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ABSTRACT

In affective computing, classification algorithms are used to recognize users’ psychological states and adapt tasks
to optimize user experience. However, classification is never perfect, and the relationship between adaptation
accuracy and user experience remains understudied. It is also unclear whether the adaptation magnitude (‘size’
of action taken to influence user states) influences effects of adaptation accuracy. To evaluate impacts of
adaptation accuracy (appropriate vs. inappropriate actions) and magnitude on user experience, we conducted a
‘Wizard of Oz’ study where 112 participants interacted with the Multi-Attribute Task Battery over three 11-min-
ute intervals. An adaptation accuracy (50 % to 80 %) was preassigned for the first 11-minute interval, and ac-
curacy increased by 10 % in each subsequent interval. Task difficulty changed every minute, and participant
preferences for difficulty changes were assessed at the same time. Adaptation accuracy was artificially induced
by fixing the percentage of times the difficulty changes matched participant preferences. Participants were also
randomized to two magnitude conditions, with difficulty modified by 1 (low) or 3 (high) levels each minute. User
experience metrics were assessed after each interval.

Analysis with latent growth models offered support for linear increases in user experience across increasing
levels of adaptation accuracy. For each 10 % gain in accuracy, results indicate a 1.3 (95 % CI [.35, 2.20]) point
increase in NASA Task Load Index scores (range 6-60), a 0.40 (95 % CI [.18, 0.57]) increase in effort/importance
(range 2-14), and 0.48 (95 % CI [.24, 0.72]) increase in perceived competence (range 2-14). Furthermore, the
effect of accuracy on Task Load Index scores was modulated by adaptation magnitude. No effects were observed
for interest/enjoyment or pressure/tension. By providing quantitative estimates of effects of adaptation accuracy
on user experience, the study provides guidelines for researchers and developers of affect-aware technologies.
Furthermore, our methods could be adapted for use in other affective computing scenarios.

1. Introduction

1.1. Psychological state recognition and task adaptation in affective

computing

happiness or anger (Picard et al., 2001), or may be levels of a single
variable: for example, low or high anxiety (S.M. Liu et al., 2009) or low
or high enjoyment (Darzi and Novak, 2021). Most classifiers are su-
pervised: they learn the relationship between inputs (measurements)
and outputs (psychological states) based on previously collected training

In affective computing, machine learning algorithms are commonly
used to recognize a user’s psychological state (e.g., level of mental
workload, engagement or frustration) based on measurements such as
facial expressions or physiology (D'Mello et al., 2018; Picard et al.,
2001). Usually, these algorithms are classifiers: they choose among
multiple possible discrete states (Al-Nafjan et al., 2012; Samadiani et al.,
2019; Shu et al., 2018). These states may be basic emotions such as fear,

data from multiple human subjects. The training data are usually
labelled using self-report questionnaires like the NASA task load index
(TLX) (Hart and Staveland, 1988), which serve as the ‘ground truth’.
Once the psychological state has been identified, actions can be
taken to bring the user into a desirable state: for example, by adapting
game difficulty to maximize player enjoyment or adapting the difficulty
of learning materials to maximize student engagement (Aranha et al.,
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2021; Eldenfria and Al-Samarraie, 2019). Most affective computing
systems classify the psychological state and have a single action defined
for each state (e.g., “if state 1, then action 1”) (Aranha et al., 2021;
D’Mello et al., 2018; D’Mello and Kory, 2015; Fairclough, 2017; Novak
et al., 2012). For example, affect-aware games increase difficulty when
anxiety is low and decrease it when anxiety is high, with each adaptation
having a constant magnitude (increase/decrease by one level) (Darzi
and Novak, 2021; C. Liu et al., 2009). Similarly, rehabilitation robots
adapt the amount of assistance in response to patient workload, with
each adaptation having a constant magnitude (increase/decrease by one
level) (Koenig et al., 2011; Shirzad and Van der Loos, 2016; Xu et al.,
2018). While more advanced adaptation rules have been presented
(Cruz-Maya and Tapus, 2018; Liu et al., 2008), these still select among a
few possible actions.

Despite its relative simplicity, affect-aware task adaptation (i.e.,
adaptation based on classified psychological state) has shown positive
results. For example, affect-aware adaptation improves performance in
unmanned vehicle control (Wilson and Russell, 2007), air traffic control
(Arico et al., 2016), and other high-stress tasks (Ung et al., 2018)
compared to no feedback. Furthermore, it results in higher enjoyment in
games (Liu et al., 2009), driving simulators (Bian et al., 2019) and
rehabilitation (Xu et al., 2018) than adaptation based only on task
performance. Finally, it results in higher enjoyment in games (Ewing
et al., 2016; Nacke et al., 2011) and lower workload in resource man-
agement tasks (Bailey et al., 2006) than manual adaptation.

1.2. The impact of classification and adaptation accuracy

No affective computing system is perfect: it may incorrectly recog-
nize the user’s psychological state, consequently leading to inappro-
priate adaptation actions. Alternatively, it may recognize the correct
psychological state but fail to take an action that would be appropriate
for that state. For the type of affective computing system described in the
previous section, we can thus define a classification accuracy (percent-
age of times correct psychological state recognized) and adaptation
accuracy (percentage of times correct action taken).

Since most psychological state recognition classifiers rely on ques-
tionnaires as ‘ground truth’, a classifier is considered to have 100 %
accuracy if it always outputs the psychological state self-reported by the
user. In practice, classifiers never achieve 100 % accuracy: for example,
our 2012 review of psychological state classification based on physio-
logical measurements found accuracies mostly between 60 % and 90 %
in two-class classification (e.g., low vs. high workload) and as low as 40
% in multiclass classification (e.g., low vs. medium vs. high workload)
(Novak et al., 2012). Two 2019 reviews of classification using facial
expressions similarly found multiclass classification accuracies as low as
50 % in real-world environments (Dewan et al., 2019; Samadiani et al.,
2019). Furthermore, reviews of classification using electroencephalog-
raphy (Al-Nafjan et al., 2017), general physiological signals (Shu et al.,
2018), and posture and gestures (Stephens-Fripp et al., 2017) all found
broad accuracy ranges, with very few studies reporting accuracies above
95 %.

