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Abstract

Spatial reasoning over text is challenging as
the models not only need to extract the direct
spatial information from the text but also rea-
son over those and infer implicit spatial rela-
tions. Recent studies highlight the struggles
even large language models encounter when
it comes to performing spatial reasoning over
text. In this paper, we explore the potential
benefits of disentangling the processes of in-
formation extraction and reasoning in models
to address this challenge. To explore this, we
design various models that disentangle extrac-
tion and reasoning (either symbolic or neural)
and compare them with state-of-the-art (SOTA)
baselines with no explicit design for these parts.
Our experimental results consistently demon-
strate the efficacy of disentangling, showcasing
its ability to enhance models’ generalizability
within realistic data domains.

1 Introduction

Despite the high performance of recent pretrained
language models on question-answering (QA)
tasks, solving questions that require multi-hop rea-
soning is still challenging (Mavi et al., 2022). In
this paper, we focus on spatial reasoning over text
which can be described as inferring the implicit1

spatial relations from explicit relations2 described
in the text. Spatial reasoning plays a crucial role
in diverse domains, including language ground-
ing (Liu et al., 2022), navigation (Zhang et al.,
2021), and human-robot interaction (Venkatesh
et al., 2021). By studying this task, we can an-
alyze both the reading comprehension and logical
reasoning capabilities of models.

Previous work has investigated the use of general
end-to-end deep neural models such as pretrained
language models (PLM) (Mirzaee et al., 2021) in

1By implicit, we mean indirect relations, not metaphoric
usages or implicit meaning for the relations.

2relationships between objects and entities in the environ-
ment, such as location, distance, and relative position.

A grey car is parking in front of a grey house
with brown window frames and plants on the
balcony.

Q: Are the plants behind the car?

BEHIND( the plants, the car)

FRONT( a grey car, a grey house)
NTPPI ( a grey house, plants)

1
2

6

4
3

5

BEHIND( the plants, the car)  Answer = Yes

2
1

3, 4
5

5, 6

Explicit
triplets

Explicit
triplets

START Plants 

 INVERSE    NTPP( plants, a grey house)

 INVERSE    BEHIND(a grey house, a grey car)

 COMBINE    BEHIND(plants, a grey car) 

 Coreference   (a grey car, the car)  

Reasoning

Extraction

Extraction

Figure 1: An example of steps of spatial reasoning on
RESQ dataset. We begin by searching for the plants
from the question triplet within the text, enabling us to
extract explicit triplets (1,2). Next, we apply rules such
as INVERSE to deduce implicit triplets (3,4,5). Then,
utilizing triplets 5 and 6 we determine the final answer,
’Yes’. NTPP: Non-Tangential Proper Part (Table 1).

spatial question answering (SQA). PLMs show rea-
sonable performance on the SQA problem and can
implicitly learn spatial rules from a large set of
training examples. However, the black-box nature
of PLMs makes it unclear whether these models
are making the abstractions necessary for spatial
reasoning or their decisions are based solely on
patterns observed in the data.

As a solution for better multi-hop reasoning, re-
cent research has investigated the impact of using
fine-grained information extraction modules such
as Named Entity Recognition (NER) (Mollá et al.,
2006; Mendes et al., 2010), gated Entity/Relation
(Zheng and Kordjamshidi, 2021) or semantic role
labels (SRL) (Shen and Lapata, 2007; Faghihi et al.,
2023) on the performance of models.
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Formalism
(General Type) Spatial Type Expressions (e.g.)

Topological
(RCC8)

DC (disconnected)
EC (Externally Connected)
PO (Partially Overlapped)
EQ (Equal)
TPP
NTPP
TPPI
NTPPI

disjoint
touching
overlapped
equal
covered by
in, inside
covers
has

Directional
(Relative)

LEFT, RIGHT
BELOW, ABOVE
BEHIND, FRONT

left of, right of
under, over
behind, in front

Distance Far, Near far, close

Table 1: List of spatial relation formalism and types.

On a different thread, cognitive studies (Stenning
and Van Lambalgen, 2012; Dietz et al., 2015) show
when the given information is shorter, humans also
find spatial abstraction and use spatial rules to infer
implicit information. Figure 1 shows an example of
such extractions. Building upon these findings, we
aim to address the limitations of end-to-end models
and capitalize on the advantages of fine-grained
information extraction in solving SQA. Thus, we
propose models which disentangle the language
understanding and spatial reasoning computations
as two separate components. Specifically, we first
design a pipeline model that includes trained neural
modules for extracting direct fine-grained spatial
information from the text and performing symbolic
spatial reasoning over them.

The second model is simply an end-to-end PLM
that uses annotations used in extraction modules
of pipeline model in the format of extra QA su-
pervision. This model aims to demonstrate the
advantages of using separate extraction modules
compared to a QA-based approach while utilizing
the same amount of supervision. Ultimately, the
third model is an end-to-end PLM-based model
on relation extraction tasks that has explicit latent
layers to disentangle the extraction and reasoning
inside the model. This model incorporates a neu-
ral spatial reasoner, which is trained to identify all
spatial relations between each pair of entities.

We evaluate the proposed models on multi-
ple SQA datasets, demonstrating the effectiveness
of the disentangling extraction and reasoning ap-
proach in controlled and realistic environments.
Our pipeline outperforms existing SOTA models
by a significant margin on benchmarks with a con-
trolled environment (toy tasks) while utilizing the
same or fewer training data. However, in real-
world scenarios with higher ambiguity of natural
language for extraction and more rules to cover, our

end-to-end model with explicit layers for extraction
and reasoning performs better.

These results show that disentangling extraction
and reasoning benefits deterministic spatial rea-
soning and improves generalization in realistic do-
mains despite the coverage limitations and sensitiv-
ity to noises in symbolic reasoning. These findings
highlight the potential of leveraging language mod-
els for information extraction tasks and emphasize
the importance of explicit reasoning modules rather
than solely depending on black-box neural models
for reasoning.

2 Related Research

End-to-end model on SQA: To solve SQA tasks,
recent research evaluates the performance of dif-
ferent deep neural models such as Memory net-
works (Shi et al., 2022; Sukhbaatar et al., 2015),
Self-attentive Associative Memory (Le et al., 2020),
subsymbolic fully connected neural network (Zhu
et al., 2022), and Recurrent Relational Network
(RRN) (Palm et al., 2017). Mirzaee and Kord-
jamshidi; Mirzaee et al. use transfer learning and
provide large synthetic supervision that enhances
the performance of PLMs on spatial question an-
swering. However, the results show a large gap be-
tween models and human performance on human-
generated data. Besides, none of these models use
explicit spatial semantics to solve the task. The
only attempt towards integrating spatial seman-
tics into spatial QA task is a baseline model in-
troduced in (Mirzaee et al., 2021), which uses rule-
based spatial semantics extraction for reasoning
on bAbI (task 17) which achieves 100% accuracy
without using any training data.

Extraction and Reasoning: While prior research
has extensively explored the use of end-to-end mod-
els for learning the reasoning rules (Minervini et al.,
2020; Qu et al., 2021), there is limited discussion
on separating the extraction and reasoning tasks.
Nye et al. utilizes LMs to generate new sentences
and extract facts while using some symbolic rules
to ensure consistency between generated sentences.
Similarly, ThinkSum (Ozturkler et al., 2022) uses
LMs for knowledge extraction (Think) and sepa-
rate probabilistic reasoning (Sum), which sums the
probabilities of the extracted information. How-
ever, none of these works are on multi-step or spa-
tial Reasoning.
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3 Proposed Models

To understand the effectiveness of disentangling the
extraction and reasoning modules, we provide three
groups of models. The first model is a pipeline
of extraction and symbolic reasoning (§3.1), the
second model is an end-to-end PLM that uses the
same spatial information supervision but in a QA
format (§3.2), and the third model is an end-to-
end neural model with explicit layers of extraction
and reasoning (§3.3). We elaborate each of these
models in the subsequent sections.

Task The target task is spatial question answer-
ing (SQA), which assesses models’ ability to com-
prehend spatial language and reason over it. Each
example includes a textual story describing enti-
ties and their spatial relations, along with questions
asking an implicit relation between entities (e.g.,
Figure 1). SQA benchmarks provide two types
of questions: YN (Yes/No) queries about the exis-
tence of a relation between two groups of entities,
and FR (Find Relation) seeks to identify all possi-
ble (direct/indirect) relations between them. The
answer to these questions is chosen from a pro-
vided candidate list. For instance, the candidate
list for FR questions can be a sublist of all relation
types in Table 1.

