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Abstract—Hierarchical Federated Learning (HFL) has shown
great promise over the past few years, with significant improve-
ments in communication efficiency and overall performance.
However, current research for HFL predominantly centers on
supervised learning. This focus becomes problematic when deal-
ing with semi-supervised learning, particularly under non-IID
scenarios. In order to address this gap, our paper critically as-
sesses the performance of straightforward adaptations of current
state-of-the-art semi-supervised FL (SSFL) techniques within the
HFL framework. We also introduce a novel clustering mechanism
for hierarchical embeddings to alleviate the challenges introduced
by semi-supervised paradigms in a hierarchical setting. Our ap-
proach not only provides superior accuracy, but also converges up
to 5.11× faster, while being robust to non-IID data distributions
for multiple datasets with negligible communication overhead.1

Index Terms—Hierarchical Federated Learning, Semi-
Supervised Learning, Edge Devices, Data Heterogeneity, Data
Privacy, Communication Efficiency, Internet-of-Things

I. INTRODUCTION: SETTING THE BOARD

The Opening: Federated Learning (FL) has emerged as a

transformative paradigm in machine learning (ML), enabling

distributed training across decentralized devices, while keeping

data private. McMahan et al. [1] first introduce FL with the

concept of communication rounds representing the interplay

between the clients and the cloud. First, the cloud broadcasts

the global model to a subset of clients among all available

clients (e.g., 10% of all the clients). Clients, typically edge

devices, begin training on their local data and send their

updated local models back to the cloud. Finally, the cloud

aggregates all local models and obtains a new global model.

This entire process repeats until convergence, typically for

several hundred communication rounds.

As the number of Internet-of-Things (IoT) devices increases

annually, with nearly two billion more devices in 2023 than

in 2022 [2], the range of these devices spans from powerful

edge servers to less capable edge devices and IoT gadgets.

While FL focuses on decentralization and data privacy, it can

become inefficient when considering heterogeneous devices

spread across various geographical areas with variable network

connectivity. Hierarchical Federated Learning (HFL) emerged

to overcome these very challenges. By introducing a client-

edge-cloud hierarchical system architecture, HFL [3] trains

k1 local epochs on the client-side data and executes k2 edge

1Code is available at: https://github.com/SLDGroup/CHESSFL

�����

���	
�	�
	�

���	��

��
	�����
��
�����

��
���	

��
������

����	������

����	������

��������
��
	�����

��
�	�	��
��	��

��
���	�
��	��

Fig. 1: Our proposed unified Semi-Supervised Hierarchical

Federated Learning (SSHFL) evaluation framework. Edge

servers (shown with orange border) have labeled data, while

heterogeneous devices (shown with different colors, green,

blue, red, purple) have their own local unlabeled data. Similar

to classic HFL, we run steps 1 through 5 and evaluate

the global model’s test accuracy after a given number of

communication rounds.

aggregations at the edge servers among connected clients

before aggregating the edge models in the cloud to obtain

a new global model. This hierarchical approach reduces the

communication cost since edge servers are physically closer

to the clients and enhances the computational efficiency of

clients, thus allowing for quicker local model updates and

edge aggregations at the edge servers. A hierarchical decen-

tralized system is thus more scalable compared to classical

FL. Besides scalability, client’s privacy can be enhanced by

the client-edge-cloud hierarchy provided by HFL [4]. On top

of the resulting benefits of decentralization through hierarchy,

when compared to local differential privacy [5], hierarchical

differential privacy [6] highlights an opportunity for privacy

strengthening due to differential privacy noise being injected

multiple times throughout the hierarchy, at the intermediary

edge servers and at the cloud server.

Queen’s Gambit: Fully supervised learning in FL is quite

unrealistic [7]. First, the collection and labeling of data is
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Fig. 2: Our proposed CHESSFL framework initiates training on the edge server with labeled data, utilizing our novel Sicilian

Defense Loss. The feature embeddings derived from weakly-augmented labeled images are clustered, and the embedding cluster

centroids are then transmitted to the client. Following the implementation of the proposed Pawn’s Progression Pseudo-Labeling,

the client starts training on unlabeled images using our novel Pawn Promotion Loss.

far too costly and not readily available. Second, since real-

world clients usually have unlabeled data, it is unfeasible to

consider that labeled data could be simply shared between

individuals, yet alone organizations, considering potential pri-

vacy violations and proprietary datasets. Therefore, widely

available and high-quality labeled data is desirable, but not

achievable in the real world. Indeed, since General Data

Protection Regulation (GDPR) [8] and California Consumer

Privacy Act (CCPA) [9] imposed more constraints on data

sharing, decentralized learning at scale has become a critical

problem [7]. Therefore, there is a natural synergy between FL

and semi-supervised learning (SSL). However, how to leverage

unlabeled data in FL is still under-explored. This is because

unlabeled data is widely available in FL and too few clients

are motivated enough to label their own local data.

As opposed to traditional SSL, in semi-supervised FL

(SSFL) the labeled and unlabeled data are split between the

cloud and the clients, respectively. This isolation of labeled

data in the cloud may compromise the overall performance [7].

Besides, data heterogeneity naturally occurs in FL scenarios

under the non-IID umbrella, therefore balancing the per-

formance and the communication efficiency of SSFL is of

paramount importance.

In cross-device FL there are two scenarios discussed in [10]

based on where labeled data resides: labels-at-client or labels-

at-server. Consequently, in cross-device SSFL, the most com-

mon scenario is labels-at-server, with all clients having large

amounts of unlabeled data and the cloud having access to

limited labeled data. This is not only more challenging, but

also more realistic since the vast majority of clients do not

want to spend time and resources labeling their own data or

may not even have the proper expertise to do so [7].

Considering the challenges posed by realistic HFL at scale

and the issue of implementing SSL in a real-world decentral-

ized setting, we address the following research questions:

• Can we leverage the client-edge-cloud hierarchy to per-

form better semi-supervised learning in hierarchical fed-

erated learning with minimal communication overhead?

• How much better does an approach that leverages the

client-edge-cloud hierarchy perform in terms of conver-

gence speed and accuracy when compared to other meth-

ods in semi-supervised hierarchical federated learning?

