
Pitfalls in Experiments with DNN4SE:
An Analysis of the State of the Practice

Sira Vegas
sira.vegas@upm.es

Universidad Politécnica de Madrid
Madrid, Spain

Sebastian Elbaum
selbaum@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

ABSTRACT
Software engineering (SE) techniques are increasingly relying on
deep learning approaches to support many SE tasks, from bug triag-
ing to code generation. To assess the e!cacy of such techniques
researchers typically perform controlled experiments. Conducting
these experiments, however, is particularly challenging given the
complexity of the space of variables involved, from specialized and
intricate architectures and algorithms to a large number of training
hyper-parameters and choices of evolving datasets, all compounded
by how rapidly the machine learning technology is advancing, and
the inherent sources of randomness in the training process. In this
work we conduct a mapping study, examining 194 experiments with
techniques that rely on deep neural networks (DNNs) appearing in
55 papers published in premier SE venues to provide a characteriza-
tion of the state of the practice, pinpointing experiments’ common
trends and pitfalls. Our study reveals that most of the experiments,
including those that have received ACM artifact badges, have fun-
damental limitations that raise doubts about the reliability of their
"ndings. More speci"cally, we "nd: 1) weak analyses to determine
that there is a true relationship between independent and depen-
dent variables (87% of the experiments), 2) limited control over the
space of DNN relevant variables, which can render a relationship
between dependent variables and treatments that may not be causal
but rather correlational (100% of the experiments), and 3) lack of
speci"city in terms of what are the DNN variables and their values
utilized in the experiments (86% of the experiments) to de"ne the
treatments being applied, which makes it unclear whether the tech-
niques designed are the ones being assessed, or how the sources
of extraneous variation are controlled. We provide some practical
recommendations to address these limitations.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; • Computing methodologies→ Neural networks.

KEYWORDS
deep learning, machine learning for software engineering, software
engineering experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616320

ACM Reference Format:
Sira Vegas and Sebastian Elbaum. 2023. Pitfalls in ExperimentswithDNN4SE:
An Analysis of the State of the Practice. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San
Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10
.1145/3611643.3616320

1 INTRODUCTION
The application of deep learning (DL) techniques across the soft-
ware development life cycle is becoming a thriving research thread
in the software engineering (SE) community. Such emerging tech-
niques, often grouped under labels such as DL4SE or DNN4SE, have
rendered promising results supporting the automation of activities
ranging from requirements engineering to code maintenance [6].
Similar to other DL application areas, the maturation of frameworks
and tools that lowered the bar for the adoption for such technology
has facilitated their application in the SE domain. In addition, our
community is in an advantageous position in that we can tap into a
continuously increasing number of public repositories with various
types of software artifacts such as code and tests that constitute
rich data sets on which DL techniques can thrive.

To assess such techniques, researchers perform experiments in
which variables are manipulated in a controlled environment to
investigate their impact over response variables [16]. Conducting
such experiments, however, can be extremely challenging given the
number and complexity of variables that may a#ect a technique
that relies on DL. Tens of variables play a fundamental role in how
a deep neural network (DNN) is set up as part of an experiment.
Some of these variables are inherently complex as they point to
optimization procedures that contain their own set of parameters.
Other variables like those associated with datasets or competing
models often point to online resources that may unsuspectingly
evolve. Other variables, like those a#ecting the sample used by
gradient descent to set the network weights or the proportions
of data used for training and testing, are deceptively simple, yet
they constitute sources of randomness that will impact the DNN’s
performance. Yet other variables that may not be explicitly de"ned,
like the ones de"ning termination criteria, can have subtle interac-
tions with other variables undermining the implementation of the
intended experimental constructs. The key takeaway is that when
evaluating the application of a DL technique to a problem through
an experiment, the lack of careful consideration of a complex set of
variables can dramatically impact the "ndings.

The goal of this paper is to begin understanding the extent
to which experiments on DNN4SE techniques are addressing the
distinct experimental challenges introduced by DNNs.

In pursuing that goal we make four contributions.

528

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-8535-9386
https://orcid.org/0000-0001-9592-1352
https://doi.org/10.1145/3611643.3616320
https://doi.org/10.1145/3611643.3616320
https://doi.org/10.1145/3611643.3616320
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616320&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

I) We contribute a characterization and analysis of the state of the
practice of experimentation with DNN4SE by addressing a funda-
mental question:RQ1: Towhat extent areDNN4SE experiments
speci!ed in papers? To answer that question, in Section 3, we
present a systematic mapping study [18] of 55 papers from ICSE,
FSE, and TSE from 2018-2021 that apply DL techniques to auto-
mate SE tasks. Building on a cause-e#ect model of the experimental
space and the variables relevant to DNNs, we determine the degree
to which the variable space in the experiments was speci"ed by
each paper. We "nd that while most experiments clearly identify,
for example, the response variables (76%) and training data (69%),
none describe their complete space of variables. Furthermore, most
experiments lack in critical aspects like the choice for experimental
design to control the sources of variability (30%) and the use of even
descriptive statistics as part of the results analysis and interpreta-
tion (56%). This lack of speci"city is not just an under-reporting
issue, but it re$ects a limited consideration of fundamental experi-
mental aspects that threaten the validity of the "ndings.

II) Given the community ongoing e#orts for sharing artifacts [33],
we extend the previous characterization through RQ2. Do shared
artifacts improve the speci!cations of DNN4SE experiments
provided in the papers? Section 4 contributes an analysis of the
artifacts associated with the subset of papers that earned ACM
artifact badges, increasing the depth of analysis to include code,
data, and documentation. As expected, artifacts complement some
but not all aspects presented in the papers, especially the de"nition
of variables and the training and test data, all of which are necessary
to operationalize the experiments. However, we also "nd that 68%
of the experiments reported in the artifacts present inconsistencies
when compared with the corresponding paper, ranging from the
loss function to the testing data being used. This is problematic
because the additional e#ort invested to prepare artifacts to further
support the experiments often raises doubts about which portions
of the papers and the artifacts are to be trusted.

III) We contribute an analysis of why these "ndings matter through
RQ3. What are the implications of the previous !ndings
about the under-speci!cation of DNN4SE experiments? Sec-
tion 5 summarizes these implications. First, by failing to clearly
de"ne factors and treatments in 86% of the experiments, it is un-
clear whether most experimental results are caused by the intended
constructs or by other variables that were not operationalized cor-
rectly. In the best of cases, one could argue that those unspeci"ed
variables in the papers are controlled when the experiments are
performed. However, our analysis of artifacts reveals that that is
rarely the case. Second, even when variables are speci"ed it is of-
ten unclear how they are controlled to establish causality. We "nd
that 62% of experiments account for sources of randomness related
to the dataset, and none controlled for other sources of training
randomness by, for example, performing multiple training runs or
varying the DNN initial weights. Third, we "nd that 56% of experi-
ments identify relationships between independent and dependent
variables based on single observations which is suspect as it ignores
any experimental $uctuation.

IV)Recommendations.Weare not the "rst community challenged
by the DNN complexity. The Arti"cial Intelligence (AI) community

has developed various checklists to mitigate common ML experi-
mental pitfalls [1, 20, 24]. Similarly, the SE community has devel-
oped a body of knowledge to assess and improve the quality of the
experiments we conduct (see related work in Section 8). However,
as it shall become clear from our RQ1-RQ2-RQ3 "ndings, there is a
distinct and urgent need for the SE community to become much
more cognizant of how to manage the space of variables particular
to the DNN domain. Towards that end, we recommend actionable
practices to manage the challenges in DNN4SE experimentation
(Section 7) that, if adopted, can alleviate many of the concerns
we encountered. For example, simply conducting multiple DNN
training runs to control for randomness could bene"t almost all
experiments, performing more comparisons over multiple observa-
tions to account for experimental variability in DNNs could bene"t
from 56% to 87% of the experiments, and standardizing a minimal
speci"cation of the space of DNN training variables and providing
partial automation for synchronizing the paper and artifact content
of DNN4SE experiments could bene"t 96% of the experiments.

2 DNNS’ EXPERIMENTAL VARIABLES
Machine learning (ML) is a sub"eld of AI that aims to enable com-
puters to learn from experience [11, 21]. ML algorithms build a
model based on sample (training) data to make predictions without
being explicitly programmed to do so [28]. DL is a type of ML tech-
nique supported by neural networks that have a deep architecture
as per their constituting layers [11]. The training of these DNNs
consists of adjusting itsmodel parameters, using a deep learn-
ing algorithm controlled by a set of training hyperparameters
and model hyperparameters, using a dataset [11]. We will later
use these 5 groups of variables associated with DNNs, illustrated
through a cause-e#ect diagram in Figure 1, as a basis for the analysis
of experiments.

The DNN overall architecture is de"ned by themodel hyperpa-
rameters and includes 5 variables. DNNs consist of interconnected
neurons grouped in layers. There is always an input layer that ac-
cepts inputs and an output layer that provides the output, and
hidden layers between them. There are di#erent layer types, and
how those layers are connected de"ne the higher-level architecture
of the DNN (e.g., feed-forward, CNN, RNN, LSTM). Every connec-
tion between 2 neurons has a weight which regulates how much of
the initial value will be forwarded to a given neuron. Each neuron
has an associated value, called the bias. Weights and biases need
to be initialized prior to training. The sum of the products of the
inputs and respective weights, plus the bias, are then provided to
an activation function to produce a neuron’s output. A forward pass
is the set of calculations that take place when the input travels
through the DNN to the output.

The neuron weights and biases constitute the two variables de"n-
ing the DNNsmodel parameters. They are initialized before train-
ing and reset during the subsequent training process.

