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Abstract—Hierarchical Federated Learning (HFL) has shown
great promise over the past few years, with significant improve-
ments in communication efficiency and overall performance.
However, current research for HFL predominantly centers on
supervised learning. This focus becomes problematic when deal-
ing with semi-supervised learning, particularly under non-IID
scenarios. In order to address this gap, our paper critically as-
sesses the performance of straightforward adaptations of current
state-of-the-art semi-supervised FL (SSFL) techniques within the
HFL framework. We also introduce a novel clustering mechanism
for hierarchical embeddings to alleviate the challenges introduced
by semi-supervised paradigms in a hierarchical setting. Our ap-
proach not only provides superior accuracy, but also converges up
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[. INTRODUCTION: SETTING THE BOARD

The Opening: Federated Learning (FL) has emerged as a
transformative paradigm in machine learning (ML), enabling
distributed training across decentralized devices, while keeping
data private. McMahan et al. [1] first introduce FL with the
concept of communication rounds representing the interplay
between the clients and the cloud. First, the cloud broadcasts
the global model to a subset of clients among all available
clients (e.g., 10% of all the clients). Clients, typically edge
devices, begin training on their local data and send their
updated local models back to the cloud. Finally, the cloud
aggregates all local models and obtains a new global model.
This entire process repeats until convergence, typically for
several hundred communication rounds.

As the number of Internet-of-Things (IoT) devices increases
annually, with nearly two billion more devices in 2023 than
in 2022 [2], the range of these devices spans from powerful
edge servers to less capable edge devices and IoT gadgets.
While FL focuses on decentralization and data privacy, it can
become inefficient when considering heterogeneous devices
spread across various geographical areas with variable network
connectivity. Hierarchical Federated Learning (HFL) emerged
to overcome these very challenges. By introducing a client-
edge-cloud hierarchical system architecture, HFL [3] trains
k1 local epochs on the client-side data and executes ko edge

Code is available at: https://github.com/SLDGroup/CHESSFL

Fig. 1: Our proposed unified Semi-Supervised Hierarchical
Federated Learning (SSHFL) evaluation framework. Edge
servers (shown with orange border) have labeled data, while
heterogeneous devices (shown with different colors, green,
blue, red, purple) have their own local unlabeled data. Similar
to classic HFL, we run steps 1 through 5 and evaluate
the global model’s test accuracy after a given number of
communication rounds.

aggregations at the edge servers among connected clients
before aggregating the edge models in the cloud to obtain
a new global model. This hierarchical approach reduces the
communication cost since edge servers are physically closer
to the clients and enhances the computational efficiency of
clients, thus allowing for quicker local model updates and
edge aggregations at the edge servers. A hierarchical decen-
tralized system is thus more scalable compared to classical
FL. Besides scalability, client’s privacy can be enhanced by
the client-edge-cloud hierarchy provided by HFL [4]. On top
of the resulting benefits of decentralization through hierarchy,
when compared to local differential privacy [5], hierarchical
differential privacy [6] highlights an opportunity for privacy
strengthening due to differential privacy noise being injected
multiple times throughout the hierarchy, at the intermediary
edge servers and at the cloud server.

Queen’s Gambit: Fully supervised learning in FL is quite
unrealistic [7]. First, the collection and labeling of data is
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Fig. 2: Our proposed CHESSFL framework initiates training on the edge server with labeled data, utilizing our novel Sicilian
Defense Loss. The feature embeddings derived from weakly-augmented labeled images are clustered, and the embedding cluster
centroids are then transmitted to the client. Following the implementation of the proposed Pawn’s Progression Pseudo-Labeling,
the client starts training on unlabeled images using our novel Pawn Promotion Loss.

far too costly and not readily available. Second, since real-
world clients usually have unlabeled data, it is unfeasible to
consider that labeled data could be simply shared between
individuals, yet alone organizations, considering potential pri-
vacy violations and proprietary datasets. Therefore, widely
available and high-quality labeled data is desirable, but not
achievable in the real world. Indeed, since General Data
Protection Regulation (GDPR) [8] and California Consumer
Privacy Act (CCPA) [9] imposed more constraints on data
sharing, decentralized learning at scale has become a critical
problem [7]. Therefore, there is a natural synergy between FL
and semi-supervised learning (SSL). However, how to leverage
unlabeled data in FL is still under-explored. This is because
unlabeled data is widely available in FL and too few clients
are motivated enough to label their own local data.

As opposed to traditional SSL, in semi-supervised FL
(SSFL) the labeled and unlabeled data are split between the
cloud and the clients, respectively. This isolation of labeled
data in the cloud may compromise the overall performance [7].
Besides, data heterogeneity naturally occurs in FL scenarios
under the non-IID umbrella, therefore balancing the per-
formance and the communication efficiency of SSFL is of
paramount importance.

