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Abstract. Prophet inequalities and secretary problems have been exten-
sively studied in recent years due to their elegance, connections to online
algorithms, stochastic optimization, and mechanism design problems in
game theoretic settings. Rubinstein and Singla [31] developed a notion
of combinatorial prophet inequalities in order to generalize the standard
prophet inequality setting to combinatorial valuation functions such as
submodular and subadditive functions. For non-negative submodular
functions they demonstrated a constant factor prophet inequality for ma-
troid constraints. Along the way they showed a variant of the correlation
gap for non-negative submodular functions.

In this paper we revisit their notion of correlation gap as well as the
standard notion of correlation gap and prove much tighter and cleaner
bounds. Via these bounds and other insights we obtain substantially
improved constant factor combinatorial prophet inequalities for both
monotone and non-monotone submodular functions over any constraint
that admits an Online Contention Resolution Scheme. In addition to
improved bounds we describe efficient polynomial-time algorithms that
achieve these bounds.

Keywords: combinatorial prophet inequality - submodularity - OCRS.

1 Introduction

Prophet inequalities arose from stochastic optimization and stopping theory in the
70s. In the basic setting there are n independent real-valued random variables
X1,Xo,...,X, with prescribed distributions Dy, ...,D,; they correspond to
values of some items. An online algorithm (or agent) knows the distributions
of the random variables a priori but sees their realizations in an adversarial
order, and has to choose exactly one of them. The algorithm has to make an
irrevocable decision on whether to accept an item or not when it arrives. In the
single item setting the first accepted item stops the process. The algorithm’s
performance is measured with respect to the value of a prophet who gets to see all
the realizations and then picks the variable with the largest value. The expected
value of the prophet is V* = E[max; X;]. An online algorithm is a-competitive if
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its expected value is at least aV*. Krengel and Sucheston [27] showed that 1/2
is the optimal competitive ratio for the single item setting.

There has been substantial recent interest in prophet inequalities in theoretical
computer science, due to their strong connections to online mechanism design
[22,9] (see [23,10] for surveys on Bayesian mechanism design). Subsequent work
explored prophet inequality problems in more general settings. Of particular
interest to us is the setting where multiple variables/items from X, Xo,..., X,
can be chosen such that the chosen items are feasible in some combinatorial
constraint family. Two important examples are choosing & items for some integer
k > 1 [4] and a further generalization where the items chosen are independent in a
matroid® [26]. These generalizations had several motivations including algorithmic
game theory, combinatorial optimization, stochastic optimization, and online
algorithms. We refer the reader to surveys on prophet inequalities by Lucier [28]
and Correa et al. [12] for several pointers to the extensive literature on these
problems and related topics.

Combinatorial Prophet Inequalities: Prophet inequalities were studied with
modular/additive objective functions, meaning that the total value of a subset
S of variables is simply the sum of their individual values. However, more
general combinatorial objective functions have several applications. For these
objectives, the value of a subset of items from N = [n] is specified by a set
function f : 2V — R. Prominent examples are submodular? and subadditive?
set functions, and their special cases. Rubinstein and Singla introduced a model
of combinatorial prophet inequalities [31] which is the main object of study in
this paper. We restrict our attention to submodular objectives which form a rich
class and, following [31], we refer to this as the Submodular Prophet Inequality
(SPI) problem.

The model defined by Rubinstein and Singla is the following generalization of
the standard prophet inequality problem. The input consists of n independent
random variables X7, Xo, ..., X,. Unlike the standard prophet inequality where
X; is a real-valued random variable, in the combinatorial setting, each X; is a
discrete-valued random variable over a finite set ;. Thus D; is a discrete proba-
bility distribution over U;. For technical reasons one assumes that Uy, Us, ..., Uy,
are mutually disjoint. Let ¢ = |J, U;. There is a non-negative submodular func-
tion f : 24 — R, defined over the ground set . As in the standard prophet
inequality setting, the variables arrive in an adversarial order. After seeing the
realization of a variable in the order, the algorithm has to make an irrevocable

1 A constraint system C is downward-closed when for every feasible set A, all B C A
are also feasible. A matroid is a non-empty downward-closed constraint system where
if A, B C N are both feasible and |A| < |B|, there exists an element e € B \ A such
that A U {e} is also feasible. The feasible sets of a matroid are called independent
sets.

2 A real-valued set function f : 2V — R is submodular if and only if f(A)+ f(B) >
F(AUB)+ f(ANB) for all A,B CN.

3 A real-valued set function f : 2V — R is subadditive if f(AU B) < f(A) + f(B) for
all A, B C N. A non-negative submodular function is subadditive.
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decision to accept it or not. Its goal is to maximize the value, f(S), of the selected
set S C U. The input also specifies a downward-closed family of sets Z C 20",
and the set S of chosen variables must belongs to Z. The prophet is allowed
to optimize offline after seeing all the realizations and obtains a value equal to
Elmaxgser f(U;cg{Xi})]. We say that an algorithm achieves a competitive ratio
of a if the expected value of its choice is at least o - E[maxsez f(U;cg{Xi})]-
Observe that the SPI model generalizes the standard prophet inequality with
additive functions and arbitrary downward-closed constraints.

We motivate a scenario for the SPI problem. Suppose we have an online
advertising situation where one sees on each day (or time slot) a customer of
some type drawn from a known distribution. It is natural to assume that customer
types are discrete (or can be approximated by a discrete distribution). The agency
has to irrevocably decide whether to show an ad to the customer when they
arrive, but has budget constraints which dictate that at most k ads can be shown
overall. This corresponds to picking k out of the n random variables. As for the
value of serving the ads, a decreasing marginal utility for customers of the same
type is a natural assumption and this is captured by submodular functions. The
model proposed by [31] allows arbitrary submodular functions over U, which
allows for substantial generality.

Rubinstein and Singla presented an O(1)-competitive algorithm for SPI
under a matroid constraint. The constant they obtained is very large (in the
thousands, although they did not try to optimize it) and they did not consider
or emphasize the computational aspects of the online algorithm. We note that
prophet inequalities in the standard setting of modular/additive objectives are
fairly small. For instance, the well-known result of Kleinberg and Weinberg [26]
showed a bound of 1/2 even for arbitrary matroid constraints, and it is also
known that the bound for a cardinality constraint with k items is (1 — O(1/v/k))
(hence it tends to 1 as k — oo) [4]. Moreover, [31] did not explicitly consider the
case of monotone? submodular functions, and did not generalize the constraint
family beyond a single matroid.

The approach of Rubinstein and Singla uses the standard relaxation and
rounding paradigm and consists of two steps. First, they observe that an upper
bound on the prophet’s value for a given instance of SPI can be obtained by
solving a mathematical programming relaxation with a continuous extension
ft of f called the concave closure® However, solving and rounding fractional
solutions with respect to f* is not feasible for several reasons. Instead, they
obtain a fractional solution z to a different continuous extension of f, known as
the multilinear relazation® F, and then round it online via a rounding scheme
known as an Online Contention Resolution Scheme (OCRS), originally introduced
by Feldman, Svensson and Zenklusen [20]. Informally, an OCRS for a constraint
family is an online rounding scheme for a given polyhedral relaxation of the
constraints that always returns a feasible set S, while providing some guarantees

4 A real-valued set function f is monotone if f(A) < f(B) whenever A C B.
5 For the formal definition of the concave closure see Definition 2.
5 For the formal definition of the multilinear relaxation see Definition 1.
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with regards to the probability that each element is in .S. To obtain a competitive
ratio they relate F(x) to f*(x). The ratio infyejgqjn fi(i(mm)) is known as the
correlation gap of f. An important result in submodular optimization is that the
correlation gap for any monotone submodular function is at least (1 —1/e) [3,8,33].
However, it is known that, for general non-negative submodular functions (which
can be non-monotone) the correlation gap can be arbitrarily small. Rubinstein and
Singla circumvented this issue by using a variant of the standard correlation gap,

showing that infme[o,l]n };“’_f_‘(%) > 1/200, where Fy,x is the multilinear relaxation

of fMAX(S) = mmaxXrcs f(T)

Our goal in this paper is to obtain improved bounds for SPI via a clean
framework that applies to a wide variety of constraints. This question was
explicitly raised by Lucier in his survey on prophet inequalities [28]. Another
motivation, related to the goal of obtaining improved bounds, is to improve
the best-known bounds for the correlation gap, which plays a crucial role in
submodular optimization [11,34].

1.1 Our contributions
In this paper we make two high-level contributions:

1. We consider the correlation gap for non-negative submodular functions. For
both the standard definition and the variant of [31], we obtain substantially
improved bounds.

2. We address and provide improvements to three aspects of the SPI prob-
lem: (i) improved constants for the prophet inequalities for monotone and
non-monotone functions, (ii) a clean black-box reduction to greedy Online
Contention Resolution Schemes that allows one to obtain combinatorial
prophet inequalities for various other constraints beyond a single matroid
constraint and (iii) computational aspects of the prophet inequality that were
not explicitly addressed in [31]. In essence, we answer the open question in
[28] in the affirmative.