A dataset is a collection of inputs and outputs. At least two
types of datasets are required: training and test. The training set is
used to adjust the model parameters during training. The test set is
used to check how well the algorithm performs on data that has
not seen before, and it is intended to estimate the generalization
error. The training set can be further divided into a training and a

529

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 1: A cause-and-e"ect diagram for 5 groups of variables in experiments with DNNs.

validation set. This validation set can be used to get an estimate of
model skill while tuning its hyperparameters.

The DL algorithm is de"ned through 4 variables [11]: a rep-
resentation for encoding the elements in the dataset, a function
measuring the error between the value predicted by the model and
the real value, an optimization procedure to minimize the training
error (e.g. stochastic gradient descent, Nesterov momentum, Adam),
and regulatization strategies to reduce the generalization (test) error
(e.g. dropout, data augmentation, early stopping).

During training, the DL algorithm’s behaviour is controlled
through 5 training hyperparameters [11]. The batch size de"nes
the number of training samples to consider per training iteration.
Depending on the batch size, multiple iterations will be needed to
go through the entire training set. The number of epochs de"nes
how many times the algorithm will go through a dataset. The train-
test split de"nes on what portion of the data training is performed.
Given a batch, the network performance (measured as a function
of error/cost/loss) is used to drive the backpropagation (the reverse
of a forward pass using gradient descent) to update the network
weights and biases to minimize this error. The learning rate speci"es
how much to update the model in response to the estimated error.

Albeit simpli"ed and limited for exposition, this section high-
lights the vast space of variables involved in training a DL system,
where each one can take an increasing number of values. These
variables also have many subtle interdependencies (e.g., the batch
and epoch size often depend on the parameter initialization, the loss
function depends on the architecture, the architecture depends on
the data dimensionality). Confounded with the multiple sources of
randomness involved in the DL training process (e.g., di#erent train-
test partitions, di#erent sample batches being selected, di#erent
portions of the network being targeted for regularization, di#erent
supported hardware), de"ning and conducting robust experiments
is intrinsically challenging.

3 ANALYSIS OF PAPERS
In this section we answer RQ1 by providing an overview of the
state of the practice in performing experiments where DNNs are
utilized to address SE challenges (DNN4SE). We characterize the
growing number of experiments being carried out in this domain
and identify some overarching limitations across those experiments.

Figure 2: Paper search and selection process.

3.1 Scope of Analysis
We have performed a semi-automated search of papers reporting
experiments with DNNs developed to solve SE tasks. Figure 2 sum-
marizes the search and selection process. We have shared in the
paper repository the outputs of each step of the selection process.

In a "rst automated step, during January 2022, we searched
SCOPUSTM using the string “deep OR neural” in all "elds. The
search was limited to full papers from the technical track of the
International Conference on Software Engineering (ICSE) and the
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), and papers
published in IEEE Transactions on Software Engineering (TSE),
covering the period 2018-2021. We decided to favor the $agship
conferences ICSE and FSE because we believe they include the latest
work in DL and appear at the top of various ranks1. Similarly, we
selected TSE because it has the highest impact factor among SE
journals2. The search resulted in 444 out of 1154 published papers.

Next, we excluded the papers that did not cover techniques using
DNNs to address SE challenges. The examination was conducted by
one of the senior researchers authoring this paper with expertise in

1https://csrankings.org, http://portal.core.edu.au/conf-ranks
2https://www.scimagojr.com, https://jcr.clarivate.com/jcr/home

530

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

Table 1: Number of papers within scope analyzed / published,
and experiments analyzed (in parenthesis)

ICSE ESEC/FSE TSE Total

2018 2/2 (5) 4/4 (11) 0 (0) 6/6 (16)
2019 8/8 (27) 4/4 (9) 1/1 (6) 13/13 (42)
2020 7/7 (25) 6/6 (21) 3/3 (14) 16/16 (60)
2021 7/15 (21) 7/15 (32) 6/11 (23) 20/41 (76)

Total 24/32 (78) 21/29 (73) 10/15 (43) 55/76 (194)

empirical SE and DNN development. This process led to the exclu-
sion of 276 papers that did not include a DNN (e.g. a DNN-solution
is part of the related work described in a paper), 68 papers that fo-
cus on improving the engineering of DNN-solutions (e.g. testing of
DNNs), and 24 papers that use ML mechanisms but not DNNs (e.g.,
shallow networks). When papers that did not clearly "t in existing
categories were found, they were examined and discussed jointly
by both authors. The remaining 76 papers report experiments with
DL-based software to address SE challenges.

Table 1 shows the paper count distribution over the years and
venues. We can see that the number of papers in this area is steadily
increasing over the last few years, from 6 papers in 2018 to 41
papers in 2021. For the subsequent analysis we selected every paper
identi"ed as within scope from 2018 to 2020, and given the larger
number of relevant papers published in 2021 (from 16 in 2020 to
41 in 2021), we randomly sampled 20 papers from 2021 across all
venues. This sampling was necessary to control the cost of the study
given that just data extraction time per paper was approximately
4 hours per person (we later describe the analysis costs per paper
and artifact). This gave us a total of 55 papers spanning four years
to analyze.

3.2 Analysis Process
To have a consistent data extraction process from the papers, we
de"ned a set of scoping and analysis guidelines.

First, for each paper, we initially considered just the contents
of the published paper. At this early examination stage we did
not peak into artifacts that may be associated with the paper like
code repositories as we wanted to have a common baseline of
materials among all analyzed papers. This also made the analysis
cost more viable at the "rst stage of the study. In addition, for each
experiment in a paper we bounded the analysis to the DNN portions.
That is, when we found experiments comparing the performance of
DNNs against other type of approaches that employ traditional SE
approaches or humans, we deemed those portions of the experiment
as already understood by the community and only focused on the
portions including DNNs.

Second, we controlled for three common sources of uncertainty
we faced when analyzing the papers. To control for di#erent report-
ing styles, we examined the papers in their totality aswe often found
portions of the experiments distributed and modi"ed throughout
the paper. For example, we found instances where the experimental
designs are sprinkled through background, approach, study design,
and results. To control for DNN usage types, we only considered
papers that use DNNs to perform either complex data encodings

or function as a model. Third, to control for di#erent levels of de-
tail across experiments, we decided to account for all experiments
mentioned in the paper, even if marginally reported.

Given the previous guidelines, the analysis process started with
both authors jointly developing an initial characterization schema
for the experiments. This schema is based on the steps of the ex-
perimental process [10, 22, 36], although we adapted those steps
to account for the types of variables found in DNNs such as the
model hyperparameters, the training hyperparameters, the DL al-
gorithm, the dataset(s), and the model parameters (as per Figure 1).
Then, both authors conducted a re"nement and calibration cycle
by extracting the information from all the experiments reported
in the 17 ICSE papers from 2018 to 2020 according to the schema.
This resulted in a re"ned schema and a more consistent evalua-
tion process. Finally, each remaining paper was examined by just
one author. However, when experiments did not "t the schema,
introduced new DNN elements, or had ambiguous speci"cations,
they were examined and discussed jointly by the researchers. There
were 8 of such joint examinations, lasting between 1-3 hours, which
often triggered the re-examination of previously evaluated papers
to ensure their consistent analysis.

Table 2 exempli"es the analysis we performed for an experiment.
The goal of this paper [AP31] is to perform log-based anomaly
detection. The proposed DNN receives as input a sequence of log
events and predicts whether the sequence is an anomaly. The ex-
periment evaluates the performance of the proposed DNN in terms
of precision, recall, and F1, comparing it against 4 other approaches
(none are DNNs). Column 1 and 2 show the steps and aspects of
the experimental process, and column 3 assesses to what extent
the information has been identi"ed (Fully, Partially, or Missing).
The last column provides an explanation of what is lacking. For
this experiment, we have been able to "nd all information related
to research hypotheses, DL algorithm, response variables and test
set characteristics. For this reason, their "nal assessment is “Fully”
addressed. We have not been able to "nd any information related
to model parameters nor statistics, and therefore, their "nal as-
sessment is “Missing”. For the rest we have not able to "nd some
information, therefore, the "nal assessment is “Partially” addressed.
A detailed description of the classi"cation criteria and its appli-
cation to all the 55 analyzed papers is available in the repository
(Section 10).

3.3 Findings
Table 3 summarizes the "ndings for the 194 experiments analyzed
across the 55 identi"ed target papers. It is encouraging to "nd
that most experiments specify at least to some extent the response
variables, the research hypotheses, and the training and test set data.
However, the rest of the experimental aspects tend to be under-
speci"ed. We "nd that 50% (7 out of 14) of the aspects are partially
addressed, while another 21% (3 out of 14) of the aspects are missing
among the experiments detailed in the papers.

We "nd that essential aspects are missing in most experiments.
For example, for the model parameters to be fully addressed, we
required a pointer to a repository where they could be found. Such
pointer was lacking for 98% of the experiments. For the choice of

531

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Assessing of a sampled experiment [AP31] speci!cation in terms of Fully addressed, Partially addressed, or Missing.

