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A B S T R A C T   

In affective computing, classification algorithms are used to recognize users’ psychological states and adapt tasks 
to optimize user experience. However, classification is never perfect, and the relationship between adaptation 
accuracy and user experience remains understudied. It is also unclear whether the adaptation magnitude (‘size’ 

of action taken to influence user states) influences effects of adaptation accuracy. To evaluate impacts of 
adaptation accuracy (appropriate vs. inappropriate actions) and magnitude on user experience, we conducted a 
‘Wizard of Oz’ study where 112 participants interacted with the Multi-Attribute Task Battery over three 11-min-
ute intervals. An adaptation accuracy (50 % to 80 %) was preassigned for the first 11-minute interval, and ac-
curacy increased by 10 % in each subsequent interval. Task difficulty changed every minute, and participant 
preferences for difficulty changes were assessed at the same time. Adaptation accuracy was artificially induced 
by fixing the percentage of times the difficulty changes matched participant preferences. Participants were also 
randomized to two magnitude conditions, with difficulty modified by 1 (low) or 3 (high) levels each minute. User 
experience metrics were assessed after each interval. 

Analysis with latent growth models offered support for linear increases in user experience across increasing 
levels of adaptation accuracy. For each 10 % gain in accuracy, results indicate a 1.3 (95 % CI [.35, 2.20]) point 
increase in NASA Task Load Index scores (range 6–60), a 0.40 (95 % CI [.18, 0.57]) increase in effort/importance 
(range 2–14), and 0.48 (95 % CI [.24, 0.72]) increase in perceived competence (range 2–14). Furthermore, the 
effect of accuracy on Task Load Index scores was modulated by adaptation magnitude. No effects were observed 
for interest/enjoyment or pressure/tension. By providing quantitative estimates of effects of adaptation accuracy 
on user experience, the study provides guidelines for researchers and developers of affect-aware technologies. 
Furthermore, our methods could be adapted for use in other affective computing scenarios.   

1. Introduction 

1.1. Psychological state recognition and task adaptation in affective 
computing 

In affective computing, machine learning algorithms are commonly 
used to recognize a user’s psychological state (e.g., level of mental 
workload, engagement or frustration) based on measurements such as 
facial expressions or physiology (D’Mello et al., 2018; Picard et al., 
2001). Usually, these algorithms are classifiers: they choose among 
multiple possible discrete states (Al-Nafjan et al., 2012; Samadiani et al., 
2019; Shu et al., 2018). These states may be basic emotions such as fear, 

happiness or anger (Picard et al., 2001), or may be levels of a single 
variable: for example, low or high anxiety (S.M. Liu et al., 2009) or low 
or high enjoyment (Darzi and Novak, 2021). Most classifiers are su-
pervised: they learn the relationship between inputs (measurements) 
and outputs (psychological states) based on previously collected training 
data from multiple human subjects. The training data are usually 
labelled using self-report questionnaires like the NASA task load index 
(TLX) (Hart and Staveland, 1988), which serve as the ‘ground truth’. 

Once the psychological state has been identified, actions can be 
taken to bring the user into a desirable state: for example, by adapting 
game difficulty to maximize player enjoyment or adapting the difficulty 
of learning materials to maximize student engagement (Aranha et al., 
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2021; Eldenfria and Al-Samarraie, 2019). Most affective computing 
systems classify the psychological state and have a single action defined 
for each state (e.g., “if state 1, then action 1″) (Aranha et al., 2021; 
D’Mello et al., 2018; D’Mello and Kory, 2015; Fairclough, 2017; Novak 
et al., 2012). For example, affect-aware games increase difficulty when 
anxiety is low and decrease it when anxiety is high, with each adaptation 
having a constant magnitude (increase/decrease by one level) (Darzi 
and Novak, 2021; C. Liu et al., 2009). Similarly, rehabilitation robots 
adapt the amount of assistance in response to patient workload, with 
each adaptation having a constant magnitude (increase/decrease by one 
level) (Koenig et al., 2011; Shirzad and Van der Loos, 2016; Xu et al., 
2018). While more advanced adaptation rules have been presented 
(Cruz-Maya and Tapus, 2018; Liu et al., 2008), these still select among a 
few possible actions. 

Despite its relative simplicity, affect-aware task adaptation (i.e., 
adaptation based on classified psychological state) has shown positive 
results. For example, affect-aware adaptation improves performance in 
unmanned vehicle control (Wilson and Russell, 2007), air traffic control 
(Aricò et al., 2016), and other high-stress tasks (Ung et al., 2018) 
compared to no feedback. Furthermore, it results in higher enjoyment in 
games (Liu et al., 2009), driving simulators (Bian et al., 2019) and 
rehabilitation (Xu et al., 2018) than adaptation based only on task 
performance. Finally, it results in higher enjoyment in games (Ewing 
et al., 2016; Nacke et al., 2011) and lower workload in resource man-
agement tasks (Bailey et al., 2006) than manual adaptation. 

1.2. The impact of classification and adaptation accuracy 

No affective computing system is perfect: it may incorrectly recog-
nize the user’s psychological state, consequently leading to inappro-
priate adaptation actions. Alternatively, it may recognize the correct 
psychological state but fail to take an action that would be appropriate 
for that state. For the type of affective computing system described in the 
previous section, we can thus define a classification accuracy (percent-
age of times correct psychological state recognized) and adaptation 
accuracy (percentage of times correct action taken). 

Since most psychological state recognition classifiers rely on ques-
tionnaires as ‘ground truth’, a classifier is considered to have 100 % 
accuracy if it always outputs the psychological state self-reported by the 
user. In practice, classifiers never achieve 100 % accuracy: for example, 
our 2012 review of psychological state classification based on physio-
logical measurements found accuracies mostly between 60 % and 90 % 
in two-class classification (e.g., low vs. high workload) and as low as 40 
% in multiclass classification (e.g., low vs. medium vs. high workload) 
(Novak et al., 2012). Two 2019 reviews of classification using facial 
expressions similarly found multiclass classification accuracies as low as 
50 % in real-world environments (Dewan et al., 2019; Samadiani et al., 
2019). Furthermore, reviews of classification using electroencephalog-
raphy (Al-Nafjan et al., 2017), general physiological signals (Shu et al., 
2018), and posture and gestures (Stephens-Fripp et al., 2017) all found 
broad accuracy ranges, with very few studies reporting accuracies above 
95 %. 