We now give a formal statement of our results. We refer the reader to
Section 2.1 for some basic definitions and background on submodular functions,
continuous extensions, the correlation gap and contention resolution schemes.

Correlation gap: For a non-negative submodular function, for any given p € [0, 1],
there is a simple instance with n = 2 where F'(z) < (1—p)f*(z), and this implies
that, as p tends to 1, the correlation gap tends to 0. One way to overcome this is to
restrict attention to settings where p is bounded away from 1. Nevertheless, there
has been little work on precisely quantifying the correlation gap as a function of
this parameter. Our first theorem addresses this.

Theorem 1. Let f: 2V — R>o be a non-negative submodular function and let
x € [0,1]", where n = |N|. Let p = max; x;. Then F(x) > (1—-p)(1—1/e)fT(x).
Given any p € [0,1] there are instances such that F(x) < (1 — e~ (=P) f*(x).
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The upper bound of (1 — p)(1 — 1/e) is optimal when p is close to 0 or when
p is close to 1. The lower bound on the gap that we show, 1 —e~(1~?) agrees
nicely with the extremes, but we do not know whether it is the right bound for
all ranges of p and leave it as an interesting open problem.

As stated earlier, Rubinstein and Singla [31] instead use the correlation gap
of fmax(S) = maxpcs f(T). fmax is monotone, but in general is not submodular,
even when f is. It is shown in [31] that for any non-negative submodular function
[y infzepo1n F}“j’(‘:(:;) > 1/200, where Fiax is the multilinear extension of fyax. For
this variant of the correlation gap, we observe that known results on the Measured
Continuous Greedy (MCG) algorithm [19,2] show that Fax(x) > 1 fT ().

We strengthen this observation by considering the parameter p.

Theorem 2. Let f: 2V — R>o be a non-negative submodular function and let
x € [0,1]™, wheren = |N|. Let p = max; x;. There exists a point y € [0,1]", where
y < @ (coordinate wise), such that F(y) > max{2, (1—p—1(1+In(1-p)))} f*(z).

We obtain the preceding theorem as a corollary of the following.

Theorem 3. Letp € [0,1), f be a non-negative submodular function with multi-
linear extension F' and P be a downward-closed solvable polytope” on N, such
that P C p- [0, 1JN (that is, if z € P then z; < p for all i € N'). Then, the
output of the Measured Continuous Greedy (MCG) algorithm on F and P at time
b € [0,1] is a vector x(b) € b- P such that

b-e ? max,ep f(2), 0<b<ln (ﬁ)

F(x(b) =
(1 —p—e P (1+In(1- p))) ‘maxzep fH(2), In (ﬁ) <b<1.

Theorem 2 on its own already improves the constants obtained by Rubinstein
and Singla in [31] for the SPI problem. Theorems 1 and 3 are even more useful
when p is small and we later that this can indeed be achieved in some cases,
such as the SPI problem, via a reduction to an instance with many “copies” per
element.

Submodular Prophet Inequality: For SPI we follow the high level framework of
[31] via the correlation gap and greedy® Online Contention Resolution Schemes
(OCRSs) [20]. We make two main contributions that lead to significantly improved
constants as well as clarity on the parameters that affect them. Specifically, we
utilize a simple reduction to a new instance of SPI with small p, allowing us
to use Theorems 1 and 3 to improve upon the constant obtained by [31]. Our
second contribution concerns the generalization of the approach of [31] to other
feasibility constraints beyond matroids. The approach of Rubinstein and Singla

7 Informally, a polytope P is solvable if one can efficiently do linear optimization over
it. A formal definition is given in Section 2.

8 The OCRSs that we will need in this paper are greedy OCRSs — for the formal
definition see 6. We will sometimes abuse notation and omit the word greedy.
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relies on the fact that, when the given constraint over A is a matroid, the resulting
constraint over U is still a matroid, and thus the entire constraint admits a greedy
OCRS [20]. However, this does not generalize to other feasibility constraints. To
handle this, we design a modified algorithm that uses a given greedy OCRS for a
constraint family over AV in a black-box fashion and thus works for any constraint
that admits a greedy OCRS.

The competitive ratio that we achieve for a particular constraint family is
dictated by the OCRS available for that family. Because of this, any improvements
to the guarantees of the known OCRSs, as well as any new OCRSs for other
constraint families, immediately generalize and imply improvements to our results.
The approximation quality of the OCRS is governed by two parameters b, ¢ € [0, 1]
via the notion of (b, ¢)-selectability. For matroids there is (b,1 — b)-selectable
OCRS for any b € [0, 1], while there is a (b, e~2?)-OCRS for matching constraints

and a (1 — ﬁ7 1-— exp(%))—OCRS for the special case of a uniform matroid

of rank k; see [20]°.

Theorem 4 (Informal). For the SPI problem with a monotone submodular
function f over a constraint family with a (b, c)-selectable OCRS, there is a
c- (e —&)(1 — e~b)-competitive algorithm for any fized € > 0. For non-negative
submodular functions there is a <-(e~"—e)(1—e~")-competitive algorithm for any
fized € > 0. These competitive ratios can be achieved by an efficient randomized
polynomial time algorithm, assuming value oracle access to f and efficiency of

the corresponding OCRS.

Our results hold in the setting of an almighty adversary who can adaptively
decide the ordering of the variables based on the realization of all variables and
the choices of the algorithm at each step. We note that the competitive ratios we
obtain are explicit and relatively small. We summarize our concrete competitive
ratios for several constraints of interest below. OCRSs for constraints can be
composed nicely (similar to CRSs) and thus our black-box reduction is very
useful.

Feasibility constraint Competitive Ratio
Monotone Submodular‘General Submodular
Uniform matroid of rank k — oo 1/4.3 1/17.2
Matroid 1/7.4 1/30
Matching 1/9.5 1/38
Knapsack 1/17.5 1/70
Intersection of k& matroids 2(1/k) 2(1/k)

Table 1: A summary of our results for several feasibility constraints.

9 For the uniform matroid of rank k the OCRS we claim is not in [20] but it is easy to
derive and was explicitly done in an unpublished senior thesis [25].
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1.2 Other related work

We have referred to recent surveys on prophet inequalities and and related models
[28,12]. An older survey on prophet inequalities from a stopping theory point of
view is due to Hill and Kertz [24]. Secretary problems are closely related to prophet
inequalities. In the classical version, an online algorithm sees n adversarially
chosen values in a random order and has to pick one item irrevocably, aiming to
maximize the probability of picking the highest value. A classical result of Dynkin
[16] shows an optimal competitive ratio of 1/e. A survey on the secretary problem
and variants is due to Dinitz [13]. The work here is connected to submodular
optimization, stochastic optimization, online algorithms, and mechanism design
which have extensive literature. It is infeasible to describe all the related work;
Singla’s thesis [32] touches upon several of these themes and has several pointers.
Contention Resolution Schemes (CRSs) have found many applications since their
introduction [11]; in fact Bayesian mechanism design, posted price mechanisms
[9] and subsequent work by Yan [34], connecting mechanism design with the
correlation gap, played an important role in [11]. Online CRSs were developed [20)]
with applications to Bayesian mechanism design as one of the main motivations
and yield prophet inequalities in the modular case.

Submodular functions and constraints such as cardinality, matroids and others
provide generality and computational tractability. It is possible to consider more
general objective functions such as subadditive and monotone XOS functions,
as well as more complex and general feasibility constraints. In such settings one
can ignore computational considerations and focus on the online competitive
ratio or assume access to a demand oracle (even though a demand oracle may be
NP-Hard in general). We refer to [30,31] for some recent work and pointers. Such
functions have also been considered under the related model of “combinatorial
auctions” [14,15,5], in which a seller wants to sell distinct items to buyers
that have combinatorial valuation functions for the items. The seller wishes to
maximize either the social welfare or the revenue. In this model, Ditting, Feldman,
Kesselheim and Lucier [14] obtained a 2-prophet inequality for submodular
functions, while Diitting, Kesselheim and Lucier [15] obtained a O(loglogm)
prophet inequality for subadditive functions. For the latter, the authors also show
that achieving a constant factor prophet inequality for subadditive valuation
functions is impossible via their techniques and requires a different approach.

Finally, in the setting where the arrival order of the random variables is chosen
uniformly at random, one can obtain improved bounds via the use of Random
Order CRSs, introduced in [2]. We discuss a variant of the SPI problem for this
setting in brief in Section 5 and we refer the reader to a survey by Gupta and
Singla for more information on random order models [21].

Organization: Section 2 introduces our notation and provides background on
submodular functions, constraint systems and contention resolution schemes.
Section 3 describes the relaxation of the prophet’s objective. Section 4 describes
the algorithm and analysis for SPI. We describe some open questions in Section 5.
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The proof of Theorem 1 has been moved to Appendix A since we do not use
it directly for our improvements in the bounds of the SPI problem.

