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ABSTRACT: Metronidazole is a prospective hyperpolarized MRI contrast agent with potential pure hyperpolarized
hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We mefronidazole

demonstrate a pilot procedure for production of ~30 mM hyperpolarized ['*N;]metronidazole in N7\ ENO, biocompatible
aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with |8 By @) e
nitrogen-15 polarization exceeding 2.2% on all three '*N sites achieved in less than 2 min. The *N I\
polarization T; of ~12 min is reported for the "NO, group at the clinically relevant field of 1.4 T in \|

the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The |[g ®\ N\
produced aqueous solution of ['*N;]metronidazole that contained only ~100 M of residual Ir was | @/ I NS/NOZ
deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic Y . 2h arogen 15&_/0"'

activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization
procedure represents a major advance for the production of a biocompatible HP ["*N,]-
metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.

mong all diagnostic imaging modalities, magnetic of d-DNP contrast agents enables noninvasive monitoring of

resonance imaging (MRI) is of great importance for its metabolic processes in clinical studies."'™"* Over 50 clinical
ability of detecting structural abnormalities in organs without trials with d-DNP are now in progress according to
ionizin% radiation exposure and excellent contrast in soft clinicaltrials.gov. While biomedical applications of para-
tissues.” Moreover, proton magnetic resonance spectroscopy hydrogen-based hyperpolarization methods are only emerg-
(MRS) is a powerful noninvasive tool for detecting and ing,"*'® they have already attracted significant attention
mapping of metabolites with spatial resolution.” However, it is because of their great potential for ultrafast and inexpensive
difficult to detect metabolic flux using this approach; thus, to production of hyperpolarized (HP) contrast agents. Para-
study the active metabolism and its pathological alteration, hydrogen (p-H,; the spin isomer of molecular hydrogen with
modalities other than conventional proton MRS are needed. the total spin of 0) is a versatile source of hyperpolarizaltion.7
Heteronuclear MRS combined with administration of sub- Parahydrogen-induced polarization (PHIP)" is based on the
strates labeled with stable and NMR-active isotopes (*H, '°C) catalytic activation of p-H, with subsequent incorporation of p-

allows unraveling of metabolic activity quantitatively.”* In

H,-derived protons into the hydrogenation product molecule.
contrast to positron emission tomography (PET), MRS has the

A more recent variant of the parahydrogen-based hyper-
potential to reveal detailed metabolic information, since not polarization approach does not require the hydrogenation step
only uptake can be monitored, blslt also the downstrea.m but generates signal amplification by reversible exchange
}abe.leq metabolites can be observed.” However, because of its (SABRE):™ the substrate of interest and activated p-H, (in
intrinsically low sensitivity, heteronuclear MRS has been
limited to relatively large voxel sizes, thus limiting its potential
clinical utility.®

NMR hyperpolarization methods have recently emerged to
circumvent the limitations posed by low NMR/MRI
sensitivity. These approaches allow nuclear spins of contrast
agents to be temporarily hyperpolarized; e.g., NMR signals are Received: March 24, 2024
enhanced by 4—6 orders of magnitude at clinically relevant Revised:  May 2, 2024
magnetic field strengths.””” Accepted: May 8, 2024

To date, dissolution dynamic nuclear polarization (d- Published: May 13, 2024
DNP)'" is a widely utilized hyperpolarization approach:
magnetic resonance imaging with hyperpolarized by means

a form of hydride ligands) come into temporary contact on a
metal complex (typically Ir),”" allowing the spin polarization
transfer from p-H,-derived hydrides to the substrate nucleus to
occur. The reversible exchange of both p-H, and substrate with
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their free counterparts in the solution leads to polarization
buildup on the free substrate over multiple cycles of exchange.
Depending on the experimental conditions, either protons or
heteronuclei of interest in the substrate can be hyperpolarized
in SABRE; direct hyperpolarization of heteronuclei (e.g., "°C,
SN) can be achieved at an ultralow magnetic field using the
SABRE-SHEATH strategy (SABRE in Shield Enables Align-
ment Transfer to Heteronuclei).”>™**