To address the first research question, we propose Cluster-

ing Hierarchical Embeddings for Semi-Supervised Federated

Learning (CHESSFL) as a solution that benefits from the

hierarchical structure of the system to speed up the learning

convergence and increase the overall accuracy. To achieve this,

we combine unsupervised learning techniques such as rotation

prediction [11]–[13] with semi-supervised learning techniques

like pseudo-labeling and propose two new loss functions.

To answer the second research question, we propose a

unified semi-supervised HFL (SSHFL) framework, depicted

in Fig. 1, to run experiments that evaluate how clients learn

in a semi-supervised and hierarchical system. Our unified

framework first partitions the dataset of choice into labeled

and unlabeled datasets. The labeled data is split in an IID

fashion among all edge servers and the remaining unlabeled

partition of the dataset is split in either IID or non-IID fashion

among all clients. This way, each edge server has access only

to its own labeled data, and each client has access to its own

unlabeled dataset. We then run the classical HFL learning

scheme shown in Fig. 1 by steps 1 through 5. Finally, we

evaluate the convergence speed to a given accuracy threshold

and test accuracy and test loss of the global model.
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Despite the limited existing research in SSFL, the more

realistic and scalable SSHFL is not yet explored. Similar to

Queen’s Gambit chess opening, we move to the center of this

new research area by providing (i) CHESSFL, the first solution

designed for SSHFL, and (ii) a unified evaluation framework

designed specifically for SSHFL. We outline our proposed

CHESSFL framework in Fig. 2.

Our contributions are as follows:

• Clustering Hierarchical Embeddings for Semi-
Supervised Federated Learning (CHESSFL): In order

to leverage the hierarchy of the system, we propose a

novel clustering mechanism for hierarchical embeddings

to improve convergence speed and performance in terms

of accuracy for SSHFL. To the best of our knowledge,

this solution is the first to account for both the client-

edge-cloud hierarchy in FL and SSL.

• Unified Semi-Supervised Hierarchical Federated
Learning Framework: To the best of our knowledge, we

are the first to propose a unified framework for SSHFL

and evaluate the performance of straightforward imple-

mentations of current state-of-the-art SSFL algorithms in

the hierarchical setting.

• Empirical Validation: We show that CHESSFL con-

verges up to 5.11× faster and achieves higher accuracy

than state-of-the-art SSFL solutions on SVHN, CIFAR10

and CIFAR100 datasets, with negligible communication

overhead and enhanced robustness to non-IID data.

The remainder of the paper is organized as follows: Section

II reviews the relevant prior work. Section III introduces our

proposed approach. The experimental results are presented in

Section IV. Finally, Section V summarizes our key findings

and outlines directions for future work.

II. RELATED WORK: HISTORICAL MATCHES

Hierarchical Federated Learning: The classical client-edge-

cloud HFL scenario is depicted for the first time by Liu et

al. [3], where they use 50 edge devices and 5 edge servers.

HierFAVG [3] shows that HFL using FedAVG [1] is an effec-

tive way of reducing training time and energy consumption of

edge devices across the board compared to cloud-based FL.

In [6] the authors extend the original HFL work by introducing

differential privacy in the hierarchy. Abad et al. [14] extend

the original HFL work for communication efficient HFL in the

heterogeneous cellular networks. Similarly, Yuan et al. [15]

propose a new communication protocol that benefits from

local-area network instead of only using a wide-area network

to further improve communication efficiency and speed up

training for HFL. MACFL [16] is an extension of HierFAVG

towards simulating user mobility.

All previously discussed HFL works build upon the founda-

tion of HierFAVG by improving communication and compu-

tation efficiency, and by enabling HFL to run in more realistic

scenarios. Our paper complements all these works by opening

another new direction for HFL, i.e., SSHFL.

Semi-Supervised Learning: The goal of SSL is to learn from

unlabeled samples with limited labeled samples, assuming

the same distribution between labeled and unlabeled data. A

common approach is to use pseudo-labels [17] generated with

a model pre-trained on the labeled data to learn the unlabeled

data as a form of entropy regularization. FixMatch [18] marked

the inception of a trend in SSL. This approach predicts

the class of a weakly-augmented image and if the initial

prediction is over a certain threshold, uses the predicted class

as a pseudo-label in the cross-entropy loss for the prediction

of the strongly-augmented version of the same image. As

setting a rigid threshold for pseudo-labeling lacks flexibility,

FlexMatch [19] enables a flexible threshold based on cur-

riculum pseudo-labeling. FullMatch [20] combines FixMatch

with negative learning, leveraging all the other class prob-

abilities, besides the one used for pseudo-labeling. Similarly,

MaxMatch [21] minimizes the worst-case consistency between

the original sample and its augmented versions, resulting in a

more robust model for SSL.

Apart from pseudo-labeling, another SSL approach is Mean

Teacher [22] which leverages two models, i.e., teacher and

student. The student model is training to be consistent with

the teacher model, while the teacher model is updated with

an exponentially moving average technique, with very small

updates from the student model every iteration.

Another line of research in SSL focuses on how to lever-

age unsupervised (i.e., self-supervised) learning techniques

to boost learning. One of the first approaches in this area

was S4L [23] where the authors propose to unify self-

supervised and semi-supervised approaches showing how to

train models to achieve new state-of-the-art results on semi-

supervised ILSVRC-2012 dataset [24]. USADTM [25] uses a

triplet mutual information (MI) loss for unsupervised learning

and a deformable template matching to align clustering labels

learned from MI, continuously optimizing the feature distri-

bution of labeled data. RotNet [12] performs random rotations

for {0◦, 90◦, 180◦, 270◦} for unsupervised learning and is

extended by SESEMI [13] for SSL with vertical and horizontal

flips of the image besides the aforementioned rotations.

The pseudo-labeling based works use the pseudo-labels

combined with consistency regularization (i.e., consistent pre-

dictions of the same image augmented in different ways) and

achieve good performance for SSL. Conversely, the SSL works

that leverage unsupervised learning techniques not only yield

good performance, but also have better and more robust rep-

resentations. The critical issue is that all previously discussed

approaches consider both labeled and unlabeled losses in a

centralized server, which is not achievable in HFL given the

data privacy concerns.

