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Abstract: In this paper, the principal decomposition of the velocity gradient tensor [Vv] is discussed in 3 cases based on the
discriminant A: A <0 with 1 real eigen value and a pair of conjugate complex eigen values, A >0 with 3 distinct real eigen
values, and A =0 with 1 or 2 distinct real eigen values. The velocity gradient tensor can also be classified as rotation point, which can
be decomposed into three parts, i.e., rotation [R], shear [S] and stretching/compression [SC], and non-rotation point, we defined a
new resistance term [L], and the tensor can be decomposed into three parts, i.e., resistance [L], shear [S] and stretching/
compression [SC] . Example matric are also displayed to demonstrate the new decomposition. Connections of principal decomposition
between 3 different cases, and between Resistance and Liutex will also be discussed.
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0. Introduction

The velocity gradient tensor, or velocity gradient Toul [ou ou  ou | Toul
matrix, (Vv), is related to the convection term in the o a” + 5" + EW a5
acceleration of a particle, which can be derived from
Ov ov.  0Ov . Ov ov
. . Dp op op ap — |t —ut—v+t—w |[=| — |+
material derivative formula —=—+—u+—v+ ot ox 0 oz ot
Dt ot ox 0 ”
0 g 5_W @ u-+ @ v+ @ w a_W
6_127W , by applying it on each component of the | Ot | | ox oy oz | L ot |
u
velocity v=| v | as follows Ou ou ou
Ox Oy Oz
v ov ov 0 ! 0
8_V av 6_v v|= 6_v +(Vv)y (1)
r q t
" Du ] Ou Ou  Ou  Ou * - w
== —t—ut—v+t—w ow ow oOow
Dt ot Ox 6)} 0z 6_ 6_ a—
Dv | Dv ov oOv Ov  Ov v
— == |=| —+—ut—vt+t—w |=
Dt Dt ot ox oy Oz ou ou o
Dw ow ow Oow  Ow a a2
— —t—ut+t—v+t—w ox Oy Oz
LDel o ox oy oz | v v B
where [Vv]= a a @ is the velocity
ox Oy Oz
dw dw Ow
ox oy Oz
g}?iﬂip;{;&};ef é‘rxi’sﬁzl;’dzh' D. Candidate, gradient tensor, and the acceleration a can be
Corresponding author: Chaoqun Liu, E-mail: cliu@uta.edu expressed as: a=Dv/Dt=0v/ot+(Vv)v.

The traditional method for the decomposition of
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velocity gradient tensor Vv is first given by Stocks!"

as Cauchy-Stocks decomposition in 1845, which says
the velocity gradient matrix can be decomposed
uniquely into a symmetric matrix A as strain, and an
anti-symmetric matrix B as vorticity, which is used
to represent rotation by Helmholtz!

Vv=A+B ©)

where A=(Vv+Vv')/2, B=(Vv-Vv")/2.

Since then, people start to interpret the vorticity
tensor B as rotation, until Liutex was discovered in
2018 by Liu et al.’"% which points out that vorticity is
not rotation, but the combination of rotation and shear,
and since then, the rotation part is also called and
defined as Liutex. Under the Liutex based principal
decomposition, the velocity gradient tensor for
rotational points can be decomposed into 3 parts:
Stretching/compression, rotation, and shear, which
also satisfies the requirements made by Kolai".
However, Liu’s work is only valid and defined for
rotational points but did not consider the non-
rotational points. For non-rotational points, the most
popular method is Shur’s decomposition[g'lo], but
unfortunately, Shur’s decomposition is not unique, for
3x3 matrix, we can find up to 6 decompositions.

Here we give several requirements for decompo-
sition of velocity gradient tensor. First, the velocity
gradient decomposition should be unique and defined
for all cases. Second, the principal matrix of all cases
should be related to and be able to smoothly transfer
to each other under certain conditions. In this paper,
the method we provide satisfied both requirements,
and non-rotational points can be transferred into
rotational points when imposed by a disturbance of a
rotational antisymmetric matrix if it is strong enough.