2 Preliminaries

2.1 Background and Definitions

Let A be a finite ground set. A constraint family over N is simply a subset
T C 2V aset S e7is called feasible, while a set S & Z is called infeasible. We
are interested only in downward-closed families of constraints; Z is downward-
closed if and only if A € Z implies that any set B C A is also in Z. Classical
examples of downward-closed families include those induced by a matroid on A
or intersections of several matroids on N, independent sets of graphs, matchings
in graphs and hypergraphs, boolean vectors that satisfy packing constraints of
the form Ax < b for non-negative A, b, among many others. We will use the
terminology (N, Z) to indicate a constraint family.

The maximum weight independent set problem over a constraint system (N, Z)
is the following: given w : N' = R solve maxgez w(S) where w(S) = >, .\ w(e).
Since many of these problems are NP-Hard, a common technique is to use
polyhedral (or more generally convex) relaxations. We say P C [0, 1}N is a
polyhedral relazation of (N,Z) if P is a polyhedron and 1g € P for all S € T
(here 1g is the characteristic vector of S). We say that P is solvable if one can
efficiently do linear optimization over P, that is, given w : N' — R, there is a
polynomial time algorithm that computes maxzep >, w;x;.

A real-valued set function f : {0, 1} — Rsg is called submodular if, for all
A,B C N, it satisfies f(A) + f(B) > f(AU B) + f(AN B). f is monotone if
f(A) < f(B) for all A C B. In the rest of this paper we work with non-negative
normalized functions that satisfy f(0) = 0 and f(A) > 0 for all A C N. We
often equate N with [n] = {1,2,...,n}. We use the terminology S + 4 and S — i
as shorthands for S U {i} and S\ {i} respectively. The following continuous
extensions of submodular functions to [0, 1]V play an important role in our
discussion.

Definition 1 (Multilinear Extension). Let f : {O,l}N — Rxg. For any
x €1[0,1]", let S ~ = denote a random set S that contains each element i € N
independently w.p. x;. The multilinear extension of f is defined as

F@)= E [[($)] =Y S [[=]]0 -

SCN €S ¢S

It should be noted that via the multilinear relaxation, the polyhedral ap-
proach to approximation has been extended successfully to submodular function
maximization [8,11,6].

Definition 2 (Concave Closure). Let f : {0, 1}N — R>g. Moreover, let 1g
denote the characteristic vector of a set S C N of length n = |N|. For any
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x € [0,1]", the concave closure of f is defined as

fH(x) = max Z asf(9S) Z as =1, Z asls =x

N
ac[0,1*™ | gcar SCN SCN

f1(x) can be interpreted as the maximum expected value of f(R) where R
is generated by a distribution whose marginal values are given by x. Since F'(x)
corresponds to the product distribution defined by @, which is a specific distri-
bution, it follows that F(x) < fT(x) for all . The correlation gap, introduced
in the work of Agrawal, Ding, Saberi and Ye [3], provides an inequality in the
opposite direction.

Definition 3 (Correlation Gap). Let f : {0, 1}N — R be a set function
and F, f+ denote its multilinear relazation and concave closure respectively. The
correlation gap of [ is defined as

: F(x)
w0 N [ ()

It is easy to see that the correlation gap of modular/additive functions is 1.
An important result in submodular optimization is that the correlation gap is
at most 1 — 1/e for any monotone submodular function [3,8,33]. However, it is
known that the correlation gap for general non-negative submodular functions
(which can be non-monotone) can be arbitrarily small.

Contention Resolution Schemes: These are rounding schemes introduced in
[11] for submodular function maximization. For the remaining definitions of
this section, R(x) denotes a random subset of N where each i € N appears
independently with probability z;.

Definition 4 (Contention Resolution Scheme). Let b,c € [0,1]. A (b,c¢)-
balanced Contention Resolution Scheme 7 for Pz is a procedure that for every
x € b-Pr and A C N, returns a random set m5(A) C ANsupport(x) and satisfies
the following properties:

1. 7 (A) € T with probability 1, VA C N,z €b- Pz, and
2. for all i € support(x), Prli € mp(R(x))|i € R(x)] >¢, Vx b Pr.

The scheme is said to be monotone if Pr[i € mu(A1)] > Pri € mz(As)] when-
everi € A; C As.

CRSs are offline rounding schemes. Online Contention Resolution Schemes
(OCRS) were introduced by Feldman, Svensson and Zenklusen [20] to handle
online settings such as the SPI problem where the arrival order of the elements
is adversarial.
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Definition 5 (Online Contention Resolution Scheme (OCRS)). Let us
consider the following online selection setting. A point € P is given and let
R(x) be a random subset of active elements. The elements e € N reveal one by
one whether they are active, i.e., e € R(x), and the decision whether to select an
active element is taken irrevocably before the next element is revealed. An Online
Contention Resolution Scheme for P is an online algorithm that selects a subset
I C R(x) such that 17 € P.

Monotonicity of a CRS is important for rounding the multilinear relaxation of
submodular functions [11], although such a condition is not needed for modular
functions. In the online setting, [20] defines the notion of a greedy OCRS which
is helpful in rounding for submodular functions.

Definition 6 (Greedy OCRS). Let P C [0,1]" be a relazation for the feasible
sets F C 2N, A greedy OCRS = for P is an OCRS that for any & € P defines a
downward-closed subfamily of feasible sets Fr » C F, and an element e is selected
when it arrives if, together with the already selected elements, the obtained set is
in Fro. If the choice of Fr o given x is randomized, we talk about a randomized
greedy OCRS; otherwise, we talk about a deterministic greedy OCRS.

For a greedy OCRS, the quality of the approximation guaranteed with respect
to the multilinear relaxation is governed by the notion of (b, ¢)-selectability [20].

Definition 7 ((b, ¢)-selectability). Let b,c € [0,1]. A greedy OCRS for P is
(b, ¢)-selectable if for any x € b- P, we have

PriIU{e} € Frpw VICR(x),IE€Fra]l>c, Veel.

We introduce the following notation, which will be useful in our analysis when
dealing with the input constraints.

Definition 8 (Blowup of a Ground Set). Let N denote a finite set, and N’
denote another finite set, to be defined, with |N| < |N’|. Suppose for each e € N
there is an associated finite non-empty set A. C N’ such that the sets A.,e € N
are mutually disjoint. Let A = {A. | e € N}. We call N = J, ¢y Ae the blowup
of N by A.

Definition 9 (Partition Extension of a Constraint). Let C = (N,Z) be a
downward-closed constraint family over N'. Consider a blowup N' of N induced
by sets A.,e € N. Consider the function g : N' — N where g(e') = e if and only
if ¢ € A.. The partition extension of C, denoted by C', is a constraint family
(N',T') where

W={SCN'|g(S)eT andVe e N, |[Ac.N S| < 1}.

2.2 Useful Lemmas

Below we state two lemmas regarding sampling and submodular functions that
we need.
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Lemma 1 (Lemma 2.2 from [7]). Let f : 2V — Rsq be submodular. Denote
by A(p) a random subset of A where each element appears with probability at
most p (not necessarily independently). Then,

E[f(A(p)] = (1 —p) - F().

Lemma 2 (Lemma 2.2 from [33]). Let g : 2V — Rx be submodular. Denote
by A(p) a random subset of A where each element appears with probability exactly
p (not necessarily independently). Then

Elg(A(p))] = (1 —p) - g(0) +p- g(A).

3 Submodular Prophet Inequality Problem

In the Submodular Prophet Inequality (SPI) problem, we are given n random
variables Xj,..., X, following (known) distributions Dy,...,D,, along with
a constraint C on NV = {1,2,...,n}. The random variables are arranged in
adversarial (worst-case) order. Let U; denote the image (range) of X;, and Z
denote the feasible sets of C.

The online algorithm starts with a set S = () of selected elements and a set
Z = () of selected indices from N. At the i-th time step, it is presented with the
realization e € U; of X;. At that moment, it has to decide irrevocably whether to
include e in S (and hence i in Z) or not, subject to Z remaining feasible in C.
The algorithm is also given a non-negative submodular function f : U — R>,
where U £ |J]_, U;. The algorithm’s objective is to maximize f(S), subject to Z
being feasible in C.

In this model, we are comparing against the almighty adversary who already
knows all realizations and can adaptively change the order in which to reveal the
random variables based on the algorithm’s actions so far and also the random
coins it uses (if the algorithm is randomized). The prophet/adversary will select
the best possible set S* according to the constraints with knowledge of the
realizations. Thus, we compare the expected value of the online algorithm against
the expected value of the prophet, which is

OPT:;I% r%lé\%f({XiMET}) .

Later, we will use an OCRS to round the fractional solution we obtain in this
section. Since f is defined over I but the constraint given is over A/, we cannot
immediately apply an OCRS for rounding. To overcome this issue, we view U
as the blowup of N with respect to {¢/;}.—,. On each step 4, only one element
arrives. Therefore, our input constraint C is equivalent to a new constraint C’ on
U, where we are allowed to pick only one element from each U;. Notice that this
is exactly the partition extension C' = (U,Z") of C.