3.1 Pipeline of Extraction and Reasoning

Here, we describe our suggested pipeline model
designed for spatial question answering task, re-
ferred to as PISTAQ3. As shown in the extraction
part of Figure 2, the spatial information is extracted
first and forms a set of triplets for a story (Facts)
and a question (Query). Then a coreference reso-
lution module is used to connect these triplets to
each other. Given the facts and queries, the spatial
reasoner infers all implicit relations. The answer
generator next conducts the final answer. Below
we describe each module in more detail.
Spatial Role Labeling (SPRL) is the task of iden-
tifying and classifying the spatial roles of phrases
within a text (including the Trajector, Landmark,
and Spatial Indicator) and formalizing their rela-
tions (Kordjamshidi et al., 2010). Here, we use
the same SPRL modules as in (Mirzaee and Ko-
rdjamshidi, 2022). This model first computes the
token representation of a story and its question us-
ing a BERT model. Then a BIO tagging layer is
applied on the tokens representations using (O, B-

3PIpeline model for SpaTiAl Question answering
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Figure 2: PISTAQ pipeline based on disentangled ex-
traction and reasoning. In this model, facts, e.g.,
FRONT(grey car, grey house), are extracted from the
story and linked by coreference modules. The R-Coref
equates ‘the car’ from the question with ‘a grey car’ in
the story and forms a query. This query, along with
facts, is sent to the spatial reasoner. Finally, the spatial
reasoner employs FRONT and BEHIND rules and re-
turns True as the answer.

entity, I-entity, B-indicator, and I-indicator) tags.
Finally, a softmax layer on the BIO tagger out-
put selects the spatial entities4 (e.g., ‘grey car’ or
‘plants’ in Figure 2) and spatial indicators (e.g., ‘in
front of’ in Figure 2).
Given the output of the spatial role ex-

traction module, for each combination of
(Trajector, Spatial indicator, Landmark) in
each sentence, we create a textual input5 and pass
it to a BERT model. To indicate the position of
each spatial role in the sentence, we use segment
embeddings and add 1 if it is a role position and
0 otherwise. The [CLS] output of BERT will be
passed to a one-layer MLP that provides the prob-
ability for each triplet. To apply the logical rules
on the triplets, we need to assign a relation type
to each triplet. To this aim, we use another multi-
classification layer on the same [CLS] token to
identify the spatial types of the triplet. The classes
are relation types in Table 1 alongside a class NaN
for triplet with no spatial meaning. For instance,
in Figure 2, (grey car, in front of, grey house) is
a triplet with FRONT as its relation type while
(grey house, in front of, grey car) is not a triplet
and its relation type is NaN . We use a joint loss
function for triplet and relation type classification
to train the model.
Coreference Resolution Linking the extracted
triplets from the stories is another important step
required in this task, as different phrases or pro-
nouns may refer to same entity. To make such
connections, we implement a coreference resolu-

4Trajector/Landmark
5[CLS, traj, SEP, indic, SEP, land, SEP, sentence, SEP]
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Not ∀(X,Y ) ∈ Entities R ∈ {Dir ∨ PP} IFR(X,Y ) ⇒ NOT(R_reverse(X,Y ))
Inverse ∀(X,Y ) ∈ Entities R ∈ {Dir ∨ PP} IFR(Y,X) ⇒ R_reverse(X,Y )
Symmetry ∀(X,Y ) ∈ Entities R ∈ {Dis ∨ (RCC − PP )} IFR(Y,X) ⇒ R(X,Y )
Transitivity ∀(X,Y, Z) ∈ Entities R ∈ {Dir ∨ PP} IFR(X,Z), R(Z, Y ) ⇒ R(X,Y )

Combination ∀(X,Y, Z,H) ∈ Entities R ∈ Dir, ∗PP ∈ PP IF ∗PP (X,Z), R(Z,H), ∗PPi(Z, Y ) ⇒ R(X,Y )

Table 2: Designed spatial rules (Mirzaee and Kordjamshidi, 2022). Dir: Directional relations (e.g., LEFT), Dis:
Distance relations (e.g., FAR), PP : all Proper parts relations (NTPP, NTPPI, TPPI, TPP), RCC − PP : All RCC8
relation except proper parts relations. ∗PP : one of TPP or NTPP. ∗PPi: one of NTPPi or TPPi.

tion model based on (Lee et al., 2017) and ex-
tract all antecedents for each entity and assign a
unique id to them. In contrast to previous work,
we have extended the model to support plural an-
tecedents (e.g., two circles). More details about
this model can be found in Appendix C.2. To find
the mentions of the question entities in the story
and create the queries, we use a Rule-based Coref-
erence (R-Coref) based on exact/partial matching.
In Figure 2, ‘the car’ in the question has the same
id as ‘the grey car’ from the story’s triplets.
Logic-based Spatial Reasoner To do sym-
bolic spatial reasoning, we use the reasoner
from (Mirzaee and Kordjamshidi, 2022). This rea-
soner is implemented in Prolog and utilizes a set of
rules on various relation types, as illustrated in Ta-
ble 2. Given the facts and queries in Prolog format,
the spatial reasoner can carry out the reasoning pro-
cess and provide an answer to any given query. The
reasoner matches variables in the program with con-
crete values and a backtracking search to explore
different possibilities for each rule until a solution
is found. As shown in Figure 2, the reasoner uses
a FRONT and a BEHIND rules over the facts and
generates the True response for the query.

3.2 PLMs Using SPRL Annotations

To have a fair comparison between the QA base-
lines and models trained on SPRL supervision, we
design BERT-EQ6. We convert the SPRL anno-
tation into extra YN questions7 asking about ex-
plicit relations between a pair of entities. To gen-
erate extra questions, we replace triplets from the
SPRL annotation into the “Is [Trajector] [Rela-
tion*] [Landmark]?” template. The [Trajector] and
[Landmark] are the entity phrases in the main sen-
tence ignoring pronouns and general names (e.g.,
“an object/shape”). The [Relation*] is a relation
expression (examples presented in Table 1) for the

6BERT+Extra Question
7This augmentation does not apply to FR type since it

inquires about all relations between the two asked entities.

triplet relation type. To have equal positive and neg-
ative questions, we reverse the relation in half of the
questions. We train BERT-EQ using both original
and extra questions by passing the “question+story”
into a BERT with answers classification layers.

3.3 PLMs with Explicit Extractions

As another approach, we aim to explore a model
that disentangles the extraction and reasoning parts
inside a neural model. Here, rather than directly
predicting the answer from the output of PLMs (as
typically done in the QA task), we introduce ex-
plicit layers on top of PLM outputs. These layers
are designed to generate representations for enti-
ties and pairs of entities, which are then passed to
neural layers to identify all relations. We call this
model SREQA8, which is an end-to-end spatial re-
lation extraction model designed for QA. Figure 3
illustrates the structure of this model.
In this model, we first select the entity men-

tions (Mj(E1)) from the BERT tokens represen-
tation and pass it to the extraction part shown in
Figure 3a. Next, the model computes entity repre-
sentation (M(E1)) by summing the BERT token
representations of all entity’s mentions and passing
it to an MLP layer. Then for each pair of entities,
a triplet is created by concatenating the pair’s en-
tities representations and the BERT [CLS] token
representation. This triplet is passed through an
MLP layer to compute the final pair representations.
Next, in the reasoning part in Figure 3a, for each re-
lation type in Table 1, we use a binary 2-layer MLP
classifier to predict the probability of each relation
between the pairs. We remove the inconsistent re-
lations by selecting one with a higher probability
at inference time, e.g., LEFT and RIGHT cannot
be true at the same time. The final output is a list
of all possible relations for each pair. This model
is trained using the summation of Focal loss (Lin
et al., 2017) of all relation classifiers.

8Spatial Relation Extraction for QA
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(a) Model structure. First, entity mentions such as ‘plants’ and
‘grey car’ are selected from the BERT output and the entity
representation is formed. Next, triplets like (‘plants’, ‘car’,
[CLS]) are generated and fed into the reasoning component.
The collective output of all relation classifiers determines the
relationships between each pair. *All hatched parts are trained
end-to-end. The rest of the data is obtained from annotations
or off-the-shelf modules.
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(Training step#1)
Question relation
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Entity Mentions Relation Supervision
Entity + Coref

annotation

Trained entity extraction
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SpRL + Coref annotation
-> Spatial Reasoner

QA Answer

Source of

(b) The source of supervision in each step of training. In
step#1, we train the model on all story relations, and in step#2,
we only train it on question relations.These modules and data
are the same as the ones used in PISTAQ.

Figure 3: The SREQA model with explicit neural layers
to disentangle extraction and reasoning part.

We train SREQA in two separate steps. In the
first step, the model is trained on a relation ex-
traction task which extracts all direct and indirect
relations between each pair of entities only from
stories. The top row of Figure 3b shows the anno-
tation and modules employed in this step to gather
the necessary supervision. We use the entity and
coreference annotation to select the entity mentions
from the BERT output. To compute the relations
supervision for each pair of entities, we employ the
spatial reasoner from PISTAQ and apply it to the
direct relations (triplets) from the SPRL annotation,
which are connected to each other by coreference
annotations. This step of training is only feasible
for datasets with available SPRL and coreference
annotations.

In the next step, we further train SREQA on
extracting questions relation using QA supervision.
As shown in the bottom row of Figure 3b, we em-
ploy the trained spatial role extraction model used
in PISTAQ to identify the entities in the question
and use R-Coref to find the mentions of these enti-
ties in the story. To obtain the relation supervision,
we convert the question answers to relation labels.
In FR, the label is similar to the actual answer,
which is a list of all relations. In YN, the question

relation is converted to a label based on the Yes/No
answer. For example, in Figure 3a, the question
relation is ‘BEHIND,’ and the answer is Yes, so the
label for the BEHIND classifier is 1.
We evaluate the SREQA model’s performance

in predicting the accurate answers of the test set’s
questions same as training step 2.

