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Abstract—Explanations on relational data are hard to verify
since the explanation structures are more complex (e.g. graphs).
To verify interpretable explanations (e.g. explanations of pre-
dictions made in images, text, etc.), typically human subjects
are used since it does not necessarily require a lot of expertise.
However, to verify the quality of a relational explanation requires
expertise and is hard to scale-up. GNNExplainer is arguably
one of the most popular explanation methods for Graph Neural
Networks. In this paper, we develop an approach where we assess
the uncertainty in explanations generated by GNNExplainer.
Specifically, we ask the explainer to generate explanations for
several counterfactual examples. We generate these examples
as symmetric approximations of the relational structure in the
original data. From these explanations, we learn a factor graph
model to quantify uncertainty in an explanation. Our results
on several datasets show that our approach can help verify
explanations from GNNExplainer by reliably estimating the
uncertainty of a relation specified in the explanation.

I. INTRODUCTION

Relational data is ubiquitous in nature. Healthcare records,
social networks, biological data and educational data are all
inherently relational in nature. Graphs are the most common
representations for relational data and several Deep Neural
Network (DNN) based techniques have been developed for
reasoning about graph-structured data. Popular Graph Neu-
ral Networks (GNNs) include Graph Convolution Networks
(GCNs) [1] and Graph Attention Networks (GATs) [2]. At
the same time, to improve trust in predictions made by the
GNN, we need to be able to explain these predictions. Shakya
et al. [3] present a framework for verifying embeddings in
GNNs to strengthen the trustworthiness of GNN predictions.
While there have been several methods related to explainable
AI (XAI) [4], it should be noted that explaining GNNs
is perhaps more challenging than explaining non-relational
machine learning algorithms that work on i.i.d (independent
and identically distributed) data. For instance, techniques such
as LIME [5] or SHAP [6] explain a prediction based on
interpretable features such as pixel-patches (for images) or
words (for language). The quality of explanations produced
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using such methods are generally verified with human subjects
since typically, anyone can understand the explanations that
are produced and thus can judge their quality. However, in
the case of GNNs, explanations are much more complex and
cannot be verified easily through human subjects. Specifically,
consider GNNExplainer [7] arguably one of the most widely
used explainers for GNNs. Given a relational graph where the
task is to classify nodes in the graph, GNNExplainer produces
a subgraph as the explanation for a node prediction. Clearly, it
is very hard to verify such an explanation using human subjects
since the explanation is quite abstract. If the ground truth
for the explanation is known in the form of graph structures,
then it is easy to verify a relational explanation. However,
this does not scale up since considerable domain expertise
may be needed in this case to generate correct explanations.
Therefore, in this paper, we develop a probabilistic method
where we verify explanations based on how the explainer
explains counterfactual examples.

The main idea in our approach is to learn a distribution
over explanations for variants of the input graph and quantify
uncertainty in an explanation based on this distribution. In
particular, each variant can be considered as a counterfactual
to the true explanation and we represent the distribution over
these explanations in the form of a probabilistic graphical
model (PGM). In particular, we impose a constraint where the
distribution is over explanations for symmetrical counterfac-
tual examples. Intuitively, if the input to the explainer changes,
since real-world data has symmetries [8], our distribution will
be represented over more likely counterfactual examples.

To learn such a distribution over symmetric counterfactual
explanations, we perform a Boolean factorization of the re-
lations specified in the original graph and learn low-rank ap-
proximations for them. Specifically, a low-rank approximation
represents all the relationships in the data by a smaller number
of Boolean patterns. To do this, it introduces symmetries into
the approximated relational graph [9]. We explain each of the
symmetric approximations using GNNExplainer and represent
the distribution over these in the form of a factor graph [10].
We calibrate this using Belief Propagation [11] to compute
the distributions over relations specified in an explanation.
To quantify uncertainty in an explanation generated by GN-
NExplainer on the original graph, we measure the reduction
in uncertainty in the calibrated factor graph when we inject979-8-3503-2445-7/23/$31.00 ©2023 IEEE



knowledge of the explanation into the factor graph.
We perform experiments on several benchmark relational

datasets for node classification using GCNs. In each case, we
estimate the uncertainty of relations specified in explanations
given by GNNExplainer. We use the McNemar’s statistical
test to evaluate the significance of these estimations on the
model learned by the GCN. We compare our approach with the
estimates of uncertainty that are directly provided by GNNEx-
plainer. We show that the McNemar’s test reveals that using
our approach to estimate the uncertainty of an explanation is
statistically more reliable than using the estimates produced
by GNNExplainer.