To create the smooth transition between rota-
tional and nonrotational points, and to explain why
particles can bear an anti-symmetric shear but not
having rotation. we defined a new fluid sub-tensor for
non-rotational points, which is a symmetric matrix
called resistance, [L]. Once the non-rotational point

is imposed by a rotation term, an anti-symmetric
matrix, the resistance will be consumed and be
combined into shear. Once the resistance is depleted,
it will be transferred from case 3 into case 2.
Therefore, the resistance is also the minimum amount
of rotation we need to transfer it into case 2. We will
choose the eigenvector, along which the resistance is
the weakest, as our principal axis r, because in that
direction, the rotation is most likely to take place, due
to the bucket effect.

In this paper, we continue to use the Liutex based
principal decomposition method for rotational points
and expand it into non-rotational points by using the

newly defined resistance. The resistance tensor can be
treated as the extension of rotation tensor, and the
magnitude of the resistance can also be viewed as an
extension from rotational points to non-rotational
points.

1. Principal decomposition“”

The principal decomposition will be classified
and discussed in 3 cases according to its discriminant
A, which determines the types of eigenvalues of the
matrix. Case 1: When A<0, we have 1 real

eigenvalue A, and 2 complex conjugate eigenvalues
A, tid,. Case 2: When A=0, we have repeated
real eigenvalues 4,4, or just A. Case 3: When
A >0, we have 3 distinct real eigenvalues 4,4,,4,.
For Vv, it will be referred to as non-rotational points
if A>0 (Cases 2, 3), and it will be referred to as
rotational points if A <0 (Case 1).

We use VIV to denote the velocity gradient
under principal coordinate system while Vv is
defined as the velocity gradient in the original xyz -

coordinate system, and we can transform between 2
coordinate systems as follows

VV = M (Vv,{p,q.r})=U"VvU, Vv=UVVU" (3)

where U is an orthogonal coordinate transform
matrix, composed of 3 orthonormal vectors, p,q,r,

UU" forms the identity matrix I, and its determi-
nantis 1.

P 4. T
U=[p.qrl=|p, q, r, |, U'=U", det(U)=1
p. 4. T

(4)

After we transform Vv into pgr-principal
system, we can decompose it easily into 3 terms:
Stretching/compression  [SC] , rotation/resistance

[R/L] and shear [S]. Then we can bring each term
back into the original xyz - system as follows:

VV =[SC]+ [ﬂ +[S]=[SC],, =U[SCIU" =
R
Vv =[SC],, + [ﬂ +[S1,,. (52)
vV —[SC]J{E}r[S]: FJ - U[E}UT =
L L], L
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Vv =[5C],, +[ﬂ +15],. (5b)
vV =[SC]+ [ﬂ +[S]=[S],,. = UISIU" =

Vi =[SC],. +[ﬂ +[S]. (50)

1.1 Case 1
In principal coordinate system, we have principal
matrix

(o au

ox oy Oz
p. P, P. P 4, T,

o It R

“ 4 G\o o w|lP e
ror r r
s ow ow aw| 1

| Ox Oy Oz |
ﬂ(LV _E 0

2

R
—+e¢ A0 6
2 cr ()
4 n oA

T

where r=|r

y

such that @-r>0, and R=@-r—/(w-r) —41]

is the magnitude of Liutex''”. Though this formula
has been proved before, here we provide a proof
slightly different, which will be used again later.

First, we can show that VV —-VFV' =U" (Vv -
Vy"U as follows

is the unit eigenvector of Vv of 4 ,

WY

VV -VVT =U"VvU - (U'VvU)" =
U'VvU-U'W'U=U"(Vv-Vv")U (7)

Then we plug in
following:

Vv and VV , and get the

p. p, P|| 0 -0 o |p q T
9. 49, 4.||o. 0 -o|p g, 1 |=

ro rn,o o r|-o, o 0 |p g =1

0 -e-R &
R+e 0 -7 ®)
4 n 0

R+e=pyg,0.-pg.0,-pq.o +pgo+t

_ y D p. P
P.4.0, ~ P.4,0, = 0, -, +
q, 4. q. 4.
o, Pe Pyl ortortor=or 9)
9, 4, :

S=pro. —pro,-pro tpro.tpro -
p.1,0, =-@-q (10)

77 = qxrya)z - qxrzwy - qyr;rwz + qyrza)x +qzl/jxa)y -
4.0 =@ p (11)

Since p,q,r are coordinate vectors, we can get one

of the most important equations in Liutex theory,

wo=S+R

o=@ p)p+(@-q)q+(@-r)r=np-

tq+er+Rr=S+R (12)

