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Abstract—Large scale deployment of the Internet of Things
(IOT) technology has produced a disruptive effect in many fields in
the recent past. Continuous connectivity combined with relatively
low physical implementation cost has produced a Big Data
paradigm shift, especially in industrial contexts. Unfortunately,
the ability to process and adequately make use of this data has
not kept pace with deployment. Specifically, models in use today
lack the ability to perform well with data from a variety of
sources. For instance, many models are trained using only one
type of data. Even models trained on multi-modal data lack the
ability to predict on different combinations of this data. Sensor
deployment on identical machines is often different depending
on context, leading to the need for multiple models created
for the same machine. The data in question has the ability to
radically shift how equipment failure is predicted and when
maintenance is completed; when processed correctly. The cost
savings on large industrial machines and potential saved downtime
could be enormous. This research proposes investigation of a new
unsupervised, technology agnostic anomaly detection framework
that can be utilized on any combination of data modes for a given
machine. This framework is then tested on a real-world anomaly
dataset, with results achieved that are significantly better than
prior approaches.

Index Terms—Industrial Internet of Things (IIoT), Anomaly De-
tection, multi-modal sensory data, Technology agnostic approach.

I. INTRODUCTION

In the world of industrial machinery, unplanned downtime

represents a costly liability. According to the Wall Street Jour-

nal [1], “Unplanned downtime costs industrial manufacturers an

estimated 50 billion US dollars annually.” Equipment failures

accounted for 42 percent of this unplanned downtime. Not only

do unplanned equipment failures result in large business costs,

so too does their method of prevention. Often in an attempt to

prevent unplanned failures, companies will perform preventative

maintenance on perfectly healthy pieces of machinery. Rather

than performing maintenance driven by data, the company

takes a one-size-fits-all approach. Just like unplanned failures,

this leads to unneeded, albeit planned, down-time. Additional

costs are incurred due to the maintenance itself. In a cost

driven environment, neither of these outcomes is desirable.

Continuous monitoring through IOT technology paired with

Deep Learning driven insights, provides the natural solution

to these two issues.
Anomaly detection can be utilized to detect rapid degradation

trends in machinery to inform diagnostics and timely main-

tenance. This allows a predictive maintenance scheme to be

utilized. For the most part, companies are realizing the potential

associated with the techniques described above. Retrofitting

existing machinery with IOT sensing technology is embraced

and recommended. However, since the ideology associated with

Industry 4.0 is relatively new, the IOT technology installed

often represents a patchwork of capabilities. For instance,

any large pump or motor may have vibration, temperature,

pressure, current, acoustic, thermal imaging, and error logs

installed. But the matter is complicated by the fact that any

given pump or motor may have all, one, or any combination

of the data modes described above installed. Although both

Anomaly Detection and remaining useful life (RUL) have

been investigated with regard to industrial IOT. The concept

of a generalized model that can utilize multi-modal data,

including unique combinations of that data, has not. Therefore,

a technology agnostic, multi-modal approach to equipment

monitoring represents an open area of research, which has the

potential to add value in a variety of industries.

In this paper, we propose an unsupervised, technology

agnostic anomaly detection model. This model leverages a

convolutional neural network (CNN) feature extractor paired

with a deep auto-encoder (AE) to predict equipment anomalies.

The model development is split into two phases. The first phase

investigates different CNN structures with a standardized AE

to determine the best possible feature extraction technique.

The method chosen for feature extraction is a VGG16 model

using the concatenated output of layer FC1. This phase also

investigates the conversion of sensory data into the Mel

Spectrogram format to facilitate meaningful feature extraction.

Phase 2 investigates the effects of sensor loss with respect to

both training and test sets. Finally, the models from both phases

are compared to a variety of other anomaly detection methods

on a benchmark repository. Our methodology outperforms all

other models on most metrics. Critically, on the key metric

(i.e., AUC), our model outperforms all prior techniques by 9

percentage points. Key contributions of this work include:

• The development of a highly performing multi-modal

based, unsupervised anomaly detection framework that

can be used on a variety of sensory data.

