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Abstract—In this paper, we propose a cross-domain, scalable,
and interpretable radio frequency (RF) fingerprinting system
using a modified prototypical network (PTN) and an explanation-
guided data augmentation across various domains and datasets
with only a few samples. Specifically, a convolutional neural
network is employed as the feature extractor of the PTN
to extract RF fingerprint features. The predictions are made
by comparing the similarity between prototypes and feature
embedding vectors. To further improve the system performance,
we design a customized loss function and deploy an eXplainable
Artificial Intelligence (XAI) method to guide data augmentation
during fine-tuning. To evaluate the effectiveness of our system in
addressing domain shift and scalability problems, we conducted
extensive experiments in both cross-domain and novel-device sce-
narios. Our study shows that our approach achieves exceptional
performance in the cross-domain case, exhibiting an accuracy
improvement of approximately 80% compared to convolutional
neural networks in the best case. Furthermore, our approach
demonstrates promising results in the novel-device case across
different datasets. Our customized loss function and XAI-guided
data augmentation can further improve authentication accuracy
to a certain degree.

Index Terms—Radio frequency fingerprinting, cross-domain
identification, few-shot learning, explainable artificial intelligence.

I. INTRODUCTION

In recent years, the proliferation of the Internet of Things

(IoT) has contributed to the widespread integration of wireless

technology into daily life. While the IoT-based applications

are promising, there are also existing security issues, such as

device identification and authentication [1], [2]. To mitigate

these security issues, various approaches have been devised

and put into practice. Although conventional cryptographic

authentication methods based on Internet Protocol (IP) and

Media Access Control (MAC) addresses have been widely

employed [3], they suffer from inherent vulnerabilities, such as

susceptibility to spoofing and tampering [4]. Moreover, these

methods may not be suitable for ultra-low-power devices or

outdated hardware that is no longer actively maintained [5].

To address these issues, radio frequency (RF) fingerprinting

has emerged as a promising device identification solution that

leverages the intrinsic characteristics of RF devices to improve

safety and security in a variety of settings [6].

RF fingerprints are attributed to inherent physical imper-

fections in the analog circuity of RF emitters during the

§The corresponding author is Xuyu Wang (xuywang@fiu.edu).

manufacturing process, which affects the transmitted signals

but does not affect the performance of devices. Therefore, RF

fingerprint serves as a unique property for each device, includ-

ing ultra-low-power devices and old equipment. In compar-

ison to conventional cryptographically secure authentication

methods, the distinctive nature of the RF fingerprint makes

it resistant to tampering and spoofing, thereby ensuring the

security of the device [7]. This property makes RF fingerprint

particularly suitable for high-level security demanding sce-

narios. Furthermore, RF fingerprint-based identification does

not require additional power consumption as it is intrinsically

linked to the transmitted signals. Due to the benefits of RF

fingerprint, numerous studies have studied RF fingerprinting

for device identification, including UWB [8], LoRa [9]–[11],

RFID [12], ZigBee [13], and WiFi [14]–[17].

RF fingerprinting generally includes fingerprint feature ex-

traction and multi-class identification. Effective feature extrac-

tion is essential for accurately classifying different RF finger-

prints. Knox et al. present an RF fingerprint authentication

method based on automatic gain control circuitry to distinguish

between different transmitters [18]. Huang et al. extract the

permutation entropy as the fingerprint to identify the unique

transmitter [19]. However, the above traditional RF fingerprint

extraction methods are hand-crafted, inefficient, and require a

thorough understanding of communication technologies and

protocols. In contrast, deep neural networks (DNNs) have

gained considerable popularity in RF fingerprinting. This is

primarily attributed to their powerful capability of feature

extraction and classification. By directly using raw or simple-

processed in-phase/quadrature (IQ) samples as input, DNNs

can automatically extract meaningful features and classify

various devices.

In an ideal scenario, deep learning-based fingerprinting

systems can automatically extract fingerprint features and

accurately classify devices. However, RF fingerprints are

embedded in transmitted wireless signals, and these signals

can undergo variations in decay and reflection across dif-

ferent environments. This can cause a problem for DNNs,

known as domain shift. While DNNs can be very accurate

in familiar domains, they struggle to adapt to new domains.