By R+e=w-r, we can also get ¢+R/2=w-r—
i X
2

cr

¢ n 4

R/2,andthus VV = a)-r—g A 0

Since orthogonal transformation does not affect the
eigenvalues, we thus have

det (VV) = det(Vv) = 2, {/13,, _(__j(a,., __H _

ﬂ‘r (ﬂ‘cr + i]‘ci )(ﬂ‘cr - iﬂ‘ci) (13)

and after simplification, we have
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(gj —(a)~r)§+ﬂj. =0=
Ez(a)-r)i./(w-r)z—M,j (12)
2 2

If there is no rotation when 4, =0, we have

R=w-r—(wo-r) -42] (15)

The principal decomposition can be written as

A, —— 0
2
R
E+g A, 0 |=[SC]+[R]+[S]=
s n 4
0 _R 0
i 0 0 2 0
0/1”0+§00+g 0| (16)
0 0 A 0 0 0 En 0
0 _R 0
i 0 0 2
where [SC]=|0 A, 0], [R]:§ 0 0fF,
o 0 4 0 0 O
0 _R 0
2
R . .
[R]= 5 0 0| represents stretching/compression,
0 0 0

rotation and shear, and they can be converted back
into xyz - system as follows:

A, 0 0 00 O

cr

[SC],.=U<| 0 4, 0[+/0 0 0 U=
0 0 4] [0 0 4 -4,
2 A+ (2, = 2,)rr'] (17)

R
0O —— 0
2 0 -R R,
R r 1 )
[R],.=U B 0 0o|\U :5 R 0 -R,
0 0 0 —Ry R, 0
) (18)
R.\'
where Ry = R is the Liutex vector.
R

z

[S],. =Vv—[R],. —[SC],. =Vv-A,.I -

0 -R R,
(A —2)rr"] —% R, 0 -R (19)
R, R0

1.2 Case 2

For A=0 -cases, we only have 1 or 2 distinct
eigenvalues. First, suppose we have 2 distinct eigen-
values A, and A,, the dimension of their generalized
eigen space is 2 and 1, r is a unit eigenvector of
Vv with eigenvalue A,, such that @-r >0, then we
have the principal matrix:

(o au ]
ox 0z
TR A
vV = U21 U22 U23 A~ A Al
ox Oy Oz
I"X r, V.
b
| Ox Oy Oz |
_Ull UZI ’jx ﬂ'l 0 0
U12 U22 o=l € /11 0=
(Ui Uy n n 4
24 0 0 0 0 0
0 4 O0]|+le 0 0|=[SCI+[S] (20)
100 A & n O
A 0 0
where [SC]=|0 4 0 | is stretching/compression,
0 0 4
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000
[S]=le 0 0

¢ n 0
to the original coordinates as:

is shear. And we can change it back

A4 0 0
[SC]wz:U 0 ﬂ‘l 0 UT=ﬂ]I+(ﬂz—ﬂl).
0 0 4]
r’fz r\fry ri\frz 1
nrooronn 1)
Ly, LI, rzz

2
l/jx r\,’ ry ri\,’ rz
nreoor, L (22)
rroorr 1’
z'x z'y z

Secondly, suppose we only have 1 eigenvalue A,

then [SC],. and [S],. can be found as follows:

xyz

[SC] U" =1,

xXyz

A
=U|0
0

S N O
P =]

[S1,. = V¥ —[SC],, =Vv—AI

xyz

(23)

1.3 Case 3

For A>0 cases, we have 3 distinct real
eigenvalues. Let r 1is a unit eigenvector of Vv with
eigenvalue A,, such that @-r>0, then we have the

principal matrix

o
Oox
p,‘( py pZ 6v
VV=lq, q, q. P
X
T T, T
X y z @
| Ox
(At L
2 2
g+£ A+,
2 2
¢ no A

Ou
o
ov
B
ow
o

8_u_

oz
ov
oz
ow

oz

o~
+

(=

P,
P,
p.