An affective computing system can be considered to have 100 %
adaptation accuracy if all its actions optimally guide users toward more
appropriate psychological states. However, adaptation accuracy has
been studied significantly less than classification accuracy. This may be
because most state-of-the-art systems have a single adaptation action
associated with each classified state (Aranha et al., 2021; D'Mello et al.,
2018; D’Mello and Kory, 2015; Fairclough, 2017; Novak et al., 2012),
making classification and adaptation closely linked. Nonetheless, high
classification accuracy does not necessarily guarantee high adaptation
accuracy. Since a single action is often predefined for each psychological
state, that action may not always be optimal for that state — for example,
an action defined for the state of “high workload” may be designed to
increase automated assistance by a small amount, which may be
appropriate for slightly excessive workload but not extremely excessive
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workload. Alternatively, since classification is often done over intervals
of 2-5 min (Aranha et al., 2021; Novak et al., 2012), a system may not be
able to recognize intense brief events (e.g., sudden extreme stress) until
it is too late to act on them. Nonetheless, many affective computing
studies either conflate classification and adaptation accuracy or study
only classification accuracy.

It is generally assumed that higher classification and adaptation ac-
curacies lead to better user experience. However, the actual relationship
between accuracy and user experience in affect-aware adaptation is
unclear, as also emphasized by other authors (Fairclough et al., 2015;
Fairclough and Lotte, 2020). For example, our recent study found no
improvement in user experience as a result of adding physiological
measurements despite higher classification accuracy (Darzi et al., 2021).
Without a clear idea of this relationship, it is difficult to make practical
design decisions. For example, if adding another sensor increases clas-
sification accuracy by 5 %, what is the improvement in user experience
and does it justify the added cost and complexity?

1.3. Our previous wizard of Oz research

If we assume that classification uses self-report data as ‘ground truth’
and that classification accuracy and adaptation accuracy are equal (as
commonly done in affective computing), the relationship between ac-
curacy and user experience in affect-aware adaptation could be studied
using a ‘Wizard of Oz’ approach (Riek, 2012). Essentially, researchers
could ask users how they would like to adapt the task (ground truth) and
follow that preference a given percentage of the time to artificially
create an adaptation accuracy. For example, if we ask a user about game
difficulty 10 times and they always tell us to increase difficulty, we could
artificially induce 80 % accuracy by increasing difficulty 8 times and
decreasing it twice. This would allow the relationship between accuracy
and user experience to be studied in a systematic manner, as different
accuracies could be easily induced without complex signal processing
and without random elements such as fluctuations in accuracy due to
inter- or intrapersonal variability.

Co-author Novak previously conducted two studies using this Wizard
of Oz approach. In the first study (Novak et al., 2014), participants
played a game online, with each participant experiencing an adaptation
accuracy between 50 % and 100 %. User satisfaction with the adaptation
increased with adaptation accuracy as expected, but in-game fun sur-
prisingly did not. However, the study had multiple methodological is-
sues. For example, due to design flaws, both the interval between
adaptation actions and the total number of adaptation actions were
highly variable between participants. Additionally, since the study was
done online, no sensors were involved, and it is unknown whether
participants paid attention to study instructions. Finally, there was a
dropout rate of over 40 %, with many more dropouts at lower adaptation
accuracies.

To address these weaknesses, Novak carried out a second study
(McCrea et al., 2017) where participants played a game on a lab com-
puter while wearing an electroencephalography sensor. Each participant
played for two 7-minute intervals, with difficulty adapted every 60 s.
They experienced a different adaptation accuracy in each interval
(among 33 %, 50 %, 66.7 %, 83.3 % and 100 %). Participants were told
that difficulty was adapted based on sensor readings and that the two
intervals corresponded to two different machine learning algorithms,
but adaptation was actually done using the Wizard of Oz approach:
participants could ask to decrease, increase or not change difficulty, and
the game followed their preference a predefined percentage of the time.
In this study, both satisfaction with adaptation as well as in-game fun
were correlated with adaptation accuracy. Furthermore, while partici-
pants who experienced two very different accuracies (e.g., 50 % and
100 %) could reliably tell the difference between them, participants who
experienced more similar accuracies (e.g., 83.3 % and 100 %) could not,
suggesting that small accuracy differences were not overtly perceived by
users.
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1.4. Contribution of current study

While the above in-person study (McCrea et al., 2017) provided
valuable insights into the relationship between adaptation accuracy and
user experience, it still had limitations. For example, game difficulty was
always adapted by one level, and it is unclear whether adapting by
multiple levels would have a different effect. Additionally, it restricted
within-person assessment to two randomly assigned accuracy condi-
tions, limiting formal estimation of change in user experience following
incremental change in adaptation accuracy. Furthermore, both above
studies were performed using games, and it is unclear if results would be
different in a more serious context. In the current study, a larger number
of participants thus interacted with a computer-based multitasking
scenario for three 11-minute intervals, with each successive interval
administered at an artificially induced 10 % increase in adaptation ac-
curacy. The initial accuracy and the magnitude of adaptation actions
were randomized among participants, allowing us to obtain a more
extensive look into the relationship between adaptation accuracy and
user experience in affective computing.

2. Materials and methods
The study had two main goals:

1 Determine how adaptation accuracy influences user experience in an
affective computing system involving a computer-based multitasking
scenario. While higher adaptation accuracy is expected to result in
better user experience, the relationship between the two is still
unclear.

2 Determine how the magnitude of adaptation actions influences the
change in user experience as a function of adaptation accuracy. High-
magnitude adaptation actions might lead to faster convergence to a
desirable user state, but only if adaptation accuracy is high enough.
Thus, higher adaptation magnitude may lead to more aggressive
change in user experience with increasing accuracy.

To achieve these goals, each participant performed a computer-based
multitasking scenario for three 11-minute intervals. In the first of these
three intervals, a Wizard of Oz approach was used to artificially induce
an adaptation accuracy of 50 %, 60 %, 70 %, or 80 % (randomized across
participants). The artificially induced adaptation accuracy then
increased by 10 % with each successive interval. For example, partici-
pants who experienced 50 % accuracy in their first interval then expe-
rienced 60 % in their second interval and 70 % in their third interval;
participants who first experienced 80 % then experienced 90 % and
finally 100 %. This resulted in overlapping, within-group trials covering
the full range of 50 % to 100 % accuracy levels. This approach,
commonly known as a rolling panel design (Frees, 2004), permitted the
estimation of a continuous growth function for user experience without
necessitating that all participants experience all accuracies.