4 Experiments

4.1 Datasets
SPARTQA is an SQA dataset in which examples
contain a story and multiple YN9 and FR ques-
tions that require multi-hop spatial reasoning to be
answered. The stories in this dataset describe rela-
tions between entities in a controlled (toy task) envi-
ronment. This dataset contains a large synthesized
part, SPARTQA-AUTO, and a more complex small
human-generated subset, SPARTQA-HUMAN. All
stories and questions in this dataset also contain
SPRL annotations.
SPARTUN is an extension of SPARTQA with YN
and FR questions containing SPRL annotations.
Compared to SPARTQA, the vocabulary and rela-
tion types in this dataset are extended, and it covers
more relation types, rules, and spatial expressions
to describe relations between entities.
RESQ is an SQA dataset with Yes/No questions
over the human-generated text describing spatial
relations in real-world settings. The texts of this
dataset are collected from MSPRL dataset (Kord-
jamshidi et al., 2017) (See Figure 1), which de-
scribe some spatial relations in pictures of Im-
ageCLEF (Grubinger et al., 2006). Also, the
MSPRL dataset already contains some SPRL an-
notations. To answer some of the questions in this
dataset, extra spatial-commonsense information is
needed (e.g., a roof is on the top of buildings).

4.2 Model Configurations & Baselines
We compare the models described in section 3 with
the following baselines.
Majority Baseline: This baseline selects the most
frequent answer(s) in each dataset.
GT-PISTAQ: This model uses ground truth (GT)
values of all involved modules in PISTAQ to elimi-
nate the effect of error propagation in the pipeline.
This baseline is used to evaluate the alignments
between the questions and story entities and the
reasoning module in solving the QA task. It also

9We ignore “Dont know” answers in YN question and
change them to No
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Model Supervisions Rule-based Modules
BERT QA -
GPT3.5zero_shot - -
GPT3.5few_shot QA(8 ex) -
GPT3.5few_shot+CoT QA(8 ex) + CoT -
BERT-EQ QA +SpRL(S) -
SREQA QA +SpRL(all)+Coref Reasoner, R-Coref
SREQA* QA + SpRL(Q) R-Coref
PISTAQ SpRL(all) + Coref Reasoner, R-Coref
PISTAQzero_shot - Reasoner, R-Coref

Table 3: The list of annotations from the target bench-
marks and rule-based modules employed in each model.
We use a quarter of SPRL annotations to train the mod-
ules on auto-generated benchmarks. S: Stories, Q: Ques-
tions, All: Stories+Questions.

gives an upper bound for the performance of the
pipeline model, as the extraction part is perfect.
BERT: We select BERT as a candidate PLM that
entangles the extraction and reasoning steps. In
this model, the input of the “question+story” is
passed to the BERT, and the [CLS] representation
is used to do the answer classification.
GPT3.5: GPT3.5 (Brown et al., 2020) base-
lines (GPT3.5 text-davinci-003) is selected as a
candidate of generative larger language models
which already passes many SOTAs in reasoning
tasks (Bang et al., 2023; Kojima et al., 2022). We
use Zero_shot and Few_shot (In-context learn-
ing with few examples) settings to evaluate this
model on the human-generated benchmarks. We
also evaluate the Chain-of-Thoughts (CoT) prompt-
ing method (Wei et al., 2022) to extend the prompts
with manually-written reasoning steps. The format
of the input and some prompt examples are pre-
sented in Appendix E.
Transfer learning has already demonstrated sig-

nificant enhancements in numerous deep learning
tasks (Soroushmojdehi et al., 2022; Rajaby Faghihi
and Kordjamshidi, 2021). Thus, when applica-
ble, we further train models on SPARTUN syn-
thetic data shown by “*”. The datasets’ examples
and statistics and more details of the experimen-
tal setups and configurations are provided in Ap-
pendix A and B. All codes are publicly available at
https://github.com/RshNk73/PistaQ-SREQA.

5 Results and Discussion

Here, we discuss the influence of disentangling
extraction and reasoning manifested in PISTAQ and
SREQA models compared to various end-to-end
models with no explicit design for these modules,
such as BERT, BERT-EQ, and GPT3.5. Table 3
shows the list of these models with the sources of

their supervision as well as extra off-the-shelf or
rule-based modules employed in them.
Since the performance of extraction modules,

Spatial Role Labeling (SPRL) and Coreference
Resolution (Coref), directly contribute to the final
accuracy of the designed models, we have evalu-
ated these modules and reported the results in Ta-
ble 4. We choose the best modules on each dataset
for experiments. For a detailed discussion on the
performance of these modules, see Appendix C.

Dataset Coref SRole SRel SType
MSPRL - 88.59 69.12 19.79
MSPRL* - 88.03 71.23 23.65

HUMAN 82.16 55.8 S: 57.43 43.79
Q: 52.55 39.34

HUMAN* 81.51 72.53 S: 60.24 48.74
Q: 61.53 48.07

SPARTQA 99.83 99.92 S: 99.72 99.05
Q: 98.36 98.62

SPARTUN 99.35 99.96 S: 99.18 98.57
Q: 97.68 98.11

Table 4: Performance of the extraction modules. Q:
question. S: stories. HUMAN: SPARTQA-HUMAN.
SPARTQA: SPARTQA-AUTO. *Further pretraining
modules on SPARTUN. We report macro F1 for SPRL
and the accuracy of the Coref modules.

5.1 Result on Controlled Environment

Table 5 shows the performance of models on
two auto-generated benchmarks, SPARTUN and
SPARTQA-AUTO. We can observe that PISTAQ
outperforms all PLM baselines and SREQA. This
outcome first highlights the effectiveness of the
extraction and symbolic reasoning pipeline com-
pared to PLMs in addressing deterministic reason-
ing within a controlled environment. Second, it
shows that disentangling extraction and reasoning
as a pipeline works better than explicit neural lay-
ers in SQA with a controlled environment. The
complexity of these environments is more related
to conducting several reasoning steps and demands
accurate logical computations where a rule-based
reasoner excels. Thus, the result of PISTAQ with
a rule-based reasoner module is also higher than
SREQA with a neural reasoner.
The superior performance of PISTAQ over BERT

suggests that SPRL annotations are more effec-
tive in the PISTAQ pipeline than when utilized in
BERT-EQ in the form of QA supervision. Note
that the extraction modules of PISTAQ achieve per-
fect results on auto-generated benchmarks while
trained only on a quarter of the SPRL annotations
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# Models
SPARTUN SPARTQA-AUTO

YN FR YN FR
1 Majority baseline 53.62 14.23 51.82 44.35
2 GT-PISTAQ 99.07 99.43 99.51 98.99
3 BERT 91.80 91.80 84.88 94.17
4 BERT-EQ 90.71 N/A 85.60 N/A
5 SREQA 88.21 83.31 85.11 86.88
6 PISTAQ 96.37 94.52 97.56 98.02

Table 5: Results on auto-generated datasets. We use the
accuracy metric for both YN and FR questions.

as shown in Table 5. However, BERT-EQ uses all
the original dataset questions and extra questions
created from the full SPRL annotations.

Table 6 demonstrates the results of models on
SPARTQA-HUMAN with a controlled environment
setting. As can be seen, our proposed pipeline,
PISTAQ, outperforms the PLMs by a margin of
15% on YN questions, even though the extraction
modules, shown in Table 4, perform low. This low
performance is due to the ambiguity of human lan-
guage and smaller training data. We also evaluate
PISTAQ on SPARTQA-HUMAN FR questions us-
ing Macro_f1 score on all relation types. PISTAQ
outperforms all other baselines on FR questions,
except for BERT*.

There are two main reasons behind the inconsis-
tency in performance between YN and FR question
types. The first reason is the complexity of the YN
questions, which goes beyond the basics of spa-
tial reasoning and is due to using quantifiers (e.g.,
all circles, any object). While previous studies
have demonstrated that PLMs struggle with quanti-
fiers (Mirzaee et al., 2021), the reasoning module in
PISTAQ can adeptly handle them without any per-
formance loss. Second, further analysis indicates
that PISTAQ predicts ‘No’ when a relationship is
not extracted, which can be correct when the an-
swer is ‘No’. However, in FR, a missed extraction
causes a false negative which decreases F1 score.