The range of molecules amenable to SABRE hyper-
polarization is expanding rapidly.”® While the leading sensing
HP molecule is [1-"*C]pyruvate due to its central location in
energy metabolic fluxes, HP nitroimidazole-based drugs have
garnered considerable attention for potential biomedical
sensing applications. Nitroimidazoles (metronidazole, nimor-
azole, ornidazole, etc.) are important antibacterial drugs acting
on anaerobic infections. It is also known that nitroimidazoles
are preferentially accumulated in O,-starved tissues and thus
are actively metabolized by anaerobic bacteria.”” Accumulation
of a reduced form of metronidazole and other structurally
similar nitroimidazoles ultimately leads to selective cell
death.”” This property has been exploited widely in a number
of biomedical applications beyond the antibiotic utility. For
example, nitroimidazole-based derivatives can potentially serve
as potent radiosensitizers for hypoxic tumors.”® Similarly to
anaerobic bacteria, cancerous tumors under hypoxic conditions
selectively metabolize nitroimidazoles via irreversible reduction
of the NO,-group with the formation of reactive hydroxyl-
amines which, in turn, bind with cellular macromolecules,
causing cellular damage and making these cancer cells more
amenable to therapy.”” Moreover, pimonidazole (a representa-
tive member of the nitroimidazole family) staining is a marker
of hypoxia and is routinely employed in immunohistochem-
istry.”’ Building on this success, nitroimidazole-based PET
tracers have been developed to noninvasively image hypoxia in
tumors, which is associated with more aggressive tumor
phenotyg)e and resistance to chemo- and radiation ther-
apy.”' ™ These tracers (e.g, '°F-labeled *F-fluoromisonida-
zole or FMISO®") have been deployed in cancer imaging.**
The key limitation of FMISO PET imaging is the use of a
radioactive tracer and very long scan time due to long
clearance time (1—2 h) from the surrounding tissues. Since the
'8F half-life is 2 h, the long clearance time requires the use of
higher radiation dose (as compared to other PET tracers),
further dampening the clinical enthusiasm for this novel
hypoxia imaging approach in deep tissue.

To address this limitation of nitroimidazole-based PET
tracers for hypoxia imaging, the use of HP nitroimidazoles was
proposed with the idea that the "N chemical shifts of HP
nitroimidazole moiety can potentially report on the stepwise
reduction process of this moiety in the hypoxic tissues, thus
acting as a reporter of hypoxia.””~** Indeed, computational
studies revealed the feasibility of employing HP uniformly "*N-
labeled metronidazole ([°*N;]metronidazole) for hypoxia
sensing applications.”> Moreover, pilot N d-DNP studies
using HP ["*N;]metronidazole revealed the feasibility of in vivo
utilization of HP ['*N;]metronidazole in healthy rats."’ These
developments make HP nitroimidazoles in general and HP
['*N;]metronidazole in particular promising magnetic reso-
nance sensors with diagnostic specificity to tumor hypoxia.”’

It was shown previously that ['*N,]metronidazole can be
successfully hyperpolarized in deuterated methanol via
SABRE-SHEATH with P,y of ~16% for the 'NO, group.”’
Despite this relatively high polarization level, it is imperative
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for in vivo MRI applications to produce a biocompatible HP
bolus free from methanol and the cytotoxic SABRE catalyst.**
Various purification strategies for SABRE-hyperpolarized
agents are covered in the recent reviews.”” ™" These strategies
include the use of aqueous media for the SABRE process using
water-soluble catalysis," ™" capturing the catalyst,””™>* the
utilization of a perfluorinated biphasic system,”” heterogeneous
catalysis,*** and others.”” Here in this work we utilize an
elegant approach recently proposed for generating a HP bolus
in aqueous media while simultaneously achieving catalyst
removal via phase transfer, dubbed “CASH-SABRE” or catalyst
separated hyperpolarization through SABRE.*’

The CASH-SABRE approach implies performing SABRE in
a biphasic mixture, in which the substrate soluble in both
phases is hyperpolarized in the organic phase (CDCl; or
CD,Cl,) and then extracted into the aqueous phase (D,0),
while the SABRE catalyst, which is practically insoluble in
water, remains in the organic phase. The schematic diagram of
the process in presented in Figure 1. The "H nuclei of various

®
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Figure 1. Scheme illustrating the CASH-SABRE approach. The
SABRE catalyst resides predominantly in the organic phase, while the
substrate can migrate between the two phases.

substrates were hyperpolarized using this approach, including
pyrazine, S-methylpyrimidine, methyl-4,6-d,-nicotinate, 4,6-d,-
nicotinamide, and pyridazine; the obtained proton polarization
levels were 2.5, 1.1, 9.7, 0.8, and 1.2% (per proton),
respectively, after complete phase separation between D,O
and CDCl,.°° Moreover, it was shown that HP pyrazine can be
obtained in aqueous solution with Pj;c of 0.15% and P;sy of
0.98%.°° The same approach was utilized for polarizing
ornidazole at natural isotopic abundance: P;5y of ~23% was
observed for the N-3 site in the aqueous phase, while most of
the SABRE catalyst was retained in CD,CL.°" However,
hyperpolarization of '*C- and *N-enriched compounds was
not demonstrated by this approach to date.