An affective computing system can be considered to have 100 % 
adaptation accuracy if all its actions optimally guide users toward more 
appropriate psychological states. However, adaptation accuracy has 
been studied significantly less than classification accuracy. This may be 
because most state-of-the-art systems have a single adaptation action 
associated with each classified state (Aranha et al., 2021; D’Mello et al., 
2018; D’Mello and Kory, 2015; Fairclough, 2017; Novak et al., 2012), 
making classification and adaptation closely linked. Nonetheless, high 
classification accuracy does not necessarily guarantee high adaptation 
accuracy. Since a single action is often predefined for each psychological 
state, that action may not always be optimal for that state – for example, 
an action defined for the state of “high workload” may be designed to 
increase automated assistance by a small amount, which may be 
appropriate for slightly excessive workload but not extremely excessive 

workload. Alternatively, since classification is often done over intervals 
of 2–5 min (Aranha et al., 2021; Novak et al., 2012), a system may not be 
able to recognize intense brief events (e.g., sudden extreme stress) until 
it is too late to act on them. Nonetheless, many affective computing 
studies either conflate classification and adaptation accuracy or study 
only classification accuracy. 

It is generally assumed that higher classification and adaptation ac-
curacies lead to better user experience. However, the actual relationship 
between accuracy and user experience in affect-aware adaptation is 
unclear, as also emphasized by other authors (Fairclough et al., 2015; 
Fairclough and Lotte, 2020). For example, our recent study found no 
improvement in user experience as a result of adding physiological 
measurements despite higher classification accuracy (Darzi et al., 2021). 
Without a clear idea of this relationship, it is difficult to make practical 
design decisions. For example, if adding another sensor increases clas-
sification accuracy by 5 %, what is the improvement in user experience 
and does it justify the added cost and complexity? 

1.3. Our previous wizard of Oz research 

If we assume that classification uses self-report data as ‘ground truth’ 

and that classification accuracy and adaptation accuracy are equal (as 
commonly done in affective computing), the relationship between ac-
curacy and user experience in affect-aware adaptation could be studied 
using a ‘Wizard of Oz’ approach (Riek, 2012). Essentially, researchers 
could ask users how they would like to adapt the task (ground truth) and 
follow that preference a given percentage of the time to artificially 
create an adaptation accuracy. For example, if we ask a user about game 
difficulty 10 times and they always tell us to increase difficulty, we could 
artificially induce 80 % accuracy by increasing difficulty 8 times and 
decreasing it twice. This would allow the relationship between accuracy 
and user experience to be studied in a systematic manner, as different 
accuracies could be easily induced without complex signal processing 
and without random elements such as fluctuations in accuracy due to 
inter- or intrapersonal variability. 

Co-author Novak previously conducted two studies using this Wizard 
of Oz approach. In the first study (Novak et al., 2014), participants 
played a game online, with each participant experiencing an adaptation 
accuracy between 50 % and 100 %. User satisfaction with the adaptation 
increased with adaptation accuracy as expected, but in-game fun sur-
prisingly did not. However, the study had multiple methodological is-
sues. For example, due to design flaws, both the interval between 
adaptation actions and the total number of adaptation actions were 
highly variable between participants. Additionally, since the study was 
done online, no sensors were involved, and it is unknown whether 
participants paid attention to study instructions. Finally, there was a 
dropout rate of over 40 %, with many more dropouts at lower adaptation 
accuracies. 

To address these weaknesses, Novak carried out a second study 
(McCrea et al., 2017) where participants played a game on a lab com-
puter while wearing an electroencephalography sensor. Each participant 
played for two 7-minute intervals, with difficulty adapted every 60 s. 
They experienced a different adaptation accuracy in each interval 
(among 33 %, 50 %, 66.7 %, 83.3 % and 100 %). Participants were told 
that difficulty was adapted based on sensor readings and that the two 
intervals corresponded to two different machine learning algorithms, 
but adaptation was actually done using the Wizard of Oz approach: 
participants could ask to decrease, increase or not change difficulty, and 
the game followed their preference a predefined percentage of the time. 
In this study, both satisfaction with adaptation as well as in-game fun 
were correlated with adaptation accuracy. Furthermore, while partici-
pants who experienced two very different accuracies (e.g., 50 % and 
100 %) could reliably tell the difference between them, participants who 
experienced more similar accuracies (e.g., 83.3 % and 100 %) could not, 
suggesting that small accuracy differences were not overtly perceived by 
users. 
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1.4. Contribution of current study 

While the above in-person study (McCrea et al., 2017) provided 
valuable insights into the relationship between adaptation accuracy and 
user experience, it still had limitations. For example, game difficulty was 
always adapted by one level, and it is unclear whether adapting by 
multiple levels would have a different effect. Additionally, it restricted 
within-person assessment to two randomly assigned accuracy condi-
tions, limiting formal estimation of change in user experience following 
incremental change in adaptation accuracy. Furthermore, both above 
studies were performed using games, and it is unclear if results would be 
different in a more serious context. In the current study, a larger number 
of participants thus interacted with a computer-based multitasking 
scenario for three 11-minute intervals, with each successive interval 
administered at an artificially induced 10 % increase in adaptation ac-
curacy. The initial accuracy and the magnitude of adaptation actions 
were randomized among participants, allowing us to obtain a more 
extensive look into the relationship between adaptation accuracy and 
user experience in affective computing. 

2. Materials and methods 

The study had two main goals:  

1 Determine how adaptation accuracy influences user experience in an 
affective computing system involving a computer-based multitasking 
scenario. While higher adaptation accuracy is expected to result in 
better user experience, the relationship between the two is still 
unclear.  

2 Determine how the magnitude of adaptation actions influences the 
change in user experience as a function of adaptation accuracy. High- 
magnitude adaptation actions might lead to faster convergence to a 
desirable user state, but only if adaptation accuracy is high enough. 
Thus, higher adaptation magnitude may lead to more aggressive 
change in user experience with increasing accuracy. 

To achieve these goals, each participant performed a computer-based 
multitasking scenario for three 11-minute intervals. In the first of these 
three intervals, a Wizard of Oz approach was used to artificially induce 
an adaptation accuracy of 50 %, 60 %, 70 %, or 80 % (randomized across 
participants). The artificially induced adaptation accuracy then 
increased by 10 % with each successive interval. For example, partici-
pants who experienced 50 % accuracy in their first interval then expe-
rienced 60 % in their second interval and 70 % in their third interval; 
participants who first experienced 80 % then experienced 90 % and 
finally 100 %. This resulted in overlapping, within-group trials covering 
the full range of 50 % to 100 % accuracy levels. This approach, 
commonly known as a rolling panel design (Frees, 2004), permitted the 
estimation of a continuous growth function for user experience without 
necessitating that all participants experience all accuracies. 

