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Summary. Shales and clay rocks are porous media with multiscale microstructures
used in many engineering applications. Intact clay rocks often exhibit a bimodal pore
size distribution in which the nanopores are related to the interlayer spacing in the
clay platelet and the micropores are related to the interparticle pores between clay
particles. The double-porosity microstructure has significant implications for the hy-
dromechanical behavior of these rocks especially in unsaturated conditions. In this
study, we develop a double-porosity hydromechanical framework incorporating a ho-
mogenization scheme to simulate fluid flow and elastic deformation in anisotropic
clay rocks. The homogenization scheme provides an enriched description of the elas-
tic behavior of clay rocks during changes in the degree of saturation by bridging the
nano, micro, and macroscale characterizations. We also model the nanopores and
micropores as two independent pore networks with distinct fluid flow mechanisms
and permeabilities. The proposed framework is cast into a three-field mixed finite
element formulation for solving fully coupled flow and deformation problems. Nu-
merical examples of free and confined swelling in Opalinus clay samples are presented
to demonstrate the impacts of a multiscale microstructure on wetting processes in
clay rocks.
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1 Introduction

Shales and clayey rocks have been identified as promising geomaterials for
a variety of applications, including as host rocks for nuclear waste repos-
itories [108], as source rocks of low-carbon fuels [86], and as cap rocks of
potential geological formations for hydrogen storage and COs sequestration
[60, 111]. Many of these applications involve two-phase fluid transport along
with changes in the degree of saturation. Due to their high clay content, many
shales are highly susceptible to swelling and shrinkage when they undergo a
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change of saturation, which can alter their permeability, strength and elastic
moduli [1, 10, 28, 40, 51, 85, 97, 99, 158]. Shale swelling and its associated
material property changes can have severe consequences including wellbore
instability and loss of caprock integrity. As such, there is a need for a fun-
damental understanding of complex hydromechanical behaviors in clay-rich
shales and clayey rocks, and modeling methods for predicting shale swelling.

A major factor influencing swelling behavior is the shale’s multiscale mi-
crostructure [146]. Shale can be considered to have the following microstruc-
ture in order of increasing magnitude: (1) elementary clay platelets at the
nanoscopic scale, (2) elementary clay platelets stacked together to form clay
particles, (3) an assembly of clay particles forming a clay matrix at the sub-
micrometer scale, (4) the clay matrix intermixed with detrital grains (mainly
quartz and calcite) at the submillimeter scale, and (5) alternating clay-rich and
detrital layers resulting in depositional layering [16, 26, 132]. Consequently,
shale has pore sizes that span multiple orders of magnitude. Most pores in the
shale’s matrix have an average radius ranging from 1-200 nm [76, 93]. The
pores can be classified into intraparticle and interparticle pores depending on
their sizes (nanometer vs micron) [94]. The majority of pores in the shale
matrix are intraparticle pores (with radii ranging from 3-6 nm), but most
of the pore volume is contributed from the larger interparticle pores (with
radii larger than 100 nm) [37]. Intact shale can thus be modeled as a double
porosity medium [35, 54, 106, 148] in which the micropores are related to the
interlayer spacing in the clay platelet, and the macropores are related to the
interparticle pores. We differentiate this from fractured shales that often have
fractures (in the order of millimeters or larger) that can dominate the flow
behavior [38, 52, 54], which are not covered in the present discussion.

Several modeling approaches have been developed to account for fluid flow
in porous media with complex pore structure spanning multiple scales, includ-
ing discrete fracture models [34, 79, 102, 109], multi-porosity models [9, 55],
and equivalent continuum models [14, 112]. Dual porosity models are a subset
of multi-porosity models where the two pore regions are considered as individ-
ual continua that exist within the same solid matrix. The pore regions interact
with each other through local exchange of fluids in response to a pressure head
gradient. Notably, dual porosity models can be preferable to discrete fracture
models, which explicitly model all the micro-fractures in the medium of inter-
est, as they are less computationally prohibitive and do not require explicit
representation of the fracture distribution and patterns [13]. Simultaneously,
dual porosity models are often more representative of double porosity systems
than equivalent continuum models which describe the double porous material
as a single homogenous medium. The balance between model simplification
and calculation precision thus makes dual porosity models favorable for field-
scale modeling [4]. A number of studies have developed hydromechanical dual-
porosity and dual-permeability frameworks [7, 15, 56, 82, 83, 134, 154, 155].
Some of these models have been extended to the case of double porous media
with two immiscible fluids [19, 21, 32, 33, 89, 120].
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The microstructure of shale also influences its material properties. Many
shales exhibit transverse isotropy in either or both deformation and fluid flow
behavior [22, 61, 122, 165, 167], mainly due to preferred orientation of clay
platelets and pores along distinct bedding planes. The shale microstructure
can also evolve upon a change in the degree of saturation [151, 153] and result
in changes to the mechanical properties [25, 57, 145, 147, 162] as well as the
degree of elastic and plastic anisotropy [42, 71-73, 88, 121, 133, 151, 153]. Sev-
eral studies have developed microstructure-informed constitutive models and
investigated the impact of shale’s multiscale microstructure on its mechan-
ical properties using analytical homogenization schemes [26, 41, 44-46, 74]
and numerical upscaling techniques [59, 113, 161]. Cariou et al. [26] addressed
the multiscale microstructure of unsaturated Callovo-Oxfordian shale using a
three-level homogenization model. Ip and Borja [74] also formulated a mul-
tiscale model to capture evolving anisotropic elastic moduli in clayey rocks
upon wetting and drying. Eghbalian et al. [45, 46] formulated multiscale mod-
els for capturing the swelling behavior of poroelastic and poroelastoplastic
clayey materials. Recently, Alaoui et al. [2] implemented a multiscale con-
stitutive law into a single porosity hydromechanical framework. However,
none of the aforementioned constitutive models have been implemented in
a dual porosity framework. Only a handful of hydromechanical dual porosity
models have accounted for anisotropic mechanical and hydraulic properties
[156, 157, 159, 163], but these studies do not explicitly consider the rock’s
microstructure.

In this study, a dual-porosity hydromechanical model is developed based
on the multiscale microstructure of shales. The multiscale homogenization
model introduced in Ip and Borja [74] is first reviewed, with an extension to
the evolution of nano and microscale porosities. Using analytical homogeniza-
tion techniques, the lower-scale strains are upscaled to derive the macroscale
governing equations and obtain the relevant poroelastic coefficients for an
unsaturated double-porosity poroelastic medium. We note that while shales
can exhibit plastic strains during wetting and drying processes [73, 162], it is
beyond the scope of this study. To the authors’ knowledge, this is the first
time the governing equations of a dual-porosity model have been developed
from a multiscale constitutive law. The remaining constitutive laws for fluid
flow in the nano and micropores, and mass transfer between the nanopores
and micropores are then discussed. Subsequently, the proposed framework is
cast into a three-field mixed finite element formulation for solving fully cou-
pled flow and deformation problems. Numerical examples of free and confined
swelling of Opalinus clay are presented to demonstrate the impacts of a multi-
scale microstructure and double porosity on drying and wetting processes in
shales.
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2 Mechanistic background

We consider the unsaturated double-porosity medium as a mixture of a solid
phase, micropores (interparticle pores) and nanopores (intraparticle pores).
The pore spaces may be filled by liquid and/or gas, assumed to be water and
air, respectively. In the following section, s, m, and M represent the solid,
nanopores, and micropores, respectively; while a and w represent the air and
water phases, respectively.