In this work we show that aqueous solutions of HP
[*N;]metronidazole can be produced using catalyst separated
hyperpolarization through the SABRE-SHEATH method. This
hyperpolarization protocol produced Psy exceeding 2.2% on

https://doi.org/10.1021/acs.jpclett.4c00875
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all three N sites. The biocompatibility of the resulting HP
bolus is confirmed using the colorimetric cell proliferation
assay (the MTT test) on human embryotic kidney HEK293T
cells to demonstrate their viability in the presence of HP
solution. The residual Ir concentration is 20 + 2 pg/mL in the
aqueous bolus, which corresponds to an Ir catalyst
concentration of ~100 + 10 yM. The ~52,000-fold “N
NMR signal enhancement is achieved for the *NO,-group of
[N, ]metronidazole at the clinically relevant field of 1.4 T in
the aqueous phase. This inexpensive hyperpolarization
procedure represents a major advance for potential application
of [*Nj]metronidazole as an HP contrast agent in vitro/in vivo.

For the CASH-SABRE experiment we first premixed 350 uL
of D,0O containing S0 mM of ["*N;]metronidazole (MNZ)
and 350 uL of CDCI; containing S mM of SABRE precatalyst
[Ir(IMes)(COD)CIl]. The resulting biphasic CDCly/D,0O
mixture (1:1 volume ratio) was placed in a S mm NMR
tube tightly connected with a 1/4 in. o.d. PTFE tube. All
experiments were carried out using a MATRESHCA hyper-
polarizer.”” It is worth mentioning that the hyperpolarizer was
equipped with an additional presaturation chamber filled with
CDCl; through which p-H, gas was supplied before bubbling
through the sample chamber. This allowed us to compensate
for the gradual evaporation of the volatile organic solvent and
to maintain the long term stable operation under nearly
constant experimental conditions and obtain reproducible
results.”” A schematic diagram of the experimental setup is
presented in Figure S1 in the Supporting Information (SI). As
metronidazole is soluble in both water and chloroform, for
correct calculation of polarization levels the distribution of
[N, ]metronidazole between the two phases was monitored
for each data point from the 'H NMR spectra at thermal
equilibrium (see the SI for details). In order to acquire NMR
spectra from a certain phase, the position of the NMR tube
holder was precalibrated.

Both the precatalyst and the activated SABRE iridium
complex were not noticeably dissolved in water, as during the
experiment the aqueous phase remained colorless or only
slightly colored (Figure S2). The SABRE precatalyst was
activated via a continuous bubbling of p-H, gas through the
CDCl;/D,0 mixture at a 20 standard cubic centimeters per
minute (sccm) flow rate and 7.8 bar pressure. The activation
was monitored using the SABRE-SHEATH procedure and the
p-H, flow was interrupted only for the acquisition of "N NMR
spectra (Figure S3). The N NMR signals of hyperpolarized
['N;]MNZ in chloroform-d (both free and bound to the Ir
center) reached a plateau after ~20 min of activation. Further
p-H, bubbling led to a partial chloroform-d evaporation. The
polarization of ["*N;]MNZ dissolved in D,0O reached the
maximum levels after ~2 h of activation, when the CDCl,/
D,O volume ratio approached 1:2. Thus, a typical CASH-
SABRE solution represented the mixture of ~350 uL of D,O
containing ~32 mM of ['*N;]MNZ and ~175 uL of CDCl,
containing ~10 mM of the activated Ir complex and ~16 mM
of free [""N,;]MNZ.