In addition to being randomized to one of four initial accuracies,
participants were also randomized to one of two adaptation magnitude
conditions. In the low-magnitude condition, any adaptation action
changed difficulty by 1 level. In the high-magnitude condition, any
adaptation action changed difficulty by 3 levels.

2.1. Participants

112 students (72 women, 40 men, no participants identified as
nonbinary) were recruited from undergraduate psychology courses at
the University of Wyoming and given course credit for study participa-
tion. Students were 20.3 + 2.9 years old (mean + standard deviation).
When asked how often they play computer games (options: never, less
than 2 h/week, 2-5 h/week, 6-10 h/week, 11-20 h/week, 20+ hours/
week), 37.5 % reported never playing and another 44.5 % indicated 5 or
fewer total hours of game play per week. When asked how difficult
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students preferred games to be on a 1 (not at all) to 7 (very difficult)
scale, their preference was 3.6 + 1.1. Participants also self-reported Big
Five personality traits using the Ten Item Personality Inventory (Gosling
et al., 2003); on a scale of 2-14, scores were 8.7 + 2.7 for extraversion,
9.7 + 2.1 for agreeableness, 10.7 + 2.1 for conscientiousness, 9.2 + 2.5
for emotional stability, and 10.9 + 1.9 for openness to experiences. Only
3.6 % of the sample reported previously participating in affective
computing research.

Approximately half the participants (n = 54) were randomized to the
high-magnitude adaptation condition. A total of 30, 31, 19, and 32
participants initiated the scenario at 50 %, 60 %, 70 %, and 80 % ac-
curacy, respectively.

2.2. Scenario

The scenario used for the study was the OpenMATB (Cegarra et al.,
2020), an open-source version of the NASA Multi-Attribute Task Battery
(Santiago-Espada et al., 2011), a multitasking scenario commonly used
to induce workload in affective computing. It was performed on a per-
sonal computer using a keyboard, joystick and headphones. A screen-
shot is shown in Fig. 1.

The standard OpenMATB includes six screen sections: system
monitoring, tracking, scheduling, communications, resources manage-
ment, and pump status. For our study, the scheduling, resources man-
agement and pump status sections ran automatically, and participants
did not have to interact with them. Additionally, a “Number of errors”
counter (not present in the standard OpenMATB) was added near the
middle of the screen. The remaining sections were:

- Tracking (Fig. 1, upper middle): Participants must use the joystick to
keep the green reticle inside the small central square. The reticle
drifts out of the square if not actively maintained, with the speed and
unpredictability of drift dependent on difficulty level. If the reticle
stays outside the square for a few seconds, it flashes red and the error
count increases by 1.

System monitoring (Fig. 1, upper left): Four vertical columns include
arrows that start near the center, but gradually move toward the top
or bottom of the column. If an arrow gets too close to the top/bottom,
the participant must hit the button corresponding to that column (F1-
F4) to reset it to the center. The two green lights in the top left oc-
casionally turn yellow; the participant must then press the corre-
sponding button (F5, F6) to reset it. If a button is not pressed in time,
the error count increases by 1 and the light/column flashes red then
resets to the center. If a button is pressed unnecessarily, the error
count also increases by 1 and that light/column flashes red. The
difficulty level affects how often the buttons must be pressed.
Communications (Fig. 1, lower left): Periodically, spoken in-
structions come over the headphones in the form of “[Identifiant]”,
turn your [channel] to [number].” If the identifiant part corresponds
to the identifiant shown on the screen, the instruction should be
followed; otherwise, it should be ignored. To follow the instruction,
participants must use the up/down keyboard buttons to navigate to
the correct channel (NAV1, NAV2, COM1, COM2) and then the left/
right buttons to change the number to the requested one. If the
correct number is not set in time, the error count increases by 1. The
difficulty level affects how often instructions are spoken.

Ten difficulty levels were implemented for the OpenMATB, with
level 1 being very easy (few monitoring/communications events,
tracking reticle barely moves) and level 10 being very difficult (frequent
events, reticle moves rapidly and unpredictably). To allow easier
reproduction and expansion of our study, this version of the OpenMATB
has been uploaded to Zenodo (Novak et al., 2022); it can be run using
any Python interpreter and includes detailed settings for all ten difficulty
levels. Table 1 shows individual difficulty settings in the ten difficulty
levels.
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Fig. 1. Screenshot of the OpenMATB used in our study. While the original OpenMATB includes six display elements, only the three subtasks circled in red were
assigned to participants in our study. The “Number of errors” counter near the middle was added to the OpenMATB for our study.

Table 1

OpenMATB difficulty settings for the three subtasks (tracking, monitoring,
communications). In the tracking task, “drift amount” is a variable affecting the
speed and unpredictability of drift and is defined in the original OpenMATB
code; values can be compared to each other but have no absolute interpretation.
In the monitoring task, the number of events represents how many times F1-F6
need to be pressed by the user. In the communications task, the number of events
represents the number of instructions that come over the headphones; “for user”
events must be attended to by the participant while “for others” events should be
ignored.

Difficulty
level

Number of
communications

Tracking drift
amount

Number of monitoring
events
events

for
others

0.07
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2.3. Study protocol

A flowchart of the study protocol is shown in Fig. 2. Upon arrival,
participants were told that the goal of the study was to test three
different affect-aware systems that adapted the difficulty of a computer-
based scenario based on physiological measurements. They were told
that their own preferences about scenario difficulty would be collected
but would not be used to adapt difficulty — only to verify system

performance after the session. The study protocol and sensors were
explained, and participants signed an informed consent form. They then
filled out initial questionnaires (Section 2.1).