The volume fractions ¢*? of the three phases 8 = s, m, M must follow the

closure condition
sr Y T eve W
a=w,a B=m,M
The total porosity of the medium ¢ is simply
p= > D ¢P=1-¢". (2)
a=w,a B=m,M

The pore fractions are defined as the ratio between the pore volume occu-
pied by a porous phase 8 = m, M in relation to the total volume of the pores,
and are given by

B
s__ 9 5 _ af
V=15 ¢ > ¢, (3)
a=w,a
with the following closure condition
M T =1 (4)

Next, we assume that the pore spaces are filled with a mixture of water
and air. The local saturation of fluid « in porous phase [ is given by the

relation
¢*P ¢*P

CRTerol )

while the total saturation of phase § in the porous material is

gep

88 = YMGMB 4 ymgms, (6)

For simplicity, we assume the pore water to be incompressible and the
pore air pressure to be zero (i.e., atmospheric). The governing equations for
a variably saturated double porosity medium include the balance of linear
momentum for the mixture and the balance of mass for the pore water in
the macropores and micropores. The balance of linear momentum can be
expressed as [17, 18, 163],

V-o+pg=c, (7)

where o is the total Cauchy stress tensor and p is the total mass density of
the mixture, given by
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p=(1=0¢)ps+ (" +¢“")pu . (8)

In the above equation, ps and p,, are the intrinsic mass densities of solid and
water, respectively (mass of air is ignored) and g is the acceleration vector.
The term ¢ is the momentum produced by the fluid mass transfer between
the two pore scales, which takes the form

c= Z CB’f)ﬁ, (9)

B=m,M

where ¢ are the water mass transfer terms that satisfy the closure condition
M+ ¢™ =0 and 95 is the relative velocity of pore water in porous phase 3
with respect to the solid phase.

The balance of mass for fluid « contained in submixture 5 may be written
in terms of the material time derivative with respect to the solid motion [19],

. aB Ca 1
¢“ﬁ+¢7pﬁ+¢”‘ﬂV-v=J—*Vpﬁ'qaﬁ_v'q&ﬂ’ (10)
(03

K Pa K,
With the help of Equation (5), the first term in Equation (10) can be
expanded as

. . of Ca 1
Saﬁ¢ﬁ+¢65w+%{ pﬁ+¢a6V'U=Tﬁ—?VpB'QaB_V'qam
(11)

Building on the three-scale upscaling scheme detailed in Ip and Borja [74],
we derive the balance of mass equations for an unsaturated double porosity
medium comprising clay particles (with nanopores), micropores, and inclu-
sions. While Ip and Borja [74] also introduced microcracks in their consti-
tutive model, we assume in this study that the rock has no microcracks for
simplicity.

To this end, we first introduce the theorems that allow us to upscale the
strain fields €’ from the nanoscale to the macroscale, where i = n, y, m, M
represent the nanoscale, microscale, mesoscale and macroscale, respectively.
We consider a REV in the domain ) comprising multiple material phases (3,
each assumed to have homogeneous properties. In the following subsections,
the matrix (solid) phases are denoted by superscript s and the pore spaces
are denoted by superscript p. The

oc=C(z):e+o,(x), (12)

where o is the heterogeneous stress tensor in the REV, € is the heterogeneous
strain tensor in the REV, o, is the local eigenstress tensor, and « is the
position vector in 2.

Using Levin’s theorem [87], the average stress in the REV can be written
as
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YX=Cchtm.E+x,, (13)

where C'"™ = C:A is the homogenized stiffness tensor, Yy =0,:Als
the homogenized eigenstress, X" is the homogenized stress tensor, E" is the
homogenized strain tensor, A is the strain concentration tensor, and (-) rep-
resents the volume average.

The local strains in material phase « caused in the REV by the homoge-

nized strain tensor can be expressed as [43, 116]

EO‘:AO‘:E+ZBO‘/B:C'871:§§, (14)
B

where B*? is the eigenstrain influence tensor. We simplify the notation going
forward by representing B*# = B*# : CP - Specific expressions for B are
provided in Appendix A.

In this study, we adopt a Mori-Tanaka homogenization scheme [63, 104],
where the averaged concentration tensors in phase i (i = s,p) can be ex-
pressed as:

A=(I+P: (C—C) ' :A1P:(C_Co)T ', (15)

where P is the Hill tensor that depends on the matrix properties and the
shape and orientation of the inclusions [47]. The Mori-Tanaka homogenization
scheme adopted in the proposed model has been shown to provide consistent
results regardless of the type of boundary condition applied (uniform stress
or uniform strain) [107] and has been used to upscale the material properties
in porous media [44, 45, 58]. We note that while the self-consistent approach
has been shown to be more precise when the volume fraction of inclusions
is high [96], it is a nonlinear scheme that requires an iterative procedure
to calculate the strain concentration tensor. As a result, adopting the self-
consistent scheme would significantly increase simulation run times and the
computational power required.

3 Homogenization procedure

We briefly review the three-scale upscaling model presented in Ip and Borja
[74] starting with the nanoscale. The homogenization model only accounts for
elastic deformation. Plastic deformation will be investigated in a future study.

3.1 Microstructure of clayey rocks

The microstructure of clayey rocks are span multiple scales and are integral
to understanding their mechanical and hydraulic properties. At the micron
scale, the microstructure of these rocks comprises isolated non-clayey mineral
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Fig. 1. Three-step homogenization model incorporating the microstructure of clay
rocks. (a) Nanoscale: clay particle comprising clay platelets and nanopores; (b) Mi-
croscale: Assembly of clay particles and micropores; (c) Macroscale: Clay matrix
surrounding inclusions (Adapted from Ip and Borja [74]).

grains distributed within a fine-grained clay matrix [81]. The mineral grains
are often isolated from one another within the matrix with grain diameters
ranging from 10-30 pm [115]. Cracks are also often observed in samples at this
scale [115], however we do not consider them in this study. Within the clay
matrix, the clay particles observed are generally smaller than 2 ym and are
oriented preferentially along the bedding plane. There exists small elongated
pores between similarly oriented clay particles and crescent shaped pores that
occur between folded sheets of clay that are aligned with the bedding plane [70,
80, 115]. We refer to the pores at this scale as micropores. At the nanoscale,
the clay particles consist of stacks of clay platelets that are locally aligned
[69, 130]. The space between platelets is usually called the interlayer space
and is filled with water molecules and counterions. We refer to these pores as
nanopores. At the micron scale, clayey rocks can thus be ideally represented
by a double porosity medium comprising nanopores and micropores.

3.2 Clay platelet —+ Nanoscale

Ip and Borja [74] idealized a clay particle as multiple layers of parallel clay
platelets with interlayer spaces in between each platelet (Figure 1(a)). The
interlayer space is always filled with interlayer water (S™* =1, Smw — 0) and
exchangeable cations, which results in mechanical, hydraulic, and electrochem-
ical forces being present. The clay platelets are assumed to be incompressible
(v — 0.5).

The forces in the interlayer water can be described with the Gouy-
Chapman double layer theory [29, 101]. There is an electrical potential distri-
bution around the clay platelets that arises from their negative surface charge
interacting with the exchangeable cations in the pore fluid. The electrical po-
tential distributions of two clay platelets interact as they approach each other,
resulting in a repulsive double layer force in the interlayer space that depends
on the interlayer distance, the ionic concentration, and the ionic valence. The
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double layer force per unit area between two parallel clay platelets has been
derived as [75, 84, 101]

7PPL = 2nkT (cosh(u) — 1), (16)
where
u = Stanh ™ (exp(—mh)tanh(i)) , (17a)
2nv2e/?
= 17b
" ekT (17b)

CEC | 1
— 9qinh !
z = 2sinh ( SSA 86nkT) , (17¢)

CEC is the cation exchange capacity, SSA is the specific surface of the clay
platelet, ¢ is the static permittivity of the water solution, n is the ion concen-
tration in the pore water, k is the Boltzmann constant (1.38 x 10723 J/K),
T is the absolute temperature (assumed to be 293.15 K), €’ is the electric
charge (1.602 x 10719 C), and v is the ionic valence. In this study, we assume
constant values of v = 1, CEC = 0.732 mEq/g, and £ = 7.083 x 10710 C?/(J
- m) [69, 84]. We also note that the ionic concentration is assumed to remain
constant throughout the drying process and geochemically-induced shrinkage
is not considered in this work.