In addition to being randomized to one of four initial accuracies, 
participants were also randomized to one of two adaptation magnitude 
conditions. In the low-magnitude condition, any adaptation action 
changed difficulty by 1 level. In the high-magnitude condition, any 
adaptation action changed difficulty by 3 levels. 

2.1. Participants 

112 students (72 women, 40 men, no participants identified as 
nonbinary) were recruited from undergraduate psychology courses at 
the University of Wyoming and given course credit for study participa-
tion. Students were 20.3 ± 2.9 years old (mean ± standard deviation). 
When asked how often they play computer games (options: never, less 
than 2 h/week, 2–5 h/week, 6–10 h/week, 11–20 h/week, 20+ hours/ 
week), 37.5 % reported never playing and another 44.5 % indicated 5 or 
fewer total hours of game play per week. When asked how difficult 

students preferred games to be on a 1 (not at all) to 7 (very difficult) 
scale, their preference was 3.6 ± 1.1. Participants also self-reported Big 
Five personality traits using the Ten Item Personality Inventory (Gosling 
et al., 2003); on a scale of 2–14, scores were 8.7 ± 2.7 for extraversion, 
9.7 ± 2.1 for agreeableness, 10.7 ± 2.1 for conscientiousness, 9.2 ± 2.5 
for emotional stability, and 10.9 ± 1.9 for openness to experiences. Only 
3.6 % of the sample reported previously participating in affective 
computing research. 

Approximately half the participants (n = 54) were randomized to the 
high-magnitude adaptation condition. A total of 30, 31, 19, and 32 
participants initiated the scenario at 50 %, 60 %, 70 %, and 80 % ac-
curacy, respectively. 

2.2. Scenario 

The scenario used for the study was the OpenMATB (Cegarra et al., 
2020), an open-source version of the NASA Multi-Attribute Task Battery 
(Santiago-Espada et al., 2011), a multitasking scenario commonly used 
to induce workload in affective computing. It was performed on a per-
sonal computer using a keyboard, joystick and headphones. A screen-
shot is shown in Fig. 1. 

The standard OpenMATB includes six screen sections: system 
monitoring, tracking, scheduling, communications, resources manage-
ment, and pump status. For our study, the scheduling, resources man-
agement and pump status sections ran automatically, and participants 
did not have to interact with them. Additionally, a “Number of errors” 

counter (not present in the standard OpenMATB) was added near the 
middle of the screen. The remaining sections were:  

- Tracking (Fig. 1, upper middle): Participants must use the joystick to 
keep the green reticle inside the small central square. The reticle 
drifts out of the square if not actively maintained, with the speed and 
unpredictability of drift dependent on difficulty level. If the reticle 
stays outside the square for a few seconds, it flashes red and the error 
count increases by 1.  

- System monitoring (Fig. 1, upper left): Four vertical columns include 
arrows that start near the center, but gradually move toward the top 
or bottom of the column. If an arrow gets too close to the top/bottom, 
the participant must hit the button corresponding to that column (F1- 
F4) to reset it to the center. The two green lights in the top left oc-
casionally turn yellow; the participant must then press the corre-
sponding button (F5, F6) to reset it. If a button is not pressed in time, 
the error count increases by 1 and the light/column flashes red then 
resets to the center. If a button is pressed unnecessarily, the error 
count also increases by 1 and that light/column flashes red. The 
difficulty level affects how often the buttons must be pressed. 

- Communications (Fig. 1, lower left): Periodically, spoken in-
structions come over the headphones in the form of “[Identifiant]”, 
turn your [channel] to [number].” If the identifiant part corresponds 
to the identifiant shown on the screen, the instruction should be 
followed; otherwise, it should be ignored. To follow the instruction, 
participants must use the up/down keyboard buttons to navigate to 
the correct channel (NAV1, NAV2, COM1, COM2) and then the left/ 
right buttons to change the number to the requested one. If the 
correct number is not set in time, the error count increases by 1. The 
difficulty level affects how often instructions are spoken. 

Ten difficulty levels were implemented for the OpenMATB, with 
level 1 being very easy (few monitoring/communications events, 
tracking reticle barely moves) and level 10 being very difficult (frequent 
events, reticle moves rapidly and unpredictably). To allow easier 
reproduction and expansion of our study, this version of the OpenMATB 
has been uploaded to Zenodo (Novak et al., 2022); it can be run using 
any Python interpreter and includes detailed settings for all ten difficulty 
levels. Table 1 shows individual difficulty settings in the ten difficulty 
levels. 
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2.3. Study protocol 

A flowchart of the study protocol is shown in Fig. 2. Upon arrival, 
participants were told that the goal of the study was to test three 
different affect-aware systems that adapted the difficulty of a computer- 
based scenario based on physiological measurements. They were told 
that their own preferences about scenario difficulty would be collected 
but would not be used to adapt difficulty – only to verify system 

performance after the session. The study protocol and sensors were 
explained, and participants signed an informed consent form. They then 
filled out initial questionnaires (Section 2.1). 

Participants sat at a computer, put on headphones, and self-applied 
sham physiological sensors: three disposable electrodes on the torso to 
record the electrocardiogram and reusable dry electrodes on the distal 
phalanges of the forefinger and middle finger of the nondominant hand 
to record skin conductance. No data were collected from these sensors. 
The scenario (Section 2.2) was then started, the individual scenario 
sections were explained, and participants completed a 5-minute practice 
interval with the scenario at difficulty level 5 of 10. After the practice, 
the experimenter answered any questions. To maintain the Wizard of Oz 
illusion, participants then sat quietly for 60 s to “obtain baseline phys-
iological data”. Finally, a camera-based eye tracker under the screen was 
“calibrated” by having participants look at each corner of the screen for 
a few seconds. No data were collected from the eye tracker either. 

After calibration, participants interacted with the scenario for three 
11-minute intervals. In each interval, the scenario started at difficulty 
level 5. Every 60 s, the scenario paused to ask participants how they 
would like to change difficulty (options: increase, decrease, don’t 
change). Once participants input their choice, the difficulty was adapted 
according to the assigned accuracy and magnitude condition, and the 
scenario continued. The adaptation action actually taken by the scenario 
was not explicitly told to participants, but could be inferred from visible 
changes in difficulty. 

