldi
vector to have norm γ0 instead of 1.
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Algorithm 2 PFECvA: Polynomial fitting and evaluation with Chebyshev via
Arnoldi

Input: interpolating points {(xj , fj)}Nj=1, new nodes {sj}Mj=1 to be evaluated at,
integer 0 ≤ n ≤ N .

Output: values yj = pn−1(sj) for 1 ≤ j ≤ M of the best fitting polynomial of
degree n− 1:

pn−1 = argmin
p∈Pn−1

‖f − pn−1(x)‖2,

where x = [x1, . . . , xN ]T and f = [f1, . . . , fN ]T.

Construction stage
1: call the Arnoldi or SOAR [1] process with X on Ue1 = [xT,1T

N ]T to produce
X U = UH + βn+1un+1e

T
n , where H ∈ Rn×n is upper-Hessenberg;

2: compute d = argminz ‖f −Qz‖2, where Q = U(N+1:2N,:);

Evaluation stage
3: recursively compute Z, one column at a time, such that SZ = ZH +
βn+1zn+1e

T
n , where s = [s1, . . . , sM ]T and Ze1 = [sT,1T

M ]T;
4: return y = [y1, . . . , yM ]T = Wd, where W = Z(M+1:2M,:).

x

step 1: Arnoldi/SOAR

Q = U(N+1:2N,:)

X U = UH + βn+1un+1eTn
(Q,H)

Vx = QR

step 2

d = Q†f

W
SZ = ZH + βn+1zn+1eTn

step 3. W = Z(N+1:2N,:)

(s, H)

Vs = WR

y = Wd

step 4

Figure 4.1. Diagram illustration of Algorithm 2 where H at step
3 is from step 1.

Consequently, we have Vs = WR where W = Z(M+1:2M,:). Analogously to (2.8)
and (2.9), the least squares problem

pn−1 = argmin
pn−1∈Pn−1

‖f − pn−1(x)‖2, (4.10)

gives a polynomial whose coefficient vector a in the Chebyshev polynomial basis
is related to d = Q†f = Ra. Thus, y = Vsa = W (Ra) =: Wd. The overall
algorithmic procedure is summarized in Algorithm 2, where the SOAR process to
be explain in the next subsection is also mentioned as another way to yield an
equation of the same form as (4.9) but with a different orthogonality constraint. A
diagram illustration of Algorithm 2 is given in Figure 4.1.

In finite precision arithmetic, we can follow the same argument for establishing
Theorem 3.1. Due to similarity and artificial overestimation of constant factors
in terms of some low degree polynomials in n, N , and M in the upper bound,
we will not duplicate the effort in detailing those factors, but rather state critical
sensitivity factors that dictate the accuracy of computed y in (4.8). We will use

again the notation convention: ξ̂ to denote the computed quantity of ξ. Again for
the Arnoldi process (see, e.g., [22, Section 3.2] [15, Section 7.1]), a counterpart of
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(3.3) is

X Û = ÛĤ + β̂n+1ûn+1e
T
n + F, ‖F‖2 = O(‖X ‖2)u.

This leads to a counterpart of Lemma 3.2, roughly,

‖∆x‖F = ‖Vx − Ṽx‖F = O(‖X n−1‖2, ‖Ĥn−1‖2, ‖X ‖2, ‖Ĥ‖2)u,

where Ṽx = Q̂[e1, Ĥe1, . . . , Ĥ
n−1e1]. A counterpart of (3.14) reads as

S Ẑ = ẐĤ + β̂n+1ẑn+1e
T
n +G,

where ‖G‖F = O(‖S ‖2, ‖Ĥ‖2, ‖Ẑ‖2)u. Thus, for the difference

∆s = Vs − Ṽs = Vs − Ŵ [e1, Ĥe1, . . . , Ĥ
n−1e1],

similarly to Lemma 3.5, we have

‖∆s‖2 = ‖Vs − Ṽs‖2 = O(‖S n−1‖2, ‖Ĥn−1‖2, ‖S ‖2, ‖Ĥ‖2, ‖Ẑ‖2)u.

Consequently, the accuracy in computed y is governed by

‖y − ŷ‖2 ≤ u · ϑ

(
‖X n‖2, ‖S n‖2, ‖Ĥn‖2, ‖Ẑ‖2,

‖ε0f‖2/u
σmin(Q̂)

, ‖a‖2, ‖d̂‖2, ‖f̂‖2, κ2(Q̂)

)
+O(u2), (4.11)

where ϑ is a low degree polynomial of n, N , and M .
Compared with (3.21), the new way of evaluating y is affected by ‖X n‖2, ‖S n‖2

and κ2(Q̂). Fortunately, Theorem 4.1 below reveals that ‖X n‖2, ‖S n‖2 can grows
at most linearly with respect to n, whereas previously ‖Xn‖2, ‖Sn‖2 grows expo-
nentially at the rate (maxj |xj |)n and (maxj |sj |)n, respectively.