II. RELATED WORK

Mittelstadt et al. [12] compare the emerging field of explain-
able AI (XAI) with what explanations mean in other fields
such as social sciences, philosophy, cognitive science or law.
It turns out that in these fields, there exists a vast amount
of research on different forms of explanation. Typically it has
been shown that humans psychologically prefer counterfactual
explanations [13]. Schnake et al. [14] show a novel way
to naturally explain GNNs by identifying groups of edges
contributing to a prediction using higher-order Taylor expan-
sion. GraphLIME [15], an extension of the LIME framework
designed for graph data, is another popular explanation method
that attributes the prediction result to specific nodes and
edges in the local neighborhood. Luo et al. [16] introduce
PGExplainer which parameterizes the process of generating
explanations to improve the generalizability of explanations.
Vu et al. [17] present PGM-Explainer which can generate
explanations in the form of a PGM, where the dependencies
in the explained features are demonstrated in terms of condi-
tional probabilities. There is also a lot of research work on
evaluating the explanations of these explainers. Faber et al.
[18] argue that the current explanation methods cannot detect
ground truth and they propose three novel benchmarks for
evaluating explanations. Sanchez-Lengeling et al. [19] present
a systematic way of evaluating these explanation methods by
introducing properties like accuracy, consistency, faithfulness,
and stability. Although there has been a wide range of research
in this field, the uncertainty in the explanation of the GNNs
has not been studied. In this paper, we verify the relational
explanations in GNN and quantify these uncertainties.

III. BACKGROUND

A. Graph Convolutional Networks

Given a graph G = (V,E,X) with nodes V = {x1 . . . xn},
edges E = {e1 . . . ek} s.t. ek ∈ (xi, xj) and xi, xj ∈ V
and features X = {Xi}ni=1 s.t. Xi ∈ Rd. GCN learns
representations of nodes from their neighbors by using convo-
lutional layers which is used to classify nodes. The layer-wise
propagation rule is as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

where, H(l) ∈ Rn×d is the feature matrix for layer l, Ã is
the adjacency matrix of graph G, D̃ii =

∑
j Ãij is the degree

matrix, W (l) is a layer-specific trainable weight matrix and
σ(·) is the activation function.

B. GNNExplainer

Given a GCN (or any GNN) Φ trained for node classification
makes prediction for a single target node Y . GNNExplainer
generates a subgraph of the computation graph as an ex-
planation for the prediction. The objective is formulated as
a minimization of the conditional entropy for the predicted
node conditioned on a subgraph of the computation graph.
Specifically,

H(Y |G = Gs,X = Xs) = −EY |Gs,Xs
log[PΦ(y|Gs,Xs)]

(2)
where Gs is a subgraph of the computation graph and Xs

is a subset of features. The subgraph is obtained by retain-
ing/removing edges/nodes from the graph.

IV. VERIFICATION OF EXPLANATIONS

We develop a likelihood-based approach on top of GNNEx-
plainer, arguably one of the most well-known approaches for
explaining relational learning in DNNs, to estimate the uncer-
tainty in an explanation. To do this, we learn a probabilistic
graphical model (PGM) that encodes relational structure of
explanations. We then perform probabilistic inference over the
PGM to estimate the likelihood of a specific explanation.

A. Counterfactual Relational Explanations

Definition 1. A discrete PGM is a pair (X,F), where X is a set
of discrete random variables and F is a set of functions, ϕ ∈ F
is defined over a subset of variables referred to as being in
its scope. The joint probability distribution is the normalized
product of all factors.

P (x̄) =
1

Z

∏
ϕ

ϕ(x)

where Z is the normalization constant and ϕ(x) is the value
of the function when x is projected on its scope.

The primal graph G of a PGM is the structure of the
PGM where nodes represent the discrete random variables
and cliques in the graph represent the factors. An undirected
PGM is also called as a Markov Network. A directed PGM
is a Bayesian Network where edges represent causal links
and factors represent conditional distributions, specifically, the
conditional distribution of a node in G given all its parents.
For the purposes of generalizing notation, we can consider
these as factors. However, in a Markov Network, the product
of factors is not normalized and to represent a distribution,
we need to normalize this with the partition function, while
in a Bayesian Network the product of factors is already
normalized. A factor graph is a discrete PGM represented
as a bi-partite graph, where there are two types of nodes,
namely, variables and factors. The edges connect variable
nodes to factor nodes. The factor represents a function over the
variables connected to it (the scope of the factor). Typically,
the variables are connected through a logical relationship in the



factor function. Each factor function has an associated weight
that encodes confidence in the relationship over variables
within its scope. Higher confidence in the relationship implies
higher weights and vice-versa. A factor graph can be converted
to an equivalent Markov network.