Semi-Supervised Federated Learning: The adaptation of

SSL approaches to FL is not trivial. For example, Fed-

Match [10] uses two sets of parameters for learning labeled

and unlabeled data, respectively. For pseudo-labeling, Fed-

Match uses an agreement-based pseudo-label by sending to

a client the top-k most similar models from other clients

selected by the central server and maximizes their agreement

for the pseudo-label, therefore introducing a communication

overhead. SemiFL [26] fine-tunes the global model with the
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labeled data to alleviate the forgetting effect (i.e., decreasing

accuracy over time), observed in FedMatch, caused by training

solely on unsupervised data from the clients. The local models

of the clients are trained on pseudo-labels generated by the

global model on the client-side unlabeled data, obtaining more

competitive results compared to FedMatch. SemiFL uses static

batch normalization (sBN) [27] to initialize the running mean

and running variation parameters from the batch normalization

operations in their models. Furthermore, SemiFL uses both

labeled and unlabeled datasets to compute the sBN statistics,

which is an unrealistic assumption. Similar to FixMatch,

SemiFL builds a training dataset called fixed dataset using

weakly-augmented images if their prediction probabilities are

above a given threshold. With this fixed dataset, SemiFL builds

another dataset, called mixed dataset, by randomly sampling

two images from the fixed dataset and mixing them using

MixMatch [28]. This introduces a computational overhead and

increases memory usage for every client, since both fixed and

mixed datasets are built and used for training on-device.

Orchestra [29] is an unsupervised approach that combines

the rotation prediction with the Mean Teacher approach to train

better representations on the unlabeled clients. By using the

Mean Teacher approach, Orchestra introduces a computational

overhead on the resource-limited clients while also consuming

more energy to keep both teacher and student models running

on-device. The clustering introduced in [29] is not actual clus-

tering, but rather extra classification heads, i.e., linear layers,

for local and global clusters, respectively, while considering as

“cluster centroids” the weights of the respective linear layers.

Even so, when using ResNet18, a model almost 10× larger

compared to Wide ResNet 28x2 used by SemiFL, Orchestra

still falls short in its semi-supervised evaluation compared to

SemiFL. Furthermore, since SemiFL is a SSFL approach, we

compare our work to SemiFL instead of Orchestra.

Recent FL survey papers such as [7] stress that the problem

of semi-supervised FL is under-explored and needs better

solutions that strike a right balance between the performance

and efficiency under heterogeneity constraints. Indeed, seeing

the lack of semi-supervised type of research in HFL, we aim to

bridge this gap and provide a baseline for SSHFL to encourage

research in this more practical and realistic side of FL.

III. METHODOLOGY: DEFENSE AND COUNTERPLAY

Chessboard Strategies: We first propose the Sicilian Defense

Loss to train the edge servers on labeled data and enhance

their capability to have diverse and robust feature embed-

dings. The resulted feature embeddings are then clustered

and shared throughout the hierarchy with the clients, which

use the embedding centroids in Pawn’s Progression Pseudo-

Labeling. Lastly, we introduce the Pawn Promotion Loss,

which facilitates the convergence of client embeddings toward

the embedding centroids and ensures the learning of diverse

feature embeddings on the client side as well.

Choosing the Pieces: In our SSHFL setting, we consider two

datasets: a labeled dataset L and an unlabeled dataset U, with

|U| � |L| and | · | denoting the size of a set. We also assume

the marginal distributions of L, U are the same. Previous

SSFL setups included the labeled dataset in the cloud and

the unlabeled dataset split either IID or non-IID between all

devices. We adapt the labeled dataset L for HFL by splitting

it in an IID manner among all edge servers:⋃
e∈E

Le = L, with |Li| = |Lj |, ∀i, j ∈ E, i �= j (1)

with E being the total number of edge servers and Le the

labeled dataset available at edge server e. We argue that in a

realistic HFL environment it makes sense to put labeled data

on the edge servers instead of the cloud, since edge servers

are physically closer to the edge devices. This proximity

facilitates faster localized training and offers advantages such

as operational efficiency, adaptability, and cost-effectiveness.

We assume each edge server e can only access its own labeled

dataset Le.

The unlabeled dataset U is split between all clients IID

and non-IID, using Ui ∼ Dir(α) with Ui as the unlabeled

local dataset available at device i, where i ∈ D and D is

the set that contains all devices, with Dir(α) as the Dirichlet

distribution [30] to sample IID and non-IID datasets. We note

that in this SSHFL setting, each client i only has access to its

own unlabeled dataset Ui.

Opening Principles: Given a training dataset Ui = {xu}|Ui|
u=1

for device i with |Ui| as the total number of training samples

for device i and xu the uth training sample, in FL we want

to solve the following optimization problem:

min
θG

f(θG) =
1

|D|
|D|∑
i=1

Lu(θ,Ui) (2)

where Lu is the loss function for unsupervised data evaluated

on the local dataset Ui using the local model weights θi for

client i, with θG being the global weights and f being the

global loss function. In FL we solve the optimization problem

using the cloud and the clients, while in HFL, we also use edge

servers. For practical purposes, the optimization problem we

solve for SSHFL follows the same principles defined in SSL:

min
θG

f(θG) =
1

|E|
|E|∑
e=1

Ls(θe,Le) +
1

|D|
|D|∑
i=1

Lu(θi,Ui) (3)

with Ls as the loss for supervised data and θe as the edge

model weights for edge server e. Edge servers have only

labeled data and clients have only unlabeled data. Each edge

server has its own labeled training dataset Le = {xl, yl}|Le|
l=1

with |Le| as the total number of labeled training samples

for edge server e, and xl as the lth training sample with its

corresponding label yl.
In order to solve Eq. 3, we propose CHESSFL, detailed in

Alg. 1, which has two innovative components: the Sicilian
Defense Loss (SDLoss) for training on edge servers with

labeled data and the Pawn Promotion Loss (PawnLoss) for

training on the clients with pseudo-labeled data. Finally, we

unify the SSHFL framework using a more flexible aggregation

technique both at the edge server and in the cloud.
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Algorithm 1 Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning (CHESSFL)

1: Initialize global weights θG with random weights and download them on all edge servers θe ← θG , ∀e ∈ E

2: θe, Φe ← TRAIN&CLUSTEREDGESERVER(e), ∀e ∈ E � Get trained weights θe and embedding centroids Φe