In addition to the double layer forces, it is well known that attractive
van der Waals forces exist between two molecules in close distance to each
other. Similar to the double layer force, this attractive force increases with
decreasing interlayer distance. The van der Waals force for two parallel layers
[27, 84] was derived from London’s theory for the attractive stress between
two molecules [92] and is given by

TVPW — ﬂ( 1 2 ) , (18)
247 \(h/2)3 ~ (h/2+t)3 (h/2+1¢/2)3
where t is the thickness of the clay mineral crystals, which we assume to be
0.96 nm, and Ay, is the Hamaker constant, which has a value of 2.2 x 102!
J for montmorillonite from theoretical analysis of coagulation measurements
[110].
Since the interlayer space remains fully saturated, the stress in the inter-
layer water can be described by a liquid pressure p,, and an overpressure w
acting in the normal direction to the clay platelets n [26, 45]:

ol = —pnl —men, =7xPPL VDWW, (19)

Using a first-order Taylor’s series expansion and defining the fluid strain

as €™ = dh/hon @ n, we can write a constitutive law for the interlayer water
as

doP = CP: o€’ + ol (20)
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where
Cl=—-hK'nnenon Kp:a—ﬂ (21a)
’ Oh lho+6h/2,n0
oo = —dpp,l —0mmen, or=m — , (21b)
ho,n ho,no

ho is the interlayer distance in the initial configuration, and n is the ionic
concentration in the initial configuration.

By idealizing the interlayer spaces as oblate spheroids with small aspect
ratio, &, that tends to 0 (£ — 0), the following homogenized stiffness of the
clay particle can be obtained [44]

[ C1 C3 Ca 0 0 0
C1 C4 0 0 0
N ca 0 0 O
[C"] = , (22)
0O 0 0 0 0 O
0 0 0 0 0 O
(0 0 0 0 0 2
where
_ 1—o¢" D D AT n
1 = (7 — K"+ o). (23a)
KP
Cy = ¢7, (23b)
_ 1- ¢n D D AN n
es =~ (K" — KP4 26"), (23¢)
1
4 = Kp(% ~1), (23d)
s =(1—=¢")n, (23e)

w1 is the shear modulus of the clay platelets, and ¢™ is the porosity at the
nanoscale. We note that the shear stiffness of the clay particle in the parallel
direction is 0 since the platelets can slide over each other. The prestress of the
clay particle can be expressed as [26, 45]

0¥, = —0pml —om(1l - ¢"(1-nen)). (24)

Under certain loading conditions, the interlayer water can transition from a
liquid-like phase to a solid-like phase that is associated with stick-slip fric-
tion behavior among the clay platelets [78]. The internal sliding friction is
postulated to follow a Mohr-Coulomb failure criterion [98].

The porosity in the nanoscale REV can be written as
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vne

T — 2
O = (25)

and its overall change is

9" =(1—9")¢"1: ", (26)

where V™ and V"™® are the volumes of the nanopores and clay platelets in
the REV, respectively.

Since the clay platelets are assumed to be incompressible, 1 : €™ = 0,
and so, upscaling of the nanoscale strains is simply

1
1:&™ = ol grm (27)

Equation (26) can thus be expressed as

Pt =(1—¢")L: M. (28)

3.3 Nanoscale — Microscale

At the microscale, the REV comprises an assembly of clay particles and a net-
work of interparticle pores, herein referred to as micropores. The clay particles
are preferentially oriented along the bedding plane [39, 69, 95, 124, 138, 141],
while the micropores are assumed to be oblate spheroids perfectly aligned with
the bedding plane [127, 136, 137]. The micropore network is partially satu-
rated by the same pore fluid as the nanopores. However, the pore fluids at the
nanoscale and microscale may not be in equilibrium, and as such, we intro-
duce the micropore water pressure pj; and micropore air pressure p%,. At this
scale, electrostatic and van der Waals forces are negligible and clay particles
interact with one another through mechanical forces. As such, the clay matrix
can be modeled as a granular medium in which plasticity arises from sliding
of clay particles against one another and normal compression between clay
particles [46, 150]. Both the Drucker-Prager [62, 125] and the Mohr-Coulomb
[46] criteria have been previously adopted to describe the plastic behavior of
the clay matrix.

The effective stiffness and effective prestress of the clay particles aligned
with respect to the bedding plane can be obtained from the following integral

aw 1 2m 2 T S ~ o

C* = 8?/0 /0 /0 ODF(0)C™(0, 1, ¢) sin(0) df dypdg,  (29a)
52’;” = —0pnl —onT, (29Db)
T= <(1 —¢")1 (29¢)

+¢71871T2/027r /0277 /; ODF(f)n & nsin(8) df v dd) |
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where 0, ¢ and ¢ are Euler angles [114], and ODF is the Owens-March orien-
tation distribution function [95]

ODF(f) = _ MPD
(cos2(6) + MPD sin2(f))1

(30)

MPD is the maximum pole density, a parameter measured in logarithmic scale
from 1.0 to oo with MPD = 1.0 for a random distribution of clay particles
and MPD = oo for perfectly aligned clay particles.

We consider the micropore geometry to be oblate spheroids with an aspect
ratio & = lmin/lmaz, Where lpin and ly,q, are the minimum and maximum
principal radii, respectively. Depending on the size of the micropores, they can
be either saturated with water or air. As a result, there exist surface tension
stresses at the interfaces, v, where a8 = s, w, a represent the solid, water
and air phases. The membrane stress tensor can be expressed as [26, 45]

wB =41 -nen), (31)

where 71 is the unit normal vector at a point on the interface between two
phases [30, 31].
The state equation of the clay matrix can then be written as

Cav a.(r)natri;ﬂ + Egv in Qmatrix
©) —piyl in QY
th= ©) P —p%,1 in Q2 ’ (32)
DPm
0 wh in [

where O is a fourth-order null tensor, o*!"@ is the initial prestress in the

matrix, and I' represents the surfaces in the domain between two different
phases.

The homogenized macroscopic stiffness and eigenstress of the clay matrix
can be obtained using Levin theorem [87] as

CH = C™ — gHC™ : AP, (33a)
OXH = —@Hoparl : FAP 4 (1 — ¢H)o ™ : HA® (33b)
+OwB AP

where ¢* is the micropore porosity at the microscale, ppr = S“p%, + (1 —
S")p%,, and AP and A® are the strain concentration tensors representing the
micropore phase and the clay matrix phase, respectively.

The micropore porosity in the microscale REV can be expressed as

Vup
T Vmp 4 Ynp 4 Yns”

P! (34)

and its overall change is
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P =" (1— @)1 M — g (1 — @)1 €7 (35)

where V#P is the volume of the micropores in the REV and P is the strain
in the micropores at the microscale.