We also denote X = {X1,Xs,...,X,} and D = {Dy,D»,...,D,}. For an
element e € U; we let D;(e) denote the probability of e being realized; we also
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use the notation D(e) to denote the probability of e € U when we do not need to
specify the part it belongs to. Note that the elements within U; are correlated
and hence we do not have a product distribution on U.

Algorithmic approach: Following the description in Section 1, we design an online
algorithm following the general approach of [31] but with technical differences.
First, we obtain a relaxation of the prophet’s objective. Afterwards, to design
an online algorithm, we obtain an offline fractional point z based on the input,
and round it online using a greedy OCRS and other tools. In this section, we
describe the relaxation of the prophet’s objective and how to obtain an offline
fractional point z. The process of rounding z online using a greedy OCRS is
presented in Section 4.

Before we proceed, we describe a simple but technically important reduction
that allows us to obtain improved bounds.

Observation 5 (Reduction to small probabilities) Let I = (N, U, D, X,
f,C) be an instance of the Submodular Prophet Inequality problem. For every
fized € > 0, there is a reduction of I to another instance I' = (N,U', D', Y, g,C)
of the SPI problem such that that (i) for all e € U', D’'(e) < € and (i) there
exists an a-competitive algorithm for I if and only if there exists an a-competitive
algorithm for I'.

Remark 1. The reduction’s simplicity may make the reader wonder why it is
useful in achieving improved bounds. The reason is a combination of the model
and the power of submodularity. The fact that we can only pick a single element
from each U; allows us to make copies of the elements, and we can use a derived
submodular function to treat the copies as a single element.

We describe the reduction in Appendix B, and sketch its correctness since it
is rather simple and easy to see, though tedious to formally prove. The reduction
to small probabilities allows us to use improved correlation gaps, as well as obtain
better bounds in the rounding algorithm.

3.1 An upper bound on the prophet’s value:

Let P denote a solvable polyhedral relaxation of C. Then one can easily develop
a solvable polyhedral relaxation of C’ as follows:

Zye:xi, ie[n],azE”P}.

ecU;

P = {y e [0, 171Ul

Consider any algorithm, including an offline algorithm, that computes a
feasible output given the realizations of the random variables. For any fixed
algorithm A (deterministic or randomized) we have a probability p(e) for each
e € U appearing in the output of A. Since an element e € U is realized with
probability D(e), e cannot appear in the output of A4 with probability more than
D(e). Moreover, for a given realization, each output of the algorithm is feasible.
Putting these facts together we obtain the following observation.
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Observation 6 Let A be any online or offline algorithm for a given instance of
the problem. Let pa(e) denote the probability that e is in the output of A. Then
the vector p is in the polytope

P = {z e [0,1)! ’ z€P 2. <Dle) e GL{}.
We are now ready to proceed with the relaxation of the prophet’s objective.

Claim. Consider an instance of the Submodular Prophet Inequality problem.
Then

T(z) > OPT.
max f7(z) 20

Proof. Fix an optimal strategy for the prophet and let y* € [0,1]¥| denote the
vector of probabilities of the elements appearing in the output of the prophet’s
strategy. We have y* € P”. By the definition of the concave closure of f, fT(y*)
maximizes the value of f among all distributions with the marginals y* (note
that the distribution that achieves this may not be a feasible strategy for any
algorithm). Therefore, f+(y*) > OPT, which also implies that max,epr f(2) >
OPT.

3.2 Fractional Solution and Correlation Gap

From Claim 3.1, max,epr f7(2z) > OPT. Since OCRSs are designed to relate
the quality of their output to that of the multilinear relaxation, we need to relate
F(z) to f*(z) and hence to OPT. We present two different ways to do this —
via a direct correlation gap and via the Measured Continuous Greedy (MCG)
algorithm — with the second yielding strictly better results than the first.

The direct correlation gap approach The first approach is not computationally
efficient and relies on optimally solving the optimization problem maxcp» fT(2).
Let z* be the optimum solution. We can then use the correlation gap to relate
F(z*) to OPT. For monotone functions we have F(z*) > (1 — 1/e)fT(z*) >
(1 —1/e)OPT. For non-negative functions we can use Theorem 1, the proof of
which, along with all results on the direct correlation gap approach, can be
found in Appendix A. Following the reduction that we described earlier, we
can assume that z} < max, D(e) < ¢ for all e and this implies, via Theorem 1
that F(2*) > (1 —¢e)(1 —1/e)fT(2*) > (1 —¢)(1 — 1/e)OPT. In rounding it is
useful to have a solution z € b-P” for some parameter b € (0,1). One can of
course use z = bz* and in this case, we can use the concavity of f+ to see that
fT(bz*) > bfT(2*), and then apply the correlation gap to bz* to conclude that,
in the monotone case, F\(bz*) > b(1 — 1/e)fT(z*) > b(1 — 1/e)OPT and, in the
non-monotone case, F(bz*) > b(1 —e)(1 —1/e)fT(2*) > b(1 —)(1 — 1/e)OPT.
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The measured continuous greedy approach The second approach is algorithmic and
relies on the Measured Continuous Greedy (MCG) algorithm and its properties.
We state two relevant known results about the algorithm. For these results as
well as Theorem 3, we assume the submodular function f is given via a value
oracle, and that the algorithms are randomized and run in polynomial time and
are correct with high probability.

Lemma 3 (Lemma 4 of [1]). Let f be a monotone submodular function with
multilinear extension F', and let P be a solvable downward-closed polytope. Let
x(b) be solution produced by the Continuous Greedy algorithm on F and P until
time b € (0,1]. Then (i) ©(b) € b-P and (i) F(x(b)) > (1—e"—o(1)) -
maxyep f*(y).

For a general non-negative submodular function, the MCG algorithm achieves
the following bound.

Lemma 4 (Lemma 8.3 of [2]). Let b € [0,1], f be a non-negative submodular
function with multilinear extension F', and let P be a solvable downward-closed
polytope. Then, the solution x(b) € [0,1]" produced by the MCG algorithm satisfies
(i) x(b) € b-P and (i) F(x(b)) > (b-e™" —¢) - maxyep fT(y), for any fized
e>0.

The two preceding lemmas are algorithmic. If P is solvable then the underlying
algorithms can be implemented efficiently. Based on our reduction to small
probabilities it is useful to consider whether the preceding lemmas can take
advantage of this. No advantage is possible in the monotone setting, however,
we show below that one can indeed take advantage of the reduction when f is
non-monotone. We provide a refined analysis of the standard bound of the MCG
algorithm, which depends on a parameter p that quantifies the maximum value
of any coordinate that is feasible in the polytope. For small enough p, Theorem 3
constitutes an improvement over Lemma 4, which comprises the main result of
this section. Notice that Theorem 2 follows from Theorem 3 by setting b = 1.

Theorem 3. Let p € [0,1), f be a non-negative submodular function with multi-
linear extension F and P be a downward-closed solvable polytope'® on N, such
that P C p-[0,1)N (that is, if z € P then z; < p for all i € N). Then, the
output of the Measured Continuous Greedy (MCG) algorithm on F and P at time
b € [0,1] is a vector x(b) € b- P such that

\ /\

b-e ? max.ep fT(2), 0=5b (1 )
F(x(b)) > (1_p—e_b(1+ln(l—p))) maxzep fH( ( ) <b<

10 Tnformally, a polytope P is solvable if one can efficiently do linear optimization over
it. A formal definition is given in Section 2.
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Remark 2. Notice that, for the SPI problem, due to our reduction, we can assume
that all vectors z € P” have z; < &’ for all i € N, for any fixed constant &’ > 0.

Therefore, for any fixed constant € > 0, there exists an ¢’ such that

F(z(b)>(1-e"—¢)- Iznea%(f+(z),

where x(b) € b- P” is the output of the MCG algorithm at time b.

Before we proceed with the proof of Theorem 3, we briefly sketch the idea im-
plicit in prior work [19,2] that implies Fipax(z) > 1 f*(x). Consider a downward-
closed polytope P defined by all points in [0, 1]™ dominated by the given point x:
P={yecl0,1]"|V1<i<n, y; <x;}. Suppose we run the MCG algorithm on
P. From Lemma 8.3 of [2] for b = 1, for any € > 0, the algorithm can be used to
find a point z. € P such that F(z.) > (1 —¢) maxyep fT(y) > (L —¢) fF ().
Since such a point z. € P exists for any € > 0, by the compactness of P and
the continuity of F' and f7, it follows that there exists a point y € P such that
F(y) > 1. f*(x). Also notice that & € P, and thus

Frax(z) = Iznea%{ F(z) > F(y) >

[

().

To prove Theorem 3, which generalizes Lemma 8.3 in [2], we use the same proof
outline as above, but in the algorithm’s analysis, we take advantage of the fact
that [|zfle < p.

Proof of Theorem 3. Let & = argmax,p f1(2). Recall that there exists a €
[0, 1]2N such that

H&) = Z asf(S), Z as =1 and Z aslg = &.
SCN SCN SCN

From the analysis of Measured Continuous Greedy and the fact that x(b) € P,
we know that, at time b, for all i € A we have

z;(b) < min{l —e°, p}.