Step Aspect Assessment What is lacking

S1. Hypotheses formulation Research hypotheses Fully
S2. Variables identi"cation Model hyperparameters Partially Missing hyperparameters for initialization

Model parameters Missing Missing a pointer to where they can be found
DL algorithm Fully
Training hyperparameters Partially Missing train-test split and learning rate
Training data Partially No information about a dataset for con"dentiality reasons

S3. Operationalization Factors and treatments Partially Some model and training hyperparameters are missing, not all
training data available, and model parameters are missing

Response variables Fully
S4. Design Choice of design Partially No analysis of sources of randomness, whether they have been

controlled, and if so, the mechanism used
Instrumentation Partially One test set is missing due to con"dentiality issues. Software

environment is not de"ned. Measuring instruments and
procedure can be deduced but are not de"ned

S5. Objects selection Test set chars. Fully
S6. Analysis & interpretation Descriptive statistics Missing No descriptive statistics reported

Inferential statistics Missing No inferential statistics reported
S7. Validity evaluation Validity threats Partially Missing internal, construct and conclusion

Table 3: Characterization of 194 experiments with DNNs

Step Aspect Full Partial Missing

S1 Research hypotheses 76% 0% 24%
S2 Model hyperparameters 7% 85% 8%

Model parameters 2% 0% 98%
DL algorithm 26% 72% 2%
Training hyperparameters 19% 73% 8%
Training data 69% 27% 4%

S3 Factors and treatments 14% 82% 4%
Response variables 76% 18% 6%

S4 Choice of design 0% 70% 30%
Instrumentation 2% 97% 1%

S5 Test set characteristics 59% 19% 22%
S6 Descriptive statistics 10% 34% 56%

Inferential statistics 12% 1% 87%
S7 Validity threats 2% 79% 19%

(experimental) design to be fully addressed we required a descrip-
tion of what variables are manipulated or controlled and how, yet
30% of the experiments did not have it. For the analysis and inter-
pretation (S6) to be fully addressed we required descriptive and
inferential statistics, yet they were missing for 56% and 87% of the
experiments respectively. These results at least raise doubts about
whether most of the papers are: 1) implementing the construct
they are intending, 2) performing meaningful assessments given
the experimental noise that is not accounted for by the analysis
and interpretation, and 3) establishing causality given the limited
amount of control over the large and complex space of variables to
be speci"ed.

4 ANALYSIS OF ARTIFACTS
In Section 3 our analysis of papers revealed that the under-speci"cation
of experiments with approaches that use DL to address SE problems
is pervasive. Still, given our community growing practice towards
artifact sharing [33] and the nature of DL experiments (i.e., large
open datasets, common architectures, standard APIs), it seems rea-
sonable to ask whether the missing portions of the experiments
speci"cations appear in the shared artifacts. This is also important

as it may let us understand if the problem is just one associated
with how experiments are reported or if there is a deeper concern
about how the experiments are being conducted.

We begin to answer RQ2 through an analysis of the artifacts
associated with those papers to assess the degree to which the
under-speci"cation in the papers is complemented by the associated
artifacts, and whether the design and analysis limitations identi"ed
are mitigated by the artifacts.

4.1 Scope of Analysis
Forty-eight out of 55 papers point to some kind of external arti-
fact. A cursory analysis of those artifacts reveals that their content
(from just readmes plus code to experimental results and even new
experiments), availability (from broken links to pointers to private
repositories or Zenodo), and quality (from a model dump without
any explanation to those including a code base to reproduce the
results in the paper) had too much variance to de"ne a standardized
analysis that would render meaningful "ndings. This "nding is
consistent with recent reports on artifact quality [33].

Thus, to get a more precise estimate of the degree of under-
speci"cation when considering artifacts, we reduce the scope of
analysis to the artifacts associated with the 9 papers (including a
total of 44 experiments) that earned at least one of the ACM artifact
badges3 [8]. This reduced scope allows us to focus more deeply
on papers vetted (to various degrees) by a conference committee
according to established guidelines regarding their completeness
and quality.

4.2 Analysis Process
We analyzed all artifacts with the following process. First, we ex-
amined the readme "les and other introductory documentation to

3ACM de"nes three badges: Artifacts Evaluated (successfully completed an indepen-
dent audit, with two levels: Functional and Reusable), Artifacts Available (available for
retrieval), and Results Validated (results obtained by a team other than the original,
with two levels: Results Reproduced and Results Replicated). The 9 papers we analyzed
earned the Artifacts Available badge, and three of them also earned the Artifacts
Evaluated (two Reusable [AP5, AP39] and one Reusable and Functional [AP36]).

532

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

Table 4: Characterization of (44) experiments that earned
ACM Artifact Badges.

Improvements Constant
Step Aspect PA FA M PA M FA PA PA M PA FA

S1 Research hypotheses 0% 0% 0% 0% 18% 0% 82%
S2 Model hyperparam. 68% 0% 7% 0% 0% 5% 20%

Model parameters 0% 0% 9% 0% 82% 0% 9%
DL algorithm 39% 0% 7% 0% 0% 13% 41%
Training hyperparam. 59% 0% 7% 0% 0% 14% 20%
Training data 7% 0% 7% 0% 2% 4% 80%

S3 Factors & treatments 0% 2% 5% 52% 0% 30% 11%
Response variables 2% 3% 9% 0% 2% 0% 84%

S4 Choice of design 0% 0% 0% 0% 39% 59% 2%
Instrumentation 2% 7% 0% 5% 2% 75% 9%

S5 Test set chars. 0% 0% 7% 0% 43% 30% 20%
S6 Descriptive statistics 0% 2% 0% 0% 64% 23% 11%

Inferential statistics 0% 0% 0% 0% 95% 0% 5%
S7 Validity threats 0% 0% 0% 0% 27% 71% 2%

get a broad sense of what the artifact was meant to provide. Sec-
ond, we systematically explored the artifact directories and their
contents to identify the resources of information to collect the data
required for Table 2. Third, we analyzed the code broadly construed
to include Python or C code, con"guration "les, and batch scripts.
The analysis was "rst meant to map each experiment reported
in the paper to the items in the artifact. Although conceptually
simple, this analysis process was anything but straight-forward
as the artifact structure rarely matched that of the paper (where
the experiments are reported). In most cases, we had to recover
portions of one or multiple experiments from undocumented code.
This required multiple inspections of the code, running portions
of it to con"rm what was learned through the code inspections,
and referencing back the "ndings to the information in the paper.
Fourth, for each experiment identi"ed in the artifact, we collected
metadata such as the one reported in Table 2 (more details about
the information collected are provided in the repository described
in Section 10). During this step we also determined whether the
artifact improved or complemented the information provided in the
paper, and recorded any inconsistencies we found between them.
These steps required approximately 8 hours per paper ([AP39] was
an exception given the number of experiments reported). The dif-
"culties in this process, particularly in the third and fourth steps,
and the time allocated per paper, forced us to be conservative in our
assessment, only judging an artifact experiment to be incomplete
or inconsistent with the paper when we had a high certainty that
that was the case. Still, these sources of uncertainty in our analysis
constitute a threat to the validity of our "ndings (further discussed
in Section 6) that we mitigate by sharing our data (Section 10).

4.3 Findings
Table 4 summarizes our "ndings for the 44 experiments from papers
that earned ACM badges. The columns under ‘Improvements’ con-
tain the % of experiments exhibiting gains across the speci"cation
levels (i.e., !" → #" means improvement from partially addressed
in the paper to fully addressed when accounting for the materials
in the repository), while the columns under Constant show the
aspects of the experiments that remained unchanged.

Overall, we "nd that considering the artifact consistently im-
proves the speci"cation of some portions of the experiments but not
others. The improvement is particularly noticeable in the variable
identi"cation step (S2) where many experiments that were Partially
Addressed (PA) become Fully Addressed (FA). More speci"cally,
the DL algorithm, model and training hyperparameters and the
training data become fully addressed in 87%, 95%, 86% and 94% of
the experiments, respectively4. The model parameters (also part
of S2) show a modest 9% gain caused by the artifact for just one
of the papers ([AP5]). Under operationalization (S3), the response
variables also improve, becoming full for 95% of the experiments,
while factors and treatments show some improvement for 59% of
the experiments but still remains partially addressed for 84% of the
experiments. These operationalization improvements were also ex-
pected as the code must assign values to the independent variables
and measure the dependent variables to assess the experimental
outcome. The rest of the aspects, which are more closely associated
with the experimental design and analysis than the implementation,
showed slight or no improvement. The instrumentation showed
an improvement for 14% of the experiments, test set characteris-
tics for 7%, descriptive statistics for 2%, and research hypotheses,
choice of design, inferential statistics, and validity threats showed
no improvement. In summary, considering the artifacts improved
the aspects associated with S2, but the rest of weak spots identi"ed
in the papers remain.

Our inspection also reveled several incomplete artifacts. We
found that papers pointing to a piece of information that is not
accessible in the artifact, either because it is missing from the arti-
fact (e.g., paper [AP8] mentions that the artifact includes “all model
information”, but the model parameters are missing) or because it
requires special permissions or has broken links (e.g., paper [AP39]
contains dropbox links to training data that need permission).

More problematic, however, the inspection of the artifacts re-
vealed many cases where the experiments in the artifact and the
experiments reported in the paper are inconsistent. We found that
most artifacts contained pieces of code representing variations
of the experiments reported in the paper. This in itself is not a
major source of concern as one may conjecture that these varia-
tions corresponded to di#erent con"gurations explored during the
investigation and development of the proposed techniques, con"g-
urations that perhaps were not properly labeled or cleaned from
the shared code base. What is concerning, however, are the cases
where the artifact does not have a single experiment variant that
matches the experiment reported in the paper.

When comparing papers and artifact content, we "nd that 78%
of the papers and 68% of the experiments show inconsistencies.
For example, [AP29] mentions that the loss function used is binary
cross-entropy, while the sigmoidal cross-entropy function is used
in the artifact code. Paper [AP36] mentions the programs used as
test sets for the paper, but the artifact contains a di#erent set of
programs. Paper [AP15] makes a reference to grid search, which
is absent in the artifact. Paper [AP40] mentions that the Adam
optimizer is used, but the code also contains AdamW. Again, our
analysis was conservative and the time dedicated to explore the

4The exceptions are two optimization experiments missing from the artifact’s code
(E4 [AP10] and E1 [AP41]), and 4 experiments in a paper that are missing the training
code [AP5].