Using Equation (27) and the relationship between strains at the micro-
and macroscale,

ET = (1 — g 4 grer, (36)
we can rewrite Equation (35) as
P = PrL e — ghL ™™ (37)

Surface tension contribution

In this study, we adopt the capillary-tube analogy to describe the surface
tension in the micropores [26]. The pore network is idealized as a set of oblate
spheroids that are fully filled with either water or air. The delineation between
these two sets is governed by Laplace relation and the equivalent minimum
harmonic mean radius of the pore, ey = (0.5(I,5, + (Elmaz) 1)) 7L At a
given suction, small pores would be filled with water, while water in large
pores would have drained and they would be filled with air. The threshold

radius can be calculated from the Laplace equation of capillarity as [149]

o 2y cos(O)

==, (38)

where O is the contact angle.
Following the derivation of Chateau and Dormieux [30], the surface tension
term can be expressed as [26, 45]

1

wab AP = (ZSHp@qw’ w = —

(1-n®n):"APdD, (39)
where p©? is the equivalent pressure in the micropores, defined as

Tmaz

pl = / P’ (Teq)PSD(req) dreq ) (40)
Tmin

Tmin and Ty, are the minimum and maximum pore radii, respectively, and

PSD is the pore size distribution function, which can be obtained from the

water retention curve and

2~5t Iy Teg < TF
p,y(req) _ Y / eq eq . (41)
299 [1eq Teqg > T

We note that as the pores are spheroidal, analytical integration of the expres-
sion for 72 ® 71 is complicated and the surface tension is obtained by numerical
integration. We assume the solid phase to be perfectly wetting (i.e., v*! = 0)
and the surface tension between the solid and gas phases and the liquid and
gas phases to be equivalent (i.e., !9 = 4*9 = 72.5 mN/m.
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3.4 Microscale — Macroscale

Shale and other mudstones often have a significant percentage of inclusions
such as quartz and calcite. We upscale an REV that comprises the clay matrix,
quartz inclusions, and calcite inclusions. The clay matrix fraction, inclusion
fraction and aspect ratio of the inclusions are represented by ¢™%, ¢¢ and &°,
respectively. Once again, the state equation of the shale can be written as:

CHr E‘u : Qmatrix
c={" , eM={o0TE I , (42)
C oo in Q

where C? is the elasticity tensor for the inclusion phase(s) and o is the initial
stress in the shale under conditions of no strain and no suction.

Levin theorem gives the homogenized macroscopic stiffness and eigenstress
of the shale:

CM =C* + ¢'(C* — CH) : A", (43a)
63 = (1—¢h)sxk . mA™, (43b)

where ™A? and ™A™ are the strain concentration tensors representing the
inclusion phase, and the clay matrix phase, respectively.
The relationship between strains at the mesoscale and macroscale is

eM = (1 - ¢")e™™ + ple’. (44)

The inclusion fraction can be expressed as

. Vi
P _ 45
¢ Vup 4 Vnp 4 Yns 4 i 1)
and its evolution as B ) _ )
O =g E - g, (46)

where V? is the volume of the inclusions in the REV. Using Equations (44) and
(46), the evolution of the macroscale matrix volume fraction can be written
as

q'smat _ _¢1

= (1—¢H)(1:emm —1:eM). (47)

At the macroscale, we represent the nanoscale porosity and micro-scale
porosity as ¢™ and ¢, respectively. These variables can be expressed as
functions of the lower-scale volume fractions introduced above as
Ve

T VEP Ve Vs 4V
Vhp

T VEP Ve g Vs 4V

o =¢"(1—¢H)™, (48)

oM = grgmet. (49)
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With the help of Equations (36) and (44), the evolutions of the porosities
at each scale are thus

G = (1= )G — 5T (1= g (50)

= %Léﬂm—whéM
élﬂ _ ¢matq'5/1 + qsuq‘smat’ (51)

=M1 e — pM1 M,

4 Microstructure-informed double porosity formulation

4.1 Conservation laws
Balance of momentum

Using Equation (43b), we can write an incremental effective stress equation
at the macroscale as

do =60’ — bpéprs — by 0pm, — brdm + b, 0p°? (52)
where
by = M1 AP mA™ (53a)
b = So1: AT AT (53b)
br = SoT AT AT, (53c)
b, = ¢Mw : HAP : mA™ (53d)

We note the similarity in form to the effective stress derived for clays account-
ing for physio-chemical effects [26, 45].
The balance of linear momentum equation can then be written as

V- (0-/ - SprbM - pmbm - 7Tb7r +peqbw) + rPg = c (54)

Balance of mass

Having obtained the evolutions of the nanoscale and microscale porosities,
we can now derive the balance of mass equations for the macroscale REV.
Using the strain localization relation, Equation (14), for the microscale and
macroscale, and replacing SM* with S, we can rewrite £ and é"? as:

gnm HpA™  mA™ g M
+ (¢HpartA™ BT FAPT .1 4 ppHB™P 1)5“’
+ (PHSWHA™ MB™™  HAPT L1 4 HB™P : 1)pyy
+((1 = @gM)HA™ . B FATT L KR ¢ (p,1 4 7T)

(55)
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and
P AP . mam . oM
+ (¢FppstAP BT FAPT 1 4 pp BPP 1)5“’
+ (SUQHAP BT FAPT D14 B 1)y
+ (L= ¢")PAY BT AT L BT (Pl + AT,

(56)

The porosity evolutions in Equations (50) and (51) can then be expanded

to
¢ = (by, — ¢™1) : eM 4 C,, 8 (57)
+ SmMpM +Smm (pml + 7:1'7')
oM = (byy — ¢M1) : eM 4+ Cpy S (58)

+ SvnviPr + Snim 2 (Pl +7T).

Specific expressions for C,,, (,;M, Sty Smm, Sy and Sy are presented
in Appendix B.

Inserting Equations (57) and (58) into Equation (11) yields the balance of
mass for the two porosity scales (micropores and nanopores),

S%bps : €4 CarSY + Sumibys + ShmPm + Sara T

CwM 1 (59)
= P —EVPM'QwM_V'quv

and

Cwm 1 (60)
= — ——VPm  Qum — V- Qo
pw Kw pm qwm qwm

where ¢ = é™ and the poroelastic coefficients are

Cy = (bM -l-SwCNM.

Sw M -
Smm = ¢ +S5YSnmr (61a)
Svim = SYSym i 1, (61b)
Sm = K—w +8m: 1, (61c)
SMWZSMm:T, (61(1)
)
)

S =S 1 T, (61e
(

Appendix C presents the three-field finite element formulation derived
from the conservation laws and details the implementation in the Geocentric
finite element code [143].
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4.2 Constitutive laws
Water retention curve

A water retention law is needed to characterize the relationship between the
degree of saturation and the suction. To differentiate between water in the
interlayer space and water in the micropores, we adopt a water retention
model that includes the effect of bound and capillary water [117]. The water
content can be described as the sum of bound and trapped water, 6,, and

capillary water, 6., which are functions of the nanopore suction s,, = —pm,
and micropore suction sp; = —pys, respectively, i.e.,
O(Smysar) = 0c(spr) + 0o (Sm) - (62)

The capillary water content is modeled with the van Genuchten retention
model [135], while the adsorbed water is modeled with the Freundlich sorption
isotherm [53]

esat - ea

Oc(snr) = —7 (63a)
1+ (asa)") ™Y
MU 1/mads
Oo(Sm) = 0% [exp ( - ﬁsm)} , (63Db)

where « is the inverse of the scaling suction, n is a van Genuchten parameter,
Mads is a Freundlich adsorption isoterm coefficient representing the adsorption
strength, 62'* is the maximum adsorbed water content, 65, is the saturated
volumetric water content, M, is the molar volume of water, R is the universal
gas constant, and T is the absolute temperature. The micropore degree of
saturation and total degree of saturation can then be expressed as

w 0.(s
" (omoun) = g5,

gw(8m7 SM) = 00(5M4)9+ 9(]‘(87"‘) .
sat

(64a)
(64b)

We note that a water retention curve is used in the proposed model in-
stead of a pore size distribution which has been previously adopted in several
studies [2, 45, 46]. The calibrated water retention curve is then used to back-
calculate the pore size distribution since water retention curve data is more
often measured in swelling tests as compared to direct pore size distribution
measurements.