Moreover, DNNs typically have a fixed output layer size,

which limits their scalability. This means that they can only

classify a specific range of devices. This can be a problem

in real-world scenarios where device additions or removals
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are common. If a new device is added, the DNN needs to

be retrained from scratch with a new dataset. This can be a

time-consuming and expensive process. Fortunately, there are

a number of approaches that have been proposed to address

these issues, including transfer learning, adversarial domain

adaptation (ADA), and few-shot learning (FSL). In this paper,

we focus on FSL, as it does not require a large number of

samples and is relatively convenient to deploy. This alleviates

the burden of re-collecting data and re-training models, making

RF fingerprinting more practical in real-world situations.

Challenges. Designing a scalable and domain-robust RF

fingerprinting system based on FSL is still a challenging task.

There are several key challenges that need to be addressed.

First, while FSL demonstrates the capability to classify new

data with only a few samples, obtaining stable RF fingerprints

from a limited number of wireless signals poses difficulties

due to substantial variations across different domains. Sec-

ond, RF fingerprints are more subtle than domain factors

and transmitted signals. Additionally, emitter imperfections

may be similar between devices of the same manufacturer.

Therefore, the model’s feature extraction capability must be

highly precise in order to effectively identify devices across

diverse domains. Third, in complicated tasks, fine-tuning is

commonly employed to enhance model accuracy. However,

when working with a limited number of samples, there is a

risk of overfitting. To address this, regularization techniques

are typically introduced through data augmentation during the

fine-tuning process. Nevertheless, implementing an effective

data augmentation method specifically for wireless signals

within FSL frameworks remains challenging.

Our solution. To address these challenges, we carefully

redesign the classical prototypical network (PTN) [20] to

extract relatively stable fingerprint features across various

domains and accurately identify new devices with only a small

number of samples. Specifically, we design a similarity-based

loss function for training and fine-tuning the PTN to optimize

the feature extractor to generate unique RF fingerprints that

are robust in different domains. The well-trained extractor can

effectively extract unique fingerprint features for each device.

We then compute a prototype for each device by averaging

the extracted feature vectors. This prototype serves as a stable

fingerprint for that device. During the authentication phase,

the input device is assigned to the class whose prototype is

most similar to the feature vector of the input device, thereby

determining its identity. In complicated tasks, fine-tuning is

necessary but can lead to overfitting with only a few samples.

To address this issue, we leverage a classic eXplainable Arti-

ficial Intelligence (XAI) technique called Local Interpretable

Model-agnostic Explanations (LIME) [21] to design a data

augmentation technique for RF fingerprinting. To evaluate the

effectiveness of our proposed RF fingerprinting system, we

conduct comprehensive assessments across various datasets,

devices, and domains. The main contributions of this paper

are as follows.

• To the best of our knowledge, this is the first time

to discuss RF fingerprinting in the cross-dataset case.

This is a more challenging and practical scenario as it

encompasses both domain shift and scalability challenges.

• We devise a data augmentation technique based on an

XAI method and a customized loss function that aids in

improving the accuracy of the system.

• We experimentally demonstrate the effectiveness of our

proposed RF fingerprinting system in both in-dataset and

cross-dataset scenarios using three public datasets. The

results showed that our system can improve accuracy by

up to 80% in the best case for in-dataset scenarios, and

achieve a mean accuracy of 76% for the more challenging

cross-dataset scenario.

The rest of the paper is organized as follows. Section II

reviews related work. Section III introduces the background

and motivations. Section IV introduces our system design.

In Section V, we evaluate our experiments comprehensively.

Section VI concludes this paper.

II. RELATED WORK

In recent years, deep learning techniques have been widely

applied in the field of RF fingerprinting. In [22], convolu-

tional neural network (CNN) consistently outperformed other

networks such as long-short term memory (LSTM) and multi-

layer perceptrons (MLPs). [9] explored the various neural

networks with different signal representations (IQ, amplitude-

phase, and spectrogram) and employed the DeepLoRa aug-

mentation technique to enhance the performance in cross-

day scenarios. [23] showed the advantages of complex-valued

neural networks for RF fingerprinting. Shen et al. employed

a spectrogram-based approach and incorporated the estimated

carrier frequency offset (CFO) into their CNN model for LoRa

device fingerprinting [10]. Jafari et al. proposed traditional

neural networks on RF traces collected from six ZigBee de-

vices at various signal-to-noise ratio (SNR) levels [24]. Pan et

al. introduced the RF-DNA structure, a complex arrangement

of millions of Dual Natural Attributes (DNA) in a helical

configuration for RFIDs [12].