533

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

artifacts was bounded, so it is reasonable to expect the inconsisten-
cies found are likely an underestimate of the ones present. We also
found artifacts that were at times inconsistent with themselves. For
example, [AP39] provides generous supplementary information in
the form of an online appendix that contains information related to
experiments that are not reported in the paper, but these show the
same inconsistencies with the code that the paper has regarding
model hyperparameters and training data. Similarly, [AP41] does
not mention in the paper the number of epochs used, and there are
two values for it in the con"guration "le contained in the artifact.

It is important to emphasize that the analysis of the artifacts
provides further evidence that the limitations we have identi"ed in
these experiments go beyond under-reporting problems. The lack of
speci"city in fundamental experimental design and implementation
details re$ect de"ciencies that can have severe implications for the
"ndings. We delve into these implications next.

5 IMPLICATIONS
The previous sections characterized the degree of under-speci"cation
in DL experiments to address SE problems when considering papers
and artifacts. We found that the most a#ected experimental aspects
are the analysis and interpretation of results, the design, and the
operationalization of factors and treatments. In this section we an-
swer RQ3 by deriving the implications of under-specifying those
aspects from the perspective of conclusion, internal, and construct
validity of the experimental "ndings [29].

5.1 Is there a Relationship between the
Response Variable and the Factor(s)?
(Conclusion Validity)

The experiments assessed include 3 types of analysis to determine
if there is a relation between the factors and the response variable.

We have found that 56% of the reviewed experiments resort to
comparing single data points. This is problematic because it
assumes that a single observation on the e#ect of the treatment
will be a good estimate of the mean e#ect of that treatment, basi-
cally ignoring $uctuations due to experimental errors (this will be
further discussed in Section 5.2). For example, [AP27] proposes a
DNN that given as input a set ofmay links between communicating
objects in two Android applications, outputs the probability that
such links exists. The proposed approach is compared against 3
simpler DNN architectures as baselines. Based on the comparison
of the values obtained from the test set for the four treatments, the
paper concludes that the best option is the proposed model (the
most complex one), with response variables values of 0.931 (F1),
0.991 (AUC) and 0.992 (Kruskal’s γ). However, the results of the
second best option are 0.920, 0.988 and 0.989 respectively. Note
that a mere standard deviation of 0.0155, 0.0045 and 0.0045 in the
response variables (assuming a sample size of 30) will invalidate
the conclusion. This re$ects a known weaknesses with single point
comparisons underlined by a problem with the design of this exper-
iment, which does not control, for example, for random sources of
variation that would have required multiple runs and hence resulted
in multiple values to perform a statistical comparison that accounts
for variability. A variant of this problem is manifested in [AP55],
which proposes a DNN that receives a code function as input and

predicts whether it is vulnerable. The paper computes the perfor-
mance of three techniques over multiple Android applications in
terms of precision, recall, F-measure, and AUC. However, it then
resorts to count the number of projects in which each technique
has shown better results and compares those single values losing
an opportunity to perform a more meaningful comparison.

We "nd that 31% of the experiments perform a comparison
of means. This is stronger than using single data points, but still
insu!cient to guarantee that the di#erences found in the sample
can be extrapolated to the population the sample represents. For
example, [AP13] proposes a DNN that takes as input color pictures
of source code "les to predict whether they contain a fault. It uses
10 test sets corresponding to open source projects to assess the
proposed approach against 4 existing techniques as per theirmean F-
measure for the di#erent projects, and concludes that “the proposed
DTL-DP shows signi"cant improvements on the state of the art
in cross-project defect prediction”. Yet, there is no analysis that
considers the variability observed on the collected measures, even
though the F1 values showed large variability. To better understand
the implications of this oversight we perform a statistical analysis
with the data reported in Table 4 of the paper. Let’s assume that
the statistical null hypothesis (H0) is: “There is no di#erence in F-
measure between the di#erent approaches examined”, and that the
design is a 1-factor 5-levels experiment (inferred from the design
description). The 1-way repeated measures ANOVA shows that we
can reject the null hypothesis (p<0.01). The follow-up Bonferroni
multiple comparisons test shows that the proposed approach has a
better performance than three of the competing ones, but similar
to one of them (DBN-CP, Cohen’s d=0.3). This example illustrates
that relationships identi"ed through means may not necessarily be
generalizable to the population.

Only 13% of the papers we reviewed identify the potential rela-
tionship through inferential statistics, meaning that the obtained
results can be generalized from the experiment sample to the popu-
lation it represents. For example, [AP53] proposes a DNN that given
as input a code snippet that needs to be logged, suggests which
variables should be logged. Their proposed approach is compared
against 5 baselines for 9 di#erent projects in terms of accuracy,
mean reciprocal rank and mean average precision. Data is analyzed
with a Wilcoxon signed-rank test (considering the 9 scores, one per
project), and Cli#’s Delta e#ect size is computed. In all cases, the
improvement of the proposed approach is statistically signi"cant,
with a large e#ect size.

5.2 Is the Relationship Causal? (Internal
Validity)

If a causal relationship exists, the improvement observed in the
response variable measured (e#ect) can be attributed to the appli-
cation of the technique (cause) being used and not due to other
variables. In an experiment, the extent to which extraneous vari-
ables are accounted for in the design will de"ne the strength of the
causality link [16]. Table 5 shows some of the established recom-
mended mechanisms to deal with extraneous variables [2, 16, 22,
36], which depend on the nature of the extraneous variable being
controlled. For example, when the variable is known, measurable,
and controllable, then we can address it either holding it constant

534

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

Table 5: Extraneous variables and how to deal with them

Characteristics Mechanism

Case Known Measurable Controllable

I No - - Randomization
II Yes No - Case I + Replication
III Yes Yes No Case II + Statistical adjustment
IV Yes Yes Partially Case III + Blocking
V Yes Yes Yes Case IV + Held-constant

Incorporate as factor

or by incorporating it an experimental factor (e.g. dataset); and
when the variable is known and measurable but not controllable
we can use blocking to control its impact (e.g. random training/test
split). Such mechanisms naturally apply to DL.

However, DL systems can be particularly challenging in that
they have variables that use sources of randomness to improve the
performance of themodel [9]. In some cases, these variables are easy
to identify and set (e.g. random weights initialization, batch size),
in others they are easy to identify but di!cult to anticipate their
impact (e.g., data shu%ing, dropout), and in other cases they are not
even easily identi"able (e.g. more obscure options of core libraries).5

Traditionally, the ML community has focused on classical notions
of variance associated to the dataset variables, mostly ignoring the
other types [5]. We now analyze whether such trend also applies
to the DNN4SE experiments we analyzed. Since all experiments we
have studied neither explicitly analyze the sources of randomness
present in the experiment, discussing how they have incorporated
them into the design, nor provide the experimental design and its
rationale in the paper, the results presented here are deduced from
the papers.

Our "ndings con"rm that most experiments (62%) acknowledge
the classicalML random variables related to the dataset. For exam-
ple papers [AP46], [AP14], and [AP12] use several test sets. While
paper [AP50] uses k-fold-cross-validation. However, this leaves free
other sources of randomness. We also "nd that some experiments
(38%) neglect to mention any kind of source of randomness,
approaching their experimental design with the assumption that all
variables can be held constant. All these papers train the DL algo-
rithm once, measuring the response variable(s) for the test set. An
example is [AP27] mentioned in the previous section and also [AP4]
which proposes a DNN that automatically applies code changes
implemented by developers during pull requests (PRs). None of the
papers we analyzed deal with random variables extrinsic to the
dataset. One example of this de"ciency is how all experiments train
the DNN only once for a given combination of hyperparameters.
For example, in the optimization experiment reported in [AP10],
Xavier initialization of parameters is used. However, since the DNN
is trained just once, it is impossible to know if the best con"guration
is due to the combination of levels of factors or just a fortuitous
(random) selection of initial weights.

It is important to note that all previous instances deal with known
sources of randomness (cases II-V from Table 5). However, there
might be unknown sources of randomness in an experiment (case
I). The ML community has not fully acknowledged the existence of
these variables, but it would be valuable for the experiments designs

5For a detailed analysis see [25, 32, 37].

to safeguard against them. These variables are typically addressed
by randomly assigning the order in which the experimental runs
will take place. Imagine a situation where caching is in e#ect for
the non-initial runs. If the runs are not randomly executed, and
there is not enough of them, the "rst runs could behave di#erently
from the rest. If we are comparing 2 DNNs and we plan all the runs
for one of them "rst, this could be a#ecting the results.

5.3 Does the (Cause) Operationalization
Accurately Represent its Construct?
(Construct Validity)

A construct validity is an assessment of how well researchers trans-
late their ideas into speci"c factors and treatments, and response
variables [36]. Since the experiments we have analyzed operational-
ize well their response variables (76% fully address it), we will focus
on factors and treatments.

The positive news is that only 4% of experiments have a de!ni-
tion of factors that is incomplete. This is the case for several
hyperparameter optimization experiments, which are often not
fully acknowledged in the papers. For example, in [AP25], the
hyperparameters "ne-tuning optimization experiment is mostly
absent. The paper brie$y mentions the range of hyperparameters,
and gives some examples, but the listing is not exhaustive so in the
end it is not known what factors were explored.