3: for communication round k = 1, 2,..., K do
4: for each device i ∈ D in parallel do
5: Download the latest edge model weights θi ← θe and embedding centroids Φe

6: Initialize the pseudo-labeled dataset U∗
i = ∅

7: for xu ∈ Ui do � For all unlabeled images xu ∈ Ui

8: zuw = Mi(W(xu)) � Obtain the feature embeddings zuw from client model Mi using the

weakly-augmented unlabeled sample W(xu)
9: zu,normw = zuw/‖zuw‖2 � Normalize the feature embeddings

10: Compute class labels ĉcos and ĉeuc based on Eq. 19, 20 with φc ∈ Φe and zu,normw

11: if ĉcos = ĉeuc and cos(zu,normw , φc) ≥ τ then
12: y∗u, φ

∗ ← ĉcos, φc

13: U
∗
i = U

∗
i ∪ {xu, y

∗
u}

14: end if
15: end for
16: θi ←Train(LPawn, U∗

i , k1, θi) � Train the parameters θi of the client model Mi for k1 local epochs using the

Pawn Promotion Loss LPawn from Eq. 21 on the pseudo-labeled dataset U∗
i

17: end for
18: θe =

∑
i∈De

pei θi, ∀e ∈ E � Aggregate local model weights θi for all clients i connected to edge server e using Eq. 25

19: θe, Φe ← TRAIN&CLUSTEREDGESERVER(e), ∀e ∈ E

20: if k mod k2 = 0 then
21: θG =

∑
e∈E

peθe � Aggregate edge model weights θe using Eq. 26

22: θe ← θG , ∀e ∈ E � Download updated global model on all edge servers

23: θe, Φe ← TRAIN&CLUSTEREDGESERVER(e), ∀e ∈ E

24: end if
25: end for
26: function TRAIN&CLUSTEREDGESERVER(e)

27: θe ← Train(LSD, Le, ke, θe) � Train the parameters θe of the edge server model Me for ke local epochs

using the Sicilian Defense Loss LSD from Eq. 12 on the labeled dataset Le

28: Obtain embedding centroids Φe using the labeled dataset Le based on Eq. 15

29: return θe, Φe

30: end function

A. Training and Clustering Embeddings on Edge Servers

Sicilian Defense Loss: In chess, the Sicilian Defense rep-

resents a robust foundation, providing significant flexibility,

while having a double-edged nature that offers an adaptive

evolution throughout the game. We construct the SDLoss func-

tion with the same characteristics in mind. We first consider

the double-edged nature represented by weakly- and strongly-

augmented images. Next, we enable an adaptive evolution

of feature embeddings using a variation of rotation predic-

tion [11], [12], which includes horizontal and vertical flipping

as well [13]. This enables the edge model to learn better and

more robust feature embeddings with enhanced generalization

capabilities. Finally, we use the cross-entropy loss between the

predicted probabilities from the weakly-augmented image and

the ground-truth label.

Let W(·) represent a weak augmentation composed of

random horizontal flipping and random cropping with padding

and let S(·) represent a strong augmentation, i.e., RandAug-

ment [31], on top of random horizontal flipping and random

cropping with padding. First, considering a labeled image

sample {xl, yl} and an edge model Me for edge server e,

we obtain the following:

ŷw, zw = Me(W(xl)) (4)

zs = Me(S(xl)) (5)

where ŷw is the weakly-augmented image prediction, and

zw and zs are the weakly- and strongly-augmented image’s

resulting Z-dimensional feature embeddings.

Let R(·, r) be our rotation function that rotates an image

by r degrees if r ∈ {0◦, 90◦, 180◦, 270◦} or flips an image

horizontally or vertically if r ∈ {h, v}. Therefore, we define

an extra prediction head for our model Me with 6 neurons to

predict the rotation class performed on the weakly-augmented

image as shown in Eq. 6. This is not only a cost-effective

method to improve feature robustness, but also a regularization

technique. Given that r is randomly selected for every image,
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it ensures an adaptive evolution of the feature embeddings

learned on the limited labeled dataset.

r̂w = Me(R(W(xl), r)) (6)

Consequently, we build the SDLoss to have flexible yet

robust embeddings fit for pseudo-labeling unlabeled data. For

this purpose, we first consider the cross-entropy loss for

predicting weakly-augmented image class (Eq. 7) and the

cross-entropy loss for predicting the rotation of the weakly-

augmented and rotated image (Eq. 8).

Lw = H(ŷw, yl) (7)

Lw
rot = H(r̂w, r) (8)

In order to form well defined clusters of embeddings, we

use the spectral constrastive loss Lspec [32] to create in

the embedding space tightly coupled and diverse embedding

clusters for each class. For an embedding pair (zw, zs) we

first normalize each embedding if ‖z‖2 ≥ 1, where ‖ · ‖2
is the L2 norm. We split the spectral constrastive loss into

two components in Eq. 9. The first component, Lsame, pulls

embeddings from augmentations of the same image closer

together and the second component, Ldiff , pushes further

apart feature embeddings from images with different labels.

Lspec = Lsame + Ldiff (9)

Formally, Lsame computes the loss between embeddings

from the same image:

Lsame = −2× 1

B

B∑
b=1

〈zbw, zbs〉 × Z (10)

with B as the batch size, 〈zbw, zbs〉 as the dot product between

the bth embeddings of zw and zs and Z as the dimensionality

of the embeddings. Consequently, Ldiff computes the loss

between embeddings from images with different labels from

the same batch:

Ldiff =
1

B(B − 1)

B∑
b1=1

B∑
b2=1
b2 �=b1

(〈zb1w , zb2s 〉)2 (11)

where we sum up the squared dot products of embeddings

from off-diagonal elements and average over all possible pairs

of different embeddings in the batch.

To summarize, we build the Sicilian Defense Loss, a cohe-

sive and robust loss for learning on the labeled data from edge

servers (Eq. 12). This loss is meant to take into account the

embeddings from the edge model and cluster them accordingly

in order to improve the representational capabilities of the

feature embeddings.