To enhance the robustness of RF fingerprinting, Chen et

al. proposed an identification system that combines software

defined radio (SDR) and transfer learning technology [25].

Yu et al. proposed a multi-sampling CNN and an SNR

adaptive region of interest (ROI) selection algorithm to extract

RF fingerprinting for the purpose of classifying ZigBee de-

vices [26]. RadioNet employed adversarial domain adaptation

and introduced a novel metric (device rank) to enhance the ef-

fectiveness of radio fingerprinting in cross-day scenarios [27].

In [28], semi-supervised deep learning and RF fingerprinting

with meta pseudo time-frequency labels have been deployed

to improve identification performance in small-scale labeled

datasets. Yang et al. proposed a solution to the security

issues by presenting a method of generating RF fingerprinting

recognition using generative adversarial networks (GAN) [29].

FSL has been widely used in RF fingerprinting and related

fields to solve domain-shift problems. [30] employed metric

learning to address domain shift and scalability issues in LoRa

RF fingerprinting. Jin et al. proposed a Wi-Fi-based human
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identification system by using FSL and generative adversarial

networks [31]. FewSense employed FSL to enhance the per-

formance of a cross-domain Wi-Fi sensing system [32]. Wi-

Learner improved generalization ability on cross-domain Wi-

Fi-based gesture recognition by using one-shot learning [33].

Our work differs from related work in several key aspects.

First, our datasets are generated from different groups, leading

to a more diverse division of devices and domains. Second,

we utilize the principles of few-shot learning and employ

a modified PTN to extract domain-invariant RF fingerprint

features, yielding promising results in various scenarios. Third,

we customize the loss function and propose an XAI-aided data

augmentation to improve cross-dataset accuracy.

III. BACKGROUND AND MOTIVATION

A. Problem Scope

RF fingerprint-based device authentication systems have

gained increased attention due to their uniqueness and ro-

bustness in countering spoofing and attacks. By using deep

learning, RF fingerprints can be better extracted and identified.

However, traditional deep learning approaches have a fixed

output size for a specific task, which poses a challenge for

RF fingerprinting systems that require frequent addition or

removal of devices. Meanwhile, incorporating new devices

also brings unseen domains to the system. The domain shift

issue becomes a critical concern in RF fingerprinting systems,

despite the powerful computing and mapping capabilities are

offered by deep learning models. It will significantly reduce

the accuracy in unseen domains. The primary reason behind

this is the sensitivity of wireless signals to environmental

changes, resulting in variations in scattering and reflection pat-

terns. Consequently, deep learning models can be effectively

trained on known domains but may struggle to generalize to

new devices and environments. Therefore, this paper aims

to address these challenges and is based on the following

objective and underlying assumption.

• The objective is to enhance the scalability and domain

robustness of the RF fingerprinting system, enabling it to

perform well across unseen domains and devices using

only a limited number of samples.

• We make an assumption that our system has a base

dataset Ebase consisting of a group of known devices

within a particular range of domains. The feature extrac-

tor is trained using this dataset and needs to extract stable

fingerprint features across various domains. Although the

metric-based approach has the ability to detect unknown

devices, this paper concentrates on addressing the domain

shift and the scalability challenges.

B. Motivation

1) Physical Layer Identification: Traditional IP or MAC

address-based identification schemes still face many security

issues. Moreover, some IoT devices lack sufficient computa-

tional power, making it impractical to deploy cryptographic

authentication schemes. To overcome these challenges, the

physical layer-based security paradigm has been proposed.

This paradigm leverages unique, permanent, and unavoidable

physical imperfections generated during the manufacturing

process. These imperfections can be utilized as unique finger-

prints, enabling them to be used for authentication purposes.

2) Domain Shift Problem: Although the deep learning-

based RF fingerprinting system is promising due to its unique-

ness, the domain shift problem still exists because the finger-

print is transmitted via wireless signals. This implies that even

though the fingerprint itself is stable and distinct, environmen-

tal changes can greatly affect signal propagation, resulting in

a lack of robustness in identifying RF fingerprints. Fig. 1 and

Fig. 2 present the accuracy drops as the unknown domains

increase, and the data distribution varies among different

datasets (i.e., CORES [34], WiSig [15], and ORACLE [35]).