On the negative side, 82% of experiments de"ne their factors
properly, but their treatment de!nitions are incomplete. For
example, the optimization experiment in [AP16] mentions that the
hyperparemeters to be "ne-tuned are embedding size, number of
hidden states, batch size, maximum number of iterations, optimizer,
learning rate, beam size and lambda. However, it does not specify
the range of values that have been explored. In [AP8], the regu-
larization term, the number of iterations, or the topology of the
proposed DNN are not reported. In the experiment in [AP13], the
treatments are de"ned at the architectural level (a deep adaptation
network is compared against a deep belief network, a LSTM, and a
CNN). However, speci"c implementations of these architectures are
being compared, overlooking the fact that other non-speci"ed vari-
ables like the model hyperparameters, the DL algorithm or the data
representation could be the underlying causes for the performance
gain, and not the architecture.

This issue gets magni"ed as the limitations propagate across pa-
pers. For example, [AP25] has an ambitious agenda to compare the
proposed technique against three other state-of-the-art approaches,
but none of them are easily and reliably available. For one of them,
the stable version in Github is available, but it may be di#erent
from the one in the paper (according to our results from Section 4).
For another, the authors of the paper had to resort to reimplement
the approach following the original paper where it is proposed,
which may implement a di#erent technique. For the third one, the
performance numbers reported in the original paper are used, but
even if the training has ben imitated, those may have su#ered from
extraneous variables that are unstated. The limited availability of
high-quality artifacts remains an ongoing challenge.

Finally, 14% of experiments had all factors and treatments
fully operationalized. For example, paper [AP14] speci"es that
the factors are: Word2vec vector length (with values 100, 50, 120),

535

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

learning rate (with values 0.001, 0.005, 0.01) and epoch size (with
values 100, 200, 300).

5.4 Characterization of Experiments and
Implications

We now proceed to analyze the distribution of experiments’ im-
plications to better understand how often they occur and what
combinations are the most common. We utilize the parallel cate-
gories diagram in Figure 3 to facilitate the exposition. The sets of
nodes being considered are associated with the three implication
types analyzed in the previous sections. That is, for relationship
exploration (conclusion validity) we consider comparisons among
single values, means, and inferential; for causality (internal validity)
we consider when none, classical, and other sources of randomness
are controlled; for construct validity we consider when none, fac-
tors, or both treatments and factors are de"ned. In the "gure, the
nodes on the left correspond to comparisons, the ones on the center
to causality, and the ones on the right to constructs issues.

We have not found any experiment that properly addresses all
types of validity threats discussed under the implications. The best
conducted experiments, 11% of the ones examined, perform infer-
ential analysis, control classical sources of randomness, and specify
factors. The majority of experiments (61%), however, have at least
one critical issue (either compare single values, do not control any
single source of randomness, or specify neither factors nor treat-
ments). Even though most experiments specify at least factors, they
perform comparisons based on single values and/or do not control
any variables (45%).

6 VALIDITY THREATS
We brie$y discuss the main limitations arising from the scope,
design, and implementation of our study [18].

The external validity of our study is determined by the eligibil-
ity criteria we chose. We concentrated on the ‘top’ conferences and
journals (Section 3.1) with the expectation that the "ndings would
constitute an upper bound for the average quality of experiments
appearing in other venues. The time period covered (2018–2021)
allowed us to determine the status of recent research in the topic
(2022 papers were not examined as the search was performed in
1/2022, and the analysis was conducted during 2022). Given the
number of relevant papers in 2021, we randomly selected a subset to
be examined. The same quality-driven and cost-control reasoning
applies for us to target the artifacts with an ACM badge (Section 4.1).

Internal validity. Our source of information (Section 3.1) to iden-
tify the papers—SCOPUS—included the chosen venues in the time
period covered; this reduced the possibility of omitting potentially
relevant studies. The search strategy we followed is also repeatable.
The paper selection process required for each paper to be examined
by one of the two authors; however, joint checks and discussion
of papers that did not "t in existing "ltering criteria reduced the
chances of missing potentially relevant papers.

Due to the high data extraction costs from papers, the data col-
lection process (Section 3.2 and Section 4.2) considered all 17 ICSE
papers 2018–2020, which were jointly examined by both authors to
ensure that the collection strategies and results were aligned, while
the remaining papers were examined by just one author. Again,

joint checks and discussions of studies that did not "t the schema,
introduced new ML elements, or had ambiguous speci"cations re-
duced possible researcher bias. Finally, doing a critical appraisal of
individual sources of evidence, we note that analyzing papers was
challenging given the diversity of presentation styles, the number
and complexity of the variables to check, and the increasing rich-
ness of the DNN domain. Furthermore, analyzing artifacts was a
consistently arduous re-engineering process. The nature and magni-
tude of these analyses may have introduced errors in our measures.
We attempted to control these internal threats by sharing all the
intermediate results of the study with the community.

Construct validity. The characterization schema (data items
de"ned in Section 3.2) was speci"cally developed for this research.
We created it starting from the steps of the experimental process
and the aspects of the experiments that have to be covered during
each step. Beginning with the generic de"nitions given by the ex-
perimental SE literature, the authors iteratively and systematically
tailored it to the DL domain. We believe this provides a reasonable
operationalization, one that is transparent as well for others to as-
sess, re"ne, and reuse. A simpler assessment would just analyze the
validity threats reported by the papers. However, the description
of threats is typically ad-hoc and often incomplete [31, 3]. For this
reason, we decided to assess the validity of the experiments from
their description (and code artifacts in some cases). The syntheses
of results made in Section 3.3 and Section 4.3 allow identifying the
validity level of the results reported in the studies.

7 RECOMMENDATIONS
Failing to address the limitations we identi"ed in the state of the
practice could undermine much of the research devoted to DNN4SE.
Thus, we propose three actionable recommendations that have the
potential to address most of the pressing concerns we discovered.
These recommendations correspond to well-established practices
in experimental studies adapted for the DNN4SE domain where
authors may not be aware of the impact of not following them. As
researchers become aware of these practices and adopt them, the
quality of the studies will likely improve, as authors will start incor-
porating them in their papers, and reviewers will start considering
them into their reviewing process.

Rec#1: Perform Multiple DNN Training Runs to Control
for Randomness. Experiments must strive to control the random-
ness of the DNN training process. This process can introduce vari-
ous sources of randomness, and a fundamental one is the random
data selection and shu%ing that occurs iteratively to compute the
gradient over the DNN, which means that the resulting values may
change over di#erent runs. Yet, none of the papers reported to make
multiple training runs to control for this intrinsic source of DNN
randomness. This raises questions about whether most results are
caused by just a fortuitous or unfortunate sample selection while
searching for the gradient. There are other sources of randomness
to consider (e.g., the initialization weights, the data splitting) but
based on our "ndings we argue that simply conducting multiple
runs of the DNN training process would enable the control of a
sizable portion of the randomness we observed. Furthermore, given
the size of the experiments we analyzed and the magnitude of free
computing resources available, we found no compelling argument

536

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

Figure 3: Distribution of experiments’ implications.

for not running an experiment multiple times to account for the
randomness in the DNN training process. This recommendation
could bene"t almost all experiments we analyzed.

Rec#2: Compute Statistics Over Multiple Runs and Data
Partitions. Experiments are meant to establish relationships be-
tween factors and response variables. Our analysis, however, found
that 56% of experiments identi"ed a relationship based on single
observations. Some of those studies had multiple observations gath-
ered over multiple units of analysis (i.e., projects, releases, apps);
in such cases it is di!cult to justify why select a single data point
to compare treatments. For the rest of the cases, however, there
are plenty of opportunities to collect multiple observations. For
instance, recommendation Rec#1 for conducting multiple training
runs will enable the collection of multiple observations. A second
easily accessible source of observations for most of the papers we
analyzed are the multiple partitions of the dataset used as part of
the training. Given the number of sources of randomness in DNN
training rendering multiple observations, we "nd no compelling
reason not to require at least a comparison of means from such
observations, and if there are enough observations computer in-
ferential statistics to judge whether the results generalize from
the sample to the population. This recommendations could bene"t
between 56% and 87% of the experiments we analyzed.

Rec#3: Specify DNN Training Parameters Treatment Space
and Check for Paper Consistency Against Artifact.We have
already described the large DNN con"guration space and how dif-
ferent instantiations of it can dramatically impact the performance
of DNN4SE techniques. Yet, most papers fail to provide a speci"-
cation of even some of the basic DNN parameters in that space.
That lack can be mitigated by artifacts with code implementing
the DNN training process. However, re-engineering the experimen-
tal design from such artifacts puts an undue load on the reader
and it is fault prone (we have done 44 of them to attest to that!).
Furthermore, some experiments are often missing in the artifacts
and it is common to "nd inconsistencies between papers and their
corresponding artifacts. We recommend that papers shall provide a
tabular description of the DNN con"guration space explored for
each experiment (as we have done for each experiment analyzed –
see Appendix for samples). We also recommend for the adoption of

ML experiment management tools (e.g., jupiter, ml$ow, DVC) to
track the DNN experiments, how they evolve, and also to control
how they are shared in the papers and in the artifacts to facili-
tate the detection of inconsistencies. This recommendation could
bene"t 86% of the analyzed experiments.

Deploying Mediums. The previous recommendations can be
implemented through di#erent mediums. They can go directly to
authors as part of a call for papers checklists [1, 20, 24], be integrated
as a part of the artifact veri"cation process, be provided to reviewers
to help them judge a paper soundness and veri"ability, become part
of broader guidelines such as the recently introduced empirical
processes guidelines [26], or serve as instructions for newcomers to
the area. Given the increasing number of DNN4SE papers (the trend
from Table 1 indicates that they are likely to become a dominant
research thrust in the venues we studied for years to come) and
the pitfalls we observed and quanti"ed, pursuing several of these
mediums seems warranted.