Fluid flow

The proposed model requires two constitutive equations to describe fluid flow
in the nanopores and micropores. Modeling fluid flow in multi-porous media,
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especially with regards to nanopore flow, is non-trivial and an active area
of research. As such, we make simple assumptions about the flow at both
scales. Several studies have postulated that Darcy’s law is valid to describe
the flow in both nanopores and micropores under certain situations [5, 33,
156, 166]. Darcy’s law gives the following relationship between g, 5 and pq at

the nanoscale,
K,

and at the microscale,
krel(Sw) KM . (
Hw
where Kk, is the intrinsic permeability in pore scale «, k. is the relative
permeability in the micropores, and p,, is the dynamic viscosity of the pore
fluids.
We consider that the inter-layer water can only flow parallel to the clay

platelets. As such, the intrinsic permeability tensor x; of the nanopores may
be written as

1 27 2m ™ _ L~ ~ o~ o~
"m:s;?/o /0 /0 ODF (@) (1 — n @ n)sin(@) dfdddd.  (67)

where k., | is the flow component parallel to the clay platelets. Assuming the
flow between the clay platelets can be represented by flow between parallel
plates, the permeability parallel to the clay platelets would vary with the
interlayer spacing [68, 131, 156]

dunm = va - ng) ) (66)

h3
H:m,” = KJF . (68)
0

where hg is the interlayer spacing at the initial condition and  is the initial
clay platelet permeability. We neglect the effects of diffusion and non-linear
flow at the nanoscale in this study.

We adopt the van Genuchten-Mualem equation [105, 135] for the relative
permeability of the micropores

ket (S%) = S*% [1 - (1 - Swl/”)lfl/nr. (69)

Mass transfer

We consider a first-order mass transfer equation as follows [55]

CwM oY
=k—Pm —pm), 70a
Pw Nw( 2 (70a)
Cum oY
=k PM —Pm), 70b
Pw Mw( M ) (70b)
__ B
a=—7, (70¢)
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where k is the interface permeability, @ is the characteristic length of the
micropores spacing, [ is a dimensionless coefficient accounting for the solid
matrix geometry, and ~ is a dimensionless scaling coefficient suggested to be
0.4 to fit experimental results [55].

5 Numerical examples

5.1 Free swelling of Opalinus clay

Experimental data demonstrating the anisotropic swelling behavior of shales
during free swelling tests are available in the literature. In particular, Minardi
et al. [100] presented the anisotropic swelling strains of Opalinus clay samples
upon suction variation. They used the vapor equilibrium technique to wet
several samples of Opalinus clay from an initial suction of 96 MPa to a final
suction of 9.8 MPa while measuring the bed-normal (BN) and bed-parallel
(BP) strains, as well as the water content variation. The bedding planes of
their samples were perpendicular to the axis of the cylinder.

In this section, we calibrate the model parameters against their swelling
test data through free swelling simulations of Opalinus clay. The Opalinus clay
sample in the study was a 20 mm-tall cylinder with a diameter of 25 mm. We
divided the geometry into a structured mesh with 640 eight-node hexahedral
finite elements. The bottom surface was supported on vertical rollers and
the center node was fixed for stability. The nanopore and micropore suctions
were applied on all surfaces. We present the 3D mesh in Figure 2(a) and a
cross-section of the mesh across the sample’s diameter on the y-z plane in
Figure 2(b).

The parameters of the three-scale homogenization model were calibrated
against the anisotropic strains at equilibrium, while the hydraulic parameters
were calibrated against the time evolution of the sample’s water content. The
water retention curve was estimated from the water content data and from
observations of the nanopore and micropore fractions reported in Keller et al.
[80]. Figure 3 presents the calibrated water retention curve, which is similar to
the wetting curves of Opalinus clay measured in other studies [144]. Tables 1
and 2 present the calibrated mechanical and hydraulic parameters for Opalinus
clay, respectively.

The evolution of water content and anisotropic strains are presented in Fig-
ure 4. We observe a close match between the experimental data and the model
prediction of the water content evolution between days 0-10 and days 21-29.
When a suction of 39.0 MPa was applied between days 10-21, the model pre-
dicted a slower rate of water content increase. On the other hand, the model
predicted a quicker equilibration of the sample with the applied suction of
9.8 MPa compared to the experimental data during days 29-40. Similarly, the
trend of strain evolution during days 0-21 follows that of the experimental
data, but the model overestimates the rate of swelling when lower suctions are
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A A'

(@ (b)

Fig. 2. (a) 3D mesh of cylindrical sample (20 mm tall, 25 mm diameter) and (b)
cross-section of the mesh on the y-z plane.

applied. This may indicate the inadequacy of the van Genuchten-Mualem rel-
ative permeability equation in capturing the unsaturated hydraulic behavior
of clayey rocks [2]. Instead, a homogenization scheme for the relative perme-
ability may need to be developed for the microstructure of clayey rocks [11].
This is outside the scope of the current study and will be investigated in a
future work.

The predicted anisotropic strains at equilibrium shown in Figure 4 are a
good match to the experimental data between days 0-29. However, the model
underestimates the anisotropic strains at 9.8 MPa. This can be attributed to

Total
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Fig. 3. Adsorbed, capillary, and total water retention curves for Opalinus clay. Ticks
are data points from Minardi et al. [100].
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Table 1. Mechanical constitutive parameters for Opalinus clay used in swelling tests
[50, 80, 126, 136, 142]. Porosities listed correspond to the sample’s initial condition.

Parameter [ Value
Nanoscale

SSA (m?/g) |85

n (mol/m) 100

o 0.13
u (GPa) 3
Microscale
MPD 4
13 0.35
" 0.31
Macroscale
g 0.32
¢calcite 0.21

Kauartz (GPa) 38
Mquartz (GPa) 44
Kcalcite (GPa) 70
‘ucalcite (GPa) 32
I3 0.8

Table 2. Hydraulic parameters for Opalinus clay used in swelling tests [50, 80, 136,
142].

Parameter ‘Value
Water retention curve

Osat 0.19

07%* 0.06

a (MPa) (7.0

n 1.67

Mads 1
Permeabilities

Km (m?) [1.0x107%
kar,1 (m?)|1.0x1072°
kar,) (m?) [2.0x107%°
a(m™2) (200

k (m?) 1.0x10~23

the proposed model neglecting plastic behavior, which shales including Opal-
inus clay are known to exhibit when undergoing drying and wetting processes
[119, 163, 165]. The BN and BP strains were underestimated by 0.18% and
0.13%, respectively. We compare this against the plastic deformation that the
sample exhibited. After the free swelling test, Minardi et al. [100] subjected
the sample to a drying test with the same applied suctions. By comparing
the anisotropic strains after the cyclic free swelling/drying test, we can deter-
mine the plastic strains normal to and along the bedding plane. At an applied
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Fig. 4. Time evolution of (a) water content and (b) strains during free swelling
test of Opalinus clay. Solid curves are experimental data from Minardi et al. [100];
dashed curves are model predictions

suction of 86.0 MPa, the sample underwent permanent strains of 0.18% and
0.03% in the BN and BP directions, respectively. Thus, the difference in strains
between the model predictions and the experimental data at lower suctions is
mostly a result of neglecting plastic deformations, which will be explored in a
future study.