LSD = Lw + Lw
rot + Lspec (12)

Clustering Embeddings: After training on the edge, we

compute the centroids of the embeddings Zc for every class

c ∈ C as follows:

Zc = {zw = Me(W(xl)), ∀{xl, yl} ∈ Le, yl = c} (13)

where Zc is a set with all feature embeddings for every

weakly-augmented labeled sample in Le that has the label

yl = c and C is the total number of classes. Then, we

normalize each feature embedding Zc using the L2 norm:

Z
norm
c =

{
zw

‖zw‖2 , ∀zw ∈ Zc

}
(14)

Finally, we compute embedding centroid φc for every class

c ∈ C by averaging all normalized feature embeddings Znorm
c .

φc =
1

|Znorm
c |

∑
Znorm
c

znormw (15)

We define Φe = {φc, ∀c ∈ C} as the set with all embedding

centroids from edge server e for all classes c ∈ C. After

training and clustering (Lines 27-28 in Alg. 1), we send to

each client of edge server e the edge model parameters θe and

the embedding centroids set Φe (Line 5 in Alg. 1). Clustering

embeddings enables the class-wise average of features learned

on labeled data from each edge server to be used as embedding

centroids for pseudo-labeling on the clients.

B. Pseudo-Labeling and Training on Edge Devices

Pawn’s Progression Pseudo-Labeling: Since pawns in chess

can only move forward and attack in diagonal, we use this as

inspiration for pseudo-labeling. Considering an unlabeled local

image xu and the local model Mi for client i, we obtain the

following predictions and feature embeddings:

zuw = Mi(W(xu)) (16)

ŷus , z
u
s = Mi(S(xu)) (17)

r̂us = Mi(R(S(xu), r)) (18)

where ŷus , zus are the predicted class and the corresponding

feature embedding for the strongly-augmented unlabeled sam-

ple xu, r̂us is the prediction of the rotation for the strongly-

augmented training sample xu and zuw is the feature embedding

obtained from the weakly-augmented unlabeled sample xu.

Similar to a pawn’s progression being forward with diagonal

attacking options, we pseudo-label based on a “direct” Eu-

clidean distance and “diagonal” cosine similarity between the

local embeddings and the embedding centroids from the edge

server. This way we provide a comprehensive view of em-

bedding relationships, ensuring a more accurate and nuanced

pseudo-labeling [25]. First, we normalize the local embeddings

of the weakly-augmented images zu,normw = zuw/‖zuw‖2. Then,

we compute the class ĉcos that maximizes the cosine similarity

and the class ĉeuc that minimizes the Euclidean distance by

finding the class c ∈ C of the closest embedding centroid

φc ∈ Φe as follows:

ĉcos = argmax
c

cos(zu,normw , φc) (19)

ĉeuc = argmin
c

d(zu,normw , φc) (20)

where cos(x, y) = 〈a,b〉
‖a‖‖b‖ and d(x, y) =

√
(x− y)2 are

the cosine similarity and Euclidean distance functions, re-

spectively. This way, if ĉcos = ĉeuc and if the maximum
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cosine similarity is above a predefined confidence threshold

τ , we select the embedding centroid φ∗ and its corresponding

pseudo-label y∗u as the selected class ĉcos (Line 12 in Alg. 1).

In case ĉcos �= ĉeuc, we disconsider the unlabeled training

sample xu. Consequently, we have a pseudo-labeled training

set U
∗
i ⊆ Ui using only the unlabeled images xu ∈ Ui that

were assigned a pseudo-label y∗u (Line 13 in Alg. 1).

Pawn Promotion Loss: Similar to how pawns eventually get

promoted by reaching the opposite end of the chessboard, we

want to enforce local learning of the high confidence embed-

ding centroids for unlabeled training samples to enhance the

local pseudo-labeling. We adapt the rationale behind FixMatch

which uses weakly-augmented predictions as ground-truth for

learning strongly-augmented predictions. As a result, we use

a continuous optimization process where clients use high con-

fidence embedding centroids obtained on weakly-augmented

labeled images from the edge server to create pseudo-labels

from the weakly-augmented unlabeled local images (Lines 5-

15 in Alg. 1). These pseudo-labels are then used as ground-

truth for learning the strongly-augmented unlabeled images

(Line 16 in Alg. 1). Since all clients are encouraged to push

their own local embeddings closer to the chosen embedding

centroids from the edge server, this continues to increase the

confidence for the respective class label. For this, we use the

PawnLoss defined as follows:

LPawn = Lpseudo + Ls
rot + LCD (21)

Lpseudo = H(ŷus , y
∗
u) (22)

Ls
rot = H(r̂us , r) (23)

where LCD is the Centroid Distillation Loss using the

Kullback-Leibler divergence on the softmax probabilities of

the local embeddings zus and the selected embedding centroid

φ∗ defined as follows:

LCD = DKL(softmax(zus /T )‖softmax(φ∗/T )) (24)

with T as the temperature to smooth the probabilities of

the feature embeddings [33]. This enables us to continuously

refine the local embeddings with the guidance of embedding

centroids received from the edge server.

C. Hierarchical Embeddings and their Aggregation

Instead of averaging the weights like HierFAVG [3], we

weight the contribution of each model in the aggregation using

cosine similarity-based weights. We define the aggregation of

local model parameters θi at edge server e as follows:

θe =
∑
i∈De

pei θi, where pei =
e−σ cos(θe, θi)∑

j∈De

e−σ cos(θe, θj)
(25)

where De ⊂ D is the subset of devices connected to edge

server e, and σ is a hyperparameter. Likewise, for global

aggregation we use:

θG =
∑
e∈E

peθe, where pe =
e−σ cos(θG , θe)∑

j∈E

e−σ cos(θG , θj)
(26)

As we learn embeddings using the SDLoss for better

clusterability and enable clients to learn the embedding cen-

troids when confident enough, all these embeddings must be

shared throughout the hierarchy for the learning process to

be successful. Using the cosine similarity based aggregation

both at the edge (Line 18 in Alg. 1) and in the cloud (Line

21 in Alg. 1), we ensure that the embeddings, when shared

throughout the hierarchy, are still relevant for the downstream

clustering and pseudo-labeling.

On top of this, after the edge and global aggregations, we

fine-tune the aggregated edge models on the available labeled

data at each edge server. Finally, we cluster the hierarchical

embeddings to send new embedding centroids to the edge

devices (Lines 19 and 23 in Alg. 1).