Let « = x(b), and, for S C N, consider a line of direction dg = (xV 1g) —x =
(1g — x) V 0. Notice that 0 < dg < 1g for all S C N. From Section 2.3 of [8], it
follows that

ds - VF(x)> F(zxV1lg) — F(x).

Since f may not be monotone, VF(x) may have negative entries. Let d% be
a vector obtained from dg as follows: (d%), = (ds), if VF(x), > 0, otherwise
(dg); = 0. We have 0 < d < dg and,

ds - VF(x) > max{0,ds - VF(x)} > max{0, F(z V 1g) — F(x)}.
Since x(b); < min{l — e~?,p} for all i € N, by Lemma IIL5 of [19], we have

F(xzV1g) > (1—min{l — e_b,p}) f(9).
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Therefore,

ds - VF(z) = max{0, (1 - p) f(S) — F(x),e " £(S) — F(a)}
> max{1 - p, e} (S) - F(a).

Next, let d = 3" gy sdls. Since dg < 1g and di < dg, we have ds < Lg, and
thus
d= Z Ozsdfg < Z aglg = .
SCN SCN

Since P is downward-closed and & € P, we know that d € P. Therefore, from
the above and the fact that vmax = argmax,cp v - VF(x), we have

dF(z(b)) _
T = 'vmax(w) : VF(;C)
>dg - VF(z)
= Z a3~dg-VF(w)
SCN
> Z ag (max{1 —p,e "}f(S) - F(z))
SCN
> max{1 —p,e_b} Z asf(S) — Z asF(x)
SCN SCN

> max{1l —p,e *}fH (&) — F(x).

We proceed to solve the above differential inequality. For brevity, let y = F(x).
Then,

dy4ydb > f* (&) max{1 —p,e ’} db
e’ dy +ye® db > fT (&) max{(1 — p)e’,1} db
d (ye®) > (&) max{(1 — p)e’, 1} db

b
y > e_bf+(:i)/0 max{(1 —p)e*, 1} du. (1)

while for In (1 ) <
—p

Notice that, for 0 < u <In (ﬁ), we have (1 —p)e* <1,
%) ) becomes

u <1, we have 1 < (1 — p)e*. Therefore, for b < In <

b
Ze—bﬁ(f:)/ Ldu=b-e"- f+(2),
0

whereas for b > In (ﬁ), (1) becomes

ln(ﬁ) b
et (& U —ple*du
y> f()(/o 1d +/1n(11p>“ ») d)
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=(l-p—e’(1+(1-p)) (&)
We conclude that
b-e ? max,ep f1(2), 0<b<In (ﬁ)
(1-p—e?(1+In(l-p))) max.ep fF(2), In (ﬁ) <b< 1.

We summarize the results via both methods below. We observe that for both
monotone and non-monotone functions the bounds are best when p — 0, which
we can ensure via the reduction. Once we make this assumption, the bounds
provided by the correlation gap approach are essentially (1 — 1/¢) when b =1
which is optimal. However, these bounds are matched by the Continuous Greedy
approach. When b < 1, which will be the case when applying the rounding
schemes, the bound in Lemma 3 and our new refined bound in Theorem 3 are
superior and have the further advantage of being computable in polynomial time.

F(a(b) =

IN

4 Rounding the fractional solution

In the preceding section we described ways to obtain a vector z € b- P” for
some b € [0,1] such that F(z) > « - OPT for various constants o depending
on the approach. In this section we show how to round z in an online fashion.
We follow the high-level approach of [31] but refine it in several ways. We will
use a greedy OCRS for C via the relaxation P as a black box. Recall that our
rounding needs to produce a feasible set in C’ with ground set I/, while the OCRS
is for the constraint on the variables of A/. Moreover the distribution D is not a
product distribution on U. These are the technical challenges that need to be
overcome in the algorithm and analysis. The quality of the output will depend
on the properties of the OCRS for P. We assume that the greedy OCRS for P
is (b, c)-selectable, where ¢ is some function of b. This depends on the specific
constraint family C and the polyhedral relaxation P. At the end of the section,
we use known results to derive concrete competitive ratios for several constraint
families of interest. We note that z € P”, which also implies that z € P’. For
rounding purposes we only work with P’ and P; P” is only necessary to obtain
an upper bound on OPT.

We rely on the certain parts of the analysis of OCRS for submodular function
maximization from [20]. In the following, we will use 7 to denote the mapping
function for the OCRS over the ground set N and the polytope P. Technically
the mapping 7 is a function of & € P and should be written as 7, but we omit x
for notational simplicity. We also note that = can be randomized. An important
definition from [20] in the analysis of OCRSs is the characteristic CRS of a greedy
OCRS.

Definition 10 (Characteristic CRS of a greedy OCRS). The characteristic
CRS 7 of a greedy OCRS 7 for a polytope P is a CRS for the same polytope P.
It is defined for an input z € P and a set ACN byr(A)={e€ A | TU{e} €
Fraz, VI C A, I€E Fro}. Notice that, if w is randomized, then T is randomized
as well.
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We will also need the following known results from [20].

Observation 7 (Observation 3.3 of [20]) For every set A C N and a char-
acteristic CRS 7 of a greedy OCRS =, the set 7(A) is always a subset of the
elements selected by w when the active elements are the elements of A.

Lemma 5 (Lemma 3.4 of [20]). The characteristic CRS T of a (b, ¢)-selectable
greedy OCRS m is (b, ¢)-balanced and monotone.

For any S C U, we define S| C N to be the projection of S onto N, i.e.
S, ={ieN|SNnU; #0}.

Also, for a greedy OCRS 7, we denote the characteristic CRS of 7 by 7. We
now define a CRS 7’ for P’ that we will need for our analysis later on. We define
7’ using the characteristic CRS 7 of 7 as follows. For any set S C U,

7'(S) = U (SNi;).
1€m(Sy)
|SnLd;|=1

Intuitively, the characteristic CRS 7 of a greedy OCRS 7 returns, on input
A C N the set of all elements in A that are in 7(A) regardless of the arrival
order chosen by the adversary. Given a set S C U, 7/(5) is equal to the union
of at most one element from each U;, for all such ¢ that are in the projection
S, of S and are selected by 7 on input S|. The next lemma relates the balance
guarantee provided by 7’ given a selectability guarantee on 7.

Lemma 6. For any (b, ¢)-selectable greedy OCRS m for P and z € P’, the CRS
' is monotone and (b, c - y)-balanced, where v = min;en [[.y, (1 — ze)-

Proof. First, notice that 7’ is a CRS, since 7/(S) C S for all S C U. This follows
immediately from the definition of 7’ as SNU; C S for all i e N, S C U.

Next, we show that 7’ is monotone. Fix an element e € S; C Sy C U, and an
instantiation of Fr 4 (this is relevant if the OCRS is randomized). Let e € U; for
some i € N. Suppose e € 7'(S2). This implies that |SzN4;| = 1 and since S; C So
and e € S1, we have |S; NU;| = 1. Furthermore, we know that i € 7(S2). Since
S1 C Sy, it follows that 1) C Sa;. By Lemma 5, we know that 7 is monotone,
and thus, since i € 7(Sz,), it follows that i € 7(S1). Therefore, we know that
e € ©'(S1). Since e € 7'(S2) implies that e € 7/(S7), unconditioning over the
instantiation of Fy 5 yields

Pre € 7'(S1)] > Prle € #’(S2)].

We now show that 7’ is (b, ¢ - )-balanced, for v = min;en [[.qpy, (1 — 2e) It
suffices to show that, for any e € U

!/
>c-n.
SN%I‘(@[GG?T(S)|6€S]_C v
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Notice that, for any realization S of R(z), e € 7/(S) if and only if SNU; = {e}
and ¢ € 7(S}). Thus,

Pr [een(S)|eeS]= Pr [SnU;={e}Nier(S))]|eell]

S~R(z) S~R(2)
= SNI;r(Z) [SNU; ={e} |ecS]
-SNl?%r(z) [iem(S)|SNU; ={e},ec ]
= SNP;(Z) [SNU; ={e}|ee S|
: Sler(z) [i e (S| SnU; ={e}], (2)

where the last equality follows from the fact that, if SNU; = {e}, then e € S.
We lower bound each probability in (2) separately, starting from

P i — == - <e’ > — <e! 2 .
SNRr(z)[SﬁU {e}leeS] I[I a-z)=]] 0=2)>7 @)
e'F#e,e’ €U; e’ eU;
Also, notice that 7 is a CRS over N and does not depend on which S NY;
led to ¢ € S|. Therefore,

PI‘[iEﬁ(Si)liESi] :Pr[i Eﬁ"SﬂZ/[i:T]
for all T C U; such that T # 0. Specifically, for T = {e},
Priiem|SNU; ={e}] =Prlien(S))|ic S >c (4)

where the last inequality follows from the fact that fact that 7 is (b, ¢)-balanced,
by Lemma 5.
Combining (2), (3) and (4), we obtain
P en'(S)]ee S| >c-n.