Lemma 4.1. For t ∈ [−1, 1] and integer n ≥ 0,∥∥∥∥[ 2t −1
1 0

]n∥∥∥∥
2

≤ 2n+ 1. (4.12)

Proof. The eigenvalues of J(t) :=

[
2t −1
1 0

]
are λ± = t ± ι

√
1− t2 = e±ιθ where

ι =
√
−1 and cos θ = t. Furthermore, if |t| < 1, then J(t) has the following

eigendecomposition:

J(t) =

[
eιθ e−ιθ

1 1

] [
eιθ

e−ιθ

] [
eιθ e−ιθ

1 1

]−1
=

[
eιθ e−ιθ

1 1

] [
eιθ

e−ιθ

](
1

2ι sin θ

[
1 −e−ιθ
−1 eιθ

])
.

Thus for any interger n ≥ 0,

[J(t)]n =
1

2ι sin θ

[
eιθ e−ιθ

1 1

] [
eιnθ

e−ιnθ

] [
1 −e−ιθ
−1 eιθ

]
=

[
sin(n+1)θ

sin θ − sinnθ
sin θ

sinnθ
sin θ − sin(n−1)θ

sin θ

]
.

Noticing that∣∣∣∣ sin(n+ 1)θ

sin θ

∣∣∣∣ =

∣∣∣∣ sinnθsin θ
cos θ + cosnθ

∣∣∣∣ ≤ ∣∣∣∣ sinnθsin θ

∣∣∣∣+ 1 ≤ · · · ≤ n+ 1,
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we have

‖[J(t)]n‖2 ≤
√
‖[J(t)]n‖1‖[J(t)]n‖∞ ≤ 2n+ 1.

Finally, letting t→ 1 or t→ −1 leads to (4.12) for t = ±1.

Theorem 4.1. For xi ∈ [a, b], i = 1, 2, . . . , N , X given in (4.4) satisfies

‖X n‖2 ≤ 2n+ 1.

Proof. For X of (4.4), there is a permutation matrix P so that

PX PT = diag(J1, . . . , JN ),

where Ji =

[
2ti −1
1 0

]
and ti = xi/ω + τ . It can be verified that ti ∈ [−1, 1] for

all i. Hence by Lemma 4.1, we have ‖Jni ‖2 ≤ 2n+ 1 for all i and

‖X n‖2 = ‖(PX PT)n‖2 = max
i
‖Jni ‖2 ≤ 2n+ 1,

as was to be shown.

4.2. Chebyshev with SOAR. We next introduce the SOAR process [1, 19] to
generate a basis matrix of R(Vx) in (4.6):

R(Vx) = R([T0(x;ω, τ),T1(x;ω, τ), . . . ,Tn−1(x;ω, τ)]).

The recursive formulas in (4.3), the structure of X in (4.4), and the matrix in (4.5)
together make SOAR, an Arnoldi-type procedure, a natural way to do so. There are
a couple of variations. In [19], a backward stable and memory-efficiency procedure
called TOAR is proposed. For our purpose, since N and n are generally not large,
the original version of SOAR [1] suffices. It recursively computes U one column at
a time according to (4.9). Denote by

U =

[
p1 p2 . . . pn
q1 q2 . . . qn

]
, H = [hij ]. (4.13)

What follows is a modified SOAR in that, besides (4.9), it is also required that

[q1, q2, . . . , qn]T[q1, q2, . . . , qn] = NIn.

It goes as follows. Initially, the first column of U is set to [xT,1T
N ]T. After k steps,

we have computed the first k columns of U and H. By (4.9), we have

X

[
pk
qk

]
=

k∑
j=1

hj,k

[
pj
qj

]
+ hk+1,k

[
pk+1

qk+1

]
,

or equivalently

hk+1,kqk+1 = pk −
k∑
j=1

hj,kqj , (4.14a)

hk+1,kpk+1 = [(2/ω)X + 2τIN ]pk − qk −
k∑
j=1

hj,kpj . (4.14b)

Noting the orthogonality among qj : q
T
i qj = 0 for i 6= j and qTi qi = N , we have

from (4.14a)

hj,k =
1

N
qTj pk for 1 ≤ j ≤ k,
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q̃k+1 = pk −
k∑
j=1

hj,kqj , hk+1,k =

∥∥q̃k+1

∥∥
2√

N
, qk+1 =

1

hk+1,k
q̃k+1,

and then from (4.14b)

p̃k+1 = [(2/ω)X + 2τIN ]pk − qk −
k∑
j=1

hj,kpj , pk+1 =
1

hk+1,k
p̃k+1,

provided hk+1,k > 0. The complete procedure is summarized in Algorithm 3, and
the corresponding polynomial evaluation method is presented in Algorithm 2 to-
gether with the diagram illustration in Figure 4.1.