IV. EXPERIMENTAL RESULTS: MOVES AND

CONSEQUENCES

A. Experimental Setup - Board Battle Plan

The Wooden Pieces: We evaluate SSHFL by simulating all

our experiments on three GPU servers, two identical ones,

each with 4× NVIDIA RTX A6000 GPUs, a 64-core AMD

Threadripper PRO 3995WX CPU and 512GB RAM, and

a larger GPU server with 8× NVIDIA RTX A6000 Ada

generation GPUs, 2× 32-core AMD EPYC 7513 CPUs and

1TB RAM. We simulate the client-edge-cloud hierarchy for

all experiments to provide performance evaluations in terms

of global test accuracy and global test loss.

The Strategy: For all experiments, we use the Wide ResNet

28x2 model [34], since most related SSL and SSFL approaches

use it [18]–[20], [25], [26]. In order to follow standard semi-

supervised procedure, we choose the top-3 datasets used in

this area, i.e., CIFAR10, CIFAR100 [35] and SVHN [36]. We

consider 4,000 labeled images for CIFAR10 and SVHN and

10,000 labeled images for CIFAR100. We establish as standard

for SSHFL that the edge servers split among themselves the

labeled dataset, in an IID manner. Splitting in an IID manner

the labeled data on the edge servers boosts the learning of the

unlabeled clients. The remaining unlabeled images are then

split among all clients by using the Dirichlet distribution [30].

For IID distribution, images are sampled with α = 100
and α = 0.1 is used for non-IID distribution. In order to

balance the unlabeled data for all clients, we assume each

client has 500 unlabeled images, since we consider clients as

edge devices with limited memory and computational capa-

bilities. This approach ensures consistent evaluations across

all datasets. Given that different datasets have varying total

numbers of images, e.g., CIFAR10 has 50,000 images and

SVHN contains 73,257, it is crucial to maintain the same

number of images per client. Therefore, we ensure a realistic

evaluation of SSHFL across all datasets. This is an extension

of the labels-at-server scenario to the SSHFL setting which

we simply call labels-at-edge.

Similar to the original HFL system proposed in [3], we

consider 5 edge servers and 50 edge devices (i.e., clients),

with each server having access to an equal number of clients.

Following HierFAVG [3], we assume all clients are always

128

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 06,2024 at 23:29:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Global test accuracy results using IID and non-IID settings for k1 = 1, ke = 1 and k2 = 2. Overall, we observe that

CHESSFL converges faster and reaches higher accuracies for all datasets, in both IID and non-IID settings.

TABLE I: Global test accuracies [%] for k1 = 1, ke = 1 and variations of k2 in IID and non-IID settings. The effectiveness

of clustering hierarchical embeddings enables CHESSFL to obtain higher accuracy values in all scenarios.

Dataset
IID (α = 100) Non-IID (α = 0.1)

k2 2 5 10 2 5 10

SVHN
SemiFL 86.81 ± 0.37 87.52 ± 1.18 87.83 ± 1.33 86.84 ± 0.67 87.56 ± 0.01 87.37 ± 0.06

FixMatch 91.22 ± 0.24 91.60 ± 0.77 91.74 ± 0.23 90.33 ± 0.31 90.84 ± 0.02 90.92 ± 0.01
CHESSFL 92.84 ± 0.12 92.54 ± 0.04 92.12 ± 0.41 92.24 ± 0.22 92.11 ± 0.25 91.81 ± 0.20

CIFAR10
SemiFL 77.13 ± 0.30 76.44 ± 0.08 76.76 ± 0.74 73.43 ± 0.52 74.11 ± 0.46 73.64 ± 0.88

FixMatch 77.57 ± 0.38 77.82 ± 0.07 77.85 ± 0.15 75.68 ± 0.21 75.55 ± 0.32 75.80 ± 0.33
CHESSFL 83.29 ± 0.36 82.97 ± 0.02 81.95 ± 0.09 82.46 ± 0.23 81.37 ± 0.35 80.44 ± 0.08

CIFAR100
SemiFL 52.27 ± 0.43 50.70 ± 0.30 48.95 ± 0.07 51.74 ± 0.07 51.47 ± 0.27 48.53 ± 0.30

FixMatch 53.58 ± 0.22 52.29 ± 0.67 50.78 ± 0.02 53.14 ± 0.54 52.75 ± 0.29 50.65 ± 0.15
CHESSFL 57.92 ± 0.24 56.40 ± 0.12 55.03 ± 0.08 57.32 ± 0.24 56.23 ± 0.13 54.04 ± 0.14

available and we use during every communication round all 50

clients. We run all experiments for K = 500 communication

rounds and average all results over 3 different seeds. We use

the following hyperparameter values: learning rate of 0.03 for

which we use a cosine annealing learning rate scheduler [37],

T = 4 for Eq. 24, σ = 0.1 for Eq. 25 and Eq. 26, and the

confidence threshold τ = 0.7 (Line 11 in Alg. 1).

We argue that in real-world scenarios, clients prefer to train

less due to their limited computational resources and battery

life. Besides this, clients can benefit from communicating more

with the edge servers and training less locally in HFL. Indeed,

as shown in [3], more frequent communication with the edge

servers and less local computation, hence lower k1 values,

can speed up training. Therefore, we run all experiments with

k1 = 1 and ke = 1, but we also provide ablation studies with

different combinations of k1 and ke in Section IV-C.

The Opponents: As baselines for SSHFL, we adapt the

state-of-the-art SemiFL to HFL and we also implement

FixMatch in HFL. We do not use FedMatch due to their

communication overhead, the privacy concerns when sharing

models from other clients to “help” pseudo-labeling, and low

performance compared to SemiFL. We implement FixMatch

for every client to run locally, as described in [18]. On top

of the implementation from [18], we use fine-tuning with

labeled data on the edge server for ke epochs, similar to

SemiFL and CHESSFL. This implementation of FixMatch

serves as a straightforward implementation of FixMatch [18]

for SSHFL. We implement SemiFL as described in [26] and

we only use the labeled data available at each edge server for

the computation of the sBN statistics, i.e., running mean and

variance. This way, we ensure a more realistic adaptation of

SemiFL in the context of SSHFL.
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Fig. 4: Global test loss results for k1 = 1, ke = 1 and various k2 values for CIFAR10 and CIFAR100 datasets in both IID and

non-IID settings. CHESSFL consistently demonstrates a more efficient convergence and lower loss across all scenarios.