Thus, a robust RF fingerprinting system is needed, which can

identify devices in new and diverse domains.
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Fig. 1. Classification accuracy de-
creases as the number of unknown
domains increases.
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Fig. 2. The dissimilarity between dif-
ferent datasets, where C, W , and O

represent CORES, WiSig, ORACLE.

3) Scalability Problem: In real-world scenarios, it is com-

mon to introduce new devices or remove existing ones from an

RF fingerprinting system. However, traditional deep learning

methods such as CNN and LSTM encounter scalability limi-

tations because their fixed output layers constrain their ability

to handle a varying number of classes once trained. Adapting

these models to new settings requires extensive retraining with

a large volume of training samples, which is time-consuming.

4) Small Sample Problem: During the training phase of the

RF fingerprinting system, a vast dataset can be collected to

train a deep learning model offline. However, when it comes

to implementing the system in new domains or with new

devices, collecting a large dataset becomes impractical and

infeasible, which can pose challenges related to domain shift

and scalability. This limitation has the potential to impact the

system’s ability to accurately identify devices. Therefore, it

is necessary to ensure the efficacy of the RF fingerprinting

system even with only a limited number of new samples.

C. Few-shot Learning

Few-shot learning aims to achieve generalization to new

classes and new domains that are not seen in the training

set, based on only a limited number of examples of each

new class. This distinguishes it from most traditional deep

learning techniques that require large quantities of labeled

data for training. As a result, FSL is particularly valuable in

scenarios where labeled data is scarce or costly to obtain and
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first convolutional block contains a convolution layer with 256
filters of size 1 × 7 with stride 1, a ReLu activation layer,

and a batch normalization layer. The second convolutional

block has a similar structure as the previous one, except that

the convolution layer is different. The second convolutional

layer has 2× 7 convolution kernels with stride 1 in 80 output

channels. Both of the two layers have a 0× 3 padding. Then,

the following linear layers consist of 1024 and 256 neurons,

respectively. These layers are accompanied by a ReLU acti-

vation function and one-dimensional batch normalization. To

ensure the embedding vectors reside on a hypersphere with a

constant radius, an L2-norm layer is added prior to the final

classification layer as

fθ(Xi) =
f ′
θ(Xi)

∥f ′
θ(Xi)∥2

, (1)

where f ′
θ(Xi) is the output before the L2-norm ∥·∥

2
, and

fθ(Xi) denotes the final feature embeddings. After the feature

extraction block, there is a final classifier C(·) that can be

adjusted according to the number of known devices. The fea-

ture extractor is trained using a traditional supervised learning

scheme, employing our base set Ebase as the training data.

3) Stable Fingerprints: Maintaining the stability of device

fingerprints is crucial when identifying devices across diverse

domains. To achieve this, we employ a modified PTN which

involves calculating the mean value of the generated feature

vectors, resulting in stable and reliable representative vectors.

These representative vectors, known as prototypes, encapsulate

the fundamental characteristics of a specific class of devices.

By computing prototypes for each device, we obtain gener-

alized representations that remain relatively invariant across

different domains. These stable representations play a crucial

role in the classification process, enabling accurate and reliable

device identification.

After we employ the feature extractor fθ to obtain the

embedding vectors from the input IQ samples as illustrated

in Section IV-B2, the prototype for each device is determined

by averaging all the embedding vectors belonging to the same

class. The computation of prototypes can be expressed as

follows:

ci =
1

n

n∑

Xi∈Edata

fθ(Xi), (2)

where ci denotes the prototypes of device Yi, and n denotes

the number of samples per class in the dataset.

C. Precise Fingerprint Extraction

By implementing the above processes, we can extract stable

RF fingerprints for different devices. However, it is still a

challenge to ensure that these stable RF fingerprints can be

used to effectively distinguish devices across various domains.

1) Similarity Metric: Once the prototypes of each device

have been determined, the model can leverage them to generate

predictions for new samples. This is achieved by computing

the similarity between the feature embedding of the new

sample and the prototypes associated with each class. In our

experimental setup, we quantify the similarity scores by using

cosine similarity as below:

D = d(c, fθ(Xi)) =
c · fθ(Xi)

∥c∥
2
∥fθ(Xi)∥2

, (3)

where D is the similarity matrix between the input sam-

ple Xi and prototypes of all known devices. The cosine

similarity d(c, fθ(Xi)) between a feature embedding and its

corresponding prototype ranges from −1 to 1. A value closer

to 1 indicates higher similarity. The prediction result will be

determined based on the class with the highest similarity score.