In cross-device FL there are two scenarios discussed in [10]
based on where labeled data resides: labels-at-client or labels-
at-server. Consequently, in cross-device SSFL, the most com-
mon scenario is labels-at-server, with all clients having large
amounts of unlabeled data and the cloud having access to
limited labeled data. This is not only more challenging, but
also more realistic since the vast majority of clients do not
want to spend time and resources labeling their own data or
may not even have the proper expertise to do so [7].
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Considering the challenges posed by realistic HFL at scale
and the issue of implementing SSL in a real-world decentral-
ized setting, we address the following research questions:

o Can we leverage the client-edge-cloud hierarchy to per-
form better semi-supervised learning in hierarchical fed-
erated learning with minimal communication overhead?

o« How much better does an approach that leverages the
client-edge-cloud hierarchy perform in terms of conver-
gence speed and accuracy when compared to other meth-
ods in semi-supervised hierarchical federated learning?

To address the first research question, we propose Cluster-
ing Hierarchical Embeddings for Semi-Supervised Federated
Learning (CHESSFL) as a solution that benefits from the
hierarchical structure of the system to speed up the learning
convergence and increase the overall accuracy. To achieve this,
we combine unsupervised learning techniques such as rotation
prediction [11]-[13] with semi-supervised learning techniques
like pseudo-labeling and propose two new loss functions.

To answer the second research question, we propose a
unified semi-supervised HFL (SSHFL) framework, depicted
in Fig. 1, to run experiments that evaluate how clients learn
in a semi-supervised and hierarchical system. Our unified
framework first partitions the dataset of choice into labeled
and unlabeled datasets. The labeled data is split in an IID
fashion among all edge servers and the remaining unlabeled
partition of the dataset is split in either IID or non-IID fashion
among all clients. This way, each edge server has access only
to its own labeled data, and each client has access to its own
unlabeled dataset. We then run the classical HFL learning
scheme shown in Fig. 1 by steps 1 through 5. Finally, we
evaluate the convergence speed to a given accuracy threshold
and test accuracy and test loss of the global model.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 06,2024 at 23:29:02 UTC from IEEE Xplore. Restrictions apply.



Despite the limited existing research in SSFL, the more
realistic and scalable SSHFL is not yet explored. Similar to
Queen’s Gambit chess opening, we move to the center of this
new research area by providing (i) CHESSFL, the first solution
designed for SSHFL, and (ii) a unified evaluation framework
designed specifically for SSHFL. We outline our proposed
CHESSFL framework in Fig. 2.

Our contributions are as follows:

o Clustering Hierarchical Embeddings for Semi-

Supervised Federated Learning (CHESSFL): In order
to leverage the hierarchy of the system, we propose a
novel clustering mechanism for hierarchical embeddings
to improve convergence speed and performance in terms
of accuracy for SSHFL. To the best of our knowledge,
this solution is the first to account for both the client-
edge-cloud hierarchy in FL and SSL.

o Unified Semi-Supervised Hierarchical Federated
Learning Framework: To the best of our knowledge, we
are the first to propose a unified framework for SSHFL
and evaluate the performance of straightforward imple-
mentations of current state-of-the-art SSFL algorithms in
the hierarchical setting.

o Empirical Validation: We show that CHESSFL con-
verges up to 5.11x faster and achieves higher accuracy
than state-of-the-art SSFL solutions on SVHN, CIFAR10
and CIFAR100 datasets, with negligible communication
overhead and enhanced robustness to non-IID data.

The remainder of the paper is organized as follows: Section

II reviews the relevant prior work. Section III introduces our
proposed approach. The experimental results are presented in
Section IV. Finally, Section V summarizes our key findings
and outlines directions for future work.

II. RELATED WORK: HISTORICAL MATCHES

Hierarchical Federated Learning: The classical client-edge-
cloud HFL scenario is depicted for the first time by Liu et
al. [3], where they use 50 edge devices and 5 edge servers.
HierFAVG [3] shows that HFL using FedAVG [1] is an effec-
tive way of reducing training time and energy consumption of
edge devices across the board compared to cloud-based FL.
In [6] the authors extend the original HFL work by introducing
differential privacy in the hierarchy. Abad et al. [14] extend
the original HFL work for communication efficient HFL in the
heterogeneous cellular networks. Similarly, Yuan et al. [15]
propose a new communication protocol that benefits from
local-area network instead of only using a wide-area network
to further improve communication efficiency and speed up
training for HFL. MACFL [16] is an extension of HierFAVG
towards simulating user mobility.