A relational graph G is a graph where nodes represent
real-world entities and edges represent binary relationships
between the entities. For our purposes, we assume that the
relationships in G are not directed. Let Φ be a DNN trained
for the node classification task. That is, let V = x1 . . . xn be
the nodes where X = {Xi}ni=1 are their features and Φ learns
to classify nodes into one of C classes, f : V → C.

Let E(G,Φ, Y ) denote the GNNExplainer’s explanation for
Φ classifying node Y in G. E(G,Φ, Y ) is a subgraph, i.e., a set
of relations/edges (we use relations and edges interchangeably
since we assume binary relationships) in G that explains the
label assigned to Y by Φ. We estimate the uncertainty in
E(G,Φ, Y ) based on a PGM distribution over counterfactual
relational explanations.

Definition 2. Given an explanation E(G,Φ, Y ), a counterfac-
tual relational explanation (CRE) is E(Ĝ,Φ, Y ), where G and
Ĝ differ in at least one relation.

B. Boolean Factorization

Note that computing the full set of CREs is not scalable
since the size of the CRE set is exponential in the size
of the relational graph. Therefore, we focus on a subset
of CREs that best quantify uncertainty in the explanation.
Before formalizing our approach, we illustrate this with a
simple example. Consider the example shown in Fig. 1. To
generate CREs, instead of modifying relations randomly, we
add/remove relations that result in symmetrical structures as
shown in the example. Thus, under the hypothesis that symme-
tries are ubiquitous in the real-world [8], symmetrical CREs
are likely to explain more probable counterfactual examples.
Thus, a PGM over symmetrical CREs will better encode
uncertainty in explanations.

Formally, let P represent all the relations in G. We want to
approximate P which can be represented as a n ×m matrix
using at most k Boolean patterns. Specifically, the objective
is as follows.

argmin
QR

|P⊖ (Q⊗R)| (3)

where Q is a Boolean matrix of size n×k and R is Boolean
matrix of size k×m rows. The Boolean operations are defined
as follows. A⊕B = A∨B, A⊖B = (A∧¬B)∨ (¬A∧B)
and Xn×m = An×kBk×m, where Xij = ∨k

l=1AilBlj . The
l-th column of Q and the l-th row of R is called as the l-th
Boolean pattern. To solve the above optimization problem,
we use Boolean Matrix Factorization (BMF). The smallest
number of patterns for which we can exactly recover P, i.e.,
the objective value is equal to 0, is known as the Boolean
rank of P. It is known that computing the Boolean rank is a
NP-hard problem.

Definition 3. A low-rank approximation for P with Boolean
rank r is a factorization with k patterns such that k < r.

Since in a low-rank approximation, we use fewer patterns
than the rank, it results in a symmetric approximation of
the original matrix [9]. While there are several approaches
for Boolean low-rank approximation [20], we use a widely
used approach implemented in NIMFA [21]. Specifically, the
problem is formulated as a nonlinear programming problem
and solved with a penalty function algorithm. The factorization
reduces the original matrix into a binary basis and mixture
coefficients. By thresholding the product of the binary basis
and mixture coefficient matrices, we obtain the low-rank
Boolean approximation of the original matrix. Since it is
hard to compute the exact rank, we use an iterative approach
to obtain the set of symmetrical CREs. Specifically, for the
base explanation, we perform low rank approximation with
a starting rank and progressively increase the rank until the
objective function in Eq. (3) is below a stopping criteria.

C. Factor Graph Model

We represent a distribution over the set of symmetrical
CREs S using a factor graph. Specifically, each factor function
represents a logical relationship between variables in the CRE.
One such commonly used relationship in logic is a set of
Horn clauses of the form xi ∧ xj ⇒ Y , where xi, xj

represent variables in the explanation and Y is the target of
the explanation. However, note that for the factor functions,
we have used the logical and (∧) rather than implication (⇒)
since the implication tends to produce uniform distributions.
Specifically, whenever the head (left-side) of the horn clause
is false, the clause becomes true which is not the ideal logical
form for us since we want to quantify the influence of the head
on the body (right hand side of the clause which is the target of
explanation) when the head is true. Thus, a logical-and works
better in practice. For ease of exposition, we assume that the
target of an explanation has a binary class. For multi-class
targets, we just create p different clauses of the same form
each of which corresponds to one of p classes.