Algorithm 3 The SOAR process [1]

Input: X, ω, τ ;
Output: U and H as in (4.13).

1: Let q1 = 1N ∈ RN and p1 = x;
2: for k = 1, 2, . . . , n do
3: p̃ = [(2/ω)X + 2τI]pk − qk, q̃ = pk;
4: for i = 1, 2, . . . , k do
5: % modified Gram-Schmidt
6: hi,k = pTk qi/N ;
7: p̃ = p̃− hi,kpi, q̃ = q̃ − hi,kqi;
8: end for
9: hk+1,k = ‖q̃‖2/

√
N ;

10: stop if hk+1,k = 0;
11: pk+1 = p̃/hk+1,k, qk+1 = q̃/hk+1,k;
12: end for

Omitting all detail, in finite precision, as before, we can have an error estimation:

‖y − ŷ‖2 ≤ u · ϑ

(
‖Ĥn‖2, ‖Ẑ‖2,

‖ε0f‖2
u

, ‖a‖2, ‖d̂‖2, ‖f̂‖2

)
+O(u2), (4.15)

where ϑ is a low degree polynomial of n, N , and M .

5. Numerical experiments. In this section, we will conduct numerical tests for
two purposes: 1) demonstrate the sharpness of the upper bound εup in (3.21),
for approximating f(sj) in finite precision arithmetic, and 2) evaluate the benefit
of using the Chebyshev polynomial basis. Our numerical tests are carried out in
MATLAB 2018Ra on a MacBook Pro with 16 GB 3733 MHz LPDDR4X. The IEEE
double precision is used with the unit machine roundoff u = 2−53 ≈ 1.1× 10−16.

To guarantee that we can evaluate f(x) accurately in the working precision for
the purpose of testing, we choose the underlying function f(x) as a polynomial in
the product form with zeros at given {αi}n−1i=1 , i.e.,

f(x) = (x− α1) · · · (x− αn−1), αi ∈ FPN. (5.1)

For any x ∈ FPN, we can be assured that the error ε0f defined in (3.2) is of O(u),

and thus
‖ε0f‖2

u in (3.21) is O(1). In fact, for any x ∈ FPN, if (n − 1)u ≤ 0.01, then
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[13, Lemma 3.4]

fl(f(x)) = (x− α1) · · · (x− αn−1) ·
n−1∏
i=1

(1 + δi) := f(x) (1 + 1.01(n− 1)δ),

where |δi| ≤ u for i = 1, 2, . . . , n− 1 and |δ| ≤ u. Therefore, in our numerical tests,
we simply use fl(f(x)) as the value f(x) at x.

Example 5.1. We set the interval [a, b] = [−1, 1] and choose the roots {αi}n−1i=1 of
f(x) in (5.1) uniformly distributed in [−1, 1]. Furthermore, we let n = 11 and 21.

The interpolating data points are {(xj , f̂j)}129j=1, where nodes xj = −1 + j−1
64 ∈ FPN

and f̂j = fl(f(xj)) for 1 ≤ j ≤ 129. The new nodes are si = −1 + i−1
128 ∈ FPN for

i = 1, 2, . . . , 257.
We generated randomly 100 such testing polynomials f(x) of (5.1). For each

testing polynomial, in Figure 5.1, we plot the absolute error ‖y − ŷ‖∞ as well as
upper bound εup in (3.21), where each entry yi of y is computed as yi = fl(f(si))
while ŷi of ŷ is pn−1(si) computed by Algorithm 1.
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Figure 5.1. Absolute error ‖y − ŷ‖∞ vs. upper bound εup in
(3.21) and empirical one

εup

N
√
n3

.

We observed from Figure 5.1 that upper bound εup in (3.21) overestimates the
true error ‖y − ŷ‖∞, not surprisingly. This is because the rounding error analysis
in section 3 reflects the worst-case scenario, as most error analyses usually do. For
example, for the least squares problem (3.6), a factor cls = (6N−3n+41)n = O(Nn)
shows up and contributes a magnifying factor about O(Nn3/2) to ca in (3.10) in the
final upper bound in (3.21). Interestingly, numerical results in Figure 5.1 suggests
that εup/[Nn

3/2] would be more indicative than εup itself.