Participants sat at a computer, put on headphones, and self-applied
sham physiological sensors: three disposable electrodes on the torso to
record the electrocardiogram and reusable dry electrodes on the distal
phalanges of the forefinger and middle finger of the nondominant hand
to record skin conductance. No data were collected from these sensors.
The scenario (Section 2.2) was then started, the individual scenario
sections were explained, and participants completed a 5-minute practice
interval with the scenario at difficulty level 5 of 10. After the practice,
the experimenter answered any questions. To maintain the Wizard of Oz
illusion, participants then sat quietly for 60 s to “obtain baseline phys-
iological data”. Finally, a camera-based eye tracker under the screen was
“calibrated” by having participants look at each corner of the screen for
a few seconds. No data were collected from the eye tracker either.

After calibration, participants interacted with the scenario for three
11-minute intervals. In each interval, the scenario started at difficulty
level 5. Every 60 s, the scenario paused to ask participants how they
would like to change difficulty (options: increase, decrease, don’t
change). Once participants input their choice, the difficulty was adapted
according to the assigned accuracy and magnitude condition, and the
scenario continued. The adaptation action actually taken by the scenario
was not explicitly told to participants, but could be inferred from visible
changes in difficulty.

After each 11-minute interval, participants filled out two question-
naires: the Intrinsic Motivation Inventory (IMI - same 8-item version as
in our previous work (Gorsic et al.,, 2017)) and NASA TLX (Hart and
Staveland, 1988). After the final 11-minute interval ended, participants
were asked “How much did you like the three difficulty adaptation al-
gorithms” and rated each on a visual analog scale (VAS) from “did not
like at all” to “liked very much”. Participants could see all three VAS
answers simultaneously and were encouraged to consider the three in-
tervals relative to each other. While this is not a validated questionnaire,
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Fig. 2. Study protocol flowchart. After putting on sensors and practicing the Task Battery (Introduction), participants are assigned to one of four possible accuracies
and one of two possible magnitudes. They then interact with the Task Battery for three 11-minute intervals, with each interval at a 10 % higher accuracy. Intrinsic
Motivation Inventory (IMI) and Task Load Index (TLX) questionnaires are filled out after each 11-minute interval, and final Visual Analog Scale questionnaires are

filled out at the end.

a similar version was used in our prior work (McCrea et al., 2017).
Finally, participants removed the sensors, were thanked for their
participation, and received course credit.

2.4. Induction of accuracies

As mentioned, participants began the first 11-minute interval with
initial accuracies ranging from 50 % to 80 % (with the initial accuracy
preassigned to each participant), and the accuracy was increased by 10
% in each subsequent interval. Each participant was exposed to three
accuracies since our previous work suggested that participants are poor
at rating individual accuracies in isolation but are able to compare them
to each other (McCrea et al., 2017). As the actual classification and
adaptation accuracy of an affective computing system varies between
participants as well as over time, we instead used the same Wizard of Oz
approach from our previous work (McCrea et al., 2017; Novak et al.,
2014) to artificially induce adaptation accuracies.

Participants were asked how they would like to change difficulty 10
times over the 11-minute interval. Since the participant’s own prefer-
ence is often considered to be “correct” in affective computing (Aranha
et al.,, 2021; D. Novak et al., 2012), an accuracy of 100 % could be
artificially induced by simply following the participant’s preference all
10 times. On the other hand, an accuracy of 50 % could be induced by
following the participant’s preference 5 of 10 times and not following it
the other 5 times. Thus, to induce a particular accuracy, the 10

adaptation actions in the 11-minute interval were predefined to agree or
disagree with the participant’s preference as follows:

- 50 % accuracy: System disagreed with participant after first, third,
fourth, eighth and tenth minute.

- 60 %: System disagreed with participant after second, fifth, sixth,
and ninth minute.

- 70 %: System disagreed with participant after second, fifth, and
eighth minute.

- 80 %: System disagreed with participant after third and seventh
minute.

- 90 %: System disagreed with participant after seventh minute.

- 100 %: System never disagreed.

These patterns were the same for all participants experiencing a
given accuracy, ensuring that the exact desired accuracy was always
induced.

When agreeing with the participant, the system adapted difficulty as
requested by the participant (increase, decrease, don’t change). When
disagreeing, if the participant had asked to increase/decrease difficulty,
the system instead decreased/increased it. If the participant had asked to
keep difficulty the same, the system changed it in a random direction.
For participants in the low-magnitude adaptation condition, any in-
crease/decrease changed difficulty by 1 level; for participants in the
high-magnitude condition, any increase/decrease changed it by 3 levels.
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As the scenario had ten difficulty levels, the adaptation was capped so
that if an increase would change difficulty above 10, it instead set it to
10; similarly, if a decrease would decrease it below 1, it would instead
set it to 1. All this behavior is implemented and reusable in the version of
OpenMATB shared to Zenodo (Novak et al., 2022).

As a result of this implementation, two different participants expe-
riencing the same accuracy for 11 min would go through the same dif-
ficulty level sequence if they input the same sequence of desired actions
and never requested to keep difficulty the same. A difficulty increase
followed by a decrease (or vice versa) would return difficulty to the
original level as long as neither action attempted to exceed the difficulty
caps at levels 1 and 10.

2.5. Data analysis

There were five primary outcome variables summarizing self-
reported participant experience with the scenario: the NASA TLX
score, which represents total workload on a 6-60 scale (obtained as a
raw sum of all six TLX items, with performance item reversed (Hart and
Staveland, 1988)), and the four IMI scales (interest/enjoyment, effor-
t/importance, perceived competence, and pressure/tension — each on a
2-14 scale (Gorsic et al., 2017)). In addition, there was one secondary
outcome variable describing scenario behavior rather than user expe-
rience: mean difficulty, defined as the mean difficulty level over all 11
min of an interval. Each variable was analyzed separately.

Continuous change in participant experience as a function of
increasing adaptation accuracy was examined through a series of latent
growth curve (LGC) analyses. These models assume that patterns of
change in responding arise as the result of latent, unobserved growth
parameters that drive observed scores (Bollen and Curran, 2006). For
these analyses, individual trajectories of participant experience are
initially combined to produce a baseline model of change for the sample
as a whole. Variability in estimates of growth parameters set for the
baseline model (intercept, slope) are then evaluated, with evidence of
significant variability across participant-specific trajectories indicating
the potential for moderators of initial status and rate of growth (i.e.,
individual difference factors that may impact patterns of change).