Let {Ri}Ki=1 be the union of all binary relations specified
in the explanations in S . The probability distribution over S
is defined as a log-linear model as follows.

P (S) = 1

Z
exp(

K∑
i=1

win(Ri,S)) (4)

where n(Ri,S) is the number of true clauses of the form
xi1∧xi2∧T , where xi1, xi2 are entities related by Ri in S , wi

is a real-valued weight for xi1∧xi2∧Y , Z is the normalization
constant, i.e.,

∑
S′ exp(

∑K
i=1 win(Ri,S ′)).

To learn the weights in Eq. (4), we maximize the likelihood
over S ∈ S . Specifically,

log ℓ(S) = wi

K∑
i=1

n(Ri,S)− logZ (5)



Fig. 1: Given the original graph (the first one), different symmetric approximations of the original graph are shown.

However,clearly Z is intractable to compute. Specifically,
we need to sum the probabilities over all possible explanations
that can be derived from {Ri}Ki=1 which is exponentially large.
Therefore, using gradient descent over the weights, we obtain
the following equation for the gradient,

∂ℓ

∂wi
= n(Ri,S)− E[n(Ri,S)] (6)

It turns out that we can approximate the expectation from
the maximum probability (called the MAP) solution to esti-
mate the gradient efficiently (similar to the voted perceptron in
[22]). Specifically, using the current weights, we compute the
MAP solution which gives us an assignment to each entity in
S . From this, we estimate the expected n(Ri,S) as follows.
For each explanation S ∈ S , we check whether the clause
that connects the entities corresponding to Ri in S is satisfied
based on the assignments in the MAP solution. E[n(Ri,S)]
is the total number of satisfied clauses. Finally, we update
the weights, w(t)

i = w
(t−1)
i − ϵ ∂ℓ

∂wi
, where ϵ is the learning

rate. However, it turns out that the initialization of the weights
plays an important role in the weights that we eventually
converge to [23]. Therefore, we use an initialization based
on the explanation scores given by GNNExplainer. That is,
we initialize a weight wi corresponding to relation Ri as
the average score assigned by GNNExplainer for Ri over all
S ∈ S .

D. Uncertainty Estimation

We use Belief Propagation (BP) [24] to estimate the uncer-
tainty in an explanation from the factor graph. Specifically, BP
is a message-passing algorithm that uses sum-product compu-
tations to estimate probabilities. Specifically, the idea is that a
node computes the product of all messages coming into it, and
sums out itself before sending its message to its neighbors. In
a factor graph, there are two types of messages, i.e., messages
from variable nodes to factor nodes and messages from factor
nodes to variable nodes. The messages from variable to factor
nodes involves only a product operation and the messages from
the factor to variable nodes involve both a sum and product
operation.

vvar(i)→fac(s)(xi) ∝
∏

t∈N(i)\s

µfac(t)→var(i)(xi) (7)

µfac(s)→var(i)(xi) ∝ ∑
xN(s)\i

fs(xN(s))∏
j∈N(s)\i

vvar(j)→fac(s)(xj) (8)

where var(i) represents a variable node i, N(i) \ s rep-
resents all the neighbors of i except s, fs is a factor node.
Thus, each variable node multiplies incoming messages from
factors and passes this to other factor nodes. The factor nodes
multiply the messages with its factor function and sums out
all the variables except the one that the message is destined
for. In practice, the messages are normalized to prevent
numerical errors. The message passing continues until the
messages converge. In this case, we say that the factor graph
is calibrated and we can now derive marginal probabilities
from the calibrated factor graph by multiplying the converged
messages coming into a variable node. Specifically,

p(xi) ∝
∏

t∈N(i)

µfac(t)→var(i)(xi) (9)

We estimate uncertainty of an explanation from the cali-
brated factor graph. Specifically, let Q1 . . . Qk denote rela-
tions in the explanation E(G,Φ, Y ). We estimate probabilities
from the factor graph denoted by F that we learn from the
symmetric CREs S . Intuitively, a relation Qi is important
in E(G,Φ, Y ) if it is important in S . To quantify this, we
compute the change in distributions when we re-calibrate F by
adding new factors obtained from the explanation Q1 . . . Qk.