After each 11-minute interval, participants filled out two question-
naires: the Intrinsic Motivation Inventory (IMI - same 8-item version as 
in our previous work (Goršič et al., 2017)) and NASA TLX (Hart and 
Staveland, 1988). After the final 11-minute interval ended, participants 
were asked “How much did you like the three difficulty adaptation al-
gorithms” and rated each on a visual analog scale (VAS) from “did not 
like at all” to “liked very much”. Participants could see all three VAS 
answers simultaneously and were encouraged to consider the three in-
tervals relative to each other. While this is not a validated questionnaire, 

Fig. 1. Screenshot of the OpenMATB used in our study. While the original OpenMATB includes six display elements, only the three subtasks circled in red were 
assigned to participants in our study. The “Number of errors” counter near the middle was added to the OpenMATB for our study. 

Table 1 
OpenMATB difficulty settings for the three subtasks (tracking, monitoring, 
communications). In the tracking task, “drift amount” is a variable affecting the 
speed and unpredictability of drift and is defined in the original OpenMATB 
code; values can be compared to each other but have no absolute interpretation. 
In the monitoring task, the number of events represents how many times F1-F6 
need to be pressed by the user. In the communications task, the number of events 
represents the number of instructions that come over the headphones; “for user” 

events must be attended to by the participant while “for others” events should be 
ignored.  

Difficulty 
level 

Tracking drift 
amount 

Number of monitoring 
events 

Number of 
communications 
events 
for 
user 

for 
others 

1 0.07 2 1 0 
2 0.08 3 0 2 
3 0.09 4 1 1 
4 0.10 5 1 1 
5 0.11 6 1 1 
6 0.12 7 2 1 
7 0.13 8 2 1 
8 0.14 9 3 0 
9 0.15 12 3 0 
10 0.16 15 3 0  
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a similar version was used in our prior work (McCrea et al., 2017). 
Finally, participants removed the sensors, were thanked for their 
participation, and received course credit. 

2.4. Induction of accuracies 

As mentioned, participants began the first 11-minute interval with 
initial accuracies ranging from 50 % to 80 % (with the initial accuracy 
preassigned to each participant), and the accuracy was increased by 10 
% in each subsequent interval. Each participant was exposed to three 
accuracies since our previous work suggested that participants are poor 
at rating individual accuracies in isolation but are able to compare them 
to each other (McCrea et al., 2017). As the actual classification and 
adaptation accuracy of an affective computing system varies between 
participants as well as over time, we instead used the same Wizard of Oz 
approach from our previous work (McCrea et al., 2017; Novak et al., 
2014) to artificially induce adaptation accuracies. 

Participants were asked how they would like to change difficulty 10 
times over the 11-minute interval. Since the participant’s own prefer-
ence is often considered to be “correct” in affective computing (Aranha 
et al., 2021; D. Novak et al., 2012), an accuracy of 100 % could be 
artificially induced by simply following the participant’s preference all 
10 times. On the other hand, an accuracy of 50 % could be induced by 
following the participant’s preference 5 of 10 times and not following it 
the other 5 times. Thus, to induce a particular accuracy, the 10 

adaptation actions in the 11-minute interval were predefined to agree or 
disagree with the participant’s preference as follows:  

- 50 % accuracy: System disagreed with participant after first, third, 
fourth, eighth and tenth minute.  

- 60 %: System disagreed with participant after second, fifth, sixth, 
and ninth minute.  

- 70 %: System disagreed with participant after second, fifth, and 
eighth minute.  

- 80 %: System disagreed with participant after third and seventh 
minute.  

- 90 %: System disagreed with participant after seventh minute.  
- 100 %: System never disagreed. 

These patterns were the same for all participants experiencing a 
given accuracy, ensuring that the exact desired accuracy was always 
induced. 

When agreeing with the participant, the system adapted difficulty as 
requested by the participant (increase, decrease, don’t change). When 
disagreeing, if the participant had asked to increase/decrease difficulty, 
the system instead decreased/increased it. If the participant had asked to 
keep difficulty the same, the system changed it in a random direction. 
For participants in the low-magnitude adaptation condition, any in-
crease/decrease changed difficulty by 1 level; for participants in the 
high-magnitude condition, any increase/decrease changed it by 3 levels. 

Fig. 2. Study protocol flowchart. After putting on sensors and practicing the Task Battery (Introduction), participants are assigned to one of four possible accuracies 
and one of two possible magnitudes. They then interact with the Task Battery for three 11-minute intervals, with each interval at a 10 % higher accuracy. Intrinsic 
Motivation Inventory (IMI) and Task Load Index (TLX) questionnaires are filled out after each 11-minute interval, and final Visual Analog Scale questionnaires are 
filled out at the end. 
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As the scenario had ten difficulty levels, the adaptation was capped so 
that if an increase would change difficulty above 10, it instead set it to 
10; similarly, if a decrease would decrease it below 1, it would instead 
set it to 1. All this behavior is implemented and reusable in the version of 
OpenMATB shared to Zenodo (Novak et al., 2022). 

As a result of this implementation, two different participants expe-
riencing the same accuracy for 11 min would go through the same dif-
ficulty level sequence if they input the same sequence of desired actions 
and never requested to keep difficulty the same. A difficulty increase 
followed by a decrease (or vice versa) would return difficulty to the 
original level as long as neither action attempted to exceed the difficulty 
caps at levels 1 and 10. 

2.5. Data analysis 

There were five primary outcome variables summarizing self- 
reported participant experience with the scenario: the NASA TLX 
score, which represents total workload on a 6–60 scale (obtained as a 
raw sum of all six TLX items, with performance item reversed (Hart and 
Staveland, 1988)), and the four IMI scales (interest/enjoyment, effor-
t/importance, perceived competence, and pressure/tension – each on a 
2–14 scale (Goršič et al., 2017)). In addition, there was one secondary 
outcome variable describing scenario behavior rather than user expe-
rience: mean difficulty, defined as the mean difficulty level over all 11 
min of an interval. Each variable was analyzed separately. 

Continuous change in participant experience as a function of 
increasing adaptation accuracy was examined through a series of latent 
growth curve (LGC) analyses. These models assume that patterns of 
change in responding arise as the result of latent, unobserved growth 
parameters that drive observed scores (Bollen and Curran, 2006). For 
these analyses, individual trajectories of participant experience are 
initially combined to produce a baseline model of change for the sample 
as a whole. Variability in estimates of growth parameters set for the 
baseline model (intercept, slope) are then evaluated, with evidence of 
significant variability across participant-specific trajectories indicating 
the potential for moderators of initial status and rate of growth (i.e., 
individual difference factors that may impact patterns of change). 