5.2 Poroelastic coefficients

In this section, we elucidate the impact of the derived double-porosity formu-
lation on the poroelastic coefficients and their evolution with the degree of
saturation. Figure 5 presents the evolution of the stiffness moduli and Pois-
son’s ratios with saturation for the Opalinus clay samples calibrated from free
swelling tests. We note the strong similarities between the evolution of the
stiffness moduli for the calibrated Opalinus clay sample and the experimen-
tal stiffness moduli data presented in Yurikov et al. [151]. The BP stiffness
moduli are more sensitive to the degree of saturation and decrease more signif-
icantly upon saturation of the sample as compared to the out-of-plane stiffness
moduli, which remain approximately constant. This behavior has also been
observed in various shales [71, 133, 153, 162].

On the other hand, measurements of Poisson’s ratios presented in the
literature differ from our model’s predictions. The model predicts decreasing
Poisson’s ratios in both the BN and BP directions as the sample saturates.
However, experimental data of anisotropic shales have generally shown the
Poisson’s ratios to increase with the degree of saturation [133, 151, 162]. This
may indicate the presence of microstructural features in shale that influence
its elastic properties, especially the Poisson’s ratio, but are not yet accounted
for in the proposed model.
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Fig. 5. Variation of (a) Young’s moduli, (b) shear moduli, and (c) Poisson’s ratios
with degree of saturation for Opalinus clay calibrated against data from Minardi et
al. [100].

Figure 6(a) presents the evolution of the BN and BP components of the
Biot tensors. The components of the nanopore and micropore Biot tensors
generally remain constant with saturation. The micropore Biot tensor com-
ponents are slightly larger when the sample is drier, which can be attributed to
the decrease in micropore porosity as the sample saturates, a characteristic of
the water retention curve adopted in this study. Simultaneously, the nanopore
porosity increases during a wetting process and results in a slight increase in
the nanopore Biot tensor components. The nanopore Biot tensor components
are also significantly smaller than those of the micropore Biot tensor, as the
nanopores are much stiffer due to the high aspect ratio of their geometry.
Overall, the Biot tensor components are within the range of experimental
measurements for most shales [12, 64, 65, 140].

The storage coefficients, Cy; and C,, are presented in Figures 6(b) and
6(c). The storage coeflicients generally increase upon saturation of the sample,
which reflects an increase in pore space as the sample swells. We note that
the predicted values are much smaller than the measured storage coefficient
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Fig. 6. Variation of (a) Biot tensor components, (b) storage coefficients, (c) Cas and
Cn, with degree of saturation for Opalinus clay calibrated against data from Minardi
et al. [100].

of most shales [12, 103]. Separately, Cj stays relatively constant as saturation
increases, while C,, increases upon wetting of the sample and is also negative
for all degrees of saturation.

We also investigate the variation of the surface tension terms with the
degree of saturation, as presented in Figure 7. The components of the surface
tension coefficient, b,,, decrease with saturation of the sample. We note that
the surface tension term p¢? is small compared to the pore pressures and
stresses in the sample: it is on the order of kPa between 20% and 100%
saturation. As such, the surface tension term can be considered as negligible
when simulating the Opalinus clay sample.

Lastly, we also investigate the evolution of the nanopore permeability ten-
sor components with the degree of saturation presented in Figure 8. The
nanopore permeability tensor components, which depend on the interlayer
spacing, h, increase with saturation. The BP component has a larger increase.
Overall, the nanopore permeability anisotropy remains approximately con-
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Fig. 7. Variation of (a) surface tension coefficient b,, components and (b) p®? with
degree of saturation for Opalinus clay calibrated against data from Minardi et al.
[100].
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Fig. 8. Variation of nanopore permeability with degree of saturation for Opalinus
clay calibrated against data from Minardi et al. [100].

stant (K, /Km,1 = 1.34) since the MPD does not vary with the degree of
saturation.

5.3 Constant volume swelling test

Next, we elucidate the effects of the proposed double-porosity formulation
on the swelling behavior of Opalinus clay under isochoric conditions. We first
validate the model parameters against constant volume swelling test measure-
ments from Crisci [36]. Then, we simulate constant volume swelling tests to
determine the evolution of swelling pressures in Opalinus clay.
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Volumetric strain evolution

Crisci [36] conducted a swelling test under isochoric conditions, in which the
sample is placed in contact with water and prevented from swelling by pro-
gressively increasing the radial and vertical stresses. The cylindrical (77 mm
tall, 38 mm diameter) sample was cored perpendicular to the bedding planes
and had an initial void ratio and saturation of 0.14 and 78%, respectively.
The sample was placed in contact with water and the axial and radial stresses
were increased so as to prevent swelling of the sample. Crisci [36] presented
the axial and radial stresses applied as well as the volumetric strains of the
sample during the saturation process.

Following the testing procedure in Crisci [36], we simulated the same ax-
ial and radial stresses on an Opalinus clay sample and validated our results
against the volumetric strain measurements. The suction in the sample is as-
sumed to be initially 9 MPa. Nanopore and micropore water pressures of 1
MPa are then applied on the top and bottom surfaces. We adopt the same
mechanical parameters (excluding the porosity values) calibrated in the pre-
vious section (Table 1). Table 3 presents the hydraulic parameters assumed
for the Opalinus clay sample tested in Crisci [36].

Table 3. Hydraulic parameters for Opalinus clay used in constant volume swelling
tests [36, 50, 80, 136, 142].

Parameter [Value
Water retention curve

Osat 0.12

05 0.04

a (MPa) (7.0

n 1.67

Mads 1
Permeabilities

Km (M%) [1.0x10~72
kar,1 (m?)[1.0x10720
Ko, (m?) [2.0x107%°
a (m™?) [20.0

k (m?) 1.0x10722

Figure 9a presents the axial and radial stresses applied to the Opalinus
clay sample during the constant volume swelling test. Crisci noted that the
sample tended to swell first in the bedding normal direction and thus, the
higher axial stresses were applied to compensate for the swelling of the sam-
ple. The volumetric strains the develop in the sample during saturation are
presented in Figure 9b. We note that the sample develops small volumetric
strains of around 0.06%, on the order of 10=% (or 1072%). The predicted fi-
nal volumetric strain after 12 days is close to the experimental measurements
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Fig. 9. Time evolution of (a) axial and radial stresses applied on the sample and
(b) volumetric strains for an Opalinus clay sample during constant volume swelling
test. Positive volumetric strains indicate expansion of the sample.

from the constant volume swelling test. The initial slope of volumetric strain
in our simulation is gentler than the measured volumetric strain evolution.
This likely further highlights that the relative permeability equation used in
our model is inadequate for modeling unsaturated fluid flow in clayey rocks.
The tested sample also undergoes notable volumetric contraction when the
applied stresses were further increased around day 9, which our simulations
are unable to fully capture. This may be due to plastic strains developing in
the sample at higher applied stresses and possibly loading collapse as the sam-
ple becomes more saturated. Still, considering that the Opalinus clay sample
was taken from a different depth than the sample tested in Minardi et al [100],
we believe that the mechanical parameters are generally well calibrated for
Opalinus clay samples.

Swelling pressures

The swelling pressures of clayey rocks are of interest in many applications
of these rocks. To elucidate the evolution of swelling pressures, we simulate
another constant volume swelling test of Opalinus clay. The sample is confined
both axially and laterally with Dirichlet boundary conditions on the top and
radial surfaces, such that its volume is kept constant throughout the swelling
test. The sample is initially at 90% saturation, which corresponds to an initial
suction of 4.5 MPa. Nanopore and micropore water pressures of 0 MPa are
applied on the bottom surface [139]. The pore water pressures on the bottom
surface are applied over approximately one hour, and their variation over time
is presented in Figure 10a.