It is important to note that after activation the main form of
Ir is a neutral [Ir(IMes)(MNZ),(H),Cl] complex, in which
one of the two MNZ ligands and Cl occupy the equatorial
positions, whereas another MNZ ligand is at the axial position
(Figure 1). The hydrides are therefore chemically inequivalent
and have 'H chemical shifts of —23.9 and —25.3 ppm; the 'H
NMR spectrum of the hydride region at thermal equilibrium is
presented in Figure S4. The rapid exchange of equatorial MNZ
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with its free counterpart in the solution results in the
polarization buildup in the organic phase. Hyperpolarized
["N;]MNZ, in turn, is transferred to the aqueous phase. It
should be mentioned that when the organic phase was
removed and the remaining aqueous solution was exposed to
the SABRE-SHEATH procedure, no enhanced N NMR
signals were observed, indicating low solubility of activated Ir
complex in water. Biocompatibility of the produced HP bolus
was further assessed via in vitro cytotoxicity and inductively
coupled plasma atomic emission spectroscopy (ICP-AES)
measurements, the results of which will be discussed below.
In this paper we show that ['*Nj;]metronidazole at 32 mM
concentration can be effectively hyperpolarized in aqueous
media by the CASH-SABRE approach with the signal
enhancement factors of 46,000—52,000 at the clinically
relevant field of 1.4 T and Pgy of 2.5 + 0.3%%, 2.2 + 0.3%,
and 2.3 + 0.3% for *NO,, '*N-3, and '“N-1 sites, respectively.
The spectra of hyperpolarized ['*N;]MNZ are presented in
Figure 2. For ['*N;]MNZ dissolved in CDCl,, the P,y values

| _in D,O_| [ ~32mM
[®*N;]metronidazole
15N
— 1
N
SN0, | 1°N-3
P=2.2%
"NO, | ./ 15N-1
P=25% P=2.3%
[in CDCI | M 15N-3 ~16 mM
15N
N-3  bound 15
15NO, P=3.1% N-1
P=3.7% i P=3.5%
x8
124 M

neat ["°N]pyridine in thermal equilibrium

420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100
5 *N (ppm)

Figure 2. "N NMR spectra of ["*N;]metronidazole hyperpolarized
by SABRE-SHEATH acquired separately for the aqueous and the
organic phases. The reference spectrum of thermally polarized neat
[*N]pyridine is presented at the bottom of the figure.

of 3.7 + 0.4%, 3.1 £ 0.6%, and 3.5 £ 0.5% are observed for
SNO,, '*N-3, and '*N-1 sites, respectively. Addition of salts
(such as NaCl) can be beneficial for the phase separation;
however, we did not observe any positive effect of NaCl (0.16
and 0.32 wt %) added to the CDCl;/D,O mixture on the
observed Py levels in the aqueous phase.

Studies of the polarization dynamics for ['*N,]-
metronidazole are summarized in Figure 3. In the CASH-
SABRE experiment the supply of new portions of p-H, not
only allows the polarization to accumulate, but also the
presence of p-H, bubbles creates a gas—liquid—liquid interface,
which therefore increases the interfacial area between two
practically immiscible D,O and CDCl; liquids. This, in turn,
affects the efficiency of phase transfer of hyperpolarized
[*N;]metronidazole from the organic to aqueous phase. It
was observed that increasing the p-H, flow has a positive effect
on the polarization levels (Figures 3a, 3b): in both phases the
P,sy monotonously increases with the increase of p-H, flow
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Figure 3. Hyperpolarization of ['*N;]metronidazole in aqueous (top panel) and organic (bottom panel) phases achieved by the SABRE-SHEATH
procedure after phase separation: (a—b) p-H, flow rate dependences of polarization of ['*N3]MNZ. (c—d) P,sy buildup of ["*N;]MNZ at 0.7 uT.
(e—f) Relaxation decay of HP ['*N;]MNZ at 0.7 uT. (g—h) Relaxation decay of HP ["*N;]MNZ at 1.4 T. "N signal decay at 1.4 T was acquired
using 15° flip-angle pulses applied every 30 s (panel h) or 1 min (panel g) to monitor the longitudinal relaxation time T, for ['"N;]MNZ in the
organic (h) or aqueous (g) phases. The corresponding equations used for the exponential fitting are presented for each experiment. For the
aqueous phase only signals from free ['*N;]MNZ were observed; in the organic phase the corresponding signals were observed for ['*N;]MNZ
bound to the Ir complex. All data were obtained at 23 °C, 7.8 bar p-H, pressure, and 150 sccm p-H, flow rate unless otherwise stated.

rate up to 150 sccm (which is a maximum flow rate allowed by
the mass flow controller in our setup).

The 'H-to-"*N polarization transfer was performed by p-H,
bubbling at a constant ultralow magnetic field, in which the
strong coupling regime is met. The magnetic field strength of
ca. 0.7 uT was found to be optimal for ['*N;]metronidazole,
the details are described elsewhere.*” The kinetics of '*N
polarization buildup at ca. 0.7 4T showed that the character-
istic exponential buildup times T}, are similar for all three "N
nuclei in the organic phase and are within the range of 5—7 s
(Figure 3d); comparable buildup times were found for bound
MNZ (Figure SS). For ['*'N;]MNZ in the aqueous phase the
characteristic buildup times were significantly longer: Ty of
20—24 s was found for all three "*N sites (Figure 3c).