JPrfeem(S)ces)zen
Remark 3. Notice that via Observation 5, we can assume without loss of generality
that, for any fixed ¢’ > 0, z. < &’ for all e € U. By choosing ¢’ sufficiently small,
for any fixed £ > 0 we have

s ; —Ze — i —ecu; Fe ) _ —b

T <1—Ze>2£23&(H ‘ ) s (T ez e e
eceU; eeU;

where the last inequality follows from the fact that z € b-P’. Thus, ¢-v >

c-(e7® —¢), and we obtain the following as corollary: For any (b, ¢)-selectable

greedy OCRS = for P and fixed € > 0, 7’ defined earlier is a (b,c (e‘b — 5))—

balanced monotone CRS for P’.

Now we are ready to describe our online algorithm. We describe and analyze
the algorithms for monotone and non-monotone cases separately, since there are
technical differences. The algorithms are similar to the one in [31], however, the
main technical difference is that we use the OCRS for A as a black box; in [31]
the authors use an OCRS over U since they work in the special case of matroids.
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4.1 Monotone Non-Negative Submodular Functions

We assume we have already computed a vector z € b - P” for some b € [0,1]
such that F'(z) > a - OPT for some a. Note that the adversary is almighty and
can alter the order in which it feeds the variables to the algorithm based on
knowledge of the full realizations of the variables and the actions of the algorithm
so far.

Let z; denote the product distribution on U; defined by marginals z;(e), e € U;.
We write R ~ z; to denote a random set R C U; realized according to this
product distribution, and we denote z;(e) by z. when i is clear from context or
irrelevant. Furthermore, let @ € [0, 1]™ be the vector where x; = Prr.., [R # 0] =
I —Tlecy, (1 —z), for all i € N. We assume that « is the input vector to our
OCRS 7, for P and its characteristic CRS 7. To simplify our notation, we
denote 7, and 7, by 7 and 7, respectively.

ALGORITHM 1: Algorithm for Monotone Non-Negative Submodular Functions

MONOTONE ROUNDING(U, f, D,C,, z)
Tare =0

for h <+ 1 ton do

Let X; be variable that arrives on step h
Let e € U; be the realization of X;

With probability M%[(}:):{e}], set T; + {e}
Otherwise, set T; to be 'a random subset R of U;, drawn according to z;,
conditioned on |R| # 1

if T; # 0 then

Feed i to OCRS = for P

if 7 accepts i and T; = {e} then

| Tavg < Tarc U {e}
end

end

end
Return TALG

The online algorithm on the h-th step receives a random variable X; decided
by the almighty adversary, and once X; is received the algorithm also sees the
realization e € U; of X; according to the distribution D;. The online algorithm
generates a random set T; C U; after seeing the realization e. The idea is
that if one does not see the realization e of X;, the distribution of T; appears
identical to the product distribution generated by z;. Note that, for S C U,

Prrz,[R=S] = [[.cq 2 HeEZ/{\S (1—2).
Lemma 7. For anyi € N and S C U;,

Pr[T; =S]= Pr [R=25].

~zZ;
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Proof. Let & be the event that e € U; is the realization of X;. Note that
Pr[€.] = D;i(e). Consider S C U; such that |S| # 1. We see from the algorithm’s
description that

B B Prr [R(zi) = {e}] Prr[R(z;) = 9]
Pt = 5|2 = (1= TSI T

Summing up over all realizations of X;, we have that, for any S such that |S| # 1,

Pr(T; = S]= Y Di(e)Pr[Ti = 5|&]

eclU;

Y po (1 PrrlRE) = )y PrlR(z) =
‘ZD“(l ) 1—PrR[|R< 51

1]
__Prr[R(z)=5] Di(e) (1 _ Prg[R ) {e}] )

5]

ecU;
_ Prg[R(z) =S . VIR (=) = {e
- 1-Prp[|R(z:)]=1] (eeul Di(e e; P i) =1 H)
__Prr[R(z) =S e
1= Prp (R (z)|=1] (1 eeui%[ <1)_{}1>

__Prr[R(z) =S5
“ TP lRGE) =T (- EIRE) = 1)
=Dbr [R(z)=S].

Next, consider any set S with |S| = 1 and, without loss of generality, assume
S = {e} for some e € U;. It can be seen from the algorithm description that
T; = {e} if and only if e is the realization of X; and the algorithm succeeds in

Line 5 in setting T; = {e} which happens with probability MR%{@:{Q}]. Hence
PI‘ ~zZ; R =4e
PilTy = ()] = Dite) T pr R = (),

as desired.

We now analyze the expected value of f(Targ) relying on the CRS 7’ that
we set up (this is inspired by the use of characteristic CRS in [20]).

Lemma 8. Given a (b, c)-selectable greedy OCRS w for P, for any z € b-P”
and fixed € > 0, Algorithm 1 returns a set Targ CU such that

E[f(Tarc)] = c(e? —¢) - F(z).

Proof. 1t is easy to see from the algorithm’s description that, for any X;, only
the actual realization of X; can be potentially chosen to be added to Tarc.
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Furthermore, the variables chosen by the algorithm are feasible in C, since this is
ensured by the OCRS.

Let T; be the random set generated by the online algorithm for variable
X;. We see that T; is independent of T for i # i/, due to independence of the
realization of the random variables X1,..., X, and the independence of the coins
used in the algorithm across all steps in A/. From Lemma 7, the distribution of
T; is according to the product distribution R ~ z; over U;. Let Q = U?:l T;. It
follows that @ is a random set drawn from the product distribution induced by
z over U. Consider the distribution of the set Q) € N. Because of the product
distribution of @ it can be see that the distribution of @, is a product distribution
on N where ¢ € N appears in Q| with probability z; = 1 — [Tecy, (1 —2¢) <b
since z € b - P”. Note that the algorithm feeds @, to the OCRS 7 which is
(b, c)-selectable. Let 7 be the characteristic CRS of =.

Fix a realization S of @, along with an instantiation of Fi .. Notice e €
TaLc NUY; if and only if |S NU;| = {e} and ¢ € 7(S). In fact,

Tarc = |J (SN,

iem(Sy)
|[SNU;|=1

by the description of Algorithm 1. By Observation 7, we have 7(A) C w(A) for
any A C N, and thus 7/(S) C Targ. Therefore, by the monotonicity of f, we
have f (Tarc) > f (7'(S)), and by unconditioning

E[f (Tarc)] = E[f (7'(Q))]-

Finally, by Lemma 6 and Remark 3, we have that for any z € b-P” and any
fixed € > 0,

E[f (7'(Q))] 2 ¢ (e —¢) - F(2),

which yields
E[f (Tara)] > c (e’ —¢) - F(z).

We are now ready for the main theorem of this section, which follows from
Lemmas 8 and 3, and Claim 3.1.

Theorem 8. Let (N, D,C, f) be an instance of the Submodular Prophet Inequal-
ity model and let OPT denote the prophet’s value. Given a (b, c)-selectable greedy
OCRS 7 for P, for a non-negative monotone submodular function f, z € b-P"
and fized € > 0, Algorithm 1 returns a set Targ such that

Elf(Tarc)] > c(e?—¢) (1—e") - OPT.

Next, we provide concrete results for several constraints, given an OCRS
for these constraints. First, we summarize known greedy OCRSs for various
constraints of interest below.

Lemma 9 (Theorem 1.1 from [20]). There exist:
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— For every b € [0,1], a (b,1 — b)-selectable deterministic greedy OCRS for
matroid polytopes.

— For every b € [0,1], a (b, e~2%)-selectable randomized greedy OCRS for match-
ing polytopes.

— For every b € [0, 3], a (b, 3=22)-selectable randomized greedy OCRS for the
natural relazation of a knapsack constraint.

By combining Lemma 9 with Theorem 8, we obtain the following corollary.

Corollary 1. Let (N, D,C, f) be an instance of the Submodular Prophet Inequal-
ity model and let OPT denote the prophet’s value. For a non-negative monotone
submodular function f and any fizred € > 0, Algorithm 1 returns a set Targ such
that

EF(Taie) 2 (1 =) (7 =2) (1= ™) - OPT. b e (0.1
if C is a matroid constraint
IET[f(TALg)] >e (e*b —e)(1—e?)-0OPT, Vb € [0,1],
X,
if C is a matching constraint
E [f(Taze)] > -2 (e —¢) (1— e ") - OPT we [0,
X, T L&l =9 2% ’ "2

if C is a knapsack constraint

where T = {T",...,T"} denotes the set of random sets Algorithm 1 generates.

4.2 Non-Negative Submodular Functions

Below we describe the algorithm for non-negative functions. It is very similar to
the monotone case except for a minor change in accepting an element e; in the
final step, the algorithm tosses an additional random coin and accepts e with
probability 1/2 (see Line 10 in the algorithm). This is inspired by the similar
idea in [20] in handling non-monotone functions.

Notice that Lemmas 6 and 7 still hold, as they do not depend on the monotonic-
ity of f. We present the following analogue of Lemma 8 for general submodular
functions. The proof of the next lemma relies on an argument similar to that in
[20].