Analyses were conducted using a stepped approach (Bollen and
Curran, 2006). Initial baseline models were used to estimate average
trajectories of participant experience across increasing levels of adap-
tation accuracy. Variances for intercept (i.e., starting value at 50 % ac-
curacy) and slope (i.e., change in experience as a function of adaptation
accuracy) parameters in baseline models for each outcome were exam-
ined to assess for potential differences across respondents, suggesting
participant-specific trajectories that may be attributable to
condition-level differences in the magnitude of adaptation actions (low
vs. high). For models with significant variance estimates, magnitude
condition was included as a potential moderator of corresponding
intercept and slope parameters (i.e., exploring whether initial response
and/or rate of change across accuracy values differed across high- and
low-magnitude adaptation conditions).

Analyses were conducted in MPlus 8.8 (Muthén and Muthén, 2017)
using full information maximum likelihood estimation. Full information
estimators are capable of accommodating cases with partially missing
values, permitting the generation of growth parameters in rolling panel
designs such as the one used for this study. Parameters are estimated
using all information available from the set and remain unbiased when
missingness is unrelated to other variables in the model (Arbuckle et al.,
1996). Because missing values in rolling panel designs are the result of
experimental randomization as opposed to person-level factors (e.g.,
dropout due to frustration with low-accuracy systems), data remain
amenable to full information maximum likelihood estimation.

For the “How much did you like the three difficulty adaptation al-
gorithms” question at the end of the session, VAS scores were analyzed
using a 2 (magnitude: low, high) x 4 (initial accuracy: 50, 60, 70, 80) x 3
(trial: 1, 2, 3) mixed-factors analysis of variance (ANOVA) with repeated
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measures on the final factor. Interaction effects in this model were used
to assess whether the pattern of average liking across trials was depen-
dent upon initial accuracy and/or adaptation condition.

3. Results

Descriptive statistics for mean difficulty and the number of times
difficulty was increased, decreased or left unchanged in each 11-minute
interval are shown in Table 2 for all adaptation accuracies and both
magnitude conditions. Note that increase / decrease / don’t change refer
to the actual difficulty changes, not requests made by participants
(which the system could disagree with). Descriptive statistics for NASA
TLX and IMI scores across adaptation accuracies are then presented in
Table 3.

3.1. Mean difficulty

Linear growth parameters (intercept = 5.11, p < .001; slope = 0.30, p
<.001) estimated a 0.30 unit increase in average task difficulty for every
10 % increase in accuracy from 50 % to 100 % trials. A 95 % confidence
bound suggest population estimates for growth ranging from a 0.17 to a
0.42 unit increase per 10 % improvement in adaptation accuracy (Clos o,
[.17, 0.42]). Results did not provide support for variability across par-
ticipants with respect to average difficulty at 50 % accuracy (p = .278)
or in change across trials (p = .637) suggesting an overall stable tra-
jectory across respondents and magnitude condition.

3.2. NASA task load index

Growth parameters for the baseline model (intercept = 32.80, p <
.001; slope = 1.01, p = .001) identified an aggregate trajectory of
increasing TLX scores in response to increasing adaptation accuracy.
Results indicated significant variability across respondents at initial (50
%) adaptation accuracy (p = .037), suggesting the potential for differ-
ences in TLX scores as a result of magnitude condition. Variability for
slope, however, did not achieve statistical significance (p = .330), sug-
gesting similar trajectories of increasing scores across users.

Table 2

Means =+ standard deviations for mean difficulty and the number of times that
difficulty was increased, decreased or left unchanged in each 11-minute interval,
separately for low- and high-magnitude conditions.

Accuracy  Magnitude n Mean Number of adaptation actions
difficulty increase don’t decrease
change

50 % low 15 5.3+09 3.3+ 3.7+21 3.0+
1.4 1.3

high 15 59+1.5 25+ 4.6 £2.5 29+
1.2 1.4

60 % low 30 55+1.3 3.7 + 36+1.6 27+
1.3 1.3

high 31 56+1.3 25+ 4.8 £2.0 2.7 +
1.2 1.0

70 % low 41 54+14 3.3+ 41+18 26+
1.6 1.1

high 39 56 +1.7 23+ 52+1.7 25+
1.0 1.0

80 % low 43 55+1.3 31+ 47+19 224+
1.8 1.1

high 39 57416 21+ 56+15 23+
0.8 1.0

90 % low 28 6.0+14 35+ 46+22 19+
1.9 1.2

high 23 61+1.6 2.0 + 6.1+19 19+
1.0 1.1

100 % low 17 6.3+1.6 3.3+ 53+22 1.5+
1.5 1.5

high 15 6.6 £+ 1.5 1.8 + 6.6 £ 2.6 1.6 +
1.3 1.4
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Table 3
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Means =+ standard deviations for NASA Task Load Index (TLX) scores and the four scales of the Intrinsic Motivation Inventory at different adaptation accuracies. All

scores are averaged across both low- and high-magnitude conditions.

Accuracy n NASA TLX Interest/ Enjoyment Effort/ Importance Competence Pressure/ Tension
50 % 30 322+73 10.0 £ 2.5 114+ 23 8.8+ 26 9.6 + 3.0

60 % 61 345+7.0 10.0 £ 2.7 11.8 £ 2.0 8.4+25 9.6 + 2.9

70 % 80 34.8 £ 6.9 10.1 +2.8 11.9+1.9 89+25 9.7 +£23

80 % 82 35.6 +7.6 10.3 +£2.9 123 +£1.8 9.1+28 10.1 £2.8

90 % 51 37.3+8.5 10.4 £ 2.9 12.6 £ 1.8 9.3+28 10.6 &+ 2.6

100 % 32 36.6 + 9.5 10.3 +3.3 125+ 2.1 9.6 3.1 109 £ 21

Evaluation of the full model including magnitude condition as a
predictor of initial TLX scores again provided support for growth in TLX
score in response to increasing adaptation accuracy (intercept = 30.89, p
< .001; slope = 1.28, p = .005). Based on these data, investigators
should expect a 1.3 unit increase in TLX scores for every 10 % increase in
adaptation accuracy in the OpenMATB scenario. Data-supported values
for TLX growth range from approximately one half to slightly more than
a 2-point TLX increase per 10 % change in adaptation accuracy (Clgs o,
[.35, 2.20]). Results also indicated support for an effect of magnitude
condition at the initial 50 % accuracy (b = 3.89, p = .022) such that
participants randomized to the high-magnitude condition returned
higher TLX scores than those randomized to the low-magnitude condi-
tion (Table 4). As expected from variance effects in the baseline model,
analyses did not indicate significant differences in growth as a function
of magnitude condition (p = .358).