• Providing optimal pre-processing techniques for sensor

fusion.

• Selection of the best CNN architecture for feature extrac-

tion purposes.

• Investigation into the effects of sensor loss on model979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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performance.

The remainder of this paper is organized as follows: In

Section II, we introduce the background and motivation of this

research. We then present the proposed methods in Section III

and our experimental study in Section IV. Future research

directions are discussed in Section V and Section VI concludes

this paper.

II. BACKGROUND AND SIGNIFICANCE

As mentioned in the introduction, the ability to perform

diagnostic processing on a variety of data type combinations

represents a high value objective in the field of industrial

machinery. Through literature review, we find that this specific

objective has not been well studied as represented by the dearth

of papers in the area. Provided below are the literature review

results attained and a discussion on each work.

A. Unsupervised Anomaly Detection in Industrial IOT

Ref. [2] is an excellent introduction to the field of industrial

IOT anomaly detection. This work investigates state of the art,

discusses significance and challenges associated with the field,

and proposes a new architecture for anomaly detection. One

comment that particularly stands out, is that in the industrial

manufacturing sector, anomalies are correctly classified only 20

percent of the time. Unfortunately, this makes sense. Anomaly

detection is difficult; a supervised approach cannot often be

used effectively, due primarily to the definition of the field.

Anomalies do not occur often. This leads to a dearth of available

data and an imbalance in data distribution that is available.

Therefore, creative techniques must be utilized to predict events.

Ref. [3] is one of the most recent works in this field and also

utilizes a multi-source approach. This work utilizes a custom

built model containing statistical extraction, convolutional

layers, two-stage LSTM auto-encoder, and dense layers. This

model is utilized in both anomaly detection instances and

for predicting RUL. This work does not expressly investigate

handling multi-modal data and does not consider channel loss;

it does represent an excellent work that advances the state of

the art in this field.

B. Multi-modal Approaches to Equipment Monitoring

The authors in [4] propose a novel technique in relation

to multi-modal fault detection. Their specific use case is

industrial refrigeration. The tabular data utilized includes power

consumption, temperature, and current. This tabular data is

fused with features drawn from thermal images utilizing a CNN.

The tabular data and image features are then entered into an

Autoencoder for prediction purposes. Faults are then predicted

based on a threshold value associated with reconstruction

error. This work does not consider channel loss, but does

represent one of the only current approaches to fusing multi-

modal data. The reason this concept is significant is because

most industrial anomaly detection problems are inherently

multi-modal in nature. Fig. 1 visualizes one of the simplest

industrial system, namely a pump motor combination, and

possible deployed IOT monitoring sensors. Even on this simple

Voltage

Current

Vibration

Thermal
ImagingTemperature

Pressure Acoustics

Fig. 1. Illustration of the multi-modal pump/motor sensors.

piece of equipment, there are multiple modes of data, including

pressure, vibration, acoustics, current, voltage, thermal imaging,

and temperature. As systems become increasingly complex,

the number of monitoring data modes will increase as well.

Leveraging this information in a meaningful way is critical.

C. Technology Agnostic Approaches

Technology agnostic methods constitute a deeply under-

researched field. In [5], the authors provided one of the few

examples of works in this field. The proposed TARF model

utilizes a combination of Convolutional Neural Networks and

a Domain Adversarial Deep Neural Network to predict body

positions based upon phase data in RFID signals. The truly

novel contribution is the combination of inputs through image

encoding then extraction of features through a CNN. The idea

is that the underlying features will be the same, no matter

what type of IOT device is used to detecting them. This allows

the same network to be used for a variety of data modes.

This concept translates well to the work provided here, as

our framework seeks to draw out anomalous features from

multiple data sources and then fuse this information into a

singular prediction. Many of the concepts from this paper were

leveraged in the development of our techniques.