5.2 Results on Real-world Setting

We select RESQ as an SQA dataset with realistic
settings and present the result of models on this
dataset in Table 7.
To evaluate PISTAQ on RESQ, we begin by

adapting its extraction modules through training
on the corresponding dataset. We train the SPRL
modules on both MSPRL and SPARTUN, and the
performance of these models is presented in Ta-
ble 4. As the MSPRL dataset lacks coreference an-

# Models
YN FR
Acc P R F1

1 Majority baseline 52.44 29.87 14.28 6.57
2 GT-PISTAQ 79.72 96.38 66.04 75.16
3 BERT 51.74 30.74 30.13 28.17
4 BERT* 48.95 60.96 49.10 50.56
5 GPT3.5Zero_shot 45.45 40.13 22.42 16.51
6 GPT3.5Few_shot 60.13 45.20 54.10 44.28
7 GPT3.5Few_shot+CoT 62.93 57.18 37.92 38.47
8 BERT-EQ 50.34 - - -
9 BERT-EQ* 45.45 - - -
10 SREQA 53.23 15.68 13.85 13.70
11 SREQA* 46.96 18.70 25.79 24.61
12 PISTAQ 75.52 72.11 35.93 46.80

Table 6: Results on SPARTQA-HUMAN. We use ac-
curacy on YN questions and average Precision (P), Re-
call (R), and Macro-F1 on FR question types. *Using
SPARTUN supervision for further training.

# Models Accuracy
1 Majority baseline 50.21
2 BERT 57.37
3 BERT*Zero_shot 49.18
4 BERT* 63.60
5 GPT3.5Zero_shot 60.32
6 GPT3.5Few_shot 65.90
7 GPT3.5Few_shot+CoT 67.05
8 BERT-EQ 56.55
9 BERT-EQ*Zero_shot 51.96
10 BERT-EQ* 61.47
11 SREQA 53.15
12 SREQA*Zero_shot 53.32
13 SREQA* 69.50
14 PISTAQMSPRL 41.96
15 PISTAQ SPARTUN+MSPRL 47.21
16 Human 90.38

Table 7: Result on RESQ. *Further training on SPAR-
TUN. The Zero_shot refers to evaluation without fur-
ther training on RESQ or MSPRL training data.

notations, we employ the model trained on SPAR-
TUN for this purpose. Rows 14 and 15 in Table 7
show the performance of the PISTAQ on RESQ is
inferior compared to other baselines. To find the
reason, we analyze the first 25 questions from the
RESQ test set. We find that 18 out of 25 questions
required spatial commonsense information and can-
not be answered solely based on the given relations
in the stories. From the remaining 7 questions, only
2 can be answered using the SPRL annotations pro-
vided in the MSPRL dataset. Some examples of
this analysis are provided in Appendix D. Hence,
the low performance of PISTAQ is attributed to first
the absence of integrating commonsense informa-
tion in this model and, second, the errors in the
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Sp
aR

TQ
A-

Hu
m

an Story: There is a block called A. Inside there's a red oval that is above a blue triangle ... There is a block called B which is to the right and touching A. 
Inside B there are 5 triangles, a red one, a green one, a large yellow one, a brown one, and an orange one ... The large yellow triangle is touching the top 
edge of B. The green triangle is touching the right edge of B...

Question 1: Is the green thing above the yellow thing? Answer: No

Question 2: Does B have all of the triangles? Answer: No

GP
T3

.5
(P

re
di

ct
io

n) Q1:The green triangle is to the right of the large yellow triangle and the large yellow triangle is touching the top edge of B. Using inverse rule, the green 
triangle is below the yellow triangle. The answer is No.

Q2: There are five triangles mentioned in block B, a red one, a green one, a large yellow one, a brown one, and an orange one. All of these triangles are 
in block B, so the answer is Yes.

GP
T4

 
(P

re
di

ct
io

n) Q1: The green triangle is touching the right edge of B, and the large yellow triangle is touching the top edge of B. It is not mentioned if the green 
triangle is above or below the yellow triangle. The answer is Don't Know.

Q2: There is a blue triangle in block A, and there are 5 triangles in block B. Since there is a triangle in block A, not all triangles are in block B. The answer 
is No.

Pa
LM

2 
(P

re
di

ct
io

n) Q1: The green triangle is touching the right edge of B and the large yellow triangle is touching the top edge of B. The right edge of B is below the top 
edge of B. So the green triangle is below the yellow triangle. The answer is No.

Q2: There are 5 triangles in B. There is a red triangle in B. There is a green triangle in B. There is a large yellow triangle in B. There is a brown 
triangle in B. There is an orange triangle in B. The answer is Yes.

PISTAQ
Q2: Extracted Facts (GPT3, Turbo):                             NTPP(blue triangle, A), TPP(red triangle, left edge of B), TPP(orange triangle, left edge of B), ...
       Extracted Queries (GPT3, Turbo):                         NTPPI/TPPI (B, blue triangle) , NTPPI/TPPI (B, red triangle) , NTPPI/TPPI (B, orange triangle) , ... 
       Symbolic Reasoning (Rule-based Reasoner):   False & True & True & ... → Answer = No

Figure 4: An example of Large Language Models (LLMs) prediction on SQA task evaluated with CoT prompting.
The last row shows an example of using GPT3.5-Turbo for information extraction in PISTAQ. See Appendix E for
zero_shot examples.

extraction modules, which are propagated to the
reasoning modules.
As shown in Table 7, the best result on RESQ

is achieved by SREQA* model. Compared to
SREQA, SREQA* is trained on SPARTUN in-
stead of MSPRL10 in the first step of the training.
MSPRL lacks some SPRL and coreference annota-
tions to answer RESQ questions. In the absence of
this information, collecting the supervision for the
first phase of training results in a significant number
of missed relations. Therefore, as shown in row 11
of Table 7, employing MSPRL in the first training
phase decreases the performance while replacing
it with SPARTUN in SREQA* significantly en-
hances the results.

SREQA* surpasses the PLMs trained on QA
and QA+SPRL annotation, showcasing the advan-
tage of the design of this model in utilizing QA and
SPRL data within explicit extraction layers and the
data preprocessing. Also, the better performance
of this model compared to PISTAQ demonstrates
how the end-to-end structure of SREQA can han-
dle the errors from the extraction part and also can
capture some rules and commonsense knowledge
from RESQ training data that are not explicitly
supported in the symbolic reasoner.

In conclusion, compared to PLMs, disentangling
extraction and reasoning as a pipeline indicates su-

10As mentioned, we use the MSPRL annotation for RESQ
dataset.

perior performance in deterministic spatial reason-
ing within controlled settings. Moreover, explicitly
training the extraction module proves advantageous
in leveraging SPRL annotation more effectively
compared to using this annotation in QA format in
the end-to-end training. Comparison between dis-
entangling extraction and reasoning as a pipeline
and incorporating them within an end-to-end model
demonstrates that the end-to-end model performs
better in realistic domains even better than PLMs.
The end-to-end architecture of this model effec-
tively enhances the generalization in the real-world
setting and addresses some of the limitations of
rule coverage and commonsense knowledge.

5.3 LLMs on Spatial Reasoning
Recent research shows the high performance
of LLMs with zero/few_shot setting on many
tasks (Chowdhery et al., 2022; Brown et al., 2020).
However, (Bang et al., 2023) shows that Chat-
GPT (GPT3.5-Turbo) with zero_shot evaluation
cannot perform well on SQA task using SPARTQA-
HUMAN test cases. Similarly, our experiments, as
shown in Tables 6 and 7, show the lower perfor-
mance of GPT3.5 (davinci) with zero/few_shot
settings compared to human and our models PIS-
TAQ and SREQA. Figure 4, shows an example
of three LLMs, GPT3.5, GPT4 and PaLM2 on
SPARTQA-HUMAN example11 (complete figure

11Due to the limited resources, we only use GPT4 and
PaLM2 on a few examples to evaluate their performance on

3386



Story: a photo of a room with white walls , two single beds with a night table in 
between and a picture on the wall above the beds .

Question: Are the beds below the picture? Answer: Yes

Story 
Facts:

BERT 0: ['a picture', 'the beds'], 2:['a'], 1: ['a picture', 'the wall']
Facts: right(2, 1), below(2, 0), near(2, 0) 

GPT3 3: ['two single beds', 'the beds'], 5: ['a picture'], 6: ['the wall', 'the beds']
Facts: above(5, 3), above(5, 6) ... 

Queries: BERT below(0 , 0)? or below(0 , 1)?
GPT3 below(3 , 5)? or below(3 , 6)?

Reasoning:
BERT below(0 , 0) = False, below(0 , 1) = False  →   Answer = No
GPT3 below(3 , 5) = True, below(3 , 6) = False → Answer = Yes

Figure 5: An example of using BERT-based SPRL and
GPT3.5 as information extraction in PISTAQ on a RESQ
example.

including zero_shot examples is presented in Ap-
pendix E). Although Wei et al. shows that using
CoT prompting improves the performance of PaLM
on multi-step reasoning task, its spatial reasoning
capabilities still does not meet the expectation.