~
+ =)
o

S N

(=)

S o

o Lo

2 00 0
éoo+goo (4)
0 0 of L& 10

where L=\/(a)or)2 +(4 -4)" —@-r, which can be

proved in the same way as follows:

p. p, .|| 0 -0 o |p q T
. 4, 4¢.||o. 0 -olp, g, 1|
ro. o, rn|-o o 0 |p g =
0 - ¢
e 0 —-nl=me=wr, {=-w-q, n=w-p
& n 0
(25)
2
+
A4, =det(VV) =4, At —£(8+£j:>
2 2 2
2 2
£) +g£— A% =0=
2 2 2
L —et e +(4-4) N
2 2
L=J@ r}+(4-4) -a-r (26)

To calculate each term, first we find the principal axis,
which is defined by the lowest resistance, wherev, is

the eigenvector of 4, 4,, 4, are the other two

eigenvalues.

L[ =\/(a)-v[)2+(ﬂj—/1k)2 -V, ﬂ? :/1“ r=v,
(27)

where L, =min{L,L,,L}.

Secondly, we can find p, ¢ as follows: Let

N(v) be a normalizing function N(v)=v/ ||v , and
the projection of the other 2 eigenvectors on r" plain
can be calculated as v;=v,—(v,-r)r, then p, ¢

can be found as their bisector
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q():N[N(vl,)'i'N(v;)]a Do =4y xr

L
If Vv(qo)-p()iE then p=-¢,, 4= p,,

otherwise p=p,, g=gq, (28)

Finally, we can obtain [SC] ., [L],., [S],.

as follows:

00 0
cl,.-vlA 21+ 00 0 U =
_AtA
0 4-22
Ahy (ﬂg AT ﬂ[rr] (29)
-
2
(11, =02 0 0[U"=Z(ep 1+ Ipg") (0
0O 0 0
[S1.. = Vv —[SC]~[L] 31)

1.4 Examples
Here we provide an example matrix in case 3 and

its decomposition:
25 1.0 05
Let Vv=|-1.1 04 -13

0.7 02 3.1

, then vorticity @ =

1.5
—0.2 |, eigenvalues are 1, 2, 3, and the eigenvectors
-2.1

1

5

V3 V35 0
are = L L the resistance are

53T |V35 T (V5|

et I e I 2

15vV3) V35 L5
0.34641016151377513, 0.7319547637260868 and
0.26053577119208793, thus we take A, =3, and

0
r= L Then
5|
2
5]
_ 0 _
NG
vi=v —(v r)r= =6
1 1 1 \/% >
3
V75
C s
35
-2
v,=v,—(v, - r)r=|— (32)
2 2 2 \/g
L
V35
and thus
0.78045432
= N[N(v))+ N(v))]=|-0.55920734 |,
—-0.27960367
0.62521281
P, =q, xr=|0.69805956 (33)
0.34902978
Since  Vv(q,)- p, =L/2=0.13026788559604374 ,

then p=p,, q=gq,,and we have the following:

[SC1,.. AT 21+(,13 At j[rr]

15 0 0
0 1.8 -06 (34)
0 -06 2.7
L T T
[L],. 25([qp I+lpg D=
0.12712844  0.02542569  0.01271284
0.02542569 —0.10170275 —0.05085138
0.01271284 —0.05085138 —0.02542569
(35)
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[S],. =Vv-[SC]-[L]=

0.87287156  0.97457431  0.48728716
—1.12542569 —1.29829725 -0.64914862
0.68728716  0.85085138  0.42542569
(36)
(51,.)" =

1.14343214x107"7
—-1.94917722x107"
—4.14264310x107"*

—~1.2373898x107'*
1.70240278 x107"¢
—~1.16261382x107"'°

—1.11890087 x 107"
1.54855144 x 107" 37)
—9.89234621x107"®

Since ([S]..)’ =[0], thus the shear is indeed nilpo-

xyz

tent.

2. Uniform decomposition

2.1 The resistance to rotation
We can use the resistance to explain why non-
rotational points can remain non-rotational once impo-

0 —a 0
sed by an anti-symmetric matrix ¢ 0 0/, for
0 0 0
some ae(0,L/2)
Ath L]
2L 2 0 -a 0
+
e+t— Ath 0O|+ja O O0f=
2 2 0 0 O
5 noA
SO -
Aty £—a 0
2 2
+
g+£+a Ath 0 (38)
2 2
g noA

Then the resistance will be consumed into L'=L -
2a, and the shear on r will increases to &'=¢+
2a , hence the principal matrix become