All previously discussed HFL works build upon the founda-
tion of HierFAVG by improving communication and compu-
tation efficiency, and by enabling HFL to run in more realistic
scenarios. Our paper complements all these works by opening
another new direction for HFL, i.e., SSHFL.
Semi-Supervised Learning: The goal of SSL is to learn from
unlabeled samples with limited labeled samples, assuming
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the same distribution between labeled and unlabeled data. A
common approach is to use pseudo-labels [17] generated with
a model pre-trained on the labeled data to learn the unlabeled
data as a form of entropy regularization. FixMatch [18] marked
the inception of a trend in SSL. This approach predicts
the class of a weakly-augmented image and if the initial
prediction is over a certain threshold, uses the predicted class
as a pseudo-label in the cross-entropy loss for the prediction
of the strongly-augmented version of the same image. As
setting a rigid threshold for pseudo-labeling lacks flexibility,
FlexMatch [19] enables a flexible threshold based on cur-
riculum pseudo-labeling. FullMatch [20] combines FixMatch
with negative learning, leveraging all the other class prob-
abilities, besides the one used for pseudo-labeling. Similarly,
MaxMatch [21] minimizes the worst-case consistency between
the original sample and its augmented versions, resulting in a
more robust model for SSL.

Apart from pseudo-labeling, another SSL approach is Mean
Teacher [22] which leverages two models, i.e., teacher and
student. The student model is training to be consistent with
the teacher model, while the teacher model is updated with
an exponentially moving average technique, with very small
updates from the student model every iteration.

Another line of research in SSL focuses on how to lever-
age unsupervised (i.e., self-supervised) learning techniques
to boost learning. One of the first approaches in this area
was S*L [23] where the authors propose to unify self-
supervised and semi-supervised approaches showing how to
train models to achieve new state-of-the-art results on semi-
supervised ILSVRC-2012 dataset [24]. USADTM [25] uses a
triplet mutual information (MI) loss for unsupervised learning
and a deformable template matching to align clustering labels
learned from MI, continuously optimizing the feature distri-
bution of labeled data. RotNet [12] performs random rotations
for {0°,90°,180°,270°} for unsupervised learning and is
extended by SESEMI [13] for SSL with vertical and horizontal
flips of the image besides the aforementioned rotations.

The pseudo-labeling based works use the pseudo-labels
combined with consistency regularization (i.e., consistent pre-
dictions of the same image augmented in different ways) and
achieve good performance for SSL. Conversely, the SSL works
that leverage unsupervised learning techniques not only yield
good performance, but also have better and more robust rep-
resentations. The critical issue is that all previously discussed
approaches consider both labeled and unlabeled losses in a
centralized server, which is not achievable in HFL given the
data privacy concerns.

Semi-Supervised Federated Learning: The adaptation of
SSL approaches to FL is not trivial. For example, Fed-
Match [10] uses two sets of parameters for learning labeled
and unlabeled data, respectively. For pseudo-labeling, Fed-
Match uses an agreement-based pseudo-label by sending to
a client the top-k most similar models from other clients
selected by the central server and maximizes their agreement
for the pseudo-label, therefore introducing a communication
overhead. SemiFL [26] fine-tunes the global model with the
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labeled data to alleviate the forgetting effect (i.e., decreasing
accuracy over time), observed in FedMatch, caused by training
solely on unsupervised data from the clients. The local models
of the clients are trained on pseudo-labels generated by the
global model on the client-side unlabeled data, obtaining more
competitive results compared to FedMatch. SemiFL uses static
batch normalization (sBN) [27] to initialize the running mean
and running variation parameters from the batch normalization
operations in their models. Furthermore, SemiFL uses both
labeled and unlabeled datasets to compute the sBN statistics,
which is an unrealistic assumption. Similar to FixMatch,
SemiFL builds a training dataset called fixed dataset using
weakly-augmented images if their prediction probabilities are
above a given threshold. With this fixed dataset, SemiFL builds
another dataset, called mixed dataset, by randomly sampling
two images from the fixed dataset and mixing them using
MixMatch [28]. This introduces a computational overhead and
increases memory usage for every client, since both fixed and
mixed datasets are built and used for training on-device.

Orchestra [29] is an unsupervised approach that combines
the rotation prediction with the Mean Teacher approach to train
better representations on the unlabeled clients. By using the
Mean Teacher approach, Orchestra introduces a computational
overhead on the resource-limited clients while also consuming
more energy to keep both teacher and student models running
on-device. The clustering introduced in [29] is not actual clus-
tering, but rather extra classification heads, i.e., linear layers,
for local and global clusters, respectively, while considering as
“cluster centroids” the weights of the respective linear layers.
Even so, when using ResNet18, a model almost 10x larger
compared to Wide ResNet 28x2 used by SemiFL, Orchestra
still falls short in its semi-supervised evaluation compared to
SemiFL. Furthermore, since SemiFL is a SSFL approach, we
compare our work to SemiFL instead of Orchestra.

Recent FL survey papers such as [7] stress that the problem
of semi-supervised FL is under-explored and needs better
solutions that strike a right balance between the performance
and efficiency under heterogeneity constraints. Indeed, seeing
the lack of semi-supervised type of research in HFL, we aim to
bridge this gap and provide a baseline for SSHFL to encourage
research in this more practical and realistic side of FL.

