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Abstract—The lack of sufficient radio frequency (RF) data
constrains the performance of AI-empowered wireless communi-
cations, networking, and sensing research. RF data collection
is more difficult and costly than other data types (e.g., text
or image). To this end, we propose to exploit the strength of
diffusion models on latent domains to generate super-realistic
data for RF sensing applications. In this demo, we present a
novel lightweight AIGC framework centered on latent domains,
termed Activity Class Conditional Latent Diffusion Model (RFID-
ACCLDM), for easy generation of large amounts of RF data at
low cost, conditioned on activity class labels. We demonstrate
the high performance of RFID-ACCLDM with RFID-based 3D
human pose estimation and human activity recognition (HAR)
model as representative downstream tasks.

Index Terms—AIGC, Conditional Latent Diffusion Models,
Human Activity Recognition (HAR), Internet of Things (IoT).

I. INTRODUCTION

Deep learning has enabled great advances recently in the

field of wireless communications and networking [1], but

adequate model performance often requires a large amount

of labeled RF training data. Furthermore, typical RF data

possesses strong temporal, spectral, and spatial dependencies,

rendering collecting RF datasets an extremely expensive task.

Sometimes, a collected RF dataset may have limited value in

a different setting due to the lack of diversity.

On the other hand, Artificial Intelligence-Generated Content

(AIGC) has started a revolution in the machine learning field,

where abundant high-quality text, image, or video data, along

with their labels, can be generated with the typing of a prompt.

A natural question is raised: Can we leverage the power of

AIGC to tackle wireless communication problems, especially to

generate super-realistic RF data, while maintaining diversity?

Such AIGC RF data will greatly benefit many downstream

wireless tasks, and in particular, RF sensing, such as creating

a more robust human activity recognition (HAR) system that

can be easily deployed in various diverse environments [2].

In this demo, we present an Activity Class Conditional La-

tent Diffusion Model (termed RFID-ACCLDM), a conditional

latent diffusion model (CLDM) capable of generating super-

realistic RFID sensing data of rich diversity, based on user

input of desired human activity class labels [3]. To reduce

the computational cost, while increasing the generative quality

of diffusion models, we first train a recurrent variational

autoencoder (R-VAE) to enable sampling latent representations

that encapsulate the temporal dependency of the RF sensing

data. Next, we leverage a CLDM to train the diffusion process

on the RF latent dimensions.

Fig. 1. Architecture of the RFID-ACCLDM framework.

II. SYSTEM OVERVIEW

A. System Architecture

An overview of the system architecture is presented in

Fig. 1, which comprises three major modules, including (i)

RFID signal collection and processing, (ii) The R-VAE and

CLDM architecture, and (iii) downstream tasks.

B. RFID Signal Preprocessing

Test subjects are first attached with RFID tags to their joints.

RFID phase difference signals and 3D pose data are sampled

simultaneously by an RFID reader and an Xbox Kinect,

respectively. The sensing devices have different sampling

frequencies, 110Hz for RFID and 30Hz for Kinect. Hence the

sensory samples are downsampled to 7.5Hz for synchroniza-

tion. Hampel filters are then used to remove background noise

and DC components.

C. Latent RFID Activity Data Diffusion

We integrate Long Short-Term Memory (LSTM) units into

the Variational Autoencoder to capture the temporal coherency

in 2D time-variant RFID data with rich features and sample

latent vectors with such time dependencies. The latent vectors

are then fed into a diffusion model [4], which consists of two

modules typically named “forward” and “reverse” diffusion

process. The former utilizes a Markov chain with a fixed-

variance scheduler to progressively contaminate the latent

vectors with random Gaussian noise until eventually altering

the data distribution into an Isotropical Gaussian distribution,
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Fig. 2. An implementation of the proposed system and experimental setting.

while the latter leverages a Markov chain as well to learn

the transitional kernels that can be parametrically modeled

by a U-Net [5], to remove the Gaussian contamination. The

activity class label embedding is incorporated into the U-Net

throughout the diffusion training for generation of labeled

samples. Finally, high-quality RFID data can be reconstructed

from the latent representations, which highly resemble the

“real” RFID data collected in a real deployment of the system.

The detailed implementation can be seen in [3] .

III. IMPLEMENTATION AND EVALUATION

1) Hardware and Software Platforms: Three S9028PCR

polarized antennas, one Impinj R420 reader, and ALN-9634

(HIGG-3) passive RFID tags make up an RFID-based im-

plementation of the proposed framework, shown in Fig. 2.

A Lenovo laptop with a GTX 1660 Ti GPU is used for

the signal processing and model training tasks. We only use

around 8 minutes of data for training both R-VAE and CLDM

models. These data were captured from three test volunteers

with similar body shapes. It takes 4 hours to train the R-VAE.

As for the diffusion training, we use a linearly scaled variance

βt from β0 = 10
−4 to βT = 0.02. We also set the number of

noising steps T to 1,000. A cyclical learning rate mechanism

with the maximum learning rate set to 0.005 is used. The

training takes 12 hours, Whereas the training on raw RFID

data takes 16 hours. Our approach only takes 4 seconds to

generate one sample, while the latter takes nearly 40 seconds.

2) Evaluation and Results: Test subjects perform distinc-

tive activities in front of the sensing platforms, including

drinking (DK), squatting (SQ), boxing (BX), standing still

(ST), twisting (TW), and walking (WA). We first evaluate the

generative ability of our system through visualization. The

bottom row of Fig. 3 showcases that our generated RFID

data presents fine-grained movement information that can be

seamlessly mapped to 3D human pose animation. Besides the

apparent anthropomorphically plausible posture, the 3D human

poses exhibit natural temporal smoothness similar to real poses

captured by camera-based devices. The top row of Fig. 3

demonstrates the impressive diversity of our generated RFID

data, with the generated data on the right different from its

real counterpart, while remaining fidelity. Next, we conduct

a six-class HAR utilizing a simple and traditional Convolu-

tional Neural Networks (CNNs) model. Test data include two

Fig. 3. A visual illustration of our AIGC generated RFID data: The top row
is a visual comparison of generation quality between the real data (left) and
the generated data (middle and right) in forms of images with scaled color
for the waving up and down action. The bottom row are the animations of 3D
walking pose estimated from our data by the RFID-Pose network [6] with a
0.8-second difference between the three animation video frames presented.

Fig. 4. confusion matrices of HAR obtained from CNN models trained on
32 minutes of real data (left) and 64 minutes of AIGC generated data (right).

different subjects at locations slightly different from where the

training data was collected. Fig. 4 shows that, with the addition

of 32 minutes of synthesized data, both metrics surpass the

case of training with real data by a considerable gap of around

9.7% improvement. The superiority of our AIGC model is

evident from the fact that it takes us only 24 minutes to

generate this amount of synthesized data. Our working model

can currently generate RF data of 9 distinct classes. An

extended evaluation will be provided in the Journal.
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