5.3.1 LLMs as Extraction Module in PISTAQ
A recent study (Shen et al., 2023) shows that LLMs
have a promising performance in information re-
trieval. Building upon this, we employ LLM,
GPT3.5-Turbo with few_shot prompting to ex-
tract information from a set of SPARTQA-HUMAN

and RESQ examples that do not necessitate com-
monsense reasoning for answering. The extracted
information is subsequently utilized within the
framework of PISTAQ.
The results, illustrated in the last row of Fig-

ure 4, highlight how the combination of LLM ex-
traction and symbolic reasoning enables answering
questions that LLMs struggle to address. Further-
more, Figure 5 provides a comparison between the
trained BERT-based SPRL extraction modules and
GPT3.5 with few_shot prompting in PISTAQ. It
is evident that GPT3.5 extracts more accurate in-
formation, leading to correct answers. As we men-
tioned before, out of 25 sampled questions from
RESQ, only 7 can be solved without relying on spa-
tial commonsense information. Our experimental
result shows that PISTAQ using LLM as extraction
modules can solve all of these 7 questions.
Based on these findings, leveraging LLMs in

PISTAQ to mitigate errors stemming from the
SPRL extraction modules rather than relying solely
on LLMs for reasoning can be an interesting future
research direction. This insight emphasizes the
importance of considering new approaches for in-
corporating explicit reasoning modules whenever
possible instead of counting solely on black-box

SQA tasks.

neural models for reasoning tasks.

6 Conclusion and Future Works

We investigate the benefits of disentangling the
processes of extracting spatial information and rea-
soning over them. To this end, we devised a series
of experiments utilizing PLMs for spatial informa-
tion extraction coupled with a symbolic reasoner
for inferring indirect relations. The outcomes of
our experiments provide noteworthy insights: (1)
Our observations in controlled experimental condi-
tions demonstrate that disentangling extraction and
symbolic reasoning, compared to PLMs, enhances
the models’ reasoning capabilities, even with com-
parable or reduced supervision. (2) Despite the
acknowledged fragility of symbolic reasoning in
real-world domains, our experiments highlight that
employing explicit extraction layers and utilizing
the same symbolic reasoner in data preprocessing
enhances the reasoning capabilities of models. (3)
Despite the limitations of LLMs in spatial reason-
ing, harnessing their potential for information ex-
traction within a disentangled structure of Extrac-
tion and Reasoning can yield significant benefits.
All of these results emphasize the advantage of dis-
entangling the extraction and reasoning in spatial
language understanding.
In future research, an intriguing direction is in-

corporating spatial commonsense knowledge us-
ing LLMs as an extraction module in the pipeline
of extraction and reasoning. Additionally, the
model’s applicability extends beyond spatial rea-
soning, making it suitable for various reasoning
tasks involving logical rules, such as temporal or
arithmetic reasoning.
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Limitations

Our model is evaluated on a Spatial Reasoning
task using specifically designed spatial logical rules.
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However, this methodology can be readily extended
to other reasoning tasks that involve a limited set
of logical rules, which can be implemented us-
ing logic programming techniques. The extraction
modules provided in this paper are task-specific
and do not perform well on other domains, but they
can be fine-tuned on other tasks easily. Using LLM
in the extraction phase can also deal with this issue.
Also, using MSPRL annotation on RESQ(which
this data is provided on) decreases the performance
of our models. This annotation does not contain
the whole existing relations in the context. The
evaluation of the reasoning module is based on the
existing datasets. However, we cannot guarantee
that they cover all possible combinations between
spatial rules and relation types. Many questions in
RESQ need spatial commonsense to be answered.
As a result, due to the limitation of our symbolic
spatial reasoner, the performance of the pipeline
model is much lower than what we expected. Due
to the high cost of training GPT3.5 on large syn-
thetic data, we cannot fine-tune the whole GPT3.5
and only provide the GPT3.5 with Few_shot learn-
ing on small human-generated benchmarks. Also,
due to the limited access, we can only test PaLM2
and GPT4 on a few examples.

References
Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-

liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan
Xu, and Pascale Fung. 2023. A multitask, multilin-
gual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Emmanuelle-Anna Dietz, Steffen Hölldobler, and
Raphael Höps. 2015. A computational logic ap-
proach to human spatial reasoning. In 2015 IEEE
Symposium Series on Computational Intelligence,
pages 1627–1634. IEEE.

Hossein Rajaby Faghihi, Parisa Kordjamshidi,
Choh Man Teng, and James Allen. 2023. The role of

semantic parsing in understanding procedural text.
arXiv preprint arXiv:2302.06829.

Michael Grubinger, Paul Clough, Henning Müller, and
Thomas Deselaers. 2006. The iapr tc-12 benchmark:
A new evaluation resource for visual information
systems. In International workshop ontoImage, vol-
ume 2.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Parisa Kordjamshidi, Marie-Francine Moens, and Mar-
tijn van Otterlo. 2010. Spatial Role Labeling: Task
definition and annotation scheme. In Proceedings
of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10), pages
413–420. European Language Resources Association
(ELRA).

Parisa Kordjamshidi, Taher Rahgooy, Marie-Francine
Moens, James Pustejovsky, Umar Manzoor, and Kirk
Roberts. 2017. Clef 2017: Multimodal spatial role
labeling (msprl) task overview. In International Con-
ference of the Cross-Language Evaluation Forum for
European Languages, pages 367–376. Springer.

Hung Le, Truyen Tran, and Svetha Venkatesh. 2020.
Self-attentive associative memory. In International
Conference on Machine Learning, pages 5682–5691.
PMLR.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Xiao Liu, Da Yin, Yansong Feng, and Dongyan Zhao.
2022. Things not written in text: Exploring spatial
commonsense from visual signals. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2365–2376, Dublin, Ireland. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Vaibhav Mavi, Anubhav Jangra, and Adam Jatowt. 2022.
A survey on multi-hop question answering and gen-
eration. arXiv preprint arXiv:2204.09140.

Ana Cristina Mendes, Luísa Coheur, and Paula Vaz
Lobo. 2010. Named entity recognition in questions:
Towards a golden collection. In LREC.

3388

http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/2022.acl-long.168
https://doi.org/10.18653/v1/2022.acl-long.168


Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktäschel. 2020.
Learning reasoning strategies in end-to-end differ-
entiable proving. In International Conference on
Machine Learning, pages 6938–6949. PMLR.

Roshanak Mirzaee and Parisa Kordjamshidi. 2022.
Transfer learning with synthetic corpora for spatial
role labeling and reasoning. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6148–6165, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang
Ning, and Parisa Kordjamshidi. 2021. SPARTQA:
A textual question answering benchmark for spatial
reasoning. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4582–4598, Online. Association for
Computational Linguistics.

Diego Mollá, Menno Van Zaanen, Daniel Smith, et al.
2006. Named entity recognition for question answer-
ing.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in
Neural Information Processing Systems, 34:25192–
25204.

Batu Ozturkler, Nikolay Malkin, Zhen Wang, and Nebo-
jsa Jojic. 2022. Thinksum: Probabilistic reasoning
over sets using large language models. arXiv preprint
arXiv:2210.01293.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther.
2017. Recurrent relational networks. arXiv preprint
arXiv:1711.08028.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux,
Yoshua Bengio, and Jian Tang. 2021. Rnnlogic:
Learning logic rules for reasoning on knowledge
graphs. In International Conference on Learning
Representations.

Hossein Rajaby Faghihi and Parisa Kordjamshidi. 2021.
Time-stamped language model: Teaching language
models to understand the flow of events. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4560–4570, Online. Association for Computational
Linguistics.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL),
pages 12–21, Prague, Czech Republic. Association
for Computational Linguistics.

Tao Shen, Guodong Long, Xiubo Geng, Chongyang
Tao, Tianyi Zhou, and Daxin Jiang. 2023. Large
language models are strong zero-shot retriever. arXiv
preprint arXiv:2304.14233.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. In Proceedings of the Asso-
ciation for the Advancement of Artificial Intelligence,
AAAI ’22.

Rahil Soroushmojdehi, Sina Javadzadeh, Alessandra
Pedrocchi, Marta Gandolla, et al. 2022. Transfer
learning in hand movement intention detection based
on surface electromyography signals. Frontiers in
Neuroscience, 16:1–18.

Keith Stenning and Michiel Van Lambalgen. 2012. Hu-
man reasoning and cognitive science. MIT Press.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
arXiv preprint arXiv:1503.08895.

Sagar Gubbi Venkatesh, Anirban Biswas, Raviteja
Upadrashta, Vikram Srinivasan, Partha Talukdar, and
Bharadwaj Amrutur. 2021. Spatial reasoning from
natural language instructions for robot manipulation.
In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 11196–11202. IEEE.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. 36th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2022).

Yue Zhang, Quan Guo, and Parisa Kordjamshidi. 2021.
Towards navigation by reasoning over spatial con-
figurations. In Proceedings of Second International
Combined Workshop on Spatial Language Under-
standing and Grounded Communication for Robotics,
pages 42–52, Online. Association for Computational
Linguistics.

Chen Zheng and Parisa Kordjamshidi. 2021. Rela-
tional gating for" what if" reasoning. arXiv preprint
arXiv:2105.13449.

Rui Zhu, Krzysztof Janowicz, Ling Cai, and Gengchen
Mai. 2022. Reasoning over higher-order qualitative
spatial relations via spatially explicit neural networks.
International Journal of Geographical Information
Science, pages 1–32.