Analyses were conducted using a stepped approach (Bollen and 
Curran, 2006). Initial baseline models were used to estimate average 
trajectories of participant experience across increasing levels of adap-
tation accuracy. Variances for intercept (i.e., starting value at 50 % ac-
curacy) and slope (i.e., change in experience as a function of adaptation 
accuracy) parameters in baseline models for each outcome were exam-
ined to assess for potential differences across respondents, suggesting 
participant-specific trajectories that may be attributable to 
condition-level differences in the magnitude of adaptation actions (low 
vs. high). For models with significant variance estimates, magnitude 
condition was included as a potential moderator of corresponding 
intercept and slope parameters (i.e., exploring whether initial response 
and/or rate of change across accuracy values differed across high- and 
low-magnitude adaptation conditions). 

Analyses were conducted in MPlus 8.8 (Muthén and Muthén, 2017) 
using full information maximum likelihood estimation. Full information 
estimators are capable of accommodating cases with partially missing 
values, permitting the generation of growth parameters in rolling panel 
designs such as the one used for this study. Parameters are estimated 
using all information available from the set and remain unbiased when 
missingness is unrelated to other variables in the model (Arbuckle et al., 
1996). Because missing values in rolling panel designs are the result of 
experimental randomization as opposed to person-level factors (e.g., 
dropout due to frustration with low-accuracy systems), data remain 
amenable to full information maximum likelihood estimation. 

For the “How much did you like the three difficulty adaptation al-
gorithms” question at the end of the session, VAS scores were analyzed 
using a 2 (magnitude: low, high) x 4 (initial accuracy: 50, 60, 70, 80) x 3 
(trial: 1, 2, 3) mixed-factors analysis of variance (ANOVA) with repeated 

measures on the final factor. Interaction effects in this model were used 
to assess whether the pattern of average liking across trials was depen-
dent upon initial accuracy and/or adaptation condition. 

3. Results 

Descriptive statistics for mean difficulty and the number of times 
difficulty was increased, decreased or left unchanged in each 11-minute 
interval are shown in Table 2 for all adaptation accuracies and both 
magnitude conditions. Note that increase / decrease / don’t change refer 
to the actual difficulty changes, not requests made by participants 
(which the system could disagree with). Descriptive statistics for NASA 
TLX and IMI scores across adaptation accuracies are then presented in 
Table 3. 

3.1. Mean difficulty 

Linear growth parameters (intercept = 5.11, p < .001; slope = 0.30, p 
< .001) estimated a 0.30 unit increase in average task difficulty for every 
10 % increase in accuracy from 50 % to 100 % trials. A 95 % confidence 
bound suggest population estimates for growth ranging from a 0.17 to a 
0.42 unit increase per 10 % improvement in adaptation accuracy (CI95 % 
[.17, 0.42]). Results did not provide support for variability across par-
ticipants with respect to average difficulty at 50 % accuracy (p = .278) 
or in change across trials (p = .637) suggesting an overall stable tra-
jectory across respondents and magnitude condition. 

3.2. NASA task load index 

Growth parameters for the baseline model (intercept = 32.80, p <
.001; slope = 1.01, p = .001) identified an aggregate trajectory of 
increasing TLX scores in response to increasing adaptation accuracy. 
Results indicated significant variability across respondents at initial (50 
%) adaptation accuracy (p = .037), suggesting the potential for differ-
ences in TLX scores as a result of magnitude condition. Variability for 
slope, however, did not achieve statistical significance (p = .330), sug-
gesting similar trajectories of increasing scores across users. 

Table 2 
Means ± standard deviations for mean difficulty and the number of times that 
difficulty was increased, decreased or left unchanged in each 11-minute interval, 
separately for low- and high-magnitude conditions.  

Accuracy Magnitude n Mean 
difficulty 

Number of adaptation actions 
increase don’t 

change 
decrease 

50 % low 15 5.3 ± 0.9 3.3 ±
1.4 

3.7 ± 2.1 3.0 ±
1.3 

high 15 5.9 ± 1.5 2.5 ±
1.2 

4.6 ± 2.5 2.9 ±
1.4 

60 % low 30 5.5 ± 1.3 3.7 ±
1.3 

3.6 ± 1.6 2.7 ±
1.3 

high 31 5.6 ± 1.3 2.5 ±
1.2 

4.8 ± 2.0 2.7 ±
1.0 

70 % low 41 5.4 ± 1.4 3.3 ±
1.6 

4.1 ± 1.8 2.6 ±
1.1 

high 39 5.6 ± 1.7 2.3 ±
1.0 

5.2 ± 1.7 2.5 ±
1.0 

80 % low 43 5.5 ± 1.3 3.1 ±
1.8 

4.7 ± 1.9 2.2 ±
1.1 

high 39 5.7 ± 1.6 2.1 ±
0.8 

5.6 ± 1.5 2.3 ±
1.0 

90 % low 28 6.0 ± 1.4 3.5 ±
1.9 

4.6 ± 2.2 1.9 ±
1.2 

high 23 6.1 ± 1.6 2.0 ±
1.0 

6.1 ± 1.9 1.9 ±
1.1 

100 % low 17 6.3 ± 1.6 3.3 ±
1.5 

5.3 ± 2.2 1.5 ±
1.5 

high 15 6.6 ± 1.5 1.8 ±
1.3 

6.6 ± 2.6 1.6 ±
1.4  
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Evaluation of the full model including magnitude condition as a 
predictor of initial TLX scores again provided support for growth in TLX 
score in response to increasing adaptation accuracy (intercept = 30.89, p 
< .001; slope = 1.28, p = .005). Based on these data, investigators 
should expect a 1.3 unit increase in TLX scores for every 10 % increase in 
adaptation accuracy in the OpenMATB scenario. Data-supported values 
for TLX growth range from approximately one half to slightly more than 
a 2-point TLX increase per 10 % change in adaptation accuracy (CI95 % 
[.35, 2.20]). Results also indicated support for an effect of magnitude 
condition at the initial 50 % accuracy (b = 3.89, p = .022) such that 
participants randomized to the high-magnitude condition returned 
higher TLX scores than those randomized to the low-magnitude condi-
tion (Table 4). As expected from variance effects in the baseline model, 
analyses did not indicate significant differences in growth as a function 
of magnitude condition (p = .358). 

3.3. Intrinsic motivation inventory 

The baseline for IMI interest/enjoyment scores did not provide evi-
dence for growth as a function of increasing adaptation accuracy in these 
data (intercept = 10.14, p < .001; slope = 0.02, p = .773). Analyses did 
provide support for variability in corresponding intercept (p < .001) and 
slope (p = .035) parameters; however, evaluation of the full model 
(intercept = 9.92, p < .001; slope = 0.04, p = .714) did not indicate 
group-level differences in initial interest/enjoyment values or change in 
scores as a function of magnitude condition (all p ≥ .420). 