III. METHODOLOGY: DEFENSE AND COUNTERPLAY

Chessboard Strategies: We first propose the Sicilian Defense
Loss to train the edge servers on labeled data and enhance
their capability to have diverse and robust feature embed-
dings. The resulted feature embeddings are then clustered
and shared throughout the hierarchy with the clients, which
use the embedding centroids in Pawn’s Progression Pseudo-
Labeling. Lastly, we introduce the Pawn Promotion Loss,
which facilitates the convergence of client embeddings toward
the embedding centroids and ensures the learning of diverse
feature embeddings on the client side as well.

Choosing the Pieces: In our SSHFL setting, we consider two
datasets: a labeled dataset L and an unlabeled dataset U, with
|U| > |L| and | - | denoting the size of a set. We also assume
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the marginal distributions of I, U are the same. Previous
SSFL setups included the labeled dataset in the cloud and
the unlabeled dataset split either IID or non-IID between all
devices. We adapt the labeled dataset I for HFL by splitting
it in an IID manner among all edge servers:

JLe =L, with |L;| = [L;|,Vi,j € E,i # j
eckE

()]

with E being the total number of edge servers and L. the
labeled dataset available at edge server e. We argue that in a
realistic HFL environment it makes sense to put labeled data
on the edge servers instead of the cloud, since edge servers
are physically closer to the edge devices. This proximity
facilitates faster localized training and offers advantages such
as operational efficiency, adaptability, and cost-effectiveness.
We assume each edge server e can only access its own labeled
dataset ..

The unlabeled dataset U is split between all clients 11D

and non-IID, using U; ~ Dir(a) with U; as the unlabeled
local dataset available at device ¢, where ¢ € D and D is
the set that contains all devices, with Dir(«) as the Dirichlet
distribution [30] to sample IID and non-IID datasets. We note
that in this SSHFL setting, each client ¢ only has access to its
own unlabeled dataset U,.
Opening Principles: Given a training dataset U; = {1u}‘U il
for device ¢ with |U;| as the total number of training samples
for device 4 and z, the u'" training sample, in FL we want
to solve the following optimization problem:

D]

|D|Z£ (6,U;)

where £, is the loss function for unsupervised data evaluated
on the local dataset U; using the local model weights 6; for
client ¢, with fg being the global weights and f being the
global loss function. In FL we solve the optimization problem
using the cloud and the clients, while in HFL, we also use edge
servers. For practical purposes, the optimization problem we
solve for SSHFL follows the same principles defined in SSL:

mm f(0g) = 2)

|E| D]

‘E‘Zﬁ e L |D|Zc (0:,0:) )

with £, as the loss for supervised data and 6. as the edge
model weights for edge server e. Edge servers have only
labeled data and clients have only unlabeled data. Each edge
server has its own labeled training dataset L. = {xy, yl}‘lﬂ;cl‘
with |L.| as the total number of labeled training samples
for edge server e, and x; as the [*" training sample with its
corresponding label y;.

In order to solve Eq. 3, we propose CHESSFL, detailed in
Alg. 1, which has two innovative components: the Sicilian
Defense Loss (SDLoss) for training on edge servers with
labeled data and the Pawn Promotion Loss (PawnLoss) for
training on the clients with pseudo-labeled data. Finally, we
unify the SSHFL framework using a more flexible aggregation
technique both at the edge server and in the cloud.

mln f(lg) =
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Algorithm 1 Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning (CHESSFL)

1: Initialize global weights g with random weights and download them on all edge servers 0. < 0g,Ve € E

2: 0, ®, + TRAIN&CLUSTEREDGESERVER(e), Ve € E

> Get trained weights 6. and embedding centroids ®,

> For all unlabeled images z,, € U;

> Obtain the feature embeddings 2! from client model M, using the

> Normalize the feature embeddings

w

> Train the parameters 6; of the client model M, for k; local epochs using the

Pawn Promotion Loss £ pg.,, from Eq. 21 on the pseudo-labeled dataset U}

> Aggregate edge model weights 6, using Eq. 26

> Download updated global model on all edge servers

3: for communication round k = 1, 2,..., K do
4 for each device ¢ € D in parallel do
5: Download the latest edge model weights ; < . and embedding centroids ®,
6 Initialize the pseudo-labeled dataset Uf = ()
7 for z, € U; do
8 2y = Mi(W(20))
weakly-augmented unlabeled sample W(x,,)

9 2" = Zy /|22
10: Compute class labels ¢..s and e based on Eq. 19, 20 with ¢. € ®, and z"™°"™™
11: if Coos = Ceue and cos(z5™°", ¢.) > T then
12: y:? ¢* — éCOb‘J ¢C
13: Ui = Ui Ul u}
14: end if
15: end for
16: 91 <—Train(£pawn, Ur, kl, 91)
17: end for
18: 0. = > p50;, Ve € E > Aggregate local model weights 6, for all clients ¢ connected to edge server e using Eq. 25
19: 0., @;e% TRAIN& CLUSTEREDGESERVER(e), Ve € E
20: if £ mod ks = 0 then
21 Og = > pebe

eck
22: O, < Og, Ve € E
23: 0., . + TRAIN&CLUSTEREDGESERVER(e), Ve € E
24: end if
25: end for

26: function TRAIN& CLUSTEREDGESERVER(e)

> Train the parameters 0. of the edge server model M, for k. local epochs

using the Sicilian Defense Loss Lgp from Eq. 12 on the labeled dataset L.