Lemma 10. Given a (b, c)-selectable greedy OCRS w for P, for any z € b- P”
and fixed € > 0, Algorithm 2 returns a set Tapg C U such that

c (eib — E)

E[f(Tare)l > 1

- F(z).

Proof. At every step i, Algorithm 2 draws a random set T; according to the
product distribution on U/; with probabilities z;, by Lemma 7. Let Q = Ui€ v T
Since the realizations between the steps are independent, () is a random set
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ALGORITHM 2: Algorithm for General Non-Negative Submodular Functions

GENERAL RounbpING (U, f, D,C, 7, z)
Tarc =10
for h <+ 1 ton do
Let X; be variable that arrives on step h
Let e € U; be the realization of X;
With probability 13”?%7[(1:)_{6}] et T; + {e}
Otherwise, set T; to be a random subset R of U;, drawn according to z;,
conditioned on |R| # 1
if T; # () then
Feed i to OCRS = for P
if 7 accepts i and T; = {e} then
‘ With probability %7 TarLa < Tarc U {e}
end

end
end
Return Tara

that follows the product distribution on U with probabilities z. Fix a realization
S of @ and an instantiation of F .. Notice that e € Tarc NUY; if and only if
|SNU;| =1, € w(S)) and the coin toss of Line 10 succeeds. In fact, if we denote

W= J (Snu),

ien(Sy)

|SnU; | =1
we have that E[f(Tarc)] = E[f(W(1/2))], by the description of Algorithm 2.
By Observation 7, we have 7(A) C w(A) for any A C N, and thus 7'(S) C W.
For ease of notation, we denote 7'(S) by L. For our fixed choice of S and
Frz, L is deterministic. Therefore, we can think of W (1/2) as obtained by first
calculating a set L(1/2) in which every element of L appears with probability
1/2 independently, and then adding to it a random set A C U \ L. The almighty
prophet can control the order in which the elements arrive, and thus can make
the distribution of A depend on L(1/2). However, A is guaranteed to contain
every element with probability at most 1/2, for every given realization of L(1/2).
Thus,

E[f(W(1/2))| S, Frz]l = E[f(L(1/2) U A) | S, Fr 2]
=Y Pr[L(1/2) = B| S, Fral - E[f(BUA)|S, Fral

BCL
> Z Pr[L(1/2) = B|S, Fr ) - E[f(B)gs,fﬁ,w}
BCL
_ E[f(L(1/2) | S, Fral
2
_Ef(D) ]S, Fral

4 )
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where the first inequality follows from Lemma 1 since the function hp(T) =
h(BUT) is non-negative and submodular for all B C U, and the second inequality
follows from Lemma 2. Taking an expectation over all possible realizations of S
and Fr », we obtain

EUOVO/2) = B [EFOV(/2) |8 Frall > g [ELE5 Pl
_E(1)
4

Finally, by Lemma 6 and Remark 3, we have that for any z € b-P” and any
fixed € > 0,

E [f(L)]

4 4

which implies

E[f(Tare)] = E[f(W(1/2))] =

We are now ready to proceed with the main result for general submodular
functions, which follows from Lemma 10, Theorem 3, and Claim 3.1.

Theorem 9. Let (N, D,C, f) be an instance of the Submodular Prophet Inequal-
ity model and let OPT denote the prophet’s value. Given a (b, c)-selectable greedy
OCRS w for P, for a non-negative submodular function f, z € b-P” and fized
e > 0, Algorithm 2 returns a set Targ such that

c(eb -
E[f(Tarc)] = % -(1-e?-¢)-OPT.

By combining Lemma 9 with Theorem 9, we obtain the following corollary.

Corollary 2. Let (N, D,C, f) be an instance of the Submodular Prophet Inequal-
ity model and let OPT denote the prophet’s value. For a non-negative submodular
function f and any fixed € > 0, Algorithm 2 returns a set Tarq such that

(1=b) (e —¢)

Elf(TaLc)] > 1 (1—eb—¢)-OPT, vb € [0,1],
if C is a matroid constraint
—2b (,—b _
E[f(Tarc)] > < (Z ) (1—e—<).0PT. Wb € [0,1],
if C is a matching constraint
1—2b) (e®— 1
]E[f(TALG)] Z ( 8)_(68[) E) . (1 - efb — 6) . OPT, Vb S |:0, 2:| y

if C is a knapsack constraint

where T = {T*,...,T"} denotes the set of random sets Algorithm 1 generates.
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5 Conclusion

We presented a general framework for submodular prophet inequalities in the
model of [31] via greedy Online Contention Resolution Schemes and correlation
gaps. The framework yields substantially improved constant factor competitive
ratios for both monotone and general submodular functions, and can be im-
plemented in polynomial time for many classes of interesting constraints. The
framework resolves the open question posed in [28] regarding the model of [31].

Along the way, we strengthened the notion of correlation gap for non-negative
submodular functions introduced in [31], and provided a fine-grained variant
of the standard correlation gap. For both cases, our bounds are cleaner and
tighter. Moreover, we presented a refined analysis of the Measured Continuous
Greedy algorithm for polytopes with small coordinates and general non-negative
submodular functions, showing that, for these cases, it yields a bound that
matches the bound of Continuous Greedy for the monotone case.

An interesting open question is whether our fine-grained correlation gap for
general non-negative submodular functions can be made tight. It is tempting to
conjecture that the lower bound on the gap shown in Theorem 11 is tight for all
values of p. We leave this as an interesting open problem to resolve.

A natural question for the prophet inequality setting is whether one can
obtain better prophet inequalities when the arrival order of the random variables
is chosen uniformly at random or even chosen by the algorithm. In [18], the
authors introduce the prophet secretary model, combining the best of both the
secretary and prophet inequality worlds. There has been much work on this
model and we refer to [12,17] for several interesting results in this and related
models. We can consider the Submodular Prophet Secretary (SPS) problem as
a generalization of the standard prophet secretary problem. We note that one
can obtain improved guarantees in the SPS problem by using a Random Order
CRS instead of an OCRS, since our results utilize the given OCRS in a black-box
manner.

In subsequent work, Qiu and Singla [29] obtained improved bounds for SPI via
the use of submodular dominance. In particular, they obtain an optimal 1 — 1/e
bound for uniform matroids in the monotone case. Obtaining optimal SPIs under
different constraints remains an interesting open problem.

Acknowledgements The authors thank Sahil Singla for clarifications on [31],
and Jan Vondrak for helpful discussions.
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A Correlation Gap for Non-Negative Submodular
Functions

In this section we prove Theorems 1 and 3 on the correlation gap for non-negative
submodular functions.

The correlation gap for monotone functions [8,33] used a continuous time
argument by relating F(zx) and f¥(x) via another continuous extension f* and
this was the same approach followed in [31]. We take a different approach. For
the exact correlation gap in Theorem 1 we build on a proof for the monotone
case from [11] which is less well-known; we adapt their proof for the non-negative
case via the parameter p. The proof of Theorem 1 is qualitatively different from
that of Theorem 3.

We split the proof into two parts, the upper bound and the lower bound, state
them separately and give their proof. Before we begin, we present two lemmas
that are useful in our analysis.

Lemma 11 (Lemma 4.3 from [33]). Let f : 2V — Rsq be a submodular
function, let A1, As, ..., Ax C N be k (not necessarily disjoint) sets and let
A1(p1), Aa(p2), ..., Ak(pr) their independently sampled subsets, where each ele-
ment of A; appears in A;(p;) with probability p;, for all 1 <i < k. Then

E [f <Z-_01Ai(pi)>] >SS IIwIIa-rr U4

IC[k] \jel je¢I jer
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Lemma 12. Let a1 > -+ > an € Ry, and ¢1,...,¢m € [0,1] such that
S ar =1. Then

m k—1 m
Yoaar [T1-q) > (1 - i) DIILE
k=1 j=1 j=1

Proof. Since the above inequality is linear in the parameters a;, it suffices to
prove it for the special case a; =as =---=a, =1l and a¢p41 =+ =a, =0. (A
general decreasing sequence of a; can be obtained as a positive linear combination
of such special cases). Hence, it remains to prove

r k—

;;qkjli(l_qj) > (1—i> -jz:qj.

We start from the left-hand side, which we expand to

r k—1 T r "
Yoa[0-g)=1-]]0-a)>1- (1—iZQk> )
k=1 j=1 k=1 k=1

where the inequality follows from the arithmetic-geometric mean inequality.
Finally, we use the concavity of ¢, (z) :=1— (1 — %)T7 and the fact that ¢,.(0) = 0,

to get T
6r(@) = 6,(1) -2 = (1_ (1_i) ) .

for z € [0, 1]. Since (1 — (1 - %)r) > (1 — %) for all r, we get

1
or(z) > (1 - ) -z
e
which implies that

() (B0

A.1 Upper bound

The proof of this upper bound is inspired by the proof in [11] for the monotone
case, which is different from the earlier one in [33].