We illustrate our approach with an example in Fig. 2. As
shown here, we have a factor graph with three factors, where
each factor explains the influence of a pair of nodes on the
target. The weights of the factors (w1, w2, w3) encode the
uncertainty in the relationship specified by the factors. To
quantify the uncertainty of a relation between say x1, x3 in
explaining T , we obtain the joint distribution over P (x1, x3)
after calibration using belief propagation. Now, suppose the
GNNExplainer gives us an explanation for T that specifies
a single relation between x1, x3 with a confidence equal to
GC. Our goal is to quantify the reduction in uncertainty given
this new explanation. To do this, we add a new factor with
weight GC and re-calibrate to obtain a modified distribution
P̂ (x1, x3).
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Fig. 2: (a) shows the original factor graph, (b) shows the added factor based on a new explanation x1, x3 with confidence GC
(c) shows the difference in joint probabilities p(x1, x3) before and after the factor is added for different values of GC.

The graph in Fig, 2 (c) shows the -ve log difference between
the two distributions (we show it for the case x1 = x3 = 1). A
larger value indicates that the reduction in uncertainty is larger.
As seen here, if the prior uncertainty is high (the green plot),
then, it requires GC to be very large (over 90%) to achieve the
same level of reduction in uncertainty as is the case for a much
smaller GC (around 60%) when the prior uncertainty is low
(the red/blue plots). Further, even though the weight vector
for the red plot has larger values than those in the blue plot,
we see that the reduction in uncertainty is comparable over all
values of GC. This is because for the red plot, all the weights
are large and therefore, the relationship between x1, x3 is
not significantly more important than the other relationships.
Thus, additional knowledge that x1, x3 is an explanation does
not result in a large reduction in uncertainty. On the other
hand, as seen by the weights in the blue plot, the factor
encoding the relationship between x1, x3 has a much larger
weight compared to that for x2, x3. Thus, there is a significant
difference when the target is explained with a relation between
x1, x3 as compared to something else, say x2, x3. Therefore,
knowledge that a relation between x1, x3 is the explanation
will greatly reduce uncertainty.

Formally, let us assume that at most k new factors t̂1 . . . t̂k
are introduced by the GNNExplainer’s explanation whose
scope has the variable xi. Each of these factors has a weight
equal to the confidence (a value between 0 and 1) assigned
by GNNExplainer which quantifies its confidence that the
corresponding relation is an explanation for the target variable.
Thus, the new messages from variable i to factors will be of
the form,

vvar(i)→fac(s)(xi) ∝
k∏

j=1

µfac(t̂j)→var(i)(xi)∏
t∈N(i)\s

µfac(t)→var(i)(xi) (10)

The marginal after re-calibration is given by,

p(xi) ∝
k∏

j=1

µfac(t̂j)→var(i)(xi)∏
t∈N(i)

µfac(t)→var(i)(xi) (11)

Thus, as the confidence values grow larger, then the mes-
sages get amplified in each iteration of BP and the uncertainty
reduces since the marginal probability becomes larger. In our
case, we store the joint probabilities for all related entities in
the symmetric CRE set. Let p(xi, xj) be the joint distribution
computed for related entities xi, xj after calibration. Let
p̂(xi, xj) denote the joint distribution after re-calibration upon
adding factors based on the GNNExplanation. We compute
the difference between p(xi, xj) and p̂(xi, xj) based on the
logical structure of the factors. Specifically, since we assume
that the structure is a conjunction over xi ∧ xj ∧ Y , where Y
is the explanation target. We compute the average difference
over all cases where the formula is satisfied. In the binary
case, this corresponds to xi = xj = T = 1. This difference is
a measure of reduction in uncertainty when xi, xj is related
in the explanation.

