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ABSTRACT
Adapting to a student’s problem solving strategy can lead to im-
proved engagement and motivation. In this work, we develop an
AI-based approach to analyze math learning strategies at scale.
Specifically, we use a state-of-the-art AI model, namely, BERT to
learn structure within strategies observed in large datasets. In par-
ticular, we consider the MATHia ITS and define strategies as se-
quences of steps that a student follows in solving the problem.
We apply BERT pre-training to learn semantic representations of
strategies from a workspace in MATHia that allows for different
strategies. Further, we fine-tune these embeddings to train them on
downstream tasks such as identifying a strategy and understand-
ing drift in strategy. Our preliminary results are encouraging and
demonstrate that BERT can uncover hidden structure in strategies
and therefore is a promising direction to analyze large-scale math
learning data.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing → Interactive learning environments.
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1 INTRODUCTION
Intelligent Tutoring Systems (ITSs) [23] and Adaptive Instructional
Systems (AISs) aim to provide personalized instruction to large and
diverse student populations. In contrast to traditional classrooms,
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individual instruction can be tailored to learners, closely moni-
tor their performance and provide timely feedback. ITSs can help
scale-up individual instructionmaking high-quality educationmore
accessible to all. There is evidence that such one-on-one instruction
can be more effective than traditional classrooms where students
may have varying levels of skill [23]. To improve the effectiveness
of personalized math instruction in ITSs, a fundamental research
task is to understand how students solve math problems, i.e., the
approach that students take while thinking through a problem. The
problem-solving approach of a student is a highly complex func-
tion dependent on many factors such as experience with similar
problems, general expertise in the topic, other cognitive abilities,
social factors, etc. Adapting to a specific learner by understanding
their problem solving approach accounts for differences in learn-
ing abilities, learning styles and education goals. Such adaptation
often leads to more engaging and effective learning [30]. To this
end, human experts have explored factors that influence problem-
solving strategies used by students [16]. However, human experts
are expensive and limited in the ability to analyze large data from
thousands, tens of thousands, or millions of students. Advanced AI
methods and access to large computing infrastructure such as the
cloud offer new possibilities to analyze in-depth and at scale large
learner datasets to help us analyze and discover new insights into
Math problem solving strategies.

AI has revolutionized several domains over the last decade. For
instance, Imagenet [13], embeddings [15] and generative AI [19]
are some of the key transformative developments made possible
by a combination of large-scale data along with powerful models.
Inspired by these, in this paper, we present our initial findings on
learning Bi-Directional Encoding Representations of Transformers
(BERT) [8] models on data collected from MATHia, a well-known
ITS for Math learning. Specifically, we define strategies based on
sequences of steps that students perform while interacting with
MATHia. We then use BERT to learn representations for strategies
through step masking. Specifically, we pre-train the BERT model
to predict masked steps to learn an embedding over strategies. We
present initial results for a 7th grade workspace in MATHia with
data from around 3K students where we have ground-truth that
multiple strategies exist based on the workspace design. Our results
demonstrate that BERT embeddings can uncover structure within
the strategies. Further, we also fine-tune the pre-trained model to
identify strategies and also to analyze how strategies shift over time.
Our results demonstrate that our approach is a promising direction
to scale up analysis of math strategies over large datasets.
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2 BACKGROUND
Ritter et al. [21] provide a comprehensive survey on different ap-
proaches used to identify student strategies. Classical model trac-
ing [4] based methods can be used to identify if certain strategies
can improve learner mastery. In [20], based on model tracing, an
approach was proposed that can evaluate the effectiveness of an un-
known strategy. Based on its effectiveness, the strategy can be used
to augment the set of known correct/incorrect strategies and thus
incrementally build the set of labeled strategies. Several discrimina-
tive learning methods have been explored to identify strategies. For
instance, labeled datasets were created based on students interact-
ing with the ITS [5] and in each of these cases, the interactions are
labeled manually based on one/more experts. Such labeled datasets
can be used for training Machine Learning models. However, the
quality of strategy identification is heavily dependent upon the
feature specification [18]. In [6], a Machine learning model was
learned from data labeled from Cognitive Tutor and similar ap-
proaches have been used in several other contexts. For instance,
in [7], a Machine learning model was used for inferring strategies
from SQL-tutor, in [9] for strategies in role playing games, in [22]
for strategies in understanding conceptual physics, etc. Sequence
modeling has often been used to detect strategies from sequen-
tial datasets. Specifically, Betty’s brain [1] is a virtual environment
where students learn about scientific processes by teaching a virtual
agent called Betty. This is an open-ended learning environment
where students have the flexibility to perform their tasks in a vari-
ety of different ways which yields different strategies. Other studies
have used this environment to identify strategies through sequence
mining [10, 11]. In [31], sequence pattern mining was applied to
a MOOCs platform to analyze activity sequences of learners [31].
Shakya et al. [25, 26] developed a scalable approach to train LSTMs
using interaction data from Mathia. In conversational agents, we
can view strategies in the space of dialogue acts [3] and/or ac-
tions [2]. Therefore, one approach that has been explored is to map
language into sequences of dialogue acts and identify higher-level
pedagogical modes from these sequences [14, 24, 29]. These modes
give a high level overview of pedagogical intentions behind acts.