3.3. Intrinsic motivation inventory

The baseline for IMI interest/enjoyment scores did not provide evi-
dence for growth as a function of increasing adaptation accuracy in these
data (intercept = 10.14, p < .001; slope = 0.02, p = .773). Analyses did
provide support for variability in corresponding intercept (p < .001) and
slope (p = .035) parameters; however, evaluation of the full model
(intercept = 9.92, p < .001; slope = 0.04, p = .714) did not indicate
group-level differences in initial interest/enjoyment values or change in
scores as a function of magnitude condition (all p > .420).

Evaluation of IMI effort did indicate linear growth in scores across
increasing accuracy levels for the sample as a whole (intercept = 11.36,
p < .001; slope = 0.30, p < .001). Variance estimates provided support
for participant-level differences in intercept (p < .001) and slope (p =
.021) although inclusion of magnitude condition in the full model did
not ultimately indicate effects on either parameter (all p > .052). Esti-
mates in the final model (intercept = 10.88, p <0.001; slope = 0.36, p <
.001) suggest an expected 0.40 unit increase in IMI effort/importance
for every 10 % increase in adaptation accuracy for individuals
completing the OpenMATB scenario. Plausible values for expected
growth range from a lower bound of 0.18 units per 10 % increase in
accuracy to an upper limit of 0.57 (Clys o, [.18, 0.571).

Baseline analysis for IMI competence identified a trajectory of
increasing scores (intercept = 7.92, p < 0.001; slope = 0.44, p < .001)
with evidence for individual differences in initial competency ratings (p

Table 4

Means =+ standard deviations for NASA Task Load Index (TLX) scores, separated
into participants randomized to the low-magnitude condition and those ran-
domized to the high-magnitude condition.

Accuracy Low magnitude High magnitude

n NASA TLX n NASA TLX
50 % 15 30.3 + 8.8 15 34.1 £5.1
60 % 30 328 +£7.0 31 36.1 £6.7
70 % 41 33.3+6.8 39 36.3 £6.7
80 % 43 34.4+7.8 39 37.0+7.1
90 % 28 37.1+£8.1 23 37.6 £9.1
100 % 17 37.2+11.3 15 359+7.1

< .001) but not for change across increasing accuracy (p = .267).
Evaluation of the full model including magnitude condition continued to
support an aggregate trajectory of increased confidence with increasing
adaptation accuracy (intercept =7.92, p < .001; slope = 0.48, p < .001).
Data-supported estimates suggest an expected 0.48 unit increase in IMI
competence for every 10 % increase in adaptation accuracy for in-
dividuals completing the OpenMATB scenario. Plausible values for ex-
pected growth range from a lower bound of 0.24 per 10 % increase in
accuracy to an upper limit of 0.72 (Clgs o, [.24, 0.72]).

Finally, the initial model for IMI pressure/tension did not detect
evidence of growth as a function of increasing adaptation accuracy
(intercept = 9.54, p < .001; slope = 0.18, p = .133). Variance estimates
offered support for differences in initial starting values (p < .001)
although slope estimates were relatively consistent across person-
specific trajectories (p = .322). Evaluation of the final model with
magnitude condition as a predictor also did not provide support for
change as a function of adaptation accuracy (intercept = 9.21, p <0.001;
slope = 0.27, p = .051). Magnitude condition was unrelated to intercept
(p = .305) or slope (p = .347) parameters.

3.4. Ratings at end of session

Across all participants, VAS answers to the “How much did you like
the three difficulty adaptation algorithms™ question, converted to 0-100
values, were 67.3 + 22.7 for the first algorithm experienced by partic-
ipants, 70.5 + 21.5 for the second, and 77.2 + 18.3 for the third. The
mixed-factors ANOVA provided strong support for differences in liking
scores across successive algorithm trials (p < .001; m% = 0.091). Follow-
up t-tests indicated increased liking for the final algorithm relative to
both the first (p < .001, d = 0.48) and second (p = .004, d = 0.35).
Differences in liking ratings across the first and second algorithms were
not significantly different (p = .183, d = 0.15). Initial accuracy and
magnitude conditions did not influence ratings (all p > .160).

4. Discussion

LGC analysis of mean difficulty indicates that higher accuracies lead
to higher task difficulty, as seen in Table 2. This makes sense within the
current OpenMATB scenario: the initial difficulty level (5) is not very
difficult given some practice, so participants tended to want to increase
difficulty over time, and a more accurate adaptation algorithm allowed
them to reach the desired higher difficulties. As the primary goal of the
Wizard-of-Oz affective computing system in this scenario was to adapt
task difficulty, any effects of adaptation accuracy on user experience
likely occur via changes in task difficulty; effects of accuracy cannot be
separated from effects of difficulty.

4.1. Positive results: TLX scores, effort/importance, perceived competence

Results indicate that, as adaptation accuracy increases, NASA TLX
and effort/importance scores increase as well. This makes sense given
that higher accuracies result in higher task difficulty, which is expected
to require higher task load and effort. Similar results were observed in
our previous studies outside affective computing, where automated
upward-trending difficulty adaptation resulted in higher effort (Gorsic
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et al.,, 2017). Nonetheless, the current study goes a step further by
estimating the increase in effort and TLX score that can be expected from
an increase in adaptation accuracy.