Periodic Checks of DNN4SE Paper Experiments. Quanti"-
cations and re$ections of where we stand as a community, like we
have completed here, are an essential measurement stick to judge
progress. Given the issues we found and the nature of DNN4SE
that includes rapidly evolving technology, researchers, and method-
ologies, follow up checks seem required to at least determine the
trends over the concerns. To reduce the cost of such checks, the
framework we have de"ned in our evaluation could be reused and
a smaller sample of the yearly experiments could be analyzed.

8 RELATEDWORK

8.1 In the SE Field
A series of studies have analyzed the quality of SE experiments.
Table 6 shows the number of papers examined, the period covered,
whether all or just a subset of papers are examined, the population
the papers belong to (selected journals and/or conferences, par-
ticular conferences, or all), the sampling performed (Exhaustive
or Random), the type of experiments included (human-oriented,
technology-oriented, or both), and the quality aspect under exami-
nation for each of those studies. These studies di#er primarily from
ours in that they focus mostly on a single quality aspect at a high-
level of abstraction that is common across multiple SE domains,

537

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 6: Studies analyzing the quality of SE experiments.

Study Size Period Population Sample Type Aspect

[7] 103 93–02 Selected Js&Cs E Both Statistical power
[13] 103 93–02 Selected Js&Cs E Both Theory
[15] 150 02–12 All R Both Researcher and

publication bias
[17] 103 93–02 Selected Js&Cs E Both E#ect size
[27] 51 06–15 ICSE R Both Correctness of

analysis
[30] 49 00-18 ML4DP6 E Technology Statistical errors
[31] 83 15–19 Selected Js E Human Construct validity

while we performed a deeper specialized analysis on more quality
aspects but focused on a single domain.

To improve the quality of experiments, the SE community has
developed an extensive body of knowledge, some of which has
resulted in guidelines for running and reporting experiments.
Some of the guidelines are general enough to apply to any SE
experiment [16, 36, 14], and therefore served as a starting point to
characterize our experiments (Section 3). However, such general
guidelines do not address the speci"c challenges associated with
experiments in the DNN4SE domain which is rapidly evolving and
acquiring a critical momentum in the SE community. Other guide-
lines are speci!c. For example, there are domain-speci"c guidelines
for the analysis of randomized testing algorithms [4], for addressing
the diversity of the projects from which to get the dataset to be
used in MSR studies [23], and there are guidelines that are spe-
ci"c to conducting human-based experiments [26, Experiments]
or to perform benchmarking [26, Benchmarking]. Again, although
helpful, they are not addressing speci"c concerns raised when con-
ducting experiments in the DNN domain. This is the "rst paper that
characterizes the state of the practice in DNN4SE experimentation.

8.2 In the AI Field
Similarly, the reproducibility guidelines from the AI community [1,
24, 20] are also relevant and applicable to experiments conducted in
the DNN4SE domain since they cover the possibility of performing
experiments. However, we have found these guidelines to be limited
in several ways. First, they are too descriptive and general as they
try to encompass a broad range of models that go beyond DNNs
(e.g., decision trees, random forests, support vector machines, etc.),
and they address the possibility of making theoretical contribu-
tions (which is not of interest in SE when using DNNs). Second,
while they are broad in terms of the models covered, they seem
too narrow in other aspects. For instance, they do not allow for
accommodating experiments beyond those involved in the devel-
opment of the DNN, such as those conducted when comparing a
new approach against state-of-the-art models. Third, they lack a
comprehensive description of the experimental design (a crucial
aspect, as it is the only feature of experiments that allows them
to identify causality). Finally, they strictly focus on enabling the
reproduction of the results obtained with the ML learning model
presented. Concerning the reported experiments, this implies using
the artifacts made available by the authors. As a consequence, they

6Machine Learning for Defect Prediction papers.

lack su!cient details to enable the replication of the experiments
using di#erent contexts or datasets.

Emerging e#orts in the AI community are also starting to focus
on speci"c experimental steps tackled in this paper. Particularly,
Gundersen et al. [12] identify experimental design choices that
can contribute to irreproducibility in ML studies, while Lones [19]
reports prevalent errors that arise in the application of ML and
suggests strategies to mitigate them. One of these pertains to the
improper utilization or absence of appropriate statistical analyses.
Applying such frameworks and strategies may also mitigate the
concerns identi"ed in our assessment.

9 CONCLUSIONS
The SE community is increasingly developing techniques based on
DNNs to solve SE problems. Performing experiments to assess such
techniques is challenging given DNNs’ inherent complexity involv-
ing many subtle and interdependent training variables, sources of
randomness, and rapid technological evolution. Our examination of
194 experiments in 55 papers is the "rst to quantify these challenges.
We "nd that 87% of experiments are missing inferential statistics
and 56% are missing even basic descriptive statistics, 4% are not stat-
ing the experimental factors and 82% only do so partially, and 38%
do not specify even the basic elements of the experimental design
to control any source of randomness while the rest only control for
the classical sources of randomness. These "ndings’ trends mildly
improve when artifacts are provided as part of such experiments,
and what is more concerning is that that most artifacts are not fully
consistent with their corresponding paper.

These "ndings are problematic because they imply that: 1) there
is weak support to determine that there is a true relationship be-
tween independent and dependent variables that did not take place
by happenstance, 2) there is limited control over the space of DNN
relevant variables, which can render a relationship between depen-
dent variables and treatments that may not be causal but rather
correlational, and 3) there is a lack of speci"city in terms of what
are the DNN variables and their values utilized in the experiments
to de"ne the treatments being applied, which makes it unclear
whether the techniques designed are the ones being assessed. We
have proposed a series of actionable recommendations addressing
the most critical "ndings we uncovered and will push forward to
have them become a part of our community practices.

10 DATA AVAILABILITY STATEMENT
The data of our analyses is available in GitHub [35]. The version
corresponding to the badge artifact is [34].

ACKNOWLEDGMENTS
This work was supported by grant PID2022-137846NB-I00 funded
by MCIN/AEI/10.13039/501100011033, by “ERDF A way of mak-
ing Europe”, and by NSF grant #2019239. The authors gratefully
acknowledge the Universidad Politécnica de Madrid for providing
computing resources on Magerit Supercomputer, the reviewers for
their feedback, and the authors of the papers and artifacts analyzed
in this paper.

538

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Sira Vegas and Sebastian Elbaum

REFERENCES
[1] 2022. The 37th AAAI Conference on Arti!cial Intelligence Reproducibility

Checklist. accessed August 26, 2022.
[2] Naomi Altman and Martin Krzywinski. 2021. Sources of variation. Nature

Methods, 12, 5–6. doi: 10.1038/nmeth.3224.
[3] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and

Alexander Chatzigeorgiou. 2019. Identifying, categorizing and mitigating
threats to validity in software engineering secondary studies. Information
and Software Technology, 106, 201–230. doi: 10.1016/j.infsof.2018.10.006.

[4] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proceed-
ings of the 33rd International Conference on Software Engineering, 1–10. doi:
10.1145/1985793.1985795.

[5] Xavier Bouthillier et al. 2021. Accounting for variance in machine learning
benchmarks. In Proceedings of Machine Learning and Systems, 747–769.

[6] Prem Devanbu, Matthew Dwyer, Sebastian Elbaum, Michael Lowry, Kevin
Moran, Denys Poshyvanyk, Baishakhi Ray, Rishabh Singh, and Xiangyu
Zhang. 2020. Deep learning & software engineering: state of research and
future directions. (2020). arXiv: 2009.08525.

[7] Tore Dybå, Vigdis By Kampenes, and Dag I. K. Sjøberg. 2006. A systematic
review of statistical power in software engineering experiments. Information
and Software Technology, 48, 8, 745–755. doi: 10.1016/j.infsof.2005.08.009.

[8] Association for Computing Machinery. 2020. Artifact review and badging.
Retrieved Aug. 24, 2020 from https://www.acm.org/publications/policies/ar
tifact-review-and-badging-current.

[9] Claudio Gallicchio, JoséMartín-Guerrero, AlessioMicheli, and Emilio Olivas.
2017. Randomized machine learning approaches: recent developments and
challenges. In Proceedings of the 25th European Symposium on Arti!cial
Neural Networks.

[10] Omar S Gomez, Natalia Juristo, and Sira Vegas. 2014. Understanding repli-
cation of experiments in software engineering: a classi"cation. Information
and Software Technology, 56, 8, 1033–1048. doi: 10.1016/j.infsof.2014.04.004.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
The MIT Press.

[12] Odd Erik Gundersen, Kevin Coakley, Christine Kirkpatrick, and Yolanda
Gil. 2023. Sources of irreproducibility in machine learning: a review. (2023).
arXiv: 2204.07610v2.

[13] Jo Erskine Hannay, Dag I. K. Sjøberg, and Tore Dybå. 2007. A systematic
review of theory use in software engineering experiments. IEEE Transactions
on Software Engineering, 33, 2, 87–107. doi: 10.1109/TSE.2007.12.

[14] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. 2008. Report-
ing experiments in software engineering. In Guide to Advanced Empirical
Software Engineering. Forrest Shull, Janice Singer, and Dag I.K. Sjøberg,
(Eds.) Springer. Chap. 8, 201–228.

[15] Magne Jørgensen, Tore Dybå, Knut Liestøl, and Dag I.K. Sjøberg. 2016.
Incorrect results in se experiments: how to improve research practices.
Journal of Systems and Software, 116, 133–145. doi: 10.1016/j.jss.2015.03.065.