+ ’
Ath L o) | AtAE L
2 2 2 2
8+£+a At 0= g'+£ Atk 0
2 2 2 2
¢ n 4 ¢ n 4
i o (39)

2.2 From non-rotation to rotation
Now suppose we impose a larger anti-symmetric

0 L 0
2
matrix % 0 O] onit
0O 0 O
. o _
At L 0 0 L 0
2 2 2
+
£+£ At 0+£ 0 0=
2 2 2
¢ o A0 0 0
L _
A 0 0
At g
e+L 0 e A4 0 (40)
2
£ A S n A

Then the resistance is depleted, it will be transferred
from case 3 into case 2, with A, =(4, +4,)/2, &'=

c+L.
Now suppose we impose any anti-symmetric
- 2
-— 0
2
0 0

on it, then the resistance is

0
. R
matrix | —
2
0

0 0

depleted, it will be converted from case 2 into case 1,
with 4. =4, 4,=4,

0 _R 0 AL — 0
e A 0|+ g 0 0f= g+§ A 0=
S n 4 0O 0 0 £ no A
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., Ry
2
£ A, 0 (41)
2
¢ no4

2.3 Resistance and Liutex
We can use the formula for negative resistance

—L for Liutex magnitude. Let 4, =41, £i4,, then
we have ,
Lh-A4)Y=-41 =>-L=wr-

\/(aJ~r)2 +(4-A4) =@ r-

J@ ry-a22 =k “2)

Mathematically, we can directly use the formula to
demonstrate the relation, and physically, since the
resistance is the minimum amount of rotation we need,
to transfer it into case 2, a stage about to rotate, and

20.0

thus we can use negative Liutex to represent it.
Therefore, —L can be used as a uniform parameter
for both rotation and non-rotation points, and it is
Liutex for rotation points, and negative resistance for
non-rotational points.

2.4 DNS results about the generation of resistance
Here are Figs. 1-4 of —L from DNS data",
which is presented in the 22" international conference
on parallel computational fluid dynamics (ParCFD
2010) in Kaohsiung City, Taiwan, China, May 17-22,
2010. As we can see from the first figure, the region
of resistance (blue) occurs between vortices (red),
which shows that resistance could be related to
vortices. From the second figure, we can see that at
X =398, the vortices are generated due to bottom
friction, and the resistance show up in the middle
where 2 vortices are close to each other. As X
increases, the flow becomes more turbulent with more
vortices show up and the distance between them
becomes closer. We can find that under this trend, the
resistance also grows larger. So, we can make a
hypothesis about the generation of resistance here: the
resistance is generated between vortices, and due to
the different rotational direction of them. To verify
this hypothesis, we also labeled some rotational point

17.5 17.5
15.0 15.0
12.54 125
10.0 10.0 ",
7.51 7.5 g
. L - 04
5.0 5.0 3
25 of 5 25 o
o . & .., ] 0.2
e 2 ! _ - Mg A
0 —_— - — - —— 0 T T
0 25 50 75 100 12.5 15.0 17.5 20.0 0 25 50 7.5 100 12.5 150 17.5 20.0
2) X=738.768 (b) X=797.099
200 o) 2 200 2 0
17.5 17.5
02
15.0 15.0
12.5 12,5
d 04
10.0 - 10.0
&
L 1 ]
75 P X . 75
pp—
5.0 5.0 s =
251l A & . 25 = ate W P i T, S
. ‘e 4 ... Ul B -0 (P - gl
0 — = — = : 0 te - .
0 25 50 75 100 125 150 17.5 200 0 25 50 7.5 100 12.5 15.0 17.5 20.0
(¢) X=829.951 (d) X=880.146

Fig. 1 (Color online) Four plots of —/ in turbulent regions, with X (streamwise direction) between 700-900. We only plot from
z=0 to z=20,because —L isnear 0 everywhere above z =20

@ Springer



75 100 12.5
(a) X=308.702

25 50

150 17.5 200

T

25 75 100 125

(b) X=363.078

5.0

150 17.5 200

-

L e
- -

-

0
0

-
25

100 125
(c) X=398.164

50 75

150 17.5 200

-0.02

-0.04

10
8
8
4
2
W P8 28
: y - : : ‘ " : S
0 25 50 75 100 125 150 17.5 20.0
(d) X=455.023
IG 0.4
8
0.2
64
4
0
2 e
N B (R LN
0 - - T - - r —r T 02
0 25 50 75 100 125 150 17.5 20.0
(e) X=492.592
10
-0.4
8
L] 1\
°o e
4
2 - -
1 ."' . ’. .!" .u.u
N e
0 2.5 5.0 7.5 ]00 175 |5.{) 17.5 2(}‘0
(H) X=509.399