Figure 10b presents the axial and radial swelling pressures that develop in
the sample during the swelling test. The axial pressures that develop are higher
than the radial pressures, similar to observations of swelling pressures in clays
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Fig. 10. Time evolution of (a) nanopore and micropore water pressures applied on
the bottom surface of the sample and (b) axial and radial swelling pressures for an
Opalinus clay sample during constant volume swelling test.

[6, 77, 118], and can be attributed to structural anisotropy of the Opalinus clay
fabric. After the 0 MPa pore pressures are applied, the axial pressures increase
steadily until a maximum axial swelling pressure of 3.8 MPa. The maximum
swelling pressure is close to the experimental data reported in Favero et al. [49]
of 3.0 MPa and 3.7 MPa for two different samples of Opalinus clay.

On the other hand, the radial pressures first increase gently until around
7 hours, before increasing at a faster rate to a maximum swelling pressure
of 3.6 MPa. We attribute this behavior to the evolution of pore pressures in
the sample, which are presented in Figure 11 at the nodal point represented
by the black square in Figure 2(b). The micropore pressure remains constant
at —4.5 MPa during the application of 0 MPa pore pressures on the sample,
then steadily increases to 0 MPa within approximately 7 hours. In comparison,
the nanopore pressure first decreases to around —7 MPa, before increasing to
0 MPa. The time when the nanopore pressures decrease corresponds to the
change in the slope of the radial swelling pressure curve, and is a result of the
micropores saturating first due to their higher permeability. The micropores
expand which reduces the nanopore porosity and causes the nanopore pressure
to decrease as prescribed by the water retention curve adopted in our model.
Over time, fluid flows into the nanopores and their volume increases as they
saturate, thus increasing the nanopore pressure.

To investigate the effect of using a double-porosity framework, we compare
the swelling pressures against that of a sample of a single-porosity material.
For the single-porosity material, we set the nanopore permeability to 0 m?
and the interface permeability to 4.0x107'% m?, such that the micropore and
nanopore pressures equilibrate almost instantly. All other material properties
are kept constant so that the mechanical properties of both samples are the
same. Figure 12 compares the axial and radial swelling pressures that de-
velop in samples of the two materials during a constant volume swelling test.
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While both samples attain the same maximum swelling pressures, the trend of
swelling pressure evolution differs significantly between the single-porosity and
double-porosity samples. As expected, the single-porosity sample saturates at
a much faster rate than the double-porosity sample and reaches the maximum
swelling pressure within around 8 hours from the start of the test. Further-
more, the rate of swelling is constant in the single-porosity sample throughout
the test, unlike the double-porosity sample where there is a change in the rate
of swelling due to differences in the micropore and nanopore pressures.

Uniaxial swelling tests

We also consider uniaxial swelling tests, in which the sample is prevented from
swelling in the axial direction but is free to swell laterally. A Dirichlet bound-
ary condition is applied on the top surface to prevent any axial displacement.
Pore water pressures of 0 MPa are once again applied on the bottom surface
of the sample.

The axial swelling pressure evolution is presented in Figure 13 for different
bedding plane orientations. The development of swelling pressure is similar
to that of the constant volume swelling test. It increases after 0 MPa pore
pressures are applied until a maximum swelling pressure over a period of
approximately 30 days. The sample with § = 90° has the highest maximum
swelling pressure of around 2.6 MPa, while the sample with § = 0° only
develops 1.0 MPa of maximum swelling pressure. Additionally, the maximum
swelling pressure does not vary linearly with the bedding plane orientation as
the sample with 8 = 45° attains a maximum swelling pressure 2.2 MPa. We
note that the maximum swelling pressures obtained from uniaxial swelling test
simulations are smaller, but within the same magnitude, than those presented
by Zhang et al. [152] for an Opalinus clay sample.

Pore pressure (MPa)

Time (Days)

Fig. 11. Evolution of nanopore and micropore pressures in an Opalinus clay sample
during constant volume swelling test.



Axial swelling st

Double porosity

29

Double porosity ||
Single porosity

10° 10'
Time (Days)

Double porosity |1

Single porosity

10" 10! 107
Time (Days)

10°

(a) (b)
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Fig. 13. Evolution of axial swelling pressures for Opalinus clay samples with differ-
ent bedding plane orientations, 6, during uniaxial swelling tests.

We also investigate the predicted pore pressure distributions in the sample
with § = 45°. Figures 14 and 15 present the pore pressure distributions at
different times in the uniaxial swelling test in the micropores and nanopores,
respectively. We observe the effect of the bedding plane orientation on the
pore pressure distributions in both the micropore and nanopore pressures.
Since the permeability along the bedding plane is larger, the left end of the
sample saturates faster. The effect of the bedding plane orientation is more
noticeable for the micropore pressure distribution, which is a result of higher
permeability anisotropy in the micropores (Figure 8). The micropores also
have a higher permeability than the nanopores, and thus saturate within a
few hours. In comparison, the nanopores take nearly 20 days to saturate.
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Fig. 14. Time evolution of micropore pressure distributions for a cross-section of an
Opalinus clay sample with 45° bedding plane orientation during uniaxial swelling
test: (a) 1 hour, (b) 2.5 hours, (c) 3.5 hours and (d) 5.5 hours.

6 Conclusion

In this study, we have presented a double porosity framework for coupled un-
saturated fluid flow and solid deformation in anisotropic clayey rocks. The gov-
erning equations were derived based on a three-level homogenization scheme
by upscaling the microscopic strains and porosity evolutions. The homoge-
nization scheme, and by extension, the proposed framework, accounts for the
microstructure of clay rocks at the nano, micro, and macroscales. Numerical
simulations of free swelling behavior in Opalinus clay were conducted with
a three-field mixed finite element formulation. Results demonstrate the pro-
posed framework’s ability to capture the time evolution of water content and
anisotropic strain in Opalinus clay. Simulations of confined swelling tests were
also conducted for Opalinus clay and the predicted swelling pressures match
closely to experimental data.

The results of this study highlight the need to incorporate the effects
of microstructure on macroscopic mechanical and hydraulic properties when
simulating multiscale materials such as clayey rocks. The macroscopic elas-
tic parameters can evolve with the degree of saturation, a property which is
rarely accounted for in many unsaturated hydromechanical frameworks. Fur-
thermore, the effect of multiple porosities should be considered when mod-
eling clayey rocks. Our results show that the interaction between pores at



Double porosity 31

t =2 days

t =10 days t =20 days -1.0
(© (d)

Fig. 15. Time evolution of nanopore pressure distributions for a cross-section of an
Opalinus clay sample with 45° bedding plane orientation during uniaxial swelling
test: (a) 2 days, (b) 5 days, (c) 10 days and (d) 20 days.

multiple scales can impact the macroscopic development of pore pressures
and swelling pressures in these rocks. A single porosity framework lacks the
ability to capture this interaction. Further work is underway to incorporate
plasticity [20, 73, 123, 163, 164], viscoplasticity [22, 90, 91], chemical-induced
transport [23, 66], and geometric nonlinearity [128, 129] in the homogeniza-
tion scheme, as well as a homogenization scheme that upscales the micropore
permeability accounting for the microstructure in clayey rocks.