Evaluation of IMI effort did indicate linear growth in scores across 
increasing accuracy levels for the sample as a whole (intercept = 11.36, 
p < .001; slope = 0.30, p < .001). Variance estimates provided support 
for participant-level differences in intercept (p < .001) and slope (p =
.021) although inclusion of magnitude condition in the full model did 
not ultimately indicate effects on either parameter (all p ≥ .052). Esti-
mates in the final model (intercept = 10.88, p <0.001; slope = 0.36, p <
.001) suggest an expected 0.40 unit increase in IMI effort/importance 
for every 10 % increase in adaptation accuracy for individuals 
completing the OpenMATB scenario. Plausible values for expected 
growth range from a lower bound of 0.18 units per 10 % increase in 
accuracy to an upper limit of 0.57 (CI95 % [.18, 0.57]). 

Baseline analysis for IMI competence identified a trajectory of 
increasing scores (intercept = 7.92, p < 0.001; slope = 0.44, p < .001) 
with evidence for individual differences in initial competency ratings (p 

< .001) but not for change across increasing accuracy (p = .267). 
Evaluation of the full model including magnitude condition continued to 
support an aggregate trajectory of increased confidence with increasing 
adaptation accuracy (intercept = 7.92, p < .001; slope = 0.48, p < .001). 
Data-supported estimates suggest an expected 0.48 unit increase in IMI 
competence for every 10 % increase in adaptation accuracy for in-
dividuals completing the OpenMATB scenario. Plausible values for ex-
pected growth range from a lower bound of 0.24 per 10 % increase in 
accuracy to an upper limit of 0.72 (CI95 % [.24, 0.72]). 

Finally, the initial model for IMI pressure/tension did not detect 
evidence of growth as a function of increasing adaptation accuracy 
(intercept = 9.54, p < .001; slope = 0.18, p = .133). Variance estimates 
offered support for differences in initial starting values (p < .001) 
although slope estimates were relatively consistent across person- 
specific trajectories (p = .322). Evaluation of the final model with 
magnitude condition as a predictor also did not provide support for 
change as a function of adaptation accuracy (intercept = 9.21, p <0.001; 
slope = 0.27, p = .051). Magnitude condition was unrelated to intercept 
(p = .305) or slope (p = .347) parameters. 

3.4. Ratings at end of session 

Across all participants, VAS answers to the “How much did you like 
the three difficulty adaptation algorithms” question, converted to 0–100 
values, were 67.3 ± 22.7 for the first algorithm experienced by partic-
ipants, 70.5 ± 21.5 for the second, and 77.2 ± 18.3 for the third. The 
mixed-factors ANOVA provided strong support for differences in liking 
scores across successive algorithm trials (p < .001; ηP2 

= 0.091). Follow- 
up t-tests indicated increased liking for the final algorithm relative to 
both the first (p < .001, d = 0.48) and second (p = .004, d = 0.35). 
Differences in liking ratings across the first and second algorithms were 
not significantly different (p = .183, d = 0.15). Initial accuracy and 
magnitude conditions did not influence ratings (all p ≥ .160). 

4. Discussion 

LGC analysis of mean difficulty indicates that higher accuracies lead 
to higher task difficulty, as seen in Table 2. This makes sense within the 
current OpenMATB scenario: the initial difficulty level (5) is not very 
difficult given some practice, so participants tended to want to increase 
difficulty over time, and a more accurate adaptation algorithm allowed 
them to reach the desired higher difficulties. As the primary goal of the 
Wizard-of-Oz affective computing system in this scenario was to adapt 
task difficulty, any effects of adaptation accuracy on user experience 
likely occur via changes in task difficulty; effects of accuracy cannot be 
separated from effects of difficulty. 

4.1. Positive results: TLX scores, effort/importance, perceived competence 

Results indicate that, as adaptation accuracy increases, NASA TLX 
and effort/importance scores increase as well. This makes sense given 
that higher accuracies result in higher task difficulty, which is expected 
to require higher task load and effort. Similar results were observed in 
our previous studies outside affective computing, where automated 
upward-trending difficulty adaptation resulted in higher effort (Goršič 

Table 3 
Means ± standard deviations for NASA Task Load Index (TLX) scores and the four scales of the Intrinsic Motivation Inventory at different adaptation accuracies. All 
scores are averaged across both low- and high-magnitude conditions.  

Accuracy n NASA TLX Interest/ Enjoyment Effort/ Importance Competence Pressure/ Tension 
50 % 30 32.2 ± 7.3 10.0 ± 2.5 11.4 ± 2.3 8.8 ± 2.6 9.6 ± 3.0 
60 % 61 34.5 ± 7.0 10.0 ± 2.7 11.8 ± 2.0 8.4 ± 2.5 9.6 ± 2.9 
70 % 80 34.8 ± 6.9 10.1 ± 2.8 11.9 ± 1.9 8.9 ± 2.5 9.7 ± 2.3 
80 % 82 35.6 ± 7.6 10.3 ± 2.9 12.3 ± 1.8 9.1 ± 2.8 10.1 ± 2.8 
90 % 51 37.3 ± 8.5 10.4 ± 2.9 12.6 ± 1.8 9.3 ± 2.8 10.6 ± 2.6 
100 % 32 36.6 ± 9.5 10.3 ± 3.3 12.5 ± 2.1 9.6 ± 3.1 10.9 ± 2.1  

Table 4 
Means ± standard deviations for NASA Task Load Index (TLX) scores, separated 
into participants randomized to the low-magnitude condition and those ran-
domized to the high-magnitude condition.  

Accuracy Low magnitude High magnitude 
n NASA TLX n NASA TLX 

50 % 15 30.3 ± 8.8 15 34.1 ± 5.1 
60 % 30 32.8 ± 7.0 31 36.1 ± 6.7 
70 % 41 33.3 ± 6.8 39 36.3 ± 6.7 
80 % 43 34.4 ± 7.8 39 37.0 ± 7.1 
90 % 28 37.1 ± 8.1 23 37.6 ± 9.1 
100 % 17 37.2 ± 11.3 15 35.9 ± 7.1  
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et al., 2017). Nonetheless, the current study goes a step further by 
estimating the increase in effort and TLX score that can be expected from 
an increase in adaptation accuracy. 