Algorithm 1 summarizes our full approach. Our input is the
GNNExplainer’s explanation for a relational graph G, using
DNN Φ for target Y . Our output is a measure for the reduction



Algorithm 1: Uncertainty Quantification
Input: GNNExplanation E(G,Φ, Y ) with confidences GC
Output: δxi,xj , the uncertainty for the relation connecting

xi, xj in E(G,Φ, Y )
// Computing the symmetric CREs

1 Initialize rank r
2 Initialize err as ∞
3 while err < t do

// Low rank approximation for G with
rank r

4 P = Adjacency matrix for G
5 Factorize P into Q,R with r Boolean patterns
6 P̂ = Q⊤R

7 Ĝ = Relational graph with adjacency matrix P̂

8 S = S ∪ E(Ĝ,Φ, Y )
9 Increment r

10 err = |P− P̂|
// Factor Graph

11 FG = Factor Graph of S
12 Initialize weights of FG using GNN confidences in

explanations for S
13 Learn weights of FG using gradient descent

// Calibration
14 BP (FG) = Calibrated FG
15 p(xi, xj) = Joint distribution using BP (FG)
16 for each (xi, xj) ∈ E(G,Φ, Y ) do
17 Add factor over (xi, xj , T ) to FG

18 B̂P (FG) = Re-calibrate FG
19 p̂(xi, xj) = Joint distribution using B̂P (FG)

20 return p(xi, xj)− p̂(xi, xj)

in uncertainty when relation xi, xj ∈ E(G,Φ, Y ) is part of
an explanation for Y . We start by computing the low rank
approximations from the input relational graph G. We then
explain each of the CREs with GNNExplainer to obtain the set
of symmetric CREs S . Next, we construct a factor graph FG
from S and learn its weights. We calibrate FG using belief
propagation and obtain the joint distribution p(xi, xj). We then
add factors to FG from relations in E(G,Φ, Y ) with weights
equal to the explanation confidence assigned to the relations.
We then re-calibrate the changed FG and compute p̂(xi, xj).
We return the difference between p(xi, xj) and p̂(xi, xj).

V. EXPERIMENTS

A. Evaluation Procedure

We evaluate our approach by measuring the significance of
the uncertainty measures that we obtain for an explanation.
Specifically, we learn a GCN for node prediction from the
input graph and explain target nodes using GNNExplainer
on the learned GCN. For each explanation, we apply our
approach to compute the uncertainty scores for the relations
in the explanation. We then modify the original graph based
on these scores and observe changes in predictions made by
the GCN. Specifically, we use an approximate statistical test
known as the McNemar’s test [25] for quantifying differences
in prediction. We do this to avoid Type I errors. That is errors
made by an approximate statistical test where a difference is

Datasets # nodes # edges # classes

BAShapes

700
# Base nodes: 300
Motif shape: house 2055 4

Motif size: 5
Motif number: 80

BACommunity
1400

union of two 3872 7
BA-Shapes graphs

TreeCycle

871
Base shape: balanced tree

of height 8
Motif shape: cycle 962 2

Motif size: 6
Motif number: 80

TreeGrid

1231
Base shape: balanced tree

of height 8
Motif shape: grid 1705 2

Motif size: 3
Cora 2708 10556 7

Citeseer 3327 9228 6
Cornell 183 298 5
Texas 183 325 5

Wisconsin 251 515 5

TABLE I: Benchmarks used for evaluation.

detected even though no difference exists. In the well-known
work by Dietterich [26] on comparing predictions made by
difference classifiers, it is shown that the McNemar’s test has
a low Type I error. McNemar’s test is also widely used to
evaluate paired binomial data in medicine [27]. We run this
test as follows. Let G be the original relational graph and Φ
be the GCN learned from G. We run our approach to obtain
uncertainty measures for explanations in predictions made by
Φ on G and we remove the relation with the i-th highest score
(higher score means lower uncertainty that the relation is part
of the explanation) from G for each of the target nodes. Thus,
we get a reduced graph denoted by G(i). We then learn a
new GCN Φ(i) on G(i) and compare the predicted values in
Φ with the predicted values in Φ(i) through the McNemar’s
test. If the removed relations are significant, then we would
observe a higher score in the McNemar’s test along with a
small p-value that rules out the null hypothesis that there is
no significant difference in predictions made by Φ and Φ(i).

B. Setup

We implement our approach using the Deep Geometric
Learning (DGL) library in Pytorch. We run all our experiments
on a single Tesla GPU machine with 64GB RAM. For the
factor graph learning and to perform inference using belief
propagation, we used the implementations in the pgmpy library
which is an open-source python implementation for PGMs.
For the GCN, we varied the hidden dimensions size between
16 and 512, and chose the one with the optimal validation
accuracy for a given dataset. We used a maximum of 10K
epochs for training the GCN. We used the GNNExplainer from
DGL to explain node predictions made by the GCN. We set
the number of hops to 2 in the explanations, i.e., any relation
that is an explanation for a target node is at most two hops
away from the target. For the low rank approximation, we used
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Fig. 3: Results from McNemar’s test to verify uncertainty quantification in benchmarks.
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Fig. 4: Results from McNemar’s test to verify uncertainty quantification in benchmarks.