3 APPROACH
In the context of ITSs, the strategies followed by a learner are highly
dependent on the design choices made in the ITS. For instance, an
ITS could restrict its design such that everyone follows the same
strategy. If the design offers choices to a student, different learners
could emergewith different strategies. To analyze strategies, we first
need to define themmore precisely. In a top-down approach, we can
define strategies at an abstract level (e.g. guess and check, pattern
finding, tabular methods, etc.) and then ground these strategies
in a specific context to gain insights such as how do learners use
a specific strategy, which ones are more beneficial, etc. In a data-
driven approach, given observations, we could extract strategies
from data and explain them using domain knowledge. The AI based
methods are more naturally suited to the latter. Specifically, in the
context of MATHia, learners perform actions, where each action
represents a learner’s progress towards completing a goal node or
step in the solution. Strategies in this context are sequences of steps

that the learner completes based on performing actions within the
action-space [17].

Fig. 1 (a) shows a problem from the workspace in 7th Grade math
for calculating percent increase and percent decrease. The learner
completes each of the slots which are considered as steps, each
of which is associated with a skill (knowledge component [12]).
Further, as shown in Fig. 1 (b), the learner can perform optional tasks.
These tasks offer additional scaffolding to help the learner. Given
this design, we specify a ground truth over types of strategies as
follows. i) Students could perform the optional steps and therefore
learn strategies as prescribed by the optional steps to solve the
problem. For instance, in the context of the above example, they
would most likely utilize the equivalent ratios method, the means
and extremes method or both to solve the problem. ii) On the
other hand, they could bypass the scaffolding and use their prior
knowledge or a non-standard approach to complete their solution.

A simple approach to represent a strategy is to represent it as a
one-hot encoded vector (V) of the sequence of steps performed by
a learner. However, this representation is not semantically mean-
ingful. Specifically, students can perform steps in different orders,
repeat the steps, etc. Therefore, we want to learn a representation
where sequences that are semantically similar have similar rep-
resentations. To learn a dense representation (or embedding) for
strategies, we can use a hypothesis similar to the distributional
hypothesis in language learning, i.e., for a pair of steps say 𝑠1, 𝑠2, if
the context in which 𝑠1 is used is consistently similar to the context
in which 𝑠2 is used over large datasets, then we can assign similar
embeddings to 𝑠1, 𝑠2. Here, context of a step 𝑠 refers to other steps
in the strategy that are performed before or after 𝑠 in the strat-
egy. The dimensionality of an embedding is typically much smaller
compared to the dimensionality of V.