In the original PTN [20], authors deploy Euclidean dis-

tance as the similarity metric. While both metrics have their

advantages, we choose cosine similarity for the following

reasons. First, cosine similarity is scale-invariant whose value

has a fixed range from −1 to 1, while Euclidean distance

is variant. Given our focus on addressing domain shift and

scalability issues, we prefer a fixed metric to assess similarity.

Euclidean distance may change drastically when introducing

novel devices and domains, which is not meet our expec-

tations. Second, cosine similarity focuses on the orientation

of embedding vectors. By considering the angular separation

rather than the magnitude, cosine similarity allows for a more

robust comparison of embedding vectors.

2) Accurate Classification: To ensure that the RF finger-

print features are extracted accurately, the first step is to align

the fingerprint feature with its corresponding device class.

During the training phase, we only use base set B to train the

model. The feature extractor fθ generates feature embeddings,

while the classifier C(·) produces logits. To measure the

difference between the predicted outputs and the actual labels,

we employ the classic multi-class cross-entropy loss function

as follows:

LCE = −
∑

i

Yi · log(C(fθ(Xi))). (4)

By using cross-entropy loss, we can ensure the extracted RF

fingerprints can be correctly classified.

3) High Similarity: Given that our system authenticates

devices by comparing feature vectors with prototypes rather

than relying solely on the output logits from the classifier,

using only cross-entropy loss for model training can poten-

tially introduce biases. To address this concern, we propose a

similarity loss, which aims to generate an RF fingerprint that

exhibits high similarity to the corresponding prototype.

Since we already have a cross-entropy loss function to

facilitate the accurate classification of input data, the similarity

loss function mainly focuses on optimizing our model from

a similarity perspective. First, the cosine similarity between

the feature vector of the true label and its corresponding

prototype should be maximized. This high similarity assists

the model in making accurate classifications. Second, the

maximum similarity score in the similarity matrix D should

be as high as possible. Hence, we compute similarity loss as

LS = α · (1− dtrue) + β · (1− d1), (5)
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where dtrue denotes the similarity score of true labels, and

d1 represents the highest similarity score. By employing

similarity loss, the model is optimized to output feature em-

beddings with higher similarity to the corresponding prototype.

It is important to mention that we avoid directly calculating

the absolute error between the maximum similarity and the

similarity of the true labels. This is because it may lead to the

undesired situation that the two similarities may be the same

but relatively low, even if the classification is correct.

4) High Discriminability: Deploying the above similarity

loss can yield feature vectors that closely resemble the target

prototype. However, this may also generate interfering features

that exhibit high similarity to the prototype. To overcome this

issue, we propose a discriminability loss function which is

inspired by the concept of triplet loss. The purpose of this

discriminability loss is to encourage feature embeddings to

exhibit a low similarity to other prototypes. By incorporating

this discriminability loss, we aim to enhance the distinctive-

ness of the feature vector in relation to its associated prototype.

Therefore, we have

LD = max(0, ϵ+ d2 − d1), (6)

where d2 denotes the second highest similarity score, and ϵ

represents the discriminability level.

Overall, the loss function of our system is a combination of

cross-entropy loss, similarity loss, and discriminability loss as

L = λ1 · LCE + λ2 · LS + λ3 · LD, (7)

where λ1, λ2, and λ3 are coefficients that control the signif-

icance of the three loss components. By implementing this

customized loss function, our RF fingerprinting system is able

to extract more precise fingerprints.

D. Few-shots Fine-tuning

In certain challenging scenarios, fine-tuning becomes essen-

tial to improve the system performance. However, it is impor-

tant to note that our system operates on a few samples from

the support set. This limited available samples may hinder the

ability of the model to effectively generalize to the challenging

task. Data augmentation is a widely used technique that helps

machine learning models improve their generalization ability

and make accurate predictions on previously unseen data.

However, due to the small size of the support set and the unin-

tuitive nature of the input IQ samples, using inappropriate data

augmentation methods may degrade the model’s performance.

To address this challenge, we employ LIME to guide the data

augmentation process.