The current study also demonstrates that a higher adaptation
magnitude results in higher TLX scores even at low accuracies. We had
previously hypothesized that higher adaptation magnitudes may allow
even inaccurate adaptation algorithms to reach a desirable level faster
(McCrea et al., 2017), and that does appear to be the case here. As seen
in Table 2, participants randomized to the high-magnitude condition
tended to experience fewer difficulty increases despite experiencing
similar mean difficulty levels (e.g., 100 % accuracy: mean 3.3 increases
for low and 1.8 increases for high magnitude), confirming this inter-
pretation. However, this result is not necessarily generalizable: in other
scenarios, a high adaptation magnitude may cause the adaptation al-
gorithm to “overshoot” and bring the participant to an excessively high
difficulty, which may have negative consequences.

Perceived competence also increases with accuracy, which may be
simply due to time spent with the scenario (higher accuracies tended to
appear later) but may be due to participants feeling like they are per-
forming well at an appropriate difficulty as opposed to performing well
at a low difficulty or failing at an overly high difficulty. In our previous
work involving the IMI and difficulty adaptation outside affective
computing, we did not find significant differences in competence as a
result of adaptation (Gorsic et al., 2017), but that study was conducted
with a computer game rather than a “work-like” task.

4.2. Negative results: interest/enjoyment, ratings at end of session

Interest/enjoyment on the IMI did not increase with adaptation ac-
curacy. The IMI is a popular questionnaire and found interest/enjoy-
ment differences between adaptation algorithms in our previous study
(Gorsic et al., 2017), so positive effects were expected a priori. At the
same time, one of our previous studies also found no difference in
interest/enjoyment between intelligent adaptation and random adap-
tation within an affect-aware computer game (Darzi et al., 2021), so this
is not an isolated result. One possible explanation for the negative
interest/enjoyment result is that the OpenMATB scenario simply is not
particularly fun regardless of difficulty, and performing it at a more
appropriate difficulty thus does not make it much more fun. Even in
affect-aware games, two adaptation accuracies that differ by 10-20 %
result only in small differences in self-reported fun (McCrea et al., 2017),
so it would make sense that the differences in a more “work-like” sce-
nario would be even smaller. However, this should not be considered a
weakness of the OpenMATB - while a more fun scenario may exhibit
larger effects of adaptation accuracy on interest/enjoyment, it may
exhibit smaller effects on other outcome variables.

Finally, ratings at the end of the session do indicate that participants
prefer the later intervals and consequently higher accuracies over the
lower accuracies. However, this may be simply due to increased famil-
iarity with the scenario over time. Furthermore, there were no signifi-
cant differences between different initial accuracies or magnitude
conditions. This indicates that in the absence of prior experience with
affect-aware adaptation, participants did not necessarily like an accurate
algorithm more than an inaccurate one. This is similar to our previous
study with affect-aware games, which found that participants are mostly
able to recognize the more accurate of two different adaptation algo-
rithms but are poor at evaluating adaptation accuracies in isolation
(McCrea et al., 2017).

4.3. Follow-up study: same accuracy in all three intervals

After concluding the primary study, we were concerned that some
positive results may have occurred simply because higher accuracies
always appear later in the session when participants are already familiar
with the scenario. As a small follow-up study that is not reported in
detail, we thus recruited another 49 participants and randomized them
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to the same initial accuracy and magnitude conditions, but with the
same adaptation accuracy in all three intervals (e.g., participants with
an initial accuracy of 80 % experienced 80 % accuracy in the first,
second and third interval). While the sample size was small, there were
much smaller differences between the three intervals in TLX, IMI scores,
and ratings at the end of the session. For example, while mean ratings of
the three algorithms at the end of the session in the main study were 67.3
(first interval), 70.5 (second) and 77.2 (third), these ratings in the
follow-up study were 70.5, 69.6, and 72.9. Thus, order effects are un-
likely to account for most of the positive results observed in the current
study.

4.4. Practical implications

Within a multitasking scenario, our study demonstrates that a more
accurate adaptation algorithm is able to reach higher effort / task load
levels more quickly and provides participants with higher perceived
competence. Specifically, a 10 % increase in adaptation accuracy results
in an expected 1.3-point increase on the TLX (range: 6-60), 0.40-point
increase on IMI effort/importance (range: 2-14), and 0.48-point in-
crease on IMI perceived competence (range 2-14). Table 4 also shows
that large adaptation accuracies result in higher TLX scores, and Table 2
indicates that high-magnitude adaptation is able to reach higher diffi-
culty levels more quickly even if it is inaccurate.

Though researchers have spent decades studying ways to improve
classification and adaptation accuracy in affective computing, there is
still little information about how improving these accuracies influences
the user experience. While our results are scenario-specific to a large
degree, they provide a “quick” estimate of the effects of accuracy im-
provements, allowing researchers and developers to more easily decide
whether it is worth investing time and money into accuracy improve-
ments. For example, if a developer estimates in advance that adding
another sensor would improve accuracy by 5 %, they could use the re-
sults of our study to estimate that this sensor would likely increase
participants’” TLX scores by about 0.6 points and their IMI effort/
importance by about 0.2 points. Furthermore, the TLX increase would
likely not be less than 0.2 points and may be as large as 1 point as
indicated by confidence intervals. While a value judgment would still
need to be made on these TLX and IMI scores, it is likely easier than
judging adaptation accuracies. Thus, our LGC analyses go beyond our
previous Wizard of Oz work, which showed that increasing accuracy
does improve user experience but did not estimate the degree of user
experience improvement (McCrea et al., 2017).

Furthermore, though our results are context-specific, the study also
provides a generalizable methodology that could be used to both study
other variables in the same scenario as well as study other scenarios
entirely. For example, if a developer wishes to evaluate the effects of
adaptation accuracy in their own scenario, they could simply replace the
OpenMATB with their own scenario and use the same protocol to
identify expected accuracy effects. If a large sample of potential users is
available, such a Wizard of Oz study would likely require much less
effort than developing and testing affect-aware technologies for the
scenario of interest. Other factors of interest could also be studied by
expanding the methodology. For example, developers are often curious
whether a more convenient sensor with a shorter setup time could still
achieve a positive user experience even if it is less accurate, and this
could be evaluated in our methodology by randomizing participants to
either a “convenient sensor with short setup time” or a “obtrusive sensor
with long setup time” condition and then including this condition in LGC
analyses. We thus hope that our research will serve as a broad founda-
tion for further Wizard of Oz evaluations in affective computing.