3389

https://aclanthology.org/2022.emnlp-main.413
https://aclanthology.org/2022.emnlp-main.413
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.362
https://doi.org/10.18653/v1/2021.naacl-main.362
https://aclanthology.org/D07-1002
https://aclanthology.org/D07-1002
https://www.researchgate.net/publication/357159030_StepGame_A_New_Benchmark_for_Robust_Multi-Hop_Spatial_Reasoning_in_Texts
https://www.researchgate.net/publication/357159030_StepGame_A_New_Benchmark_for_Robust_Multi-Hop_Spatial_Reasoning_in_Texts
https://doi.org/10.18653/v1/2021.splurobonlp-1.5
https://doi.org/10.18653/v1/2021.splurobonlp-1.5


A Statistic Information

This section presents statistical information regard-
ing dataset sizes and additional analyses conducted
on the evaluation sets of human-generated datasets.
Table 8 provides the number of questions in the

training and evaluation sets of the SQA bench-
marks. Tables 9 and 10 present the sentence and
number of relation triplets within the SPRL an-
notation for each dataset, respectively. Table 11
illustrates a comprehensive breakdown of the size
of Role and Relation sets in the MSPRL dataset.

Dataset Train Dev Test
SPARTQA-AUTO (YN) 26152 3860 3896
SPARTQA-AUTO (FR) 25744 3780 3797
SPARTQA-HUMAN (YN) 162 51 143
SPARTQA-HUMAN (FR) 149 28 77
SPARTUN (YN) 20334 3152 3193
SPARTUN (FR) 18400 2818 2830
RESQ(YN) 1008 333 610

Table 8: Number of questions in training and evaluation
sets of SQA benchmarks.

Dataset Train Dev Test
SPARTQA-AUTO (story) 36420 16214 16336
SPARTQA-AUTO (question) 53488 15092 15216
SPARTQA-HUMAN (story) 389 213 584
SPARTQA-HUMAN (question) 623 190 549
SPARTUN (story) 68048 9720 10013
SPARTUN (question) 41177 6355 6340
MSPRL 600 - 613

Table 9: Number of sentences in SPRL annotations of
each benchmarks. To train models on the auto-generated
benchmarks, we only use the quarter of training exam-
ples from SPARTUN and SPARTQA-AUTO.

Dataset Train Dev Test
SPARTQA-AUTO (story) 159712 22029 21957
SPARTQA-AUTO (question) 232187 34903 35011
SPARTQA-HUMAN (story) 176 99 272
SPARTQA-HUMAN (question) 155 127 367
SPARTUN (story) 48368 7031 7191
SPARTUN (question) 38734 5970 6023
MSPRL 761 - 939

Table 10: Number of triplets in SPRL annotations of
each benchmarks.

A.1 Analyzing SPARTQA-HUMAN YN

We conducted additional evaluations on the supe-
rior performance of PISTAQ over other baseline
models on SPARTQA-HUMAN YN questions. As
explained before, PISTAQ tends to predict Nowhen

Train Test All
Sentences 600 613 1213

Trajectors 716 874 1590
Landmarks 612 573 1185
Spatial Indicators 666 795 1461
Spatial Triplets 761 939 1700

Table 11: MSPRL size (Kordjamshidi et al., 2017).

Q:  Is the yellow apple to the west of the  yellow
watermelon? Yes

Three boxes called one, two and three exist in
an image. Box one contains a big yellow
melon and a small orange watermelon. Box
two has a small yellow apple. A small
orange apple is inside and touching this box.
Box one is in box three. Box two is to
the south of, far from and to the west of box
three. A small yellow watermelon is inside
box three.


Q: Where is box two relative to the yellow
watermelon?
 Left, Below, Far

Figure 6: An example of SPARTUN dataset from
(Mirzaee and Kordjamshidi, 2022).

information is not available, resulting in more No
and fewer Yes predictions compared to other mod-
els, as presented in Table 12. The number of true
positive predictions for PISTAQ is more than two
other baselines, and as a result, it achieves higher
accuracy.

Predictions/ Answer Yes No No prediction
Ground Truth 74 69 -
BERT 131 12 -
BERT* 89 54 -
PISTAQ 43 97 3

Table 12: Detailed information about the prediction of
PISTAQ and BERT on SPARTQA-HUMAN YN ques-
tions. “No prediction” is related to the PISTAQ model
when no correct SPRL extraction was made for the text
of the question, and as a result, we have no answer pre-
diction.

A.2 SPRL Annotations in MSPRL
RESQ is built on the human-written context of
MSPRL dataset which includes SPRL annotations.
However, using this annotation in BERT-EQ and
SREQA models causes lower performance (Check
the result on Tablel 14). Our analysis shows that the
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Story: behind it a bar with chairs and two people , and a bench 
with one person lying on it . Upper level with doors and a blue rail.

Question 1:  Are the people behind the bar?          Answer:  Yes
Predicted answer based on mSpRL annotations:  No

Question 2:  Is the door above the bar?         Answer:  Yes
Predicted answer based on relation in text:  No
Predicted answer based on the commonsense (upper level is above the 
main level): Yes

mSpRL annotation: Triplet:  Behind (a bar (id: t1), behind, it (id: l1))
Triplet:  Behind (a bench (id: t2), behind, it (id: l1))
Triplet:  EC (one person (id: t3), on, it (id: l2))

Figure 7: An example of the limitation of MSPRL and
coreference annotation to answer RESQ question. The
answer of the questions predicted wrongly due to two
main reasons. First, the missed commonsense knowl-
edge in question 2 and second, the limited coverage of
ground truth annotation in MSPRL in question 2.

SPRL annotations of MSPRL are not fully practical
in our work due to two main reasons:

1. Missed annotations: As shown in Figure 7,
there are many missed annotations for each
text, e.g., NTPP(bar, with, chair).

2. No coreference : The coreference is not sup-
ported in this dataset, e.g., “L2: it” and “T2:
a bench” are the same entity with different
mentions, but they are mentioned with differ-
ent ids. These missed coreferences result in
fewer connections between entities and fewer
inferred relations.

B Models and modules configuration

We use the huggingFace12 implementation of pre-
trained BERT base models, which have 768 hid-
den dimensions. All models are trained on the
training set, evaluated on the dev set, and reported
the result on the test set. For training, we train
the model until no changes happen on the dev
set and then store and use the best model on the
dev set. We use AdamW ((Loshchilov and Hutter,
2017)), and learning rates from 2×10−6, 2×10−5

(depends on the task and datasets) on all models
and modules. For the extraction modules and the
baselines, we used the same configuration and set-
ting as previous works (Mirzaee and Kordjamshidi,
2022). For SREQA models we use learning rates
of 2 × 10−5, 4 × 10−6 for SREQA(story) and
SREQA(question) respectively. To run the models
we use machine with Intel Core i9-9820X (10 cores,

12https://huggingface.co/transformers/v2.9.1/
model_doc/bert.html

3.30 GHz) CPU and Titan RTX with NVLink as
GPU.
For GPT3.5, we use Instruct-GPT, davinci-

00313. The cost for running GPT3.5 on the human-
generated benchmarks was 0.002$ per 1k tokens.
For GPT3.5 as information extraction, we use
GPT3.5 turbo (a.k.a ChatGPT) with a cost of
0.0001$ per 1k tokens. We also use the GPT4
playground in OpenAI and PaLM2 playground to
find the prediction of examples in Figure 11.

C Extraction and Reasoning Modules

Here, we discuss each module used in PISTAQ and
their performance including the Spatial Role Label-
ing (SPRL), Coreference Resolution, and Spatial
reasoner.

CLS T1 T2 Tn SEP

A grey car is parking in front of a grey house

T7

Spatial Role (entity and spatial_indicator) extraction
Extracting spatial entity and spatial indicators

List of all spatial entities List of all spatial indicators

Spatial Relation (triplet) Extraction

CLS SEPTiT1 SEP Tj SEP TnTk+mTk SEP T1

entity1

(Trajector)

entity2

(Landmark)

Indicator2

(spatial_indicator)

Sentence

0 011 0 1 0 111 0 1

Segment Embedding: [ 0 1 1 1 0 0 0 1 0 1 1 1 0 ]

Spatial Type Cls (ftype)triplet cls (ftriplet)

y'y 

O E E E OSP

Figure 8: Spatial role labeling model includes two sepa-
rately trained modules. E: entity, SP: spatial_indicators.
As an example, triplet (a grey house, front , A grey
car) is correct and the “spatial_type = FRONT”, and
(A grey car, front, a grey house) is incorrect, and the
“spatial_type = NaN”. Image from (Mirzaee and Kord-
jamshidi, 2022)

C.1 Spatial Role Labeling (SPRL)
The SPRL module, shown in Figure 8 is divided
into three sub-modules, namely, spatial role extrac-
tion (SRole), spatial relation extraction (SRel)14,
and spatial type classification (SType). We only

13from https://beta.openai.com
14Since the questions(Q) and stories(S) have different anno-

tations (questions have missing roles), we separately train and
test the SRel and SType modules
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use these modules on sentences that convey spa-
tial information in each benchmark. To measure
the performance of SPRL modules, we use the
macro average of F1 measure for each label. These
modules are evaluated on three datasets that pro-
vide SPRL annotations, MSPRL, SPARTQA, and
SPARTUN. When training the SPRL module on
auto-generated benchmarks, we achieved a perfor-
mance of 100% using only a quarter of the training
data, therefore we stopped further training.
As shown in Table 4, all SPRL sub-modules

achieve a high performance on synthetic datasets,
SPARTQA and SPARTUN. This good performance
is because these datasets may contain less ambigu-
ity in the natural language expressions. Therefore,
the BERT-base models can easily capture the syn-
tactic patterns needed for extracting the roles and
direct relations from the large training set.