III. RESEARCH DESIGN AND METHODS

A. Key Challenges

The main challenges associated with this work can be

summarized in three main points:

1) Development of a standardized and modular sensor fusion

method;

2) A technique which is robust enough to handle multiple

channels of lost sensors;

3) An un-supervised scheme that can handle multiple data

modes, while without requiring the more costly labeled

data.

Item 1 is a difficult issue. Problems such as this do not often

lend themselves to standardization. Even so, this piece is of

the utmost importance. For a machine learning model to be

useful, generalization is crucial. The goal behind this work is
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to be agnostic to the hardware used for prediction, allowing

the scheme to be rapidly deployed on a variety scenarios

of different sensor types. A generalized feature processing

technique is indispensable in this matter.

Item 2 is likely the most under researched portion of this

work. The handling of sensor failure has been rarely, if ever,

discussed in similar works. Usually, research is focused on

initial deployment of networks and models. However, once

these systems are deployed, sensors will fail. Such failure is

not a question of if, but rather of when. The way the system

functions following a sensor failure is of the utmost importance

in terms of long-term viability.

Finally, the model must be unsupervised, full stop. This is

because for most real world equipment anomalies, labelled data

sets do not exist. Even where labeled data sets do exist, there is

no guarantee that the failure mechanisms from the past will be

the failure mechanisms of the future. This is inherently more

difficult to develop when compared to a supervised approach,

but in the long run, it will generally be more valuable.

B. Sensory Data Utilized

Model development and research is only as good as the data

used to train the model. For this work, the goal is to utilize a two

pronged approach to data development. For model development

and initial testing, a repository is used that meets three basic

criteria.

• Formatting and storage that allow rapid access and can

be leveraged for expeditious proto-typing;

• Real-world data that is indicative of a difficult-to-solve

anomaly detection problem;

• Prior publications having tested their methods on the

repository to allow for comparison purposes.

We believe the dataset chosen and discussed below ade-

quately meets all three of these criteria.

The baseline dataset detailed in [6] is used for bench-marking

our proposed anomaly detection scheme. The data captures

the operational sensor outputs of 15 high voltage converter

modulators (HVCM) from the years of 2020 through 2022. The

data collection process was undertaken at the the Spallation

Neutron Source facility of Oak Ridge, Tennessee in the United

States. It represents a world-class industrial anomaly detection

benchmark, through providing a huge real-world data repository

with quality labeled ground truth examples. Recent studies

are also available, providing output metrics for comparison

purposes [7]. Additionally, this dataset provides a variety

of sensor waveforms, making it ideal for our multi-modal

experiment. The sensor outputs available in this repository are

summarized in Table I

C. Proposed Model Architecture for Anomaly Detection

The proposed scheme can be subdivided into three parts,

which coalesce to address the key challenges enumerated

before. The sections are: (i) Data pre-processing, (ii) Feature

extraction/Sensor fusion, and finally (iii) Anomaly prediction.

The proposed model architecture is shown in Fig. 2.

TABLE I
SUMMARY OF THE AVAILABLE SENSORS (FOR ANOMALY DETECTION) [6]

Symbol Description Units

A+IGBT-I Current through IGBT switch-phase A+ A
A+*IGBT-I Current through IGBT switch-phase A+* A
B+IGBT-I Current through IGBT switch-phase B+ A
B+*IGBT-I Current through IGBT switch-phase B+* A
C+IGBT-I Current through IGBT switch-phase C+ A
C+*IGBT-I Current through IGBT switch-phase C+* A
A-Flux Magnetic flux density-phase A –
B-Flux Magnetic flux density-phase B –
C-Flux Magnetic flux density-phase C –
Mod-V Modulator voltage V
Mod-I Modulator current A
CB-I Cap bank current –
CB-V Cap bank voltage V
DV/DT Time derivative change: Mod-V voltage –

1) Pre-processing Techniques: To accomplish the goals

discussed in Key Challenge 1, it is of the utmost importance

that the sensory data be fused in such a way that allows the

use of any combination of sensors. The proposition behind

this methodology is that the underlying features will be the

same for a given pump or motor, regardless of the sensor type

used to detect the features. A CNN is an excellent method for

extracting the underlying features. Additionally, the outputs of

a CNN lend themselves well as input to an auto-encoder. The

problem therefore lies in translating any given data type into a

modular image format.