27: 0. < Train(Lsp, Le, ke, 0)
28: Obtain embedding centroids ®. using the labeled dataset L. based on Eq. 15
29: return 0., O,

30: end function

A. Training and Clustering Embeddings on Edge Servers

Sicilian Defense Loss: In chess, the Sicilian Defense rep-
resents a robust foundation, providing significant flexibility,
while having a double-edged nature that offers an adaptive
evolution throughout the game. We construct the SDLoss func-
tion with the same characteristics in mind. We first consider
the double-edged nature represented by weakly- and strongly-
augmented images. Next, we enable an adaptive evolution
of feature embeddings using a variation of rotation predic-
tion [11], [12], which includes horizontal and vertical flipping
as well [13]. This enables the edge model to learn better and
more robust feature embeddings with enhanced generalization
capabilities. Finally, we use the cross-entropy loss between the
predicted probabilities from the weakly-augmented image and
the ground-truth label.

Let W(-) represent a weak augmentation composed of
random horizontal flipping and random cropping with padding
and let S(-) represent a strong augmentation, i.e., RandAug-
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ment [31], on top of random horizontal flipping and random
cropping with padding. First, considering a labeled image
sample {z;,y;} and an edge model M, for edge server e,
we obtain the following:

Gy 2w = ME(W(IZ))
zs = Mc(S(21))

“
(&)

where 7, is the weakly-augmented image prediction, and
zw and zg are the weakly- and strongly-augmented image’s
resulting Z-dimensional feature embeddings.

Let R(-,7) be our rotation function that rotates an image
by r degrees if r € {0°,90°,180°,270°} or flips an image
horizontally or vertically if » € {h, v}. Therefore, we define
an extra prediction head for our model M, with 6 neurons to
predict the rotation class performed on the weakly-augmented
image as shown in Eq. 6. This is not only a cost-effective
method to improve feature robustness, but also a regularization
technique. Given that 7 is randomly selected for every image,
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it ensures an adaptive evolution of the feature embeddings
learned on the limited labeled dataset.

Py = M (ROW (1), 7)) (6)

Consequently, we build the SDLoss to have flexible yet
robust embeddings fit for pseudo-labeling unlabeled data. For
this purpose, we first consider the cross-entropy loss for
predicting weakly-augmented image class (Eq. 7) and the
cross-entropy loss for predicting the rotation of the weakly-
augmented and rotated image (Eq. 8).

Ew = H(ng yl)
L;U t = H(TAHM lr)

O

(7
®)

In order to form well defined clusters of embeddings, we
use the spectral constrastive loss Lg,e. [32] to create in
the embedding space tightly coupled and diverse embedding
clusters for each class. For an embedding pair (zy,zs) we
first normalize each embedding if ||z|| > 1, where | - |2
is the L2 norm. We split the spectral constrastive loss into
two components in Eq. 9. The first component, Lgume, pulls
embeddings from augmentations of the same image closer
together and the second component, Lg;sr, pushes further
apart feature embeddings from images with different labels.

)

Formally, L¢qme computes the loss between embeddings
from the same image:

ﬁspec = Esa,me + ‘Cdsz

B

1
E Z(zgn Zg) X Z

b=1

-2 % (10

£samc =

with B as the batch size, (2% 2?) as the dot product between
the bt" embeddings of z,, and z; and Z as the dimensionality
of the embeddings. Consequently, Lg;r¢ computes the loss
between embeddings from images with different labels from
the same batch:

)?

Laify = (1D

. B B
BB-1) D> (e

where we sum up the squared dot products of embeddings
from off-diagonal elements and average over all possible pairs
of different embeddings in the batch.

To summarize, we build the Sicilian Defense Loss, a cohe-
sive and robust loss for learning on the labeled data from edge
servers (Eq. 12). This loss is meant to take into account the
embeddings from the edge model and cluster them accordingly
in order to improve the representational capabilities of the
feature embeddings.

[:SD - £w + ‘C:fjot + £spec (12)

Clustering Embeddings: After training on the edge, we
compute the centroids of the embeddings Z. for every class
c € C as follows:

Zc = {Zu) = Me(w(ml))>v{xlayl} € Le7yl = C} (13)
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where Z. is a set with all feature embeddings for every

weakly-augmented labeled sample in L. that has the label

i ¢ and C is the total number of classes. Then, we

normalize each feature embedding Z. using the L2 norm:
2 V€ Ze

gnorm _
‘ { l[Zw]l2 }

Finally, we compute embedding centroid ¢. for every class
¢ € C by averaging all normalized feature embeddings Z/°""™.