C.2 Coreference Resolution (Coref) in Spatial
Reasoning

(a) The coreference resolution model structure.

(b) The formula for computing the coreference scores

Figure 9: The coreference resolution model (Lee et al.,
2017).

We implement a coreference resolution model
based on (Lee et al., 2017) to extract all antecedents
for each entity (check Figure 9a). Compared to the
previous works, we have the entities (phrase) an-
notations. Hence, we ignore the phrase scoring
modules and use this annotation instead. We first
collect all mentions of each predicted entity from
spatial role extraction or role annotations, then as-
sign an “id” to the same mentions and include that
id in each triplet. For example, for BELOW(a cat,

Datasets Q-TYPE Total A C R

SPARTQA-AUTO
YN 18 7 10 1
FR 38 5 20 13

SPARTUN
YN 13 4 9 0
FR 35 0 35 0

SPARTQA-HUMAN YN 29 20 6 3

Table 13: Analyzing wrong predictions in GT-
PISTAQ. A: Missing/errors in Annotation, C: rule-based
Coreference issues in connecting extracted information,
R: Shortcomings of the Reasoner.

a grey car), Front(the car, a church), id 1= a cat,
2 = a grey car, the car, and 3 = a church. So we
create new triplets in the form of BELOW(1, 2)
and Front(2, 3).

To train the model, we pair each mention with its
previous antecedent and use cross-entropy loss to
penalize the model if the correct pair is not chosen.
For singletons and starting mention of objects, the
model should return class 0, which is the [CLS]
token. Since the previous model does not support
the plural antecedent (e.g., two circles), we include
that by considering shared entity in pairs like both
(two circles, the black circle) and (two circles, the
blue circle) are true pairs.

As an instance of the importance of coreference
resolution in spatial reasoning, consider this con-
text “block A has one black and one green circle.
The black circle is above a yellow square. The yel-
low square is to the right of the green circle. Which
object in block A is to the left of a yellow square”
The reasoner must know that the NTPPI(block A,
one green circle) and RIGHT( the yellow square,
the green circle) are talking about the same object
to connect them via transitivity and find the answer.
To evaluate the coreference resolution mod-

ule (Coref in Table 4), we compute the accuracy
of the pairs predicted as Corefs. The Coref model
achieves a high performance on all datasets. The
performance is slightly lower on the SPARTQA-
HUMAN dataset when SPARTUN is employed for
additional pre-training. However, we observed
that there are many errors in the annotations in
SPARTQA-HUMAN, and the pre-trained model is,
in fact, making more accurate predictions than what
is reflected in the evaluation.

C.3 Logic-based Spatial Reasoner

To solely evaluate the performance of the logic-
based reasoner, we use the “GT-PISTAQ”. We look
into the errors of this model and categorize them
based on the source of errors. The categories are
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missing/wrong ground truth direct annotations (A),
rule-based Coreference Error (C) in connecting
the extracted information before passing to the rea-
soner, and the low coverage of spatial concepts in
the reasoner (R). As is shown in Table 13, spatial
Reasoner causes no errors for SPARTUN since the
same reasoner has been used to generate it. How-
ever, the reasoner does not cover spatial properties
of entities (e.g., right edge in “touching right edge”)
in SPARTQA and causes wrong predictions in those
cases.

D SREQA on All Story Relations

Datasets F1 on SREQA
SPARTUN 96.37
SPARTQA-AUTO 97.78
SPARTQA-HUMAN 23.79
MSPRL (Used in RESQ) 16.59

Table 14: The result of SREQA model only trained on
all story relations of the SQA datasets.

Table 14 displays the results of the SREQA
model trained and tested solely on all the story’s
relation extraction parts (step 1). During the evalu-
ation, we also possess the same data preprocessing
and gather annotations of all relations between sto-
ries’ entities and select the best model based on
performance on the development set.

Notably, the performance on the human-
generated datasets, SPARTQA-HUMAN and RESQ,
is significantly lower compared to the auto-
generated datasets. As discussed in , the MSPRL
datasets contain missed annotations, resulting in
the omission of several relations from the stories’
entities and incomplete training data for this phase.
Similarly, the SPARTQA-HUMAN SPRL annota-
tion, as discussed in Appendix C, exhibits some
noise, particularly in coreference annotation, lead-
ing to similar issues as observed in MSPRL regard-
ing annotation of all story relations.

Consequently, this reduced performance in all
story relation extraction impacts the overall perfor-
mance of the main SREQA model trained using
two steps; however, as illustrated in the results of
SREQA* in Table7, which utilizes Spartun instead
of MSPRL for training on all story’s relations, the
performance substantially improves on the RESQ
dataset.

E Large Language Models (LLMs)

Figure 11 presents examples showcasing predic-
tions made by three Large Language Models
(LLMs): GPT3.5-DaVinci, GPT4, and PaLM2,
on a story from the SPARTQA-HUMAN dataset.
These examples demonstrate that while these mod-
els, specifically GPT4 and PaLM2, excel in multi-
hop reasoning tasks, solving spatial question an-
swering remains a challenging endeavor.
To evaluate the LLMs’ performance on spatial

reasoning, we use Zero_shot, Few_shot, and
Few_shot+CoT. In the Zero_shot setting, the
prompt given as input to the model is formatted
as “Context: story. Question: question?” and the
model returns the answer to the question.
In the Few_shot setting, we add two random

examples from the training data with a story, all its
questions, and their answers. Figure 12 depicts a
prompt example for SPARTQA-HUMAN YN ques-
tions, passed to GPT3.5.
For Few_shot+CoT, we use the same idea as

(Wei et al., 2022) and manually write the reason-
ing steps for eight questions (from two random
stories). The input then is formatted as “Context:
story. Question: CoT. Answer. Asked Context:
story. Question: question?”. Figure 13 shows an
example of these reasoning steps on RESQ.

E.1 LLMs for Information Extraction

As discussed in Section 5.3.1, we utilize LLM,
GPT3.5-Turbo, for information extraction from
human-generated texts. The extraction process en-
compasses Entity, Relation, Relation Type, and
coreference extractions from the story, as well as
entity and relation extraction from the question.
Additionally, LLM is employed to identify men-
tions of question entities within the text.
We construct multiple manually crafted prompt

examples for each extraction task, as depicted in
Figure 14. Subsequently, the extracted information
is inputted into the reasoner module of PISTAQ to
compute the answers.
In addition to our experiment, we attempted to

incorporate LLMs as neural spatial reasoners but
in a pipeline structure of extraction and reasoning.
To do so, as illustrated in Figure 10, we add the ex-
tracted information of LLM with the written CoTs
based on this extracted information to the prompt of
a GPT3.5-DaVinci. The results, however, become
even lower (62.62%) compared to GPT3.5-CoT
with the main text (67.05%) when evaluated on
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Story: a man in white shirt , black jacket , grey pants and black shoes is sitting on 
a wooden chair and talking on the phone . on the right a wooden bed with white 
bedcovers . on the left ( before the man ) a wooden desk and a vase with flowers . 
there is a black brief-case in front of the chair , and there is also a picture hanging 
on the wall above the bed .

Relation_in_story= [("a man", "in", "white shirt"), ("a man", "in", "black 
jacket"), ("a man", "in", "grey pants"), ("a man", "in", "black shoes"), ("A man", 
"sitting on", "a wooden chair"), ("a man", "talking on", "the phone"), ("a wooden 
bed", "on", "the right")("a wooden bed", "with", "white bedcovers"),("a wooden 
desk", "on", "the left"),("a wooden desk", "before", "the man"), ("a vase", "on", 
"the left"),("a vase", "before", "the man"),("a vase", "with", "flowers"),("a black 
brief-case", "in front of", "the chair"),("a picture", "hanging on", "the wall"),("a 
picture", "above", "the bed")]

Question: Is the man touching the chair? (the man, touching, the chair), 

Chain of reasoning: ("A man", "sitting on", "a wooden chair") which is 
externally connected and above. The answer is Yes

Question: Is the bedcover below the picture?(the bedcover, below, the picture),

Chain of reasoning: ("a wooden bed", "with", "white bedcovers") which means 
bedcover has the same position as bedcover, ("a picture", "above", "the bed"), so 
(the picture, above, the bedcover), so (the bedcover, below, the picture). The 
answer is  Yes.