Using the inputs provided by the support set Esupport, we

can generate predictions by our system. Since our system

primarily focuses on extracting domain-invariant features to

output results, we employ LIME to identify the specific areas

of focus. We first partition the support time-domain IQ data X s
i

into 16 smaller segments. From these segments, we randomly

select subsets to create perturbed IQ samples X p
i . We then

feed these perturbed samples into our system to generate

corresponding perturbed predictions Yp
i . Next, we compute the

cosine distances between the perturbed data and the original

data, which serves as the weights of the perturbed samples.

Subsequently, we train a linear regression model (i.e., an

explainable model) using the perturbed samples, associated

weights, and perturbed predictions. The resulting coefficients

obtained from this linear model indicate the level of attention

our system assigns to different sections of the data. Larger

coefficients signify a higher degree of focus on specific areas.

Algorithm 1 Feature extractor fine-tuning with LIME-guided

augmentation

INPUT: Support set Esupport = {(X s
i ,Y

s
i )

K , i = 1, . . . , N},
feature extractor fθ, classifier C, learning rate lr, hyper-

parameters α, β, ϵ, λ1, λ2, λ3

OUTPUT: fine-tuned feature extractor fθ
Step 1: Fine-tune with support set

1: for number of epoch do

2: for (X s
i ,Y

s
i )

K ∈ Esupport do

3: ci ←
1

K

∑K
fθ(Xi)

4: D← CosineSimilarity(c, fθ(X
s
i ))

5: (di, d1, d2)← (Di,max(D), secondmax(D))
6: LCE ← CrossEntropy(C(fθ(X

s
i )),Y

s
i )

7: LS ← α · (1− di) + β · (1− d1)
8: LD = max(0, ϵ+ d2 − d1)
9: L = λ1 · LCE + λ2 · LS + λ3 · LD

10: end for

11: θ ← θ − lr · ▽θL
12: end for

Step 2: LIME-guided augmentation

13: for (X s
i ,Y

s
i )

K ∈ Esupport do

14: X p
i ← Segment(X s

i )
15: Yp

i ← argmax(CosineSimilarity(c, fθ(X
p
i ))

16: Regions← LinearRegression(X p
i ,Y

p
i , d(X

p
i ,X

s
i ))

17: X a
i ← X

s
i [Regions]

18: Eaugment ← Esupport + {(X
a
i ,Y

s
i )

K , i = 1, . . . , N}
19: end for

Step 3: Fine-tune with augmented set

20: for number of epoch do

21: fθ ← FineTune(Eaugment)
22: end for

23: return fθ

In this study, we augment the support data by preserving

values in the segments of the top 10 largest coefficients

and setting all other values to zero. This approach aims

to compel our feature extractor to extract robust fingerprint

features from important segments and ignore interference from

other segments. Meanwhile, considering the limited volume of

data in the support set, this procedure does not substantially

increase time complexity.

E. Summary

In this section, we will introduce how to integrate these

blocks to train our system and make predictions. First, our

customized loss function is used to optimize the feature
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extractor on the base set using a classic supervised learning

scheme. This ensures that the feature extractor extract features

that are discriminative for the different device classes. Then,

we propose a LIME-guided augmentation with fine-tuning

to improve the performance on the challenging tasks. The

pseudocode of implementing LIME-guided augmentation in

fine-tuning is described in Algorithm 1. The first step is fine-

tuning the model with a small number of iterations. This allows

the extractor warm up to the features of the new samples.

Next, LIME is deployed to guide data augmentation for the

fine-tuned model. Last, the model is fine-tuned again using the

augmented dataset. The whole process is not time-consuming

because the amount of data and the number of iterations are

small.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

In all experiments, the learning rate was set to 0.0001.

Kshot, Nquery , and max epochs were set to 5, 20, 50,

respectively. The value of Nway was set to the size of all

label sets for the datasets involved in a given experiment. The

coefficients λ1, λ2, λ3 for the loss function L were set to 1.0,

0.8, and 0.8. For the similarity loss LS , the alpha and beta

coefficients were 1.2 and 1.0, respectively. The experiments

were conducted on a server with an Intel Xeon E5-2650L v4

CPU and 8 NVIDIA GeForce GTX 1080Ti GPU.

For the in-dataset case, we selected data with partial do-

mains as the base set, and the remaining data were allocated

to the support and query sets. For the cross-dataset scenario,

we designated devices with all domains as the base set, while

new devices with all domains constituted the target domains.