The method chosen for this was a Fast Fourier Transform

(FFT) conversion into a spectrogram format. This method

translates both a time and frequency component into a modular

and easily accessible format that can be used by a CNN.

These images were all shaped into the 224×224×3 format to

standardize the input window for use with pre-trained CNNs

(excepting for the EfficientNetV2S model, which requires an

input size of 384×384×3). Critically, the method chosen for

this translation utilized an MEL scaled format rather than a

traditional spectrogram [8]. The Mel spectrogram is usually

used for audio signals, which applies a frequency-domain

filter bank to audio signals windowed in time. Although a

detailed comparison of the two methods was not completed,

initial testing was performed that showed the MEL format

produced exceptionally better results than the traditional format.

Additionally, this format is used almost exclusively in current

state of the art audio classification techniques [9]. The better

performance is likely due to enhanced resolution at lower

frequencies, but a complete comparison represents a path of

future work. A visual comparison of the two methods applied

to the same sensor signal is provided in Fig. 2, where the left

plot is the traditional Spectrogram and right plot is the MEL

Spectrogram. The visual differences between the two methods

are clearly distinguishable even to the human eye.

2) Feature extraction/Sensor Fusion: As mentioned in the

previous section, a CNN was the obvious choice for feature

extraction. Its ability to draw out high-level features in a variety

of image types has been proven again and again [5], [10], [11].
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Fig. 2. Proposed anomaly detection model.

Fig. 3. Traditional Spectrogram (Left) vs. MEL Spectrogram (Right).

Additionally, a variety of different industrial data types such

as thermal imaging, sensory data transformed to the frequency

domain, vibration, acoustic signals, and video are all either

native or close to native for this structure. Unlike pre-processing,

the choice of CNN is a choice that can be heavily optimized,

since there are so many architectures available. We utilized a

phased approach to picking the optimal CNN, with the final

choice being VGG16 Layer FC1. The sensor fusion occurs

at the output of the CNN with a pre-defined one dimensional

feature vector provided to the next section of the model. This

vector is of the same size regardless of all the sensors being

available or not. The size is defined by a concatenation of the

maximum amount of sensors applicable in a given situation.

If a sensor is failed or unavailable, then that portion of the

feature vector is left as null.

3) Anomaly Prediction: This portion of the model is where

the actual prediction of anomalies occurs. The use of Auto

encoders for outlier detection has long been accepted as

an optimal method for unsupervised approaches [12]. High

dimensional data is entered into the encoder portion of the

network, which is then compressed in a non-linear fashion.

The network then attempts to try and generate the original

high dimensional data with the decoder. The network is trained

using reconstruction error as the target, hence learning what

“normal” looks like. The idea is that anomalous data will be

difficult for the network to generate hence leading to a high

reconstruction error [13]. This attribute is leveraged to identify

previously unseen failure mechanisms.

To be robust enough to handle channel loss, the autoencoder

must be trained using data showing lost sensors. During phase

one (CNN Selection), the autoencoder was standardized to

provide a fair comparison with regard to feature extraction and

sensor fusion. During phase two, the autoencoder structure was

optimized to provide the best possible architecture for anomaly

detection in the presence of lost sensors. The final structure

chosen in this research is visualized in Fig. 2.

IV. EXPERIMENT EVALUATION

As mentioned previously, the experimental and model

development portion of the work was divided into two distinct

phases. Phase one attempts to identify the optimal method

of feature extraction/sensor fusion through testing a series of

CNN techniques. During this time, the autoencoder portion of

the model was frozen. Phase Two utilizes the optimal method

chosen in Phase One, but seeking to optimize the autoencoder

portion of the model while also training on a large dataset that

includes sensor loss.