Appendix A. Eigenstrain influence tensor

The expressions of the eigenstrain influence tensor B are presented below [116].
For the general case where each phase of the composite material is associated
with a different Hill’s tensor, B can be written as

Boo :(]I—¢“A“) :A“:]P’a+¢“<A°‘ .A:P)—A° :IP"“) :
Q: ((Chom — ) A% P2 41— A%)

_ _ " (71)

]B%”‘ﬁz—qSBAO‘:A'B:PB+¢B<A“:A:P—A“:P°‘>:

Q: ((chOm—cﬁ):Aﬁ:PﬁJrH—M)
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where

Q=(Chom —Cv):A PV

, A (72)
AY = (I+P7: (C7 — o))~

and NP is the number of phases in the composite material.
This can be simplified for a two-phase material, regardless of microstruc-
tural geometry and phase properties, to

Boo =(T-¢"A") : A°: P

B / (73)

B = — ¢PA*: AP . P

Appendix B. Poroelastic coefficients
Cr, = (Z—n((b"le CHA™  RT™ L BAPT 01 4opl s PB™P 1) (T4a)
Cy = OM (M pprl s HAP B HAPT 01 4 pp1 PBPP 2 1) (T4D)
Sy = ¢M(Sw¢“1 CHAP BT BAPT 1 QWY . KPP . 1) (74c)

m

Sm = Z—n((b”Swl DHA™ mBmm o APT 4 S HB™P 1 1) (74d)
Smm _ Zn ((1 _ ¢u)1 . uAm . m]Bmm . NA"”T + 1 . u@mm) (746)
Surm = M (1 — ¢H)1 : HAP . MB™™ . HA™T 4 1 HBP™) (74f)

Appendix C. Finite element formulation

We formulate a three-field w/pps/pm mixed finite element solution that ac-
commodates for multiscale effects in an unsaturated double porosity medium.
We assume that the ion concentration, 7, is constant with time and thus
all 7-terms drop out of the governing equations. Equal-order interpolation is
adopted for the displacement and pressure fields to reduce the size of the ma-
trix problem, but with a stabilization feature that ensures satisfaction of the
weak inf-sup condition [32]. The mixed-finite element formulation is imple-
mented in Geocentric, a massively parallel finite element code for geomechan-
ics [143] built on the deal.II finite element library [3, 8], p4est mesh handling
library [24], and the Trilinos project [67].

To develop the finite element formulation, we first express the three-field
conservation laws equations (7), (59), and (60) as volume integrals in vari-
ational form with the relevant initial and boundary conditions. Consider a
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problem domain B with external boundary 0B5. The boundary can be de-
composed into non-overlapping essential and natural boundaries on which the
following conditions must be satisfied:

Solid deformation:

_ (75)
n-o=t on 9B

u=u on 0B, }

where @ is the prescribed value of displacement field w on the boundary 018,
and n is the outward unit normal vector to the boundary dB; on which the
surface traction ¢ is prescribed.

Fluid flow in the nanopores/micropores:

pa:ﬁa on aBpa }

(76)
—Ngo gy =Go on 0By,

where o« = m, M for the nanopores and micropores, respectively, n, is the
outward unit normal vector to the boundary 0B, on which the normal fluid
flux g, is prescribed, and p, is the prescribed value of the pore pressure p,
on the boundary 0B,

The variational equation for the balance of linear momentum then takes
the form

/ Ven: (o' — S"ppbrr — pmbm — why + p°iby,) dV
B
~ [n-g-0av+ [ n-taa, (77)
B 0By

where 7 is the weighting function for displacement and V* = (V 4+ V7T)/2 is
the symmetric gradient operator
The balance of mass for fluid in the micropores in variational form reads

/ Sy : VivdV + / @(CMSW +Sympm + SMmpm) dv
B B

1
B Kw B

—/w%MdV= pins dA, (78)
B Puw 0Bgm

where v = @ and ¢ is the weighting function for the pore water pressure in
the micropores.
For the nanopores, the balance of mass variational equation is
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/ €b7n : VS'U dv + / f(cmsw + SmMp]\/I + Svrzrnpm) dv
B B

1
+ /f—meqwmdvf/vaqwmdv
B Kw B

- [emay = | canda, (79)
B pw anrn

where € is the weighting function for the pore water pressure in the nanopores.

We adopt the unconditionally stable and first-order accurate backward
difference scheme to perform time integration of the variational equations.
For the unsaturated micropores, we first insert the water retention law to
express S™ in terms of ps, then time-integrate the pressure. Then, Equation
(78) after time integration can be rewritten as

/ ©SYbyr 1 (Viu — Viu,)dV +/ @Sy (par — parn) AV
B B
+/ Spm(Pm = Pm.n) AV — At/ Far @ dV
B B

At / pSM gy — A / inr dA, (80)
B Pw oB

amM

where Sy is defined as

~ osv
Sv=8Sum +Crv——, (81)
Opm
1
Frulp, Vo) = Vo —o7—Vpu . (82)

and At = t,41 — t,, is the time increment, with subscript n indicating that
the variable is evaluated at time ¢,,.
For the nanopores, we have

/ €¢mbm : (Vsu - vsun) dVv +/ ggm(pM _phf,n) dv
B B

B B

—At/ gfom qy — At/ G dA (83)
B Puw 9Bgn,

where

8511)

gm = Om Cm ’
M+ Opar
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F (€, 96) = VE — g0 (%)
w
Next, we write the finite element vector equations in residual form by
substituting the matrix approximations of the weighting functions n, ¢, &
and their derivatives, into the time-integrated variational equations. For the
balance of linear momentum (77), we write

R, — / BT {0 — S"p"bas — p" b — 7bs + p*lb,} AV
B

f/NT(pgfé)de/ NTtdA, (86)
B OBy

where N is the displacement shape function matrix, B is the strain-displace-
ment matrix, and superscript h in the pressure term indicates a Galerkin
approximation. The braces {-} indicate that the stress terms inside are written
in Voigt notation.

For the balance of fluid mass in the micropores, we have

Rpp = / NTSYby : (Vou — Viul)dv + / NSy — ) dV
B B

+/ NTSum (00, —pﬁl,n)dV—At/ Elqu AV
B B

— At / NTEM gy Ay NGy dA, (87)
B Pw oB

am

and for the nanopores, we have

R;Um = / NTbm : (Vsuh — VSUZ) dVv +/ NTSm(p}]t/[ _p}jd,7L) dv
B B
B B

—At/ N gy~ A NTGndA, (88)
B Pw oB

qm
where

. Vol .
EM:VN—KLfN

. Vph N
E,=VN-—2N
m Kw
and N is a row vector of shape functions interpolating the fluid pressures.
The residual equations defined above are highly nonlinear with respect to
the nodal solid dispacement and fluid pressures in both the micropores and
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nanopores. We thus employ the Newton-Raphson iteration scheme to solve for
the unknown variables, which requires construction of an algorithmic tangent
operator K for use in the linearized system

Kll K12 K13 (S’LL Ru
Ko Koy Koz | ¢ 0py 2 = Ropws ¢ (90)
K3 K3 Kaz| | dp,, Ry,

The submatrices of the tangent operator are presented below. As the sur-
face tension term is small, we neglect its contribution to the tangent operator.

K11:

R .
= | B C°Bd 1
= [ BeBay. (o1)

where C¢ is the elasticity tensor in matrix form.

Ky = OR. :/ BT.ﬁMNdV—/LT/MBT{bM}NdV
aI)M B B (92)
—/rNTgN—i—/NT % v
B B Py
where
_ o{a’}osv Cow 05V _ Op 0SY
o5 ap T o™ T o opy
The last term on the right-hand side can be expressed as
de dl%pw dy A\ R Cw,M , Q <
= -2 4+ "IN - —=—(KVN —-®N). 94
Op s How ( oM ¢m> oM ( ) )
where K = kol /w is the matrix of hydraulic conductivity,
0K 0Sv h
= 359 ap—M(VpM — puwg) - (95)
K-35~ [ B, Nav - [ BT{b,)Nav
oy, Js B
oe (96)
+ / NT dv,
B apm
where dic’)
o
En = , (97)

8p m

and
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