The ultralow-field T; measurement was carried out by a
series of manually controlled experiments where after polar-
izing the sample at the optimum transfer field (0.7 uT), the p-
H, flow was interrupted and the sample was kept at 0.7 uT for
a variable time before inserting it in a benchtop NMR
spectrometer. A monoexponential fitting of the integrated
signals yields approximately the same T, times of 7—8 s in the
organic phase (Figure 3f) and 23—27 s in the aqueous phase
(Figure 3e) for all three "N sites. These T times are close to
Ty, values, indicating that polarization buildup is limited by
relaxation at microtesla magnetic fields. The faster T,
relaxation rates in chloroform compared to those in methanol
reported elsewhere®” can be attributed to the presence of an
additional quadrupolar nucleus (**Cl or *’Cl) in the major
iridium complex [Ir(IMes)(MNZ),(H),Cl] (it is known that
coupling to quadrupolar nuclei significantly and negatively
affects the attainable SABRE-SHEATH polarizations*”).

To estimate "N T, relaxation times of [**N;]metronidazole
at 1.4 T in both phases, 15° flip-angle pulses were used to
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excite the '*N signals for acquisition once every 30 s (for T,
measurement in the organic phase) or 1 min (for T, in the
aqueous phase). The application of the small flip-angle pulse
allowed the longitudinal relaxation times of all N sites in
[*'N;]MNZ to be measured from the signal decay in just two
experiments (one for each phase). The effective relaxation

induced by the pulses (parameter % in the equation, Figures 3g

and 3h) corresponds to 14.42 min (Figure 3h) and 28.84 min
(Figure 3g) for a 30 s and 1 min interval between spectral
acquisitions, respectively (details on the calculations are given
in the SI). An exponential fitting of the integrated signal yields
a high-field (1.4 T) T, lifetime of the "N HP signals as
follows: 11.5 + 0.2 min for the *NO, group, 3.3 + 0.1 min for
the 'SN-3 site, and 3.7 = 0.1 min for the N-1 site of
['>N;]MNZ in the aqueous solution. [**N;]Metronidazole in
the organic phase has significantly shorter "N T relaxation
times of 3.04 £ 0.04 min, 1.09 £ 0.03 min, and 0.82 + 0.05
min for "NO,, *N-3, and *N-1, respectively. This significant
difference between the relaxation times in different phases (as
well as the similar difference in T, at 0.7 4T) clearly originates
from the temporal association of [**N;]MNZ to the Ir complex
in the organic phase. To the best of our knowledge, the >N T,
relaxation time of ~12 min is the longest observed for the
SNO,-group of [*N;]JMNZ at 1.4 T. Such an exceptionally
long T, relaxation time would be useful for potential in vivo
studies.

Next, the biocompatibility of the resulting aqueous HP bolus
was assessed. First, an in vitro cells viability study was
performed in a wide range of concentrations on a human
embryonic kidney HEK293T cell line using an MTT test with
3 replicates of each concentration. 3-fold serial dilutions were
prepared for solutions of interest in DMEM/F-12; the various
bolus volumes (1.2, 3.7, 11.1, and 33.3%) were used for 1 h
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incubation. The results of the MTT test after 1 h incubation
are presented in Figure 4. The cell viability was not

HEK293T cells viability after 1 h incubation with

I control [ aqueous bolus of ["*N;JMNZ [l MNZ (n.a.) in H,0
derived from CASH-SABRE

120+

100+
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o o o
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Volume (%)

control 11

Figure 4. In vitro cells viability assessed by MTT test. Human
embryonic kidney HEK293T cells were treated with an aqueous bolus
of ["N;]metronidazole derived from CASH-SABRE for 1 h. The
reference experiment was carried out for a solution of MNZ at natural
isotopic abundance in H,O (32 mM). The cell viability is presented as
% of control. Data are the mean value of 3 independent experiments
with a standard error.