A. Phase 1: Feature Extraction/Sensor Fusion Selection

To allow rapid prototyping of models, this portion of the

work solely used a subset of the HVCM data. Particularly, the

data from the radio-frequency quadrupole (RFQ) subsystem is

utilized. This includes all of the features discussed in Table I.

The raw data is provided as a time series of three-dimensional

array. Following conversion to image format, there are 9,660

normal images available, representing 690 images per sensor.

An additional 2,548 anomalous images are available for testing

purposes. For feature extraction purposes, the models listed in

Table III were chosen and tested. The weights developed from

Imagenet training were also used for each model, representing a

degree of transfer learning. The output of each of these models

was flattened, if required and concatenated for entry into the

autoencoder. Following this sensor fusion, 500 samples were

used as the normal data for model training. The test data was

composed of 190 normal samples and 10 anomalous samples.

The autoencoder chosen for testing remains standardized

throughout Phase 1. The goal here is not necessarily to
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TABLE II
BENCHMARK RESULTS

Metric VGG-PH1 VGG-PH2 LSTM GRU CLSTM IF SVM LOF RF DT KNN CNN CNN-AE FNN-AE

Precision 0.96 0.97 0.91 0.90 0.90 0.77 0.41 1.00 0.35 0.39 0.30 0.30 0.91 0.91
Recall 0.94 0.70 0.88 0.87 0.87 0.75 0.83 0.77 0.73 0.43 1.00 0.78 0.80 0.76
Accuracy 0.96 0.88 0.87 0.85 0.85 0.69 0.58 0.82 0.87 0.82 0.89 0.87 0.80 0.76
F1 0.95 0.81 0.90 0.88 0.88 0.76 0.55 0.87 0.47 0.41 0.47 0.44 0.85 0.83
FOR 0.04 0.30 0.20 0.22 0.22 0.42 0.14 0.48 0.03 0.10 0.00 0.02 0.38 0.48
AUC 0.99 0.76 0.90 0.89 0.89 0.67 0.63 0.76 0.66 0.64 0.65 0.64 0.76 0.69

TABLE III
FEATURE EXTRACTION MODELS TESTED

Model Output Layer Output Shape

VGG16 [14] Final Pooling 7, 7, 512
VGG16 [14] Layer FC1 1, 4096
DenseNet201 [15] Average Pool 1, 1920
EffNetV2S [16] Top Drop Out 1, 1280

TABLE IV
FEATURE EXTRACTION EXPERIMENTATION RESULTS

Model Accuracy Precision Recall F1 AUC

VGG16-FP 0.94 0.40 0.40 0.40 0.52
VGG16-FC1 0.98 0.80 0.80 0.80 0.99

DenseNet 0.90 0.0 0.0 0.0 0.32
EffNetV2S 0.96 1.0 0.20 0.33 0.35

TABLE V
SENSOR LOSS TESTING

Model VGG16-FC1: PH1 VGG16-FC1: PH2

Accuracy (Best) 0.92 0.92
Accuracy (Average) 0.91 0.92

AUC (Best) 0.54 0.51

addressing this issue is through synthetic data augmentation.

This method would allow much higher training volumes,

improving discrimination. Another item of investigation would

be leveraging audio specific CNNs; since spectrograms are

native to these models.

VI. CONCLUSIONS

In conclusion, this paper investigated the use of a sensor

fusion techniques which allows a single model to learn

on multiple modes of data. A variety of feature extraction

techniques were compared, while the VGG16 CNN model

clearly distinguished itself as the optimal method. Even in

initial training without optimization, the results were excellent.

Next, a thorough investigation with regard to sensor loss was

performed, which demonstrated the difficulty associated with

this task and clearly defines a future area of research. Finally,

the models developed by this work were tested against prior

techniques used on this dataset. Our model clearly distinguished

itself as an optimal technique, outperforming past methods by

many basis points, demonstrating the efficacy of a multi-modal

approach.
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