B. Empirical Results - Tactical Triumphs

Opening Outcome: As we carefully designed CHESSFL

specifically for SSHFL using the SDLoss and PawnLoss,

we have a unique advantage that makes our method better

compared to other, state-of-the-art approaches. In Fig. 3, we

observe that CHESSFL learns faster and better compared to

the SemiFL and FixMatch baselines. The benefit of using the

SDLoss can be seen in how CHESSFL deals with non-IID

data, compared to the baselines, i.e., SemiFL and FixMatch.

In the context of SSHFL, a straightforward implementation

of FixMatch consistently outperforms SemiFL across various

scenarios. This performance gap is especially pronounced on

the SVHN dataset, where FixMatch demonstrates a notably

higher accuracy compared to SemiFL, in both IID and non-

IID scenarios. FixMatch only uses a fixed dataset built using

all weakly-augmented images that have a prediction over a

given confidence threshold. Besides the fixed dataset, SemiFL

also uses a mixed dataset created by mixing pairs of images

randomly sampled from the fixed dataset. The noise introduced

by the mixed dataset in the training process degrades the

overall performance of SemiFL across all datasets.

One of the most important hyperparameters in HFL is k2
since it quantifies the number of edge aggregations to be

performed before one global aggregation. We explore multiple

variations of this hyperparameter, i.e., k2 ∈ {2, 5, 10} and

show the impact on the global test loss in Fig. 4. Based on data

in the first row from Fig. 4 and the accuracy results from the

second and third column from Fig. 3 we can indeed confirm

that the loss decreases more for CHESSFL for CIFAR10

and CIFAR100 datasets in both IID and non-IID settings.

This shows CHESSFL enables a more robust learning overall,

throughout multiple communication rounds, compared to the

baselines. A more detailed depiction of the impact k2 has on

the learning process can be seen in Table I. For CIFAR10,

the average decrease in accuracy from IID to non-IID setting

for SemiFL is 3.05% and for FixMatch is 2.07%, while for

CHESSFL is only 1.31%. This demonstrates that CHESSFL

learns more robust feature embeddings across the client-edge-

cloud hierarchy, enhancing overall robustness to non-IID data.

Fast Moves: For all datasets, with varying k2 values, we

show in Table II the number of communication rounds required

to achieve a given accuracy threshold. Overall, CHESSFL

converges up to 5.11× faster compared to the baselines. This

convergence speedup also means CHESSFL enables clients to

perform less computation and communication to reach a given

accuracy threshold. For example, CHESSFL reaches 70%

accuracy on CIFAR10 with IID data in only 83 communication

rounds, 2.14× faster, on average, compared to the baselines.

Therefore, in IoT systems where energy consumption truly

matters and the network connectivity is unreliable, CHESSFL

can really make a difference.
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TABLE II: Number of communication rounds required to achieve a threshold accuracy (Acc. thresh.) for k1 = 1, ke = 1
and various k2 values in both IID and non-IID settings. CHESSFL uses up to 5.11× less communication rounds compared to

SemiFL and FixMatch. CHESSFL speeds up convergence consistently across both IID and non-IID settings, for all datasets.

Dataset
IID (α = 100) Non-IID (α = 0.1)

k2 2 5 10 2 5 10

SVHN
Acc. thresh. 85%

SemiFL 393 219 239 309 319 289
FixMatch 87 89 99 99 119 129

CHESSFL 47 64 79 55 79 89
Avg. improvement 5.11× 2.41× 2.14× 3.71× 2.77× 2.35×

CIFAR10
Acc. thresh. 70%

SemiFL 211 239 259 283 264 299
FixMatch 145 159 179 187 189 189

CHESSFL 83 99 109 91 114 139
Avg. improvement 2.14× 2.01× 2.01× 2.58× 1.99× 1.76×

CIFAR100
Acc. thresh. 45%

SemiFL 181 219 269 187 209 299
FixMatch 151 184 209 157 169 209

CHESSFL 93 124 149 93 124 149
Avg. improvement 1.78× 1.63× 1.6× 1.85× 1.52× 1.7×

TABLE III: Global test accuracies for k2 = 2 and variations of k1 and ke in IID and non-IID settings. On average, CHESSFL

maintains the highest accuracy in both IID and non-IID settings, across all datasets.

Dataset
SVHN CIFAR10 CIFAR100

k1 ke SemiFL FixMatch CHESSFL SemiFL FixMatch CHESSFL SemiFL FixMatch CHESSFL

IID
(α = 100)

1 1 87.91% 91.96% 93.06% 77.34% 77.92% 83.61% 52.86% 54.09% 57.95%
1 5 90.77% 92.89% 93.79% 82.28% 82.14% 84.28% 53.79% 55.28% 55.67%
5 1 91.75% 93.81% 94.44% 89.07% 82.22% 85.93% 52.17% 54.28% 58.66%
5 5 91.25% 93.70% 94.07% 87.62% 83.16% 85.48% 53.22% 55.42% 56.32%

Non-IID
(α = 0.1)

1 1 87.62% 90.73% 92.21% 73.62% 76.01% 82.81% 52.10% 53.90% 57.65%
1 5 89.86% 92.66% 93.45% 80.89% 81.63% 84.05% 53.43% 55.09% 56.20%
5 1 90.22% 92.76% 93.29% 80.91% 77.91% 84.14% 52.31% 54.82% 57.99%
5 5 90.76% 93.05% 93.70% 84.24% 82.71% 84.64% 53.88% 55.51% 56.27%

TABLE IV: Number of communication round required to reach a certain threshold (Acc. thresh.) for k2 = 2 and variations of

k1 and ke in IID and non-IID settings. We show the average improvement of CHESSFL compared to both baselines, reaching

up to 4.13× faster convergence. Overall, CHESSFL converges faster in both IID and non-IID settings, for all datasets.

Dataset
SVHN (Acc. thresh. 85%) CIFAR10 (Acc. thresh. 70%) CIFAR100 (Acc. thresh. 45%)

k1 ke SemiFL FixMatch CHESSFL Improv. SemiFL FixMatch CHESSFL Improv. SemiFL FixMatch CHESSFL Improv.