Fig. 2 (Color online) Six plots of —7 in the early stage of turbulence development, with X (streamwise direction) between
300-600. We only plot from =z=0 to z=10, because —L isnear 0 everywhere above =z =10

5
4 eR>0 x R<0
3
2

% L .
e # -, -
0 2.5 5.0 7.5 10.0 125 150 17.5 200

-0.04 -0.02 0 0.02 0.04

-L
’ (a) X=398.164
4
3 -
)
Tl . »
e~ . V% s S
0 25 5.0 7.5 10,0 125 150 175 200
-04 =03 -02 =01 0 0.1 0.2 0.3 0.4
-L
(b) X=455.023
Fig. 3 (Color online) Same plot of —L at X =398.164,

455.023. The rotation direction is marked as magenta

dot and green cross, if the R,

is positive or negative

according to the x value of their Liutex vector, R .
And as we can see from the third figure, the resistance
region did occur in the middle, and on both left and
right boundaries, between vortices with different rota-

5
4 e R>0 *xR<0
3
2 L = . ™

o B, ® g re & |
(]‘ .- - W - ' ‘ - :.\ L T h
025 50 75 100 125 150 175 200
-04 -03 -02 -0.1 OL 0.1 0.2 0.3 0.4
7 (a) X=492.592
61® ~
o ¥ . X '
4 i s k
3 x
! ﬂr

.

(]) ‘.» l #"
0 5.0 10. 125 150 17.5 20.0
-04 -03 =02 -0. 0 01 02 03 04

(b) X=509.399

Fig. 4 (Color online) Same plot of —L at X =492.592,

509.399. The rotation direction is marked as magenta
dot and green cross, if the R is positive or negative

tion directions. However, on the fourth figure, we can

find that,

as the flow becomes more and more

turbulent, this pattern became not that obvious. On
one hand, the number of vortices increases, thus some
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resistance region could be surrounded by 3 or even
more vortices, and, on the other hand, the shape of the
vortices are not round and perfect anymore.

Because the vortex structure in transitional and
turbulent flows are all three-dimensional, the above
figures are all two-dimensional and cannot show the
accurate full vortex structures, which can just be used
to show rough ideas.

3. Conclusions

The velocity gradient tensor in all 3 cases can be
decomposed into 3 terms, stretching/compression
[SC], rotation/resistance [R/ L], and shear [S]:

A Ry
2
R
A<O0: 3+e; A, 0 |[=[SC]+[R]+[S]=
¢ no4
o -%
A, 0 0 2 000
0 4, 0 +§ 0 Oj+le 0 O
0 0 4] |y o ol L& o0
_ _ 43)
A 0 0
A=0:| ¢ A 0 |=[SC]+[S]=
¢ n A
2 0 0] 0o 00
0 4 0|+le 0 0 (44)
0 0 4| [& 7 0
Geh L 0_
2 2
+
A>0:| o+ ’112% 0 |=[SC]+[L]+[S]=
4 no A
. o B
Ath 0 ol [0 L o
2 2
o Ath ol4lL o ol+
2 2
0 0 A4l ]0 0 0

)

(45)

Wi
[ O O
o O O

For stretching/compression [SC] , it is a symmetric
matrix with #([SC])=tr(Vv), shear [S] is a nilpo-
tent matrix, and rotation/resistance [R/L] is a
symmetric or anti-symmetric matrix with #([R/
L])=det(R/L)=0. For rotation points, the [R/L]
is an antisymmetric matrix stands for rotation [R] ,

for non-rotation points, the [R/L] is a symmetric

matrix stands for resistance [L], and for case 2 points,

[R/L]=[0], which is both symmetric and anti-
symmetric. Here, [R/L] means R or L.

In this paper, we also defined a uniform para-
meter —L for all velocity gradient tensor, which has
positive values as Liutex magnitude for rotational
points and negative values as rotation-resistance for
non-rotational points. From the DNS data, the
resistance may be generated between vortices by the
balance of vortices with different rotation directions.
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