1
|Z£I,orm‘ Z ZZOTm

worm
ZC

(14)

Pe 5)

We define &, = {¢., Ve € C} as the set with all embedding
centroids from edge server e for all classes ¢ € C. After
training and clustering (Lines 27-28 in Alg. 1), we send to
each client of edge server e the edge model parameters ¢, and
the embedding centroids set ®. (Line 5 in Alg. 1). Clustering
embeddings enables the class-wise average of features learned
on labeled data from each edge server to be used as embedding
centroids for pseudo-labeling on the clients.

B. Pseudo-Labeling and Training on Edge Devices

Pawn’s Progression Pseudo-Labeling: Since pawns in chess
can only move forward and attack in diagonal, we use this as
inspiration for pseudo-labeling. Considering an unlabeled local
image x, and the local model M; for client i, we obtain the
following predictions and feature embeddings:

2= Mi(W(x,) (16)
g2 = Mi(S(a)) (17
P = M(R(S (), 7)) (18)

where ¢, z{ are the predicted class and the corresponding
feature embedding for the strongly-augmented unlabeled sam-
ple z,, 7¥ is the prediction of the rotation for the strongly-
augmented training sample x,, and z}, is the feature embedding
obtained from the weakly-augmented unlabeled sample x,,.
Similar to a pawn’s progression being forward with diagonal
attacking options, we pseudo-label based on a “direct” Eu-
clidean distance and “diagonal” cosine similarity between the
local embeddings and the embedding centroids from the edge
server. This way we provide a comprehensive view of em-
bedding relationships, ensuring a more accurate and nuanced
pseudo-labeling [25]. First, we normalize the local embeddings
of the weakly-augmented images z%"°"™ = 2 /||2||o. Then,
we compute the class ¢.,s that maximizes the cosine similarity
and the class ¢q,. that minimizes the Euclidean distance by
finding the class ¢ € C of the closest embedding centroid

o € D, as follows:

Ceos = argmax  cos(zy, """, ¢c) (19)
Ceue = argmin d(z""™, d.) (20)

(&3

(a,b)

where cos(z,y) = TelToT and d(z,y) V(z —y)? are

the cosine similarity and Euclidean distance functions, re-
spectively. This way, if ¢.os = Ceue and if the maximum
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cosine similarity is above a predefined confidence threshold
7, we select the embedding centroid ¢* and its corresponding
pseudo-label ¥ as the selected class ¢.,s (Line 12 in Alg. 1).
In case ¢eos # Ceue, We disconsider the unlabeled training
sample z,,. Consequently, we have a pseudo-labeled training
set U7 C U; using only the unlabeled images =, € U; that
were assigned a pseudo-label y; (Line 13 in Alg. 1).

Pawn Promotion Loss: Similar to how pawns eventually get
promoted by reaching the opposite end of the chessboard, we
want to enforce local learning of the high confidence embed-
ding centroids for unlabeled training samples to enhance the
local pseudo-labeling. We adapt the rationale behind FixMatch
which uses weakly-augmented predictions as ground-truth for
learning strongly-augmented predictions. As a result, we use
a continuous optimization process where clients use high con-
fidence embedding centroids obtained on weakly-augmented
labeled images from the edge server to create pseudo-labels
from the weakly-augmented unlabeled local images (Lines 5-
15 in Alg. 1). These pseudo-labels are then used as ground-
truth for learning the strongly-augmented unlabeled images
(Line 16 in Alg. 1). Since all clients are encouraged to push
their own local embeddings closer to the chosen embedding
centroids from the edge server, this continues to increase the
confidence for the respective class label. For this, we use the
PawnLoss defined as follows:

£Pmun = Epseudo + Eiot + ‘CCD (21)
Epscudv - H(ggv ?J:) (22)
L2, = H(E,7) 23)

where Lcop is the Centroid Distillation Loss using the
Kullback-Leibler divergence on the softmax probabilities of
the local embeddings 2 and the selected embedding centroid
¢* defined as follows:

Lop = Dir(softmax(z2/T)|softmax(¢*/T))  (24)

with 7" as the temperature to smooth the probabilities of
the feature embeddings [33]. This enables us to continuously
refine the local embeddings with the guidance of embedding
centroids received from the edge server.

C. Hierarchical Embeddings and their Aggregation

Instead of averaging the weights like HierFAVG [3], we
weight the contribution of each model in the aggregation using
cosine similarity-based weights. We define the aggregation of
local model parameters 6; at edge server e as follows:

—o cos(fe, 0;)

e
0. = Z p§0;, where p§ = S oo 0 (25)
€D, =

where D, C D is the subset of devices connected to edge
server e, and o is a hyperparameter. Likewise, for global
aggregation we use:

e cos(0g, 0.)