Example 5.2. In this example, we will evaluate the effects of ‖Ŵ‖2 and ‖a‖2 on

error ‖y − ŷ‖, where Ŵ is the computed basis matrix associated with new nodes
in s. We let f(x) = Tn−1(x), the (n − 1)st Chebyshev polynomial (4.1) of the 1st

kind in [−1, 1], i.e., αj = cos
(

2j−1
2(n−1)π

)
for 1 ≤ j ≤ n− 1 in (5.1). The same nodes

{xj}129j=1 and {sj}257j=1 as in Example 5.1 are used and we call MATLAB’s chebypoly

[8] in package chebfun to generate {f(xj)}129j=1 and {f(sj)}257j=1. We observed that as

degree n increases, so does ‖Ŵ‖2. In Table 5.1, we report ‖y− ŷ‖∞, εup
Nn3/2 together
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Figure 5.2. Absolute error ‖y − ŷ‖∞ for three methods on f(x) in (5.1).

with ‖a‖2, ‖Ŵ‖2 and the condition number κ2(Q̂). Empirically, ‖y − ŷ‖∞ and

u ‖Ŵ‖2 and u ‖a‖2 are of the same order of magnitude.

Table 5.1. Absolute error, upper bound, ‖Ŵ‖2 and ‖a‖2 in Ex-
ample 5.2.

n ‖y − ŷ‖∞ εup

N
√
n3

‖Ŵ‖2 ‖a‖2 κ2(Q̂)

31 1.2712e-14 1.1918e-13 2.2414e+01 1.1751e+02 1.0000e+00
41 3.1530e-14 2.0783e-12 8.7119e+01 7.1896e+02 1.0000e+00
51 5.5622e-13 2.4895e-10 1.5549e+03 4.4686e+03 1.0000e+00
61 1.3901e-11 1.1939e-07 8.9303e+04 2.8054e+04 1.0000e+00

Example 5.3. This example is to evaluate our new ways based on the Chebyshev
polynomial basis. In the setting of Example 5.2, we did two implementations of
Algorithm 2 that differ in their step 1: calling the Arnoldi process or SOAR. In
Figure 5.2, we compare the two ways with Algorithm 2 for n = 11 and n = 21,
each on 100 randomly generated polynomials of form (5.1). It turns out that they
all deliver roughly the same accuracy in evaluating the best fitting polynomial at
{si}Mi=1, but the methods based on the Chebyshev polynomial basis hold an edge in
providing slightly more accurate evaluations.

We next perform tests on general intervals. In Figure 5.3, we consider interval
[10,12] with: randomly choosing roots αj uniformly on the interval, interpolating

nodes xj = 10 + j−1
64 ∈ FPN for j = 1, 2, . . . , 129, and nodes si = 10 + i−1

128 ∈ FPN

for i = 1, 2, . . . , 257 to evaluate at. Once again, numerical results demonstrate that
the methods based on the Chebyshev polynomial basis can achieve slightly more
accurate evaluations.

Finally, let f(x) = Tn−1(x) given in (4.1). Following Example 5.2 and using
MATLAB’s chebypoly, for each degree n ∈ [11 : 5 : 31], we generate data points

{(xj , f̂j = fl(Tn−1(xj)))}Nj=1 on the intervals [1, 2] or [2, 4], respectively, where {xj}
are equally spaced with stepsize 2−6. The three methods then are tested on the new
equidistant nodes {sj} with stepsize 2−7 on the respective intervals. The results
in Figure 5.4 clearly show that using the translated Chebyshev polynomial basis is
superior to the monomial basis.
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Figure 5.3. Absolute error ‖y − ŷ‖∞ for three methods on f(x) in (5.1).
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Figure 5.4. Absolute error ‖y−ŷ‖∞ for three methods on f(x) =
Tn−1(x) given in (4.1).

6. Conclusion. We have provided a theoretical justification for the effectiveness
of Algorithm 1 in the presence of rounding errors. Our analysis reveals an implicit
link R which acts as the bridge between the fitting stage: steps 1 and 2 of the
algorithm, and the evaluating stage: steps 3 and 4. It plays a unique role to bypass
a Vandermonde system in determining the best fitting polynomial and later evalu-
ating the polynomial at nodes {sj}Mj=1 and thereby successfully avoid the notorious
ill-conditionedness of a Vandermonde matrix. A detailed error analysis is given in
Theorem 3.1 that is helpful to better understand the behavior of Algorithm 1 in
finite precision. Inspired by Algorithm 1, for the least-squares approximation on an
interval, we propose to use an orthogonal polynomial basis instead of the monomial
basis. For that, we showcased the (translated) Chebyshev polynomials of the first
kind in Algorithm 2. Finally, we performed several numerical tests. The numer-
ical results reflect the behavior of the algorithms in finite precision arithmetic, as
revealed in Theorem 3.1 and other similar estimates; for the approximation in real
case on an interval, we also demonstrate the slightly more accurate evaluation of
the (translated) Chebyshev polynomials, especially when some of the interpolating
nodes have much greater magnitudes than 1.
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Although our analysis is restricted to real nodes and real function values, it can
be extended to complex nodes and complex function values as we commented at
the beginning of section 3.
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