significantly altered due to the 1 h exposure with the resulting
aqueous solution of ["*'N;]JMNZ derived from CASH-SABRE
with the volume fractions of up to 33%. The cell viability is
presented as % of control experiment, in which only DMEM/
F12 was added without any other compounds. Besides, an
additional experiment with an aqueous solution of commer-
cially available metronidazole at natural isotopic abundance in
H,O with the same concentration (32 mM) was carried out. In
such an experiment we deliberately eliminated the possible
cytotoxic effects of both Ir and D,0. However, we did not
observe any statistically significant changes in the cell viability
(Figure 4). The results of an MTT test with a longer exposure
time (24 h) are presented in Figure S7. For comparison, the
experiment with cisplatin injection (0.5 mg/mL) is presented
as a positive control for cytotoxicity. No significant changes in
the cell viability were observed for vol % values of up to 5%
after the treatment with the aqueous ["*N;]MNZ bolus. Both
MTT assay results indicate that the Ir concentration in the
aqueous bolus derived from CASH-SABRE is relatively low,
since the activated Ir complex is known to have a pronounced
cytotoxic effect.”

According to the elemental analysis performed using ICP
AES, the residual Ir content was found to be 20 + 2 ug/mL in
the aqueous bolus, which corresponds to an Ir catalyst
concentration of ~100 + 10 yM. Here in this work, we
show ~100-fold reduction of Ir concentration, from 10 mM to
100 M. In another study with pyruvate hyperpolarization, a
similar purification efficiency was achieved: the solvent
evaporation followed by the Ir complex crystals filtration and
subsequent dissolution in aqueous media resulted in the
residual Ir concentration of 44 uM.>’

Moreover, prior to the in vivo/in vitro administration, the
HP bolus is typically diluted with saline or cell media, so in the
final bolus the Ir concentration is expected to be 33—50 uM
depending on the dilution ratio. In the previous study of
catalyst separated SABRE of pyrazine, the upper limit of 1.5
#M on the residual Ir concentration in the aqueous phase was
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reported.”” We associate such a difference with the fact that the
efficiency of Ir catalyst separation depends on the substrate
used in CASH-SABRE, since it affects the solubility of the
activated Ir complex in water. However, it is important to note
that 1.5 #M is a rough estimation derived from the analysis of
UV—vis spectra for both phases. The absence of the
absorbance line corresponding to the activated Ir complex in
CDCl; in the UV—vis spectra from the aqueous phase was a
sign of low Ir concentration; however, Ir can be present in
CDCl; and D,O in different complexes with different
absorbance properties.

It is known that chloroform is partially soluble in water;
however, the chloroform-d concentration in the produced
aqueous solutions was not monitored. As was discussed in ref
60, N, purging can be beneficial to lower chloroform-d
concentration, as well as the use of a lipophilic resin for the
final purification can be adapted from the PHIP-SAH
method.®* Moreover, the subsequent 4puriﬁcation via Ir

. . . . s 52-5 .
scavenging using functionalized silicas to levels permitted
for in vivo administration is envisioned. We expect that the
automation and setup optimization can be performed to
further improve the efficiency of the CASH-SABRE procedure
to reach even better polarization values. Moreover, the "N
relaxation in sub-microtesla fields is very unfavorable, and
performing such experiments using recently developed pulsed-
SABRE-SHEATH approaches, which employ higher fields with
substantially more favorable T, values, may also prove
instrumental to further improve the polarization efficiency—
indeed, we envision that creating Pj5y over 20% may be
feasible in the near future (work in progress in our
laboratories' #°°).

In conclusion, we have demonstrated the N SABRE-
SHEATH hyperpolarization of ['*N;]metronidazole in aque-
ous media. SABRE-SHEATH in the biphasic mixture of CDC,
and D,0 (1:2 volume ratio) enabled the P,y values of 2.5 +
0.3%, 2.2 + 0.3%, and 2.3 + 0.3% for "*NO,, *N-3, and '*N-1
sites, respectively, for 32 mM ["N,]metronidazole in D,O.
The characteristic >N polarization T, is 12 min reported for
the *NO, group at a clinically relevant magnetic field of 1.4 T,
demonstrating that the useable lifetime of HP bolus is tens of
minutes—a remarkably long time window in the field of HP
media. The approach proposed in this work was optimized to
produce aqueous solutions of strongly polarized ['*N;]-
metronidazole accompanied by efficient Ir catalyst separation.
The MTT test on human embryotic kidney HEK293T cells
demonstrated the biocompatibility of the resulting aqueous HP
bolus. The residual Ir concentration of 100 + 10 uM was
estimated using inductively coupled plasma atomic emission
spectroscopy. This work paves the way for studies of
nitroimidazoles metabolism in vitro and in vivo using
hyperpolarized magnetic resonance technologies.
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