Theorem 10. Let f: 2V — R>q be a non-negative submodular function, where
n=|N|. Let x € [0,1]", such that x < p- 1 for some p € [0,1]. Then,

F@) = (1-p) (1= 1) (@)
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Proof. Consider a basic feasible solution (g;, Aj)j efm) 0 the linear program that
defines f*(z). In other words, f*(x) = >°7", ¢;f(A;), where 37" ¢; = 1,
Zj:ieAJ qj = ;, for all ¢, and g; > 0 for all j. Notice that, since we chose a basic
feasible solution and the LP that defines f*(x) has only n + 1 constraints, apart
from the non-negativity constraints, we have m < n + 1.

Next, consider the following process to generate a subset of elements. For
each j € [m]| sample independently each element of A; with probability ¢;. An
element ¢ € AV is not selected with probability equal to ] juicA, (1 —g,), thus,
i is selected with probability equal to 1 —J],;c 4, (1 — ¢;). Notice that we can
assume without loss of generality that g; # 1 for all j; if ¢; = 1 for some j then
that implies that x; = 1 for every element i € A;, and ¢; = 0 for all j’ # j,
which then leads us to F'(z) = f(A;) = fT(x).

However, we want to make each element i to be selected with probability
exactly equal to x; = Zj:ieAj gj. To do this, we simply need to sample again
each element ¢ with probability r;, where

1-1=r) J] G=a)= > - (5)

jH€A; jHEA;

It is easy to see that 0 < r; < x; < p.

Consider the sampling scheme described above, and let R denote a ran-
dom set created via this sampling scheme. Notice that in our sampling scheme,
each element ¢ is chosen independently with probability x;, which implies that
Erlf(R)] = F(a).

We consider m +n sets By, Ba, ..., Bjntpn where By = Aj for 1 < j <m, and
Bpyi = {i} for 1 <i <n. Let J denote a random subset of [m + n| obtained
by including each j € {1,2,...,m} independently with probability ¢; and each
i€ {m+1,m+2,...,m+n} independently with probability r;. Also, let R" C N
denote a random set where

R =] B

jeJ
The next claim is based on the submodularity of f.
Claim.
F(x) > E@[f(R')] :

Proof. Since F'(x) = Er[f(R)], it suffices to show that

EL/(R)] > ELf(R)].
J

We apply Lemma 11 for k = m+n, A; = B for 1 < j < m+n, p; = g; for
1 <j<m,and p,,4; =r; for 1 <i < n. Notice that

f (Q Bz—(pi)ﬂ ;

E[f(R)]=E
R
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while
E];[f(R/)] => \IIwIlC-2nr{UBi| |
ICk] \jel g1 jer

and thus, by Lemma 11, we get

E[/(B) 2 E/(R)].
J

Claim.

B2 (1-p) (1-1) (@)

J

Proof. Assume, without loss of generality, that f(A;) > -+ > f(A,,). We analyze
E[f(R')] by conditioning on the minimum index j that belongs to J. For k € [m)],
let

Jy={IC|m+n] | keland ¢ IV <k}.

Furthermore, for k € [m] define the set function gy, : 2V — Rso where gx(S) =
f(BgUS) for all S C N Tt is easy to verify that gi is non-negative and submodular
because f is non-negative and submodular. J € Ji, implies that By C R’, hence,

@[f(R’) | T € Ji] :El;[f(Bk U(R'\ By)) | T € Ji]

= ‘@[Qk(R/ \ Br) | T € Ji].

For any fixed i € A/ we analyze the probability that i € R’ \ By conditioned
on J € Ji. Using independence of the choice of each index in J we obtain the
following.

Priie (R\By) | J € Ji] =1~ (1) I a-g

J€A; k<j<m

<i-(-mn) JI (-9

Jii€A;,jE€[m]

=x; <p.
Thus, applying Lemma 1 to g5 yields
Elge(R'\ Bi) | T € Ji] 2 (1 = pge(0) = (1 = p)f(Be)-
Combining the above,
E[f(R) |7 € 7] = (1L-p) - F(By). ©)

Also notice that

Pr[J € Ji] = Prlk € J]- ﬁ(l—Pr]GJ]) e [J-a). ()
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Therefore,
E[f(R)] =) PrlJ € Ii]-ELf(R)| T € Ji]
J J J
+Pr[7 N [m] = 0] @[f(R’) | T N [m] = 0]

> S PHT € B |7 € 0
ZI}UG‘]’“] (1—=p)- f(Br)
k=1

oS B T 0 - 0) ®)
k=1 j=1

where the first inequality follows from the non-negativity of f, the second in-
equality follows from (6) and the last equality from (7). However, for 1 < k <m,
we have B, = Ay, and thus

m k—1
E[f(R)] > (1—p) > auf(Ax) [ 1 —a)
J k=1 j=1

Finally, utilizing Lemma 12 for ax = f(Ax) , we get that

éQkf(Ak)j]:[ (I—gq5) = (1—> qu (1—> ). (9)

Combining (8) and (9),

B> (1-0) (1-1) 1)

J

Finally, combining Claims A.1 and A.1, we obtain

Fa) = 1-p (1-7) /@)

which completes the proof.

A.2 Lower bound

A simple example on n = 2 shows that F(xz) < (1 — p)fT(x); the function is
the cut function of a directed graph on two vertices. For monotone functions, a
simple coverage example shows that F(x) < (1 — 1/e)fT(x). We combine and
generalize these two examples to create an instance for non-monotone functions
and obtain the following theorem.
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Theorem 11. There exists a non-negative submodular function f : 2N — R>g
such that, for any 0 < p <1, there exists an z € [0,1]" where ||z||- < p and

F(z) < (1-¢07) ().
Proof. Consider the following graph G = (V, E), where V' = {uq, ..., u,, v}, and

E = {(u;,v) |1 <i<n}. Let z,,, = 171;? forall i € {1,...,n} and z, = p. We
define a function f: 2V — R as follows

f(S){l ifvegSandS#0,

0 otherwise.

Fig.1: Graph G which yields the desired lower bound.

It is easy to see that f is submodular. Notice that
f+ ((L') =1- b,

as the coefficients that maximize ) g agf(S) subject to the constraints are
Ay = P, Oy} = % for all i € {1,...,n} and ag = 0, for |S| # 1. In other
words, ag,} =z, for all u € V, and ag = 0, if |S| # 1.

Next, notice that, if R(x) C V is a random set, where each element u € V' is
sampled with probability z,,, then f(R(x)) =1 if and only if v is not selected in
R(x), but at least one element of V' \ {v} is selected. Therefore,

Fla) = Blf(RG@)] = 1 -p)- (1- (1- 1"’)) ,

n

which implies that

fr(z) 1-p
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As n — oo, we get

1_ n
lim 1— (1 - p) =1—e (P,
n

n—oo

We conclude that, for any 0 < p < 1, when z; < p for all ¢,

F(z) < (1 - e*<lfp>) FH(@).

B Reduction to Small Probabilities

Observation 12 (Observation 5) Let I = (N, U, D, X, f,C) be an instance
of the Submodular Prophet Inequality problem. For every fixed € > 0, there is a
reduction of I to another instance I' = (N,U', D', Y ,g,C) of the SPI problem
such that that (i) for all e e U', D’(e) < e and (ii) there exists an a-competitive
algorithm for I if and only if there exists an a-competitive algorithm for I'.

Proof Sketch. Consider the original instance I and recall that each D; is a
probability distribution over U;. Our goal is to ensure that D;(e) < € for every
e € U;. Suppose there is an element e such that D;(e) > . We obtain a new
instance I’ as follows. We replace e € U; by h = [1/¢] “copies” ey, ea,...,en;
let S. denote this set of copies. Let U, be the new set of elements. We obtain
a probability distribution D} : U] — [0, 1] as follows. If e’ € U; such that e’ # e
then Dj(¢’) = D;(e’) (nothing changes for ¢’). For each copy e; of e we set
Di(e;) = D;(e)/h and by our choice of h we have Dj(e;) < 1/h < g, for all
ej € Se. Thus, 22:1 Di(e;) = D;(e). Since we replaced e by h copies of it,
the ground set U changes to U’ and we now define a new submodular function
g : U — R, that is derived from f. The function g treats the copies of e as a
“single” element and hence mimics f. More formally, for any A CU": g(A) = f(A)
if ANS, = 0, else g(A) = f((A\ Se) U {e}). It is easy to verify that if f is
non-negative and submodular, then g is also non-negative and submodular, and
also inherits monotonicity from f. Let I’ be the resulting modified instance. We
observe that in I’, the probability of an element from S, being chosen is precisely
equal to D;(e) and hence the copies of e act as proxies for e and the submodular
function g ensures that every copy behaves the same as e in f. Note that we
crucially relied on the power of submodularity in this reduction. One can apply
this reduction repeatedly to reduce all realization probabilities to at most €. One
also notices that the reduction is computationally efficient as a function of ¢.
For any fixed ¢, the size of I’ is at most O(1/¢) times the size of I and a value
oracle for f can be used to efficiently and easily obtain a value oracle for the new
submodular function g.
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