B. Datasets

We leverage three public datasets in this paper. Table I

shows brief information on these datasets.

1) ORACLE: The original ORACLE dataset [35] is cap-

tured with 16 USRP X310 transmitters and a USRP B210

receiver at 6-foot increments from 2 to 62 feet. The dataset

is divided into ORACLE.1 and ORACLE.2 based on time.

We also include ORACLE.F1 and ORACLE.F2, which are

generated by frame isolation as mentioned in Section IV-B1.

We use distance as the domain partition criterion. Due to an

inadequate number of frames, we exclude distances of 2, 56,

and 62 feet. As a result, there are a total of eight domains

in each ORACLE dataset. We randomly select 10 devices in

4 domains as the base set B, the remaining data are used to

discuss the domain shift and scalability issues.

2) CORES: The original dataset [34] consists of 163 con-

sumer Wi-Fi cards arranged in a grid at the Orbit Testbed [36].

This dataset was collected by the UCLA CORES lab and

is hereafter referred to as CORES. In this work, we use

the 58 devices in all five days of this dataset, where each

day represents a distinct domain. The base set of CORES

comprises a total of 30 devices across 2 domains.

TABLE I
DATASET SUMMARIES.

Dataset Name Emitter Models Examples Domains

ORACLE.1 16 USRP X310 1,280,000 8

ORACLE.2 16 USRP X310 1,280,000 8

ORACLE.F1 16 USRP X310 256,000 8

ORACLE.F2 16 USRP X310 256,000 8

CORES 58 COTS Wi-Fi Cards 250,681 5

WiSig 130 COTS Wi-Fi Cards 270,616 4

3) WiSig: Conducted by the same team as the CORES,

the WiSig dataset [15] is collected by 41 unspecified USRP

receivers to capture wireless signals from 174 COTS Wi-Fi

cards. Being much larger than previous datasets, we use data

from only one receiver (labeled ”node3-19”) for simplicity.

We use the 130 emitters present on all four days. The base set

is constructed using 100 devices across two domains.

C. Evaluation on the Cross-domain Case

In the cross-domain case, our primary focus is to address

domain shift. We train our model using source domains and

then test its performance on unknown domains. To demon-

strate the robustness of our system with respect to domain

shift, we also evaluate several classic methods in this setting.

The results of various methods in the cross-domain scenario

are presented in Table II. While the performance varies across

models, they all exhibit satisfactory results in source domains.

However, when it comes to target domains, their accuracy

significantly decreases. In particular, when considering the

ORACLE dataset, even the K-nearest neighbor (KNN) [37],

CNN [35] and LSTM [11] models that perform well in

source domains (above 90%), struggle to achieve acceptable

performance in target domains, with only about 7% accuracy.

This can be attributed to the excessive impact of distance

on the signal strength, resulting in the failure classification.

The accuracy still remains inadequate even with ADA [38]

and ADA+KNN [27] methods, likely because the extracted

domain-invariant features are not related to fingerprints. Be-

sides, all models demonstrate superior performance on CORES

and WiSig datasets compared to the ORACLE datasets. As

previously mentioned in Section V-B, these two datasets were

collected by the same team and partitioned according to

different days. This suggests that domain shifts that occur at

different distances can be more disruptive than domain shifts

that occur in the same environment over time.

Our method consistently outperforms other models across

all datasets, even in cases where other models perform well.

For example, on the WiSig and CORES datasets, our method

achieves exceptionally high accuracy rates of 95% and 99%,

respectively. On the ORACLE dataset without signal prepro-

cessing, our method effectively enhances accuracy by approx-

imately 70%. Furthermore, for the framed ORACLE datasets,

our method achieves accuracy improvements exceeding 80%.

These results clearly highlight the consistent and substantial

enhancements delivered by our approach.
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distance to determine the similarity. However, it appears that

the cosine similarity provides more effective measurements

to our system when it comes to RF fingerprinting. This is

probably because cosine similarity is more effective at mea-

suring the similarity between fingerprint feature vectors within

a multi-dimensional space. In comparison to the classic cross-

entropy loss, our customized loss function also contributes

to improving RF fingerprinting classification accuracy. The

impact of our loss function on accuracy is more pronounced

in the cross-dataset case as compared to the cross-domain

scenario. For example, the accuracy increases from 84.52% to

91.13% in the OF1→C case. These findings demonstrate the

effectiveness of our customized loss function in RF fingerprint

extraction and classification.