3.1 BERT Representation
We learn BERT models using logs collected from MATHia that
records student actions. There are two key steps in the BERT model.
First, we perform pre-training and then fine-tuning of the model.
The pre-training phase uses unlabeled data and the goal is to infer
structure within the data while the fine-tuning is used to perform
a specific task and is typically supervised with a small amount of
labeled data.
Pre-Training. The original BERT model uses a Masked Language
Model (MLM) pre-training objective to infer language structure.
Similarly, here, we perform pre-training where we mask steps in the
strategy and train using an objective that infers strategy structure.
Specifically, each step in the strategy is treated as a token (after
performing simple pre-processing such as removing repeated steps
that indicate multiple student tries at the same step, removing steps
that are not directly related to problem solving, etc.). We mask
tokens in the steps and predict masked tokens using the BERT
model. The BERT model learns a hidden representation for each of
the masked tokens and then predicts the masked token through a
softmax distribution over the vocabulary of tokens.

The model underlying BERT is a bidirectional transformer [28]
which uses context in both directions. Specifically, it uses context
information for a masked step from preceding as well as succeeding
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(a) (b) (c)

Figure 1: An example problem from the workspace on computing percent increase/decrease. (a) shows the problem and the
steps (each step is a fillable slot that the learner completes), (b) shows optional tasks that provide additional scaffolding using
equivalent ratios or means and extremes and (c) shows steps in the final solution.

steps and therefore learns a more semantically accurate represen-
tation of the steps compared to models that are uni-directional.
For instance, generative models such as OpenAI’s GPT [19] gener-
ates tokens one at a time, where each token is conditioned on the
prior tokens and therefore are unidirectional. Further, the BERT
model uses positional encodings which help us encode invariance in
strategies. For instance, in Fig. 1 (a), actions where the numerator is
filled in before the denominator is invariant with actions where the
denominator is filled in before the numerator. Positional encodings
help us learn a representation that is invariant to re-orderings that
are not significantly different in terms of meaning. In our case, this
meaning is automatically inferred by the model by learning from a
large number of strategies. The BERT model combines the token
embeddings for steps in the strategies with the positional encoding
that represents the approximate positions of these steps to learn
the final embedding for the strategy.
Fine-tuning.We fine-tune a pre-trained model to perform specific
prediction tasks. For the fine-tuned models, we add a layer on top
of the pre-trained model to predict the task-specific output and
train the model end-to-end on the task-specific input, output pairs.
In our case, we used two types of fine-tuning, namely i) strategy
type identification and ii) predicting strategy drift. In strategy type
identification, we train the model using cross-entropy loss.

ℓ (𝜃 ) = −
𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑃𝜃 (X𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑃𝜃 (X𝑖 )) (1)

where 𝑁 is the number of instances used for fine-tuning, 𝑦𝑖 = 1 if
the student uses an optional-task based strategy and 0 otherwise,
𝜃 are the model parameters, X𝑖 is a sequence of tokens describing
learner actions.

Similarly, we also fine-tune themodel to predict drift in strategies,
i.e., we want to know if strategies change over time. To do this,
we use the same loss function as in Eq. (1). However, in this case,
we fine-tune two constrained models by sampling strategies either
from i) the start of the problem-solving session (IS) or ii) towards
the end of the problem-solving session (FS) in the workspace. In
the IS model, we want identify if initial strategies can predict final
strategies and in the FS model we want identify if final strategies
can predict initial strategies.