IID
(α = 100)

1 1 224 78 50 3.02× 194 146 80 2.13× 176 140 92 1.72×
1 5 50 20 12 2.92× 48 32 20 2× 50 38 24 1.83×
5 1 128 66 44 2.2× 120 130 146 0.86× 180 154 108 1.55×
5 5 38 16 10 2.7× 28 26 16 1.69× 46 38 22 1.91×

Non-IID
(α = 0.1)

1 1 336 94 52 4.13× 302 154 88 2.59× 196 146 92 1.86×
1 5 72 18 12 3.75× 50 36 20 2.15× 48 40 24 1.83×
5 1 154 74 48 2.38× 182 180 140 1.29× 194 148 110 1.55×
5 5 44 18 10 3.1 × 42 28 20 1.75× 46 36 22 1.86×

TABLE V: Wall clock time elapsed and energy consumption to

reach 70% accuracy on CIFAR10 using IID setting for k1 = 1 ,

ke = 1 and k2 = 2 on NVIDIA Jetson Orin Nano 8GB. We

observe CHESSFL reaches 70% test accuracy using 2.61× less

total energy and 2.74× less the wall clock time, on average.

Time
per Epoch [s]

Energy
per Epoch [J]

Total
Energy [J]

Wall Clock
Time [s]

SemiFL 8.11 15.41 3,252.35 1,712.16
FixMatch 2.99 6.76 980.62 433.19

CHESSFL 4.72 9.77 811.17 391.98
Avg. Improv. 1.18× 1.13× 2.61× 2.74×

C. Ablation Studies - Discussing Endgames
Tactical Tweaks: We show in Table III and Table IV the

impact of varying k1 and ke on accuracy and on communi-

cation rounds required to reach a certain threshold accuracy,

respectively. The main observation is that using ke = 5
boosts the convergence rate for all approaches significantly,

by up to 9× compared to ke = 1. This shows how important

training on the edge servers is in order to help the learning

of unlabeled data on all clients. As mentioned before, we find

that training more often on the edge servers makes HFL much

more efficient. We depict in Fig. 5 the global test accuracy

for CIFAR100 in both IID and non-IID settings. As can be

seen, varying k1 and ke has little to no impact on the overall

performance and convergence speed of CHESSFL compared

to the baselines, in both IID and non-IID settings.

Finally, in Fig. 6 we motivate the need for SSHFL by

showing the impact of training only on the limited available

labeled data. For this experiment we use CIFAR10 IID using
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Fig. 5: Global test accuracy results for k2 = 2 and variations of k1 and ke for CIFAR100 dataset. CHESSFL achieves higher

accuracy in all scenarios when compared to the baselines, for both IID and non-IID settings.

Fig. 6: Global test accuracy and test loss results using IID

setting for k1 = 1, ke = 1 and k2 = 2. Using 4,000 labeled

images with HierFAVG does not converge, with an accuracy

gap of over 50%, thus motivating the need for SSHFL.

k1 = 1, ke = 1 and k2 = 2. We use the 4,000 labeled

images split IID between 50 clients with HierFAVG and

compare it against using 4,000 labeled images at the edge

servers and 50 clients with 500 unlabeled images per client,

split IID for SemiFL, FixMatch and CHESSFL. As shown

in Fig. 6, HierFAVG is not converging and even shows signs

of overfitting. With an accuracy gap of over 50% in global

test accuracy, we cannot properly learn in HFL with limited

labeled data. Therefore, we need to leverage unlabeled data

using semi-supervised HFL.

Efficient Endgame: In Table V we evaluate on a NVIDIA

Orin Jetson Nano with 8GB RAM the wall clock time elapsed

and total energy consumption required to reach 70% accuracy

on CIFAR10 IID. For SemiFL, FixMatch and CHESSFL we

run the experiment using k1 = 1, ke = 1 and k2 = 2. If

we assume 500 images and 100% pseudo-labeling accuracy,

FixMatch and CHESSFL would use all 500 images, while

SemiFL would use 1,000 images, i.e., 500 for the fixed dataset

and 500 for the mixed dataset. As shown in Table V, the time

for pseudo-labeling and constructing the mixed dataset makes

the SemiFL approach have up to 72% longer time per epoch.

Even considering that FixMatch has up to 58% less local

computation compared to CHESSFL, the convergence rate of

CHESSFL showed in Table II and Table IV improves the total

wall clock time required to reach a given accuracy threshold

compared to FixMatch, as shown in Table V. In addition to

its computational efficiency, CHESSFL also has negligible

communication overhead. Specifically, an additional 1% of

the edge model size is required for sending the embedding

centroids to the clients. This is valid for most modern model

architectures, since the feature embeddings will always be

significantly smaller compared to the actual model size.

V. CONCLUSION: CLOSING THE GAME

We have proposed Clustering Hierarchical Embeddings for

Semi-Supervised Federated Learning (CHESSFL). To the best

of our knowledge, this is the first semi-supervised solution for

HFL which considers hierarchical embeddings shared between

the clients, edge servers and the cloud. We proposed the

Sicilian Defense Loss (SDLoss) to train the edge servers on

labeled data and enhance their capability to have robust and

diverse feature embeddings. We also introduced the Pawn Pro-

motion Loss (PawnLoss), to facilitate the convergence of client

embeddings toward the embedding centroids received from the

edge server. Compared to state-of-the-art semi-supervised fed-

erated learning approaches, CHESSFL converges up to 5.11×
faster and achieves higher accuracy on SVHN, CIFAR10

and CIFAR100 datasets for both IID and non-IID settings.

The SDLoss and PawnLoss enable CHESSFL to be more

resilient to non-IID data. CHESSFL achieves this performance

with vastly improved wall clock time for reaching a certain

accuracy threshold and negligible communication overhead.
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Future work: Our method can be improved in several ways,

e.g., by adding differential privacy to all communication chan-

nels and by enabling different models to be used by users with

different hardware capabilities. Using labeled and unlabeled

data, new attacks can be devised throughout the client-edge-

cloud hierarchy, hence the need for new adversarial solutions.

All these ideas are left for future work.
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