Figure 10: We employ LLMs in both extraction and
reasoning tasks, but in a disentangled manner. Initially,
we extract information using LLMs, and subsequently
incorporate this extracted information into the prompt
alongside written CoTs based on the extracted data.

the RESQ dataset. This outcome highlights the
superior ability of LLMs to capture information
from natural language compared to structured data
without fine-tuning.
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an Story

There is a block called A. Inside there's a red oval that is above a blue triangle. The blue triangle is touching the right edge of A and the top of a 
large black square. Touching the bottom edge of A is a small orange square. The is a block called B Which is to the right and touching A. Inside B 
there are 5 triangles, a red one, a green one, a large yellow one, a brown one, and an orange one. The red and orange triangles are touching the 
left edge of B and the orange triangle is above the red triangle. The large yellow triangle is touching the top edge of B. The green triangle is 
touching the right edge of B. The brown triangle is below all of the other triangles and is touching the bottom of B.

Question 1: What is the relation between blue triangles and orange triangles?  Answer: left, near
Question 2: Is the green thing above the yellow thing? Answer: No

Question 3: Does B have all of the triangles? Answer: No

GP
T3

.5
(P

re
di

ct
io

n)

Zero-shot

Q1: Don't Know
Q2: No, there is no green thing mentioned in the description.
Q3: No

CoT

Q1:The blue triangle is touching the right edge of block A and the orange triangle is touching the left edge of block B. Block B is to the right and 
touching block A so the orange triangle is right of the blue triangle. The answer is [Right].

Q2:The green triangle is to the right of the large yellow triangle and the large yellow triangle is touching the top edge of B. Using inverse rule, the 
green triangle is below the yellow triangle. The answer is No.

Q3: There are five triangles mentioned in block B, a red one, a green one, a large yellow one, a brown one, and an orange one. All of these 
triangles are in block B, so the answer is Yes.

GP
T4

(P
re

di
ct

io
n)

Zero-shot

Q1: Don't Know

Q2: The description does not provide enough information to determine if the green triangle is above the yellow triangle. It only states that the 
green triangle is touching the right edge of block B and the large yellow triangle is touching the top edge of B. The relative vertical positions of 
the green and yellow triangles are not specified.

Q3: Yes, B has all of the triangles mentioned in the description. Inside block B, there are 5 triangles: a red one, a green one, a large yellow one, a 
brown one, and an orange one.

CoT

Q1:The blue triangle is in block A, and the orange triangle is in block B. Block B is to the right and touching block A. So, the blue triangle is left of 
the orange triangle. The answer is [Left].
Q2: The green triangle is touching the right edge of B, and the large yellow triangle is touching the top edge of B. It is not mentioned if the green 
triangle is above or below the yellow triangle. The answer is Don't Know.
Q3: There is a blue triangle in block A, and there are 5 triangles in block B. Since there is a triangle in block A, not all triangles are in block B. The 
answer is No.

Pa
LM

2
(P
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di

ct
io

n)

Zero-shot

Q1: The answer is near. The blue triangle and the orange triangle are both in the block B. The blue triangle is above the orange triangle.

Q2: Yes, the green thing is above the yellow thing. The green thing is a triangle that is touching the right edge of block B, and the yellow thing is 
a triangle that is touching the top edge of block B.
Q3: Yes, B has all of the triangles. The question asks if B has all of the triangles in the block. The answer is yes because the passage says that 
"Inside B there are 5 triangles, a red one, a green one, a large yellow one, a brown one, and an orange one." This means that B has all of the 
triangles in the block.

CoT

Q1: The blue triangle is in block A and the orange triangle is in block B. Block A is left of block B so the blue triangle is left of the orange triangle. 
The answer is [Left].
Q2: The green triangle is touching the right edge of B and the large yellow triangle is touching the top edge of B. The right edge of B is below the 
top edge of B. So the green triangle is below the yellow triangle. The answer is No.

Q3: There are 5 triangles in B. There is a red triangle in B. There is a green triangle in B. There is a large yellow triangle in B. There is a brown 
triangle in B. There is an orange triangle in B. The answer is Yes.

Figure 11: An example of three Large Language Models (LLMs), GPT3.5 (davinci-text-003), GPT4, and PaLM2
prediction on SQA task evaluated with zero_shot and CoT prompting.
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Figure 12: Example of the input for GPT3.5(Few_shot). The Zero_shot setting is the same just do not have the
first training example.

Chain-of-Thoughts Reasoning Steps.
Consider Below examples: 

There are three blocks called A, B, and C. A is to the right of B and B is to the right of C. In A, there is a small blue square far to the right of a medium black 
circle. In B, there is a large black circle far below a medium yellow circle. The medium yellow circle is far below a medium black triangle. The medium black 
triangle is near and below a small blue square. In C, there is a large yellow square near and above a medium blue square. There is also a medium yellow square 
far to the left of the large yellow square.

Is the medium blue thing near and below a large yellow thing?
The chain of reasoning to answer this question is:  The large yellow square is near and above a medium blue square. Using the inverse rule, the medium blue 
square is near and below the large yellow square. The answer is Yes.

Is the small blue thing in B below a medium yellow thing?
The chain of reasoning to answer this question is: The small blue circle in B is above the black triangle which is above the medium yellow circle. So the small 
blue thing is above a medium yellow thing.  The answer is No.

Is the small blue thing in A to the right of a medium blue thing? 
The chain of reasoning to answer this question is: block A is right of block B and block B is right of block C, so block A is right of block C. 
The medium blue thing is in block C. All objects in block A are right of objects in block C, so the small blue thing in A is right of the medium blue thing in C. 
The answer is Yes.

Is the medium black thing in A above a small blue thing? 
The chain of reasoning to answer this question is: There is a small blue thing in block A and block B. It is not mentioned if block B is below or above block A or 
not. Also it is not mentioned if medium black thing in A is above the small blue thing in A. So the answer is Don’t Know(No).

Answer below questions: ….

Figure 13: Example of the input for GPT3.5(Few_shot+Cot) with human-written Chain-of-Thoughts.
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Extraction Prompt Example

St
or

y

En
tit

y

Context 1: there are two social workers in the foreground . one wearing a red pullover and brown pants is bending over to 
access the blue paint . the other one in a red tee-shirt and black jeans is watching her . at the back of the room there is 
another worker wearing a white tee-shirt and blue jeans , acutally painting . there are many newspapers on the ground to 
protect the kindergarten floor . all three workers are wearing a mask .
entities = ['two social workers', 'the foreground', 'one', 'a red pullover', 'brown pants', 'the blue paint', 'the other one', 'a red 
tee-shirt', 'black jeans', 'her', 'the back', 'the room', 'another worker', 'a white tee-shirt', 'blue jeans', 'many newspapers', 'the 
ground', 'the kindergarten floor', 'three workers', 'a mask']

R
el

at
io

n

- a man in white shirt , black jacket , grey pants and black shoes is sitting on a wooden chair and talking on the phone. 
relation triplets: 
[("a man", "in", "white shirt"), ("a man", "in", "black jacket"), ("a man", "in", "grey pants"), ("a man", "in", "black 
shoes"), ("A man", "sitting on", "a wooden chair"), ("a man", "talking on", "the phone")]
- on the right a wooden bed with white bedcovers. relation triplets: 
[("a wooden bed", "on", "the right"), ("a wooden bed", "with", "white bedcovers")]

R
el

at
io

n 
Ty

pe

If the relation set is:
Relation type set:
LEFT = to the left of another object,
DC= Disconnected, disconnected from other object, 
(the wall, behind, the tourists), relation type is: ['BEHIND']
(Lots of locals, in front of, a blue building) , relation type is: ['FRONT']
(pictures, on, the wall), relation type is: ['FRONT', 'EC']
(a clock, above, the blackboard), relation type is:['ABOVE']

C
or

ef
er

en
ce

Context 1: Three women are sitting on a wooden bench in front of an about one metre high , red brick wall . they are all 
wearing skirts and jumpers ...
If the list of all entities is:
list_of_noun_phrases = ["three women", "they", "two of them", "a wooden bench", "an about one metre high red brick 
wall", "the wall", "skirts", ...]
The below list shows which noun phrases in the "list_of_noun_phrases" refers to which same phrase:
{"Three women": ["Three women", "they", "two of them"],
they: ["Three women", "they", "two of them"],
two of them: ["two of them"],
a wooden bench: ["a wooden bench",], .....}

Q
ue

st
io

n

R
el

at
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d 
Ty

pe

If the relation set is: ....

Are the lamps behind the building?: list_of_dictionary = [{"triplet": ("the lamps", "behind", "the building"), "relation 
type": ['BEHIND']}]
Is the camera in front of the all kids?: list_of_dictionary = [{"triplet": ("the camera", "in front of", "the all kids"), "relation 
type": ['FRONT']}]
Is a flag to the left of the stairs?: list_of_dictionary = [{"triplet": ("a flag", "to the left of", "the stairs"), "relation type": 
['LEFT']}]

Question 
entity to 
Story 
Mentions

This should consider the exact or partially matching based on the phrase root. 
For examples,''{0: "small window", 2: "large window", 5: "three windows"}'' all can be matched with "the window" since 
the root is window here.
Also the output should be in the form of only a python dictionary like {"the window": [0,2,5]}.

Figure 14: The example of prompts used for LLMs (GPT3.5-Turbo) in information extraction.
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