The current study also demonstrates that a higher adaptation 
magnitude results in higher TLX scores even at low accuracies. We had 
previously hypothesized that higher adaptation magnitudes may allow 
even inaccurate adaptation algorithms to reach a desirable level faster 
(McCrea et al., 2017), and that does appear to be the case here. As seen 
in Table 2, participants randomized to the high-magnitude condition 
tended to experience fewer difficulty increases despite experiencing 
similar mean difficulty levels (e.g., 100 % accuracy: mean 3.3 increases 
for low and 1.8 increases for high magnitude), confirming this inter-
pretation. However, this result is not necessarily generalizable: in other 
scenarios, a high adaptation magnitude may cause the adaptation al-
gorithm to “overshoot” and bring the participant to an excessively high 
difficulty, which may have negative consequences. 

Perceived competence also increases with accuracy, which may be 
simply due to time spent with the scenario (higher accuracies tended to 
appear later) but may be due to participants feeling like they are per-
forming well at an appropriate difficulty as opposed to performing well 
at a low difficulty or failing at an overly high difficulty. In our previous 
work involving the IMI and difficulty adaptation outside affective 
computing, we did not find significant differences in competence as a 
result of adaptation (Goršič et al., 2017), but that study was conducted 
with a computer game rather than a “work-like” task. 

4.2. Negative results: interest/enjoyment, ratings at end of session 

Interest/enjoyment on the IMI did not increase with adaptation ac-
curacy. The IMI is a popular questionnaire and found interest/enjoy-
ment differences between adaptation algorithms in our previous study 
(Goršič et al., 2017), so positive effects were expected a priori. At the 
same time, one of our previous studies also found no difference in 
interest/enjoyment between intelligent adaptation and random adap-
tation within an affect-aware computer game (Darzi et al., 2021), so this 
is not an isolated result. One possible explanation for the negative 
interest/enjoyment result is that the OpenMATB scenario simply is not 
particularly fun regardless of difficulty, and performing it at a more 
appropriate difficulty thus does not make it much more fun. Even in 
affect-aware games, two adaptation accuracies that differ by 10–20 % 
result only in small differences in self-reported fun (McCrea et al., 2017), 
so it would make sense that the differences in a more “work-like” sce-
nario would be even smaller. However, this should not be considered a 
weakness of the OpenMATB – while a more fun scenario may exhibit 
larger effects of adaptation accuracy on interest/enjoyment, it may 
exhibit smaller effects on other outcome variables. 

Finally, ratings at the end of the session do indicate that participants 
prefer the later intervals and consequently higher accuracies over the 
lower accuracies. However, this may be simply due to increased famil-
iarity with the scenario over time. Furthermore, there were no signifi-
cant differences between different initial accuracies or magnitude 
conditions. This indicates that in the absence of prior experience with 
affect-aware adaptation, participants did not necessarily like an accurate 
algorithm more than an inaccurate one. This is similar to our previous 
study with affect-aware games, which found that participants are mostly 
able to recognize the more accurate of two different adaptation algo-
rithms but are poor at evaluating adaptation accuracies in isolation 
(McCrea et al., 2017). 

4.3. Follow-up study: same accuracy in all three intervals 

After concluding the primary study, we were concerned that some 
positive results may have occurred simply because higher accuracies 
always appear later in the session when participants are already familiar 
with the scenario. As a small follow-up study that is not reported in 
detail, we thus recruited another 49 participants and randomized them 

to the same initial accuracy and magnitude conditions, but with the 
same adaptation accuracy in all three intervals (e.g., participants with 
an initial accuracy of 80 % experienced 80 % accuracy in the first, 
second and third interval). While the sample size was small, there were 
much smaller differences between the three intervals in TLX, IMI scores, 
and ratings at the end of the session. For example, while mean ratings of 
the three algorithms at the end of the session in the main study were 67.3 
(first interval), 70.5 (second) and 77.2 (third), these ratings in the 
follow-up study were 70.5, 69.6, and 72.9. Thus, order effects are un-
likely to account for most of the positive results observed in the current 
study. 

4.4. Practical implications 

Within a multitasking scenario, our study demonstrates that a more 
accurate adaptation algorithm is able to reach higher effort / task load 
levels more quickly and provides participants with higher perceived 
competence. Specifically, a 10 % increase in adaptation accuracy results 
in an expected 1.3-point increase on the TLX (range: 6–60), 0.40-point 
increase on IMI effort/importance (range: 2–14), and 0.48-point in-
crease on IMI perceived competence (range 2–14). Table 4 also shows 
that large adaptation accuracies result in higher TLX scores, and Table 2 
indicates that high-magnitude adaptation is able to reach higher diffi-
culty levels more quickly even if it is inaccurate. 

Though researchers have spent decades studying ways to improve 
classification and adaptation accuracy in affective computing, there is 
still little information about how improving these accuracies influences 
the user experience. While our results are scenario-specific to a large 
degree, they provide a “quick” estimate of the effects of accuracy im-
provements, allowing researchers and developers to more easily decide 
whether it is worth investing time and money into accuracy improve-
ments. For example, if a developer estimates in advance that adding 
another sensor would improve accuracy by 5 %, they could use the re-
sults of our study to estimate that this sensor would likely increase 
participants’ TLX scores by about 0.6 points and their IMI effort/ 
importance by about 0.2 points. Furthermore, the TLX increase would 
likely not be less than 0.2 points and may be as large as 1 point as 
indicated by confidence intervals. While a value judgment would still 
need to be made on these TLX and IMI scores, it is likely easier than 
judging adaptation accuracies. Thus, our LGC analyses go beyond our 
previous Wizard of Oz work, which showed that increasing accuracy 
does improve user experience but did not estimate the degree of user 
experience improvement (McCrea et al., 2017). 

Furthermore, though our results are context-specific, the study also 
provides a generalizable methodology that could be used to both study 
other variables in the same scenario as well as study other scenarios 
entirely. For example, if a developer wishes to evaluate the effects of 
adaptation accuracy in their own scenario, they could simply replace the 
OpenMATB with their own scenario and use the same protocol to 
identify expected accuracy effects. If a large sample of potential users is 
available, such a Wizard of Oz study would likely require much less 
effort than developing and testing affect-aware technologies for the 
scenario of interest. Other factors of interest could also be studied by 
expanding the methodology. For example, developers are often curious 
whether a more convenient sensor with a shorter setup time could still 
achieve a positive user experience even if it is less accurate, and this 
could be evaluated in our methodology by randomizing participants to 
either a “convenient sensor with short setup time” or a “obtrusive sensor 
with long setup time” condition and then including this condition in LGC 
analyses. We thus hope that our research will serve as a broad founda-
tion for further Wizard of Oz evaluations in affective computing. 