3.2 Experiments
We demonstrate some preliminary results of our approach on the 7-
th Grade workspace related to percentage increase or decrease. The

workspace has around 300 problems and 3K students completed this
workspace. The data is available through the PSLC datashop [27].
There were around 45K unique instances (student, problem pairs)
in this workspace. Each recorded interaction consists of the log of
the student’s action toward solving the problem. For example, the
timestamp, step name, the knowledge component, the number and
type of hints used and if the step was completed correctly along
with several other pieces of information. We pre-processed this
dataset to remove repeated occurrences of the same step, i.e., if a
step indicates a bug/error the student may repeat it several times,
however, all of these actions represent a single step in the strategy.
Further, we also removed auto-completed entries since these are not
part of a strategy. That is, in several cases MATHia auto-completes
certain steps when the student completes a problem and we do not
want these to be part of the student’s strategy.
Pre-training.We used the publicly available BERT implementation
in our experiments. We used 8 self-attention heads and 4 encoder
blocks. We used a 64 dimension embedding (as compared to 512
in the original model) since the vocabulary is much more limited
which significantly reduced training time (#parameters ≈ 200K).
We randomly masked 15% of tokens to pre-train the BERT models
(similar to what has typically been used in BERT). We stopped pre-
training when the validation loss was below a specified threshold.
We used a Tesla GPU for training the model on the Google Vertex
AI platform. The time taken for the pre-training to converge was
around 4.5 hours. Fig. 2 (a) shows the TSNE plot for the embed-
dings (the embeddings projected into 2D) after the pre-training
converged. As seen in the figure, the data shows separation of
strategy embeddings which is evidence that there is underlying
strategy structure in the workspace. Further, the training and vali-
dation curves in Fig. 2 (b) illustrate that the pre-training converges
which illustrates that the BERT model can predict masked tokens
accurately and again, indicates that there is a predictable structure
within strategies.
Fine-tuning. We show the results of the two tasks that fine-tune
the BERT embeddings. In each case, we fine-tune the model by
supervising the pre-trained model with labeled data. Note that
the pre-trained model can be fine-tuned very fast since it already
has knowledge of strategies. In particular, we took just around 15
minutes for fine-tuned training in each task. Fig. 3(a) shows our
results for identifying strategy types. As shown here, on unseen test
data, we could identify the strategy type with high accuracy (the
peak accuracy was around 92% where the test set was a balanced
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(a) (b)

Figure 2: (a) TSNE plot for pre-trained strategy embeddings (b)Training and validation loss in pre-training.

(a) (b)

Figure 3: Fine-tuned model performance. (a) Identifying strategy types (b) Predicting strategy drift. IS indicates training initial
strategy to predict final strategy and FS indicates training final strategy to predict initial strategy.

set). The 5-fold cross-validated F1 score was 0.87. Fig. 3 (b) shows
our results in predicting strategy drift. Here, we sample the initial
10% of problems that a student has worked on to train the IS model
and predict the results on the final 10% of problems within the
workspace. Similarly, in FS, we train on the final 10% of problems
that a student has worked on and test on the initial 10% of problems.
As seen in the figure, FS is more accurate than IS. The F1-score for FS
was 0.93 and for IS it was 0.83. This indicates that the strategy drifts
but at the same time learners retain preferences of their original
strategy (may indicate prior experience or knowledge). We plan to
interpret strategy drift more deeply in follow up work.

4 CONCLUSION AND FUTURE WORK
We presented an approach to analyze math strategies at scale using
BERT. Specifically, we considered the MATHia ITS and defined
strategy as a sequence of steps performed by a student. Based on
this definition, we considered a specific workspace in 7th Grade
math and identified types of strategies that students could follow on
this workspace. We pre-trained a BERT model by masking steps in

a strategy to understand the general structure of strategies and then
fine-tuned it across 2 tasks, strategy identification and analyzing
strategy drift. We demonstrated results using data from MATHia
for around 3K students. Our results showed the following, i) there
exists structure within strategies which can be discovered by BERT
and ii) while we can recognize strategies with fairly high accuracy,
it may be harder to predict the drift of strategies.

Based on promising preliminary results, we will perform experi-
ments covering several workspaces in MATHia. Further, we will
also develop interpretations to connect well known strategies (top-
down methods) with observations from our approach. Finally, we
will connect strategies with learning outcomes.
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