Z e—0 cos(0g, 0;)
JEE

(26)

Og = Zpeae, where p.
eck
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As we learn embeddings using the SDLoss for better
clusterability and enable clients to learn the embedding cen-
troids when confident enough, all these embeddings must be
shared throughout the hierarchy for the learning process to
be successful. Using the cosine similarity based aggregation
both at the edge (Line 18 in Alg. 1) and in the cloud (Line
21 in Alg. 1), we ensure that the embeddings, when shared
throughout the hierarchy, are still relevant for the downstream
clustering and pseudo-labeling.

On top of this, after the edge and global aggregations, we
fine-tune the aggregated edge models on the available labeled
data at each edge server. Finally, we cluster the hierarchical
embeddings to send new embedding centroids to the edge
devices (Lines 19 and 23 in Alg. 1).

IV. EXPERIMENTAL RESULTS: MOVES AND
CONSEQUENCES

A. Experimental Setup - Board Battle Plan

The Wooden Pieces: We evaluate SSHFL by simulating all
our experiments on three GPU servers, two identical ones,
each with 4x NVIDIA RTX A6000 GPUs, a 64-core AMD
Threadripper PRO 3995WX CPU and 512GB RAM, and
a larger GPU server with 8§x NVIDIA RTX A6000 Ada
generation GPUs, 2x 32-core AMD EPYC 7513 CPUs and
ITB RAM. We simulate the client-edge-cloud hierarchy for
all experiments to provide performance evaluations in terms
of global test accuracy and global test loss.

The Strategy: For all experiments, we use the Wide ResNet
28x2 model [34], since most related SSL and SSFL approaches
use it [18]-[20], [25], [26]. In order to follow standard semi-
supervised procedure, we choose the top-3 datasets used in
this area, i.e., CIFAR10, CIFAR100 [35] and SVHN [36]. We
consider 4,000 labeled images for CIFAR10 and SVHN and
10,000 labeled images for CIFAR100. We establish as standard
for SSHFL that the edge servers split among themselves the
labeled dataset, in an IID manner. Splitting in an IID manner
the labeled data on the edge servers boosts the learning of the
unlabeled clients. The remaining unlabeled images are then
split among all clients by using the Dirichlet distribution [30].
For IID distribution, images are sampled with o = 100
and a = 0.1 is used for non-IID distribution. In order to
balance the unlabeled data for all clients, we assume each
client has 500 unlabeled images, since we consider clients as
edge devices with limited memory and computational capa-
bilities. This approach ensures consistent evaluations across
all datasets. Given that different datasets have varying total
numbers of images, e.g., CIFAR10 has 50,000 images and
SVHN contains 73,257, it is crucial to maintain the same
number of images per client. Therefore, we ensure a realistic
evaluation of SSHFL across all datasets. This is an extension
of the labels-at-server scenario to the SSHFL setting which
we simply call labels-at-edge.

Similar to the original HFL system proposed in [3], we
consider 5 edge servers and 50 edge devices (i.e., clients),
with each server having access to an equal number of clients.
Following HierFAVG [3], we assume all clients are always
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Fig. 3: Global test accuracy results using IID and non-IID settings for k; = 1, k. = 1 and ky = 2. Overall, we observe that

CHESSFL converges faster and reaches higher accuracies for all datasets, in both IID and non-IID settings.

TABLE I: Global test accuracies [%] for ky = 1, k. = 1 and variations of k5 in IID and non-IID settings. The effectiveness
of clustering hierarchical embeddings enables CHESSFL to obtain higher accuracy values in all scenarios.

1D (o = 100) Non-IID (o — 0.1)

Dataset ko 2 5 10 2 5 10
SemiFL | 86.81 £ 037 8752 + 1.18 87.83 + 133 | 86.84 + 067 87.56 £ 001  87.37 + 0.06
SVHN | FixMatch | 9122 024 9160 £ 077 9174 £ 023 | 9033 + 031 90.84 + 0.02  90.92 + 0.0l
CHESSFL | 92.84 = 0.12 9254 + 0.04 9212 + 0.41 | 9224 = 0.22  92.11 + 025 91.81 & 0.20
SemiFL | 77.13 £ 030 7644 + 008 76,76 + 074 | 7343 + 052 7411 + 046  73.64 + 0.88
CIFARI0 | FixMatch | 77.57 £ 038 77.82 £ 007 77.85 + 0.15 | 75.68 + 021 7555 + 032  75.80 + 033
CHESSFL | 8329 + 036 82.97 = 0.02 8195 - 0.09 | 8246 + 023 8137 + 035 80.44 + 0.08
SemiFL | 5227 + 043 5070 + 030 4895 + 0.07 | 5174 £ 007 5147 + 027 4853 + 030
CIFARIO0 | FixMatch | 53.58 £ 022 52290 £ 067 5078 + 002 | 53.14 + 0.54 5275 + 029  50.65 + 0.15
CHESSFL | 57.92 + 024 5640 & 0.12 55.03 - 0.08 | 57.32 + 024 5623 + 013  54.04 + 0.14

available and we use during every communication round all 50
clients. We run all experiments for K = 500 communication
rounds and average all results over 3 different seeds. We use
the following hyperparameter values: learning rate of 0.03 for
which we use a cosine annealing learning rate scheduler [37],
T = 4 for Eq. 24, 0 = 0.1 for Eq. 25 and Eq. 26, and the
confidence threshold 7 = 0.7 (Line 11 in Alg. 1).