Finally, the lack of significant effects of initial adaptation accuracy in 
the ratings at the end of the session (Section 3.4) emphasizes a poten-
tially important point: participants without prior affective computing 
experience may not be able to tell if an algorithm is “good” or “bad”. 
Thus, exposing participants to only a single adaptation algorithm may 
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not effectively identify differences in user experience due to different 
adaptation behavior. This was also observed in our prior Wizard of Oz 
work (McCrea et al., 2017), and may partially explain results of, e.g., our 
prior affective game study which found no differences in user experience 
between adaptation algorithms despite different adaptation accuracies 
(Darzi et al., 2021). This emphasizes the need for comparative studies in 
affective computing: prototype affect-aware technologies should not be 
evaluated in isolation, but should have their performance compared to 
that of a “benchmark” system within the same users. 

4.5. Study limitations 

Both this study and our previous work (McCrea et al., 2017; Novak 
et al., 2014) were done with scenarios where adaptation errors do not 
have serious consequences. While an erroneous adaptation action may 
briefly frustrate the user, this can always be reversed later. However, 
there are many real-world affect-aware systems where this may not be 
the case: for example, air traffic control systems where overloading the 
user may lead to fatal accidents (Aricò et al., 2016) or driver monitoring 
systems (Darzi et al., 2018; Sanghavi et al., 2023) where the potential 
consequence of a false negative (not detecting distraction/drowsiness, 
leading to an accident) may be much more severe than the potential 
consequence of a false positive (unnecessarily warning the user, result-
ing in annoyance). In these cases, we believe that changes in adaptation 
accuracy would have larger effects on user experience than observed in 
the current study. Furthermore, while the current study assumes linear 
effects of accuracy on user experience, a high-stakes scenario might have 
a more complex accuracy-experience relationship – for example, a 
“step-like” relationship where all accuracies below a high threshold (e. 
g., 95 %) are perceived as equally insufficient and accuracies above it are 
perceived as approximately equally good. Modifications could still be 
made to our study protocol to better approximate “critical” scenarios: 
for example, adding conditions where an adaptation error can imme-
diately end the session and cause the participant to forfeit financial re-
wards. Still, since truly severe consequences cannot be implemented in 
Wizard of Oz studies, it is unclear whether our protocol could be used to 
evaluate affect-aware technologies for such applications. 

Additionally, our Wizard of Oz research has treated participants as 
entirely passive: they perceive the affective adaptation but do not 
attempt to influence it in any way. While this is appropriate for many 
technologies, more transparent technologies could indicate why a 
particular adaptation action was taken: for example, a message saying 
“task difficulty was increased because your respiration rate is low”. In 
such situations, participants may adapt their behavior to influence the 
technology’s decision-making: for example, by breathing faster. Similar 
human behavior adaptation in response to predictable classification 
errors has been observed in other areas of human-machine interaction 
(S.M. Chase et al., 2009; Hargrove et al., 2010), but would need to be 
studied using a different paradigm. Related to this limitation, our results 
also cannot be transferred to affective computing technologies where the 
computer simply provides insight into the affective state and the user 
must decide what to do with that information. An example of this would 
be emotion regulation technologies (Sadka and Antle, 2022), where the 
emotion information is visualized to the user but the user must take 
action themselves. Adaptation magnitude would not be relevant in such 
a scenario, and classification accuracy could not be easily studied with a 
Wizard of Oz paradigm. 

Finally, multiple aspects of the study design were fixed by experi-
menters, constraining the number of situations experienced by partici-
pants. First, task difficulty in our scenario always started at the same 
level (5), leading to an upward trend in difficulty over time and possible 
impacts on user experience (Nagle et al., 2016). Second, within a given 
accuracy setting, system errors were set at fixed points for all partici-
pants (Section 2.4). However, in applied settings, adaptation errors 
occurring at different points (early in performance vs. late) could have 
different effects on user performance. Finally, participants were always 

exposed to accuracies in increasing order (e.g., 70–80–90 %), which may 
introduce order effects. We considered randomizing these aspects of the 
design early in study development but chose not to do so given the lack 
of existing work in this area and the complexity of disentangling 
person-level effects from generalizable, group-level trajectories. How-
ever, as a result, it is not possible to study factors such as error timing 
and habituation. If future studies wish to examine these aspects, they 
could modify the protocol by, for example, starting each 11-minute in-
terval at a random difficulty, having the system disagree with the 
participant at random times within each 11-minute interval, and 
exposing participants to accuracies in random orders (or at least in both 
increasing and decreasing orders). 

5. Conclusion 

Our study contributes to the growing body of research on the rela-
tionship between classification/adaptation accuracy and user experi-
ence in affective computing. Within a well-known multitasking scenario 
(the Multi-Attribute Task Battery), LGC analyses showed that increasing 
adaptation accuracy by 10 % is expected to increase self-reported NASA 
TLX scores by 1.3 points (CI95 % [.35, 2.20]) on a 6–60 scale, self- 
reported effort/importance by 0.40 points (CI95 % [.18, 0.57]) on a 
2–14 scale, and self-reported competence by 0.48 points (CI95 % [.24, 
0.72]) on a 2–14 scale. Furthermore, the effect of adaptation accuracy 
on TLX scores was modulated by adaptation magnitude. Adaptation 
accuracy had no effect on interest/enjoyment or pressure/tension, 
contrasting with previously studied game-like scenarios where adapta-
tion accuracy increased enjoyment. Finally, participants’ ratings of three 
different adaptation accuracies indicated that participants do perceive 
differences between these accuracies, but that inaccurate and accurate 
adaptation are likely to result in similar ratings if the participant has no 
prior experience with adaptation. 

By providing quantitative estimates of the effect of adaptation ac-
curacy and adaptation magnitude on user experience, the study provides 
guidelines for researchers and developers of affect-aware technologies. 
While the above estimates are specific to our own scenario and partic-
ipants, the same Wizard of Oz methodology could be adapted for use 
with many scenarios in which adaptation errors do not have irreversible 
consequences. By conducting similar Wizard of Oz studies, developers 
could, for example, estimate whether improving adaptation accuracy 
would improve user experience in their own scenario and whether such 
improvements would offset the time and money needed to improve 
accuracy (e.g., by buying additional sensors). In the long term, we hope 
that Wizard of Oz evaluations in affective computing can serve as an 
early validation of these technologies prior to real-world evaluations of 
finished products, helping guide eventual broad adoption of the 
technologies. 
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