[16] Natalia Juristo and Ana M Moreno. 2011. Basics of software engineering
experimentation. Springer Science & Business Media.

[17] Vigdis By Kampenes, Tore Dybå, Jo Erskine Hannay, and Dag I. K. Sjøberg.
2007. A systematic review of e#ect size in software engineering experiments.
Information and Software Technoly, 49, 11-12, 1073–1086. doi: 10.1016/j.infs
of.2007.02.015.

[18] B. Kitchenham, L. Madeyski, and D. Budgen. 2023. Segress: software engi-
neering guidelines for reporting secondary studies. IEEE Transactions on
Software Engineering, 49, 3, 1273–1298. doi: 10.1109/TSE.2022.3174092.

[19] Michael A. Lones. 2023. How to avoid machine learning pitfalls: a guide for
academic researchers. (2023). arXiv: 2108.02497v3.

[20] 2020. The Machine Learning Reproducibility Checklist v2.0. accessed August
26, 2022.

[21] Tom Mitchell. 2019. Machine Learning. McGraw-Hill Education.
[22] Douglas C. Montgomery. 2019. Design and Analysis of Experiments. John

Wiley & Sons Inc.
[23] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Di-

versity in software engineering research. In 9th joint meeting on foundations
of software engineering, 466–476. doi: 10.1145/2491411.2491415.

[24] 2022. The 36th Conference on Neural Information Processing Systems Pa-
perChecklist Guidelines. accessed August 26, 2022.

[25] Hung Viet Pham, ShangshuQian, JiannanWang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and opportunities in training deep learning software systems: an analysis of
variance. In Proceedings of the 35th International Conference on Automated
Software Engineering, 771–783. doi: 10.1145/3324884.3416545.

[26] Paul Ralph et al. 2021. Empirical standards for software engineering research.
(2021). arXiv: 2010.03525v2.

[27] Rolando Reyes, Óscar Dieste, Efraín R. Fonseca, and Natalia Juristo. 2018.
Statistical errors in software engineering experiments: a preliminary litera-
ture review. In Proceedings of the 40th International Conference on Software
Engineering, 1195–1206. doi: 10.1145/3180155.3180161.

[28] Arthur Samuel. 1959. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3, 3, 210–229.

[29] William R. Shadish, Thomas D. Cook, and Donald T. Campbell. 2002. Ex-
perimental and Quasi-Experimental Designs for Generalized Causal Inference.
Wadsworth, Cengage Learning.

[30] Martin Shepperd et al. 2019. The prevalence of errors in machine learning
experiments. In Intelligent Data Engineering and Automated Learning–IDEAL
2019. Hujun Yin, David Camacho, Peter Tino, Antonio J. Tallón-Ballesteros,
Ronaldo Menezes, and Richard Allmendinger, (Eds.), 102–109. doi: 10.1007
/978-3-030-33607-3_12.

[31] Dag I.K. Sjøberg and Gunnar Rye Bergersen. 2023. Construct validity in
software engineering. IEEE Transactions on Software Engineering, 49, 3, 1374–
1396. doi: 10.1109/TSE.2022.3176725.

[32] Cecilia Summers and Michael J. Dinneen. 2021. Nondeterminism and insta-
bility in neural network optimization. In Proceedings of the 38th International
Conference on Machine Learning, 9913–9922.

[33] Christopher S. Timperley, Lauren Herckis, Claire Le Goues, and Michael
Hilton. 2021. Understanding and improving artifact sharing in software
engineering research. Empirical Software Engineering, 26, 4. doi: 10.1007/s1
0664-021-09973-5.

[34] Sira Vegas and Sebastian Elbaum. 2023. Badge artifact for the paper “Pitfalls
in Experiments with DNN4SE: An Analysis of the State of the Practice”.
(2023). doi: 10.5281/zenodo.10075778.

[35] Sira Vegas and Sebastian Elbaum. 2023. Repository for the paper “Pitfalls in
Experiments with DNN4SE: An Analysis of the State of the Practice”. (2023).
https://github.com/GRISE-UPM/Pitfalls_Experiments_DNN4SE.

[36] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and AndersWesslén. 2012. Experimentation in software engineering. Springer
Science & Business Media.

[37] Donglin Zhuang, Xingyao Zhang, Shuaiwen Leon Song, and Sara Hooker.
2022. Randomness in neural network training: characterizing the impact
of tooling. In Proceedings of the 5th Conference on Machine Learning and
Systems.

ANALYZED PAPERS
[AP1] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu.

2018. From ui design image to gui skeleton: a neural machine translator
to bootstrap mobile gui implementation. In Proceedings of the 40th ICSE,
665–676. doi: 10.1145/3180155.3180240.

[AP2] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search.
In Proceedings of the 40th ICSE, 933–944. doi: 10.1145/3180155.3180167.

[AP3] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Taeyoung Kim, Kisub Kim,
Anil Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and
refactor inconsistent method names. In Proceedings of the 41st ICSE, 1–12.
doi: 10.1109/ICSE.2019.00019.

[AP4] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In Proceedings of the 41st ICSE, 25–36. doi: 10.1109
/ICSE.2019.00021.

[AP5] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. Nl2type: in-
ferring javascript function types from natural language information. In
Proceedings of the 41st ICSE, 304–315. doi: 10.1109/ICSE.2019.00045.

[AP6] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li.
2019. Actionnet: vision-based work$ow action recognition from program-
ming screencasts. In Proceedings of the 41st ICSE, 350–361. doi: 10.1109
/ICSE.2019.00049.

[AP7] Facundo Molina, Renzo Degiovanni, Pablo Ponzio, Germán Regis, Nazareno
Aguirre, andMarcelo Frias. 2019. Training binary classi"ers as data structure
invariants. In Proceedings of the 41st ICSE, 759–770. doi: 10.1109/ICSE.2019
.00084.

[AP8] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and
Xudong Liu. 2019. A novel neural source code representation based on
abstract syntax tree. In Proceedings of the 41st ICSE, 783–794. doi: 10.1109
/ICSE.2019.00086.

[AP9] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In
Proceedings of the 41st ICSE, 795–806. doi: 10.1109/ICSE.2019.00087.

[AP10] Huong Ha and Hongyu Zhang. 2019. Deepperf: performance prediction for
con"gurable software with deep sparse neural network. In Proceedings of
the 41st ICSE, 1095–1106. doi: 10.1109/ICSE.2019.00113.

539

https://doi.org/10.1038/nmeth.3224
https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1145/1985793.1985795
https://arxiv.org/abs/2009.08525
https://doi.org/10.1016/j.infsof.2005.08.009
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1016/j.infsof.2014.04.004
https://arxiv.org/abs/2204.07610v2
https://doi.org/10.1109/TSE.2007.12
https://doi.org/10.1016/j.jss.2015.03.065
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1109/TSE.2022.3174092
https://arxiv.org/abs/2108.02497v3
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/3324884.3416545
https://arxiv.org/abs/2010.03525v2
https://doi.org/10.1145/3180155.3180161
https://doi.org/10.1007/978-3-030-33607-3_12
https://doi.org/10.1007/978-3-030-33607-3_12
https://doi.org/10.1109/TSE.2022.3176725
https://doi.org/10.1007/s10664-021-09973-5
https://doi.org/10.1007/s10664-021-09973-5
https://doi.org/10.5281/zenodo.10075778
https://github.com/GRISE-UPM/Pitfalls_Experiments_DNN4SE
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00049
https://doi.org/10.1109/ICSE.2019.00049
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00113

Pitfalls in Experiments with DNN4SE: An Analysis of the State of the Practice ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[AP11] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu,
Guoqiang Li, and Jinshui Wang. 2020. Unblind your apps: predicting natural-
language labels for mobile gui components by deep learning. In Proceedings
of the 42nd ICSE, 322–334. doi: 10.1145/3377811.3380327.

[AP12] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. Cc2vec:
distributed representations of code changes. In Proceedings of the 42nd ICSE,
518–529. doi: 10.1145/3377811.3380361.

[AP13] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and
Vladimir Filkov. 2020. Software visualization and deep transfer learning for
e#ective software defect prediction. In Proceedings of the 42nd ICSE, 578–589.
doi: 10.1145/3377811.3380389.

[AP14] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. Dl"x: context-based code
transformation learning for automated program repair. In Proceedings of the
42nd ICSE, 602–614. doi: 10.1145/3377811.3380345.

[AP15] Lin Shi, Mingzhe Xing, Mingyang Li, Yawen Wang, Shoubin Li, and Qing
Wang. 2020. Detection of hidden feature requests from massive chat mes-
sages via deep siamese network. In Proceedings of the 42nd ICSE, 641–653.
doi: 10.1145/3377811.3380356.

[AP16] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the
42nd ICSE, 1385–1397. doi: 10.1145/3377811.3380383.

[AP17] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys
Poshyvanyk. 2020. On learning meaningful assert statements for unit test
cases. In Proceedings of the 42nd ICSE, 1398–1409. doi: 10.1145/3377811.3380
429.

[AP18] Preetha Chatterjee, Kostadin Damevski, and Lori Pollock. 2021. Automatic
extraction of opinion-based q&a from online developer chats. In Proceedings
of the 43rd ICSE, 1260–1272. doi: 10.1109/ICSE43902.2021.00115.

[AP19] Marlo Haering, Christoph Stanik, and Walid Maalej. 2021. Automatically
matching bug reports with related app reviews. In Proceedings of the 43rd
ICSE, 970–981. doi: 10.1109/ICSE43902.2021.00092.