Finally, the lack of significant effects of initial adaptation accuracy in
the ratings at the end of the session (Section 3.4) emphasizes a poten-
tially important point: participants without prior affective computing
experience may not be able to tell if an algorithm is “good” or “bad”.
Thus, exposing participants to only a single adaptation algorithm may
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not effectively identify differences in user experience due to different
adaptation behavior. This was also observed in our prior Wizard of Oz
work (McCrea et al., 2017), and may partially explain results of, e.g., our
prior affective game study which found no differences in user experience
between adaptation algorithms despite different adaptation accuracies
(Darzi et al., 2021). This emphasizes the need for comparative studies in
affective computing: prototype affect-aware technologies should not be
evaluated in isolation, but should have their performance compared to
that of a “benchmark” system within the same users.

4.5. Study limitations

Both this study and our previous work (McCrea et al., 2017; Novak
et al., 2014) were done with scenarios where adaptation errors do not
have serious consequences. While an erroneous adaptation action may
briefly frustrate the user, this can always be reversed later. However,
there are many real-world affect-aware systems where this may not be
the case: for example, air traffic control systems where overloading the
user may lead to fatal accidents (Arico et al., 2016) or driver monitoring
systems (Darzi et al., 2018; Sanghavi et al., 2023) where the potential
consequence of a false negative (not detecting distraction/drowsiness,
leading to an accident) may be much more severe than the potential
consequence of a false positive (unnecessarily warning the user, result-
ing in annoyance). In these cases, we believe that changes in adaptation
accuracy would have larger effects on user experience than observed in
the current study. Furthermore, while the current study assumes linear
effects of accuracy on user experience, a high-stakes scenario might have
a more complex accuracy-experience relationship — for example, a
“step-like” relationship where all accuracies below a high threshold (e.
g., 95 %) are perceived as equally insufficient and accuracies above it are
perceived as approximately equally good. Modifications could still be
made to our study protocol to better approximate “critical” scenarios:
for example, adding conditions where an adaptation error can imme-
diately end the session and cause the participant to forfeit financial re-
wards. Still, since truly severe consequences cannot be implemented in
Wizard of Oz studies, it is unclear whether our protocol could be used to
evaluate affect-aware technologies for such applications.

Additionally, our Wizard of Oz research has treated participants as
entirely passive: they perceive the affective adaptation but do not
attempt to influence it in any way. While this is appropriate for many
technologies, more transparent technologies could indicate why a
particular adaptation action was taken: for example, a message saying
“task difficulty was increased because your respiration rate is low”. In
such situations, participants may adapt their behavior to influence the
technology’s decision-making: for example, by breathing faster. Similar
human behavior adaptation in response to predictable classification
errors has been observed in other areas of human-machine interaction
(S.M. Chase et al., 2009; Hargrove et al., 2010), but would need to be
studied using a different paradigm. Related to this limitation, our results
also cannot be transferred to affective computing technologies where the
computer simply provides insight into the affective state and the user
must decide what to do with that information. An example of this would
be emotion regulation technologies (Sadka and Antle, 2022), where the
emotion information is visualized to the user but the user must take
action themselves. Adaptation magnitude would not be relevant in such
a scenario, and classification accuracy could not be easily studied with a
Wizard of Oz paradigm.

Finally, multiple aspects of the study design were fixed by experi-
menters, constraining the number of situations experienced by partici-
pants. First, task difficulty in our scenario always started at the same
level (5), leading to an upward trend in difficulty over time and possible
impacts on user experience (Nagle et al., 2016). Second, within a given
accuracy setting, system errors were set at fixed points for all partici-
pants (Section 2.4). However, in applied settings, adaptation errors
occurring at different points (early in performance vs. late) could have
different effects on user performance. Finally, participants were always
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exposed to accuracies in increasing order (e.g., 70-80-90 %), which may
introduce order effects. We considered randomizing these aspects of the
design early in study development but chose not to do so given the lack
of existing work in this area and the complexity of disentangling
person-level effects from generalizable, group-level trajectories. How-
ever, as a result, it is not possible to study factors such as error timing
and habituation. If future studies wish to examine these aspects, they
could modify the protocol by, for example, starting each 11-minute in-
terval at a random difficulty, having the system disagree with the
participant at random times within each 11-minute interval, and
exposing participants to accuracies in random orders (or at least in both
increasing and decreasing orders).

5. Conclusion

Our study contributes to the growing body of research on the rela-
tionship between classification/adaptation accuracy and user experi-
ence in affective computing. Within a well-known multitasking scenario
(the Multi-Attribute Task Battery), LGC analyses showed that increasing
adaptation accuracy by 10 % is expected to increase self-reported NASA
TLX scores by 1.3 points (Clgs o, [.35, 2.20]) on a 6-60 scale, self-
reported effort/importance by 0.40 points (Clgs o, [.18, 0.57]) on a
2-14 scale, and self-reported competence by 0.48 points (Clys o, [.24,
0.72]) on a 2-14 scale. Furthermore, the effect of adaptation accuracy
on TLX scores was modulated by adaptation magnitude. Adaptation
accuracy had no effect on interest/enjoyment or pressure/tension,
contrasting with previously studied game-like scenarios where adapta-
tion accuracy increased enjoyment. Finally, participants’ ratings of three
different adaptation accuracies indicated that participants do perceive
differences between these accuracies, but that inaccurate and accurate
adaptation are likely to result in similar ratings if the participant has no
prior experience with adaptation.

By providing quantitative estimates of the effect of adaptation ac-
curacy and adaptation magnitude on user experience, the study provides
guidelines for researchers and developers of affect-aware technologies.
While the above estimates are specific to our own scenario and partic-
ipants, the same Wizard of Oz methodology could be adapted for use
with many scenarios in which adaptation errors do not have irreversible
consequences. By conducting similar Wizard of Oz studies, developers
could, for example, estimate whether improving adaptation accuracy
would improve user experience in their own scenario and whether such
improvements would offset the time and money needed to improve
accuracy (e.g., by buying additional sensors). In the long term, we hope
that Wizard of Oz evaluations in affective computing can serve as an
early validation of these technologies prior to real-world evaluations of
finished products, helping guide eventual broad adoption of the
technologies.
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