TABLE IV
TARGET ACCURACY IN CROSS-DOMAIN AND CROSS-DATASET SCENARIOS

WITH DIFFERENT SIMILARITY METRICS AND LOSS FUNCTIONS.

Cross-Entropy Loss Customized Loss

Euclidean Cosine Baseline GN LIME

OF1 0.7809 0.8172 0.8288 0.8210 0.8770
OF2 0.7672 0.8492 0.8396 0.8480 0.8630
O1 0.7136 0.7516 0.7634 0.7090 0.7809
O2 0.7225 0.7699 0.7712 0.6910 0.7910
W 0.8753 0.9355 0.9464 0.9503 0.9512
C 0.9771 0.9850 0.9827 0.9928 0.9971

OF1→W 0.4963 0.5021 0.5406 0.7650 0.7792
OF1→C 0.8175 0.8452 0.9113 0.9162 0.9282

F. Evaluation on LIME-guided Data Augmentation

Table V shows the results of using different data aug-

mentation techniques in the cross-dataset scenario. In con-

junction with the previous findings, our proposed LIME-

guided data augmentation demonstrates an enhanced perfor-

mance for our RF fingerprinting system. We can see that

the CORES→ORACLE.F1 case shows the most significant

improvement, with an accuracy increase of approximately 41%
compared to the baseline PTN. LIME is deployed to under-

stand the important regions of the input IQ samples, allowing

us to retain these parts as the augmented data. Consequently,

our system becomes better at extracting features from these

regions, making it more resilient to irrelevant disturbances.

For instance, Gaussian noise data augmentation is ineffective

for the ORACLE dataset in most cases, resulting in a de-

cline in model accuracy. However, using LIME-guided data

augmentation, accuracy improvements are observed across all

cases. In particular, in the cross-domain scenario of ORACLE

datasets, where Gaussian noise significantly decreases accu-

racy, LIME-guided data augmentation continues to improve

model performance.

G. Evaluation on Hyperparameter

In the N -way K-shot scheme of FSL, it is generally

observed that higher accuracy is achieved with an increase

in the number of shots. Fig. 7 shows the trend of accuracy

TABLE V
TARGET ACCURACY IN CROSS-DATASET SCENARIOS WITH DIFFERENT

AUGMENTATION TECHNIQUES.

OF2→W OF2→C W→OF1 W→C C→OF1 C→W

GN 0.7297 0.9155 0.4625 0.9762 0.5113 0.8104
LIME 0.7442 0.9298 0.4938 0.9805 0.5531 0.8218

improvement as the number of shots increases. In cases where

the accuracy of a 1-shot approach is insufficient, such as

W→OF1, a significant improvement of approximately 35%
can be achieved by using 20 shots. However, it is important

to note that this increase is not linear. Improvements in

accuracy are most significant from 1-shot to 5-shots, after

which accuracy tends to improve more slowly. Increasing the

number of shots in FSL can improve accuracy, but it also

requires more data and computational resources. This can be

a challenge, as it contradicts the original intent of our system,

which is to generalize from a small amount of data. Therefore,

the choice of the number of shots is a trade-off between

accuracy gains and resource requirements. On the other hand,

Fig. 8 shows that our system is relatively stable as the number

of queries varies.

Number of K Shots
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OF1 W

OF1 C

W OF1

W C

C OF1

C W

Fig. 7. The performance of our sys-
tem varies with the number of training
shots (K).

Number of N Queries
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u
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Fig. 8. The performance of our sys-
tem varies with the number of testing
queries.

VI. CONCLUSION

This paper presented a novel approach for building a robust

RF fingerprinting system to effectively address the challenges

of domain shift and scalability. To overcome these challenges,

our system employed a modified PTN to enable adaptation to

new domains and devices with only a few samples. To further

enhance performance, we designed a customized loss function

and developed a LIME-guided data augmentation technique.

We extensively evaluated the capabilities of our system across

various scenarios and datasets. Our results demonstrated that

our approach outperformed other methods in addressing do-

main shift issues. To the best of our knowledge, this study is

the first to comprehensively address these challenges across

different datasets and achieve outstanding performance.
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