[AP20] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: code-aware neural
machine translation for automatic program repair. In Proceedings of the 43rd
ICSE, 1161–1173. doi: 10.1109/ICSE43902.2021.00107.

[AP21] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang
Chen. 2021. Automated query reformulation for e!cient search based on
query logs from stack over$ow. In Proceedings of the 43rd ICSE, 1273–1285.
doi: 10.1109/ICSE43902.2021.00116.

[AP22] Yi Li, ShaohuaWang, and Tien N. Nguyen. 2021. Fault localization with code
coverage representation learning. In Proceedings of the 43rd ICSE, 661–673.
doi: 10.1109/ICSE43902.2021.00067.

[AP23] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code
prediction by feeding trees to transformers. In Proceedings of the 43rd ICSE,
150–162. doi: 10.1109/ICSE43902.2021.00026.

[AP24] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. A context-based auto-
mated approach for method name consistency checking and suggestion. In
Proceedings of the 43rd ICSE, 574–586. doi: 10.1109/ICSE43902.2021.00060.

[AP25] Gang Zhao and Je# Huang. 2018. Deepsim: deep learning code functional
similarity. In Proceedings of the 26th ESEC/FSE, 141–151. doi: 10.1145/32360
24.3236068.

[AP26] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.
2018. Deep learning type inference. In Proceedings of the 26th ESEC/FSE,
152–162. doi: 10.1145/3236024.3236051.

[AP27] Jinman Zhao, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien
Octeau. 2018. Neural-augmented static analysis of android communication.
In Proceedings of the 26th ESEC/FSE, 342–353. doi: 10.1145/3236024.3236066.

[AP28] Thanh Nguyen, Ngoc Tran, Hung Phan, Trong Nguyen, Linh Truong, Anh
Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2018. Complement-
ing global and local contexts in representing api descriptions to improve
api retrieval tasks. In Proceedings of the 26th ESEC/FSE, 551–562. doi: 10.114
5/3236024.3236036.

[AP29] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On
using machine learning to identify knowledge in api reference documenta-
tion. In Proceedings of the 27th ESEC/FSE, 109–119. doi: 10.1145/3338906.333
8943.

[AP30] Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal multi-layer speci-
"cation synthesis. In Proceedings of the 27th ESEC/FSE, 602–612. doi: 10.114
5/3338906.3338951.

[AP31] Xu Zhang et al. 2019. Robust log-based anomaly detection on unstable log
data. In Proceedings of the 27th ESEC/FSE, 807–817. doi: 10.1145/3338906.33
38931.

[AP32] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. 2019.
Sentimoji: an emoji-powered learning approach for sentiment analysis in
software engineering. In Proceedings of the 27th ESEC/FSE, 841–852. doi:
10.1145/3338906.3338977.

[AP33] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020.
Typewriter: neural type prediction with search-based validation. In Proceed-
ings of the 28th ESEC/FSE, 209–220. doi: 10.1145/3368089.3409715.

[AP34] Yujun Chen et al. 2020. Identifying linked incidents in large-scale online
service systems. In Proceedings of the 28th ESEC/FSE, 304–314. doi: 10.1145
/3368089.3409768.

[AP35] Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2020. On the
naturalness of hardware descriptions. In Proceedings of the 28th ESEC/FSE,
530–542. doi: 10.1145/3368089.3409692.

[AP36] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray.
2020. Mtfuzz: fuzzing with a multi-task neural network. In Proceedings of
the 28th ESEC/FSE, 737–749. doi: 10.1145/3368089.3409723.

[AP37] Reyhaneh Jabbarvand, ForoughMehralian, and SamMalek. 2020. Automated
construction of energy test oracles for android. In Proceedings of the 28th
ESEC/FSE, 927–938. doi: 10.1145/3368089.3409677.

[AP38] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu,
Liming Zhu, and Guoqiang Li. 2020. Object detection for graphical user
interface: old fashioned or deep learning or a combination? In Proceedings
of the 28th ESEC/FSE, 1202–1214. doi: 10.1145/3368089.3409691.

[AP39] Kexin Pei et al. 2021. Stateformer: "ne-grained type recovery from binaries
using generative state modeling. In Proceedings of the 29th ESEC/FSE, 690–
702. doi: 10.1145/3468264.3468607.

[AP40] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei
Xiong, and Lu Zhang. 2021. A syntax-guided edit decoder for neural program
repair. In Proceedings of the 29th ESEC/FSE, 341–353. doi: 10.1145/3468264.3
468544.

[AP41] ShangwenWang, MingWen, Bo Lin, and Xiaoguang Mao. 2021. Lightweight
global and local contexts guided method name recommendation with prior
knowledge. In Proceedings of the 29th ESEC/FSE, 741–753. doi: 10.1145/3468
264.3468567.

[AP42] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann.
2021. Automating the removal of obsolete todo comments. In Proceedings of
the 29th ESEC/FSE, 218–229. doi: 10.1145/3468264.3468553.

[AP43] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection
with "ne-grained interpretations. In Proceedings of the 29th ESEC/FSE, 292–
303. doi: 10.1145/3468264.3468597.

[AP44] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven
accessibility repair revisited: on the e#ectiveness of generating labels for
icons in android apps. In Proceedings of the 29th ESEC/FSE, 107–118. doi:
10.1145/3468264.3468604.

[AP45] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,
and Lingming Zhang. 2021. Boosting coverage-based fault localization via
graph-based representation learning. In Proceedings of the 29th ESEC/FSE,
664–676. doi: 10.1145/3468264.3468580.

[AP46] Morakot Choetkiertikul, Hoa KhanhDam, Truyen Tran, Trang Pham, Aditya
Ghose, and Tim Menzies. 2019. A deep learning model for estimating story
points. IEEE Transactions on Software Engineering, 45, 7, 637–656. doi: 10.11
09/TSE.2018.2792473.

[AP47] Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. 2020. Automating
intention mining. IEEE Transactions on Software Engineering, 46, 10, 1098–
1119. doi: 10.1109/TSE.2018.2876340.

[AP48] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2020. Deep semantic
feature learning for software defect prediction. IEEE Transactions on Software
Engineering, 46, 12, 1267–1293. doi: 10.1109/TSE.2018.2877612.

[AP49] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2020. Machine learning-based prototyping of graphical
user interfaces for mobile apps. IEEE Transactions on Software Engineering,
46, 2, 196–221. doi: 10.1109/TSE.2018.2844788.

[AP50] Jian Gao, Yu Jiang, Zhe Liu, Xin Yang, Cong Wang, Xun Jiao, Zijiang Yang,
and Jiaguang Sun. 2021. Semantic learning and emulation based cross-
platform binary vulnerability seeker. IEEE Transactions on Software En-
gineering, 47, 11, 2575–2589. doi: 10.1109/TSE.2019.2956932.

[AP51] Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and
Guoqiang Li. 2021. Easy-to-deploy api extraction by multi-level feature
embedding and transfer learning. IEEE Transactions on Software Engineering,
47, 10, 2296–2311. doi: 10.1109/TSE.2019.2946830.

[AP52] Hui Liu, Jiahao Jin, Zhifeng Xu, Yanzhen Zou, Yifan Bu, and Lu Zhang. 2021.
Deep learning based code smell detection. IEEE Transactions on Software
Engineering, 47, 9, 1811–1837. doi: 10.1109/TSE.2019.2936376.

[AP53] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E. Hassan,
and Shanping Li. 2021. Which variables should i log? IEEE Transactions on
Software Engineering, 47, 9, 2012–2031. doi: 10.1109/TSE.2019.2941943.

[AP54] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le
Traon. 2021. Mining "x patterns for "ndbugs violations. IEEE Transactions
on Software Engineering, 47, 1, 165–188. doi: 10.1109/TSE.2018.2884955.

[AP55] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy,
and Aditya Ghose. 2021. Automatic feature learning for predicting vulnera-
ble software components. IEEE Transactions on Software Engineering, 47, 1,
67–85. doi: 10.1109/TSE.2018.2881961.

540

https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380361
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380356
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1109/ICSE43902.2021.00115
https://doi.org/10.1109/ICSE43902.2021.00092
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00116
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00060
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/3236024.3236066
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1145/3338906.3338943
https://doi.org/10.1145/3338906.3338943
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338977
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409768
https://doi.org/10.1145/3368089.3409768
https://doi.org/10.1145/3368089.3409692
https://doi.org/10.1145/3368089.3409723
https://doi.org/10.1145/3368089.3409677
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468567
https://doi.org/10.1145/3468264.3468567
https://doi.org/10.1145/3468264.3468553
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1145/3468264.3468604
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1109/TSE.2018.2792473
https://doi.org/10.1109/TSE.2018.2792473
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2019.2956932
https://doi.org/10.1109/TSE.2019.2946830
https://doi.org/10.1109/TSE.2019.2936376
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/TSE.2018.2881961

	Abstract
	1 Introduction
	2 DNNs' Experimental Variables
	3 Analysis of Papers
	3.1 Scope of Analysis
	3.2 Analysis Process
	3.3 Findings

	4 Analysis of Artifacts
	4.1 Scope of Analysis
	4.2 Analysis Process
	4.3 Findings

	5 Implications
	5.1 Is there a Relationship between the Response Variable and the Factor(s)? (Conclusion Validity)
	5.2 Is the Relationship Causal? (Internal Validity)
	5.3 Does the (Cause) Operationalization Accurately Represent its Construct? (Construct Validity)
	5.4 Characterization of Experiments and Implications

	6 Validity Threats
	7 Recommendations
	8 Related Work
	8.1 In the SE Field
	8.2 In the AI Field

	9 Conclusions
	10 Data Availability Statement
	Acknowledgments