Nimfa [21] which is a python library for Nonnegative Matrix
Factorization. We used the default parameters for BMF but set
the number of iterations between 10K and 100K depending
on the dataset. We initialized the rank to one where the
approximation error was less than 25% of the total number
of edges in the input graph and stopped increasing the rank if
we observed that the rank plateaued or if the approximation
error was within 5% of the total number of edges.

C. Datasets

We use the benchmark datasets shown in Table I to evaluate
our approach. These benchmarks are widely used in explana-
tions for GNNs and also in relational learning. Specifically,
we compare our results with uncertainty estimates from GN-
NExplainer. That is, for each relation in the explanation, GN-
NExplainer assigns a score based on the conditional entropy
equation Eq. (2). A higher score for a relation indicates its
higher importance in the explanation. As described in our
evaluation procedure, we create a reduced graph based on
these scores to compare them with our approach. We denote
our approach as BP and the GNNExplainer based scores as IS
in the results.

In some of the cases, the explanation contains a single node
or a single edge, we filter out such cases from our results. We
run the McNemar’s test for each class separately and report the
statistic values. For the BAShapes, BACommunity, TreeGrid
and TreeCycle datasets, we show results for all classes except
when the node class is equal to 0 which corresponds to the
base nodes. In this case, we explain the nodes from the motifs

attached to the base nodes which have non-zero class values.
In case the statistic is not significant, i.e., the null hypothesis
is true that there is no change in predictions made by Φ(i) and
Φ, we report the statistic as 0. When a class contained less
than 10 nodes, we do not report that class in the results since
the p-values were not significant. We show the results for Φ(1),
Φ(2), . . . (labeled as G = 1, G = 2, . . . in the graphs) as long
as roughly, the same number of edges are removed for both
IS and BP. Our data and implementation are available here1.

D. Results

The results are shown in Fig. 3 and Fig. 4. For BAShapes,
BP scores higher McNemar’s statistic (MS) values over all
classes. Further, using IS, we could not obtain statistical
significance for G = 2 which indicates poorer uncertainty
quantification. For TreeCycle for both G = 1 and G = 2, the
MS scores for BP were larger than IS once again illustrating
that our approach yields better quantification of uncertainty.
For TreeGrid, we could not obtain statistical significance for
any of the values of G. This also indicates that as the structure
gets more complex (BAShapes is simpler than TreeCycle and
TreeGrid), uncertainty quantification becomes more reliable
using our approach. For BACommunity, our results were
slightly better than IS and also more significant over some
classes. For WebKB, we observed that IS and BP had very
similar performance. One of the reasons for this is related
to the accuracy of the GCN model. The accuracy here was
significantly lower (between 50-60%) for all three datasets in

1https://anonymous.4open.science/r/explain



WebKB. Thus, it indicates that when the underlying GCN has
poor performance, explanations may be harder to verify. We
plan to study this connection further in the future work. For the
Cora dataset, BP achieves better MS scores and significance
compared to IS for most values of G. As G increases, the
significance of IS reduces, for instance at G = 3, most of the
values produced by IS were statistically insignificant. Citeseer
shows similar results, where for G = 0, BP and IS gave us
similar results, but for larger values of G, the MS values
given by BP was much more significant than those for IS.
Thus to summarize, over most of the tested benchmarks, using
BP, we were able to quantify uncertainty in the relations
of the explanation in a more statistically significant manner
compared to IS.

VI. CONCLUSION

Explanations for relational data are harder to interpret since
they involve complex structures (e.g. graphs). In this work,
we developed an approach to verify such explanations using
a probabilistic model. Specifically, we learn a distribution
from multiple counterfactual explanations. In particular, we
chose counterfactuals to represent symmetrical approximations
of the original graph and learned such an approximation
using low-rank Boolean factorization. From the counterfactual
explanations, we learn a factor graph to estimate uncertainty
in relations specified by a new explanation. Our results on
several benchmarks show that these estimates are statistically
more reliable compared to estimates from GNNExplainer.

In future, we will extend our approach to interactive ver-
ification, where we can help debug a model by interacting
with a user. Further, we will also explore specific applications
in domains such as education where we can verify context-
specific explanations.
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