We argue that in real-world scenarios, clients prefer to train
less due to their limited computational resources and battery
life. Besides this, clients can benefit from communicating more
with the edge servers and training less locally in HFL. Indeed,
as shown in [3], more frequent communication with the edge
servers and less local computation, hence lower k; values,
can speed up training. Therefore, we run all experiments with
k1 =1 and k. = 1, but we also provide ablation studies with
different combinations of k7 and k. in Section IV-C.

129

The Opponents: As baselines for SSHFL, we adapt the
state-of-the-art SemiFL to HFL and we also implement
FixMatch in HFL. We do not use FedMatch due to their
communication overhead, the privacy concerns when sharing
models from other clients to “help” pseudo-labeling, and low
performance compared to SemiFL. We implement FixMatch
for every client to run locally, as described in [18]. On top
of the implementation from [18], we use fine-tuning with
labeled data on the edge server for k. epochs, similar to
SemiFL. and CHESSFL. This implementation of FixMatch
serves as a straightforward implementation of FixMatch [18]
for SSHFL. We implement SemiFL as described in [26] and
we only use the labeled data available at each edge server for
the computation of the sBN statistics, i.e., running mean and
variance. This way, we ensure a more realistic adaptation of
SemiFL in the context of SSHFL.
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Fig. 4: Global test loss results for k; = 1, k. = 1 and various ko values for CIFAR10 and CIFAR100 datasets in both IID and
non-IID settings. CHESSFL consistently demonstrates a more efficient convergence and lower loss across all scenarios.

B. Empirical Results - Tactical Triumphs

Opening Outcome: As we carefully designed CHESSFL
specifically for SSHFL using the SDLoss and PawnLoss,
we have a unique advantage that makes our method better
compared to other, state-of-the-art approaches. In Fig. 3, we
observe that CHESSFL learns faster and better compared to
the SemiFL and FixMatch baselines. The benefit of using the
SDLoss can be seen in how CHESSFL deals with non-IID
data, compared to the baselines, i.e., SemiFL and FixMatch.
In the context of SSHFL, a straightforward implementation
of FixMatch consistently outperforms SemiFL across various
scenarios. This performance gap is especially pronounced on
the SVHN dataset, where FixMatch demonstrates a notably
higher accuracy compared to SemiFL, in both IID and non-
IID scenarios. FixMatch only uses a fixed dataset built using
all weakly-augmented images that have a prediction over a
given confidence threshold. Besides the fixed dataset, SemiFL
also uses a mixed dataset created by mixing pairs of images
randomly sampled from the fixed dataset. The noise introduced
by the mixed dataset in the training process degrades the
overall performance of SemiFL across all datasets.

One of the most important hyperparameters in HFL is ks
since it quantifies the number of edge aggregations to be
performed before one global aggregation. We explore multiple
variations of this hyperparameter, i.e., ko € {2,5,10} and

show the impact on the global test loss in Fig. 4. Based on data
in the first row from Fig. 4 and the accuracy results from the
second and third column from Fig. 3 we can indeed confirm
that the loss decreases more for CHESSFL for CIFARI10
and CIFARI100 datasets in both IID and non-IID settings.
This shows CHESSFL enables a more robust learning overall,
throughout multiple communication rounds, compared to the
baselines. A more detailed depiction of the impact ko has on
the learning process can be seen in Table I. For CIFARI0,
the average decrease in accuracy from IID to non-IID setting
for SemiFL is 3.05% and for FixMatch is 2.07%, while for
CHESSFL is only 1.31%. This demonstrates that CHESSFL
learns more robust feature embeddings across the client-edge-
cloud hierarchy, enhancing overall robustness to non-IID data.

Fast Moves: For all datasets, with varying ko values, we
show in Table II the number of communication rounds required
to achieve a given accuracy threshold. Overall, CHESSFL
converges up to 5.11x faster compared to the baselines. This
convergence speedup also means CHESSFL enables clients to
perform less computation and communication to reach a given
accuracy threshold. For example, CHESSFL reaches 70%
accuracy on CIFAR10 with IID data in only 83 communication
rounds, 2.14x faster, on average, compared to the baselines.
Therefore, in IoT systems where energy consumption truly
matters and the network connectivity is unreliable, CHESSFL
can really make a difference.
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TABLE II: Number of communication rounds required to achieve a threshold accuracy (Acc. thresh.) for ky = 1, k. = 1
and various ks values in both IID and non-IID settings. CHESSFL uses up to 5.11x less communication rounds compared to
SemiFL and FixMatch. CHESSFL speeds up convergence consistently across both IID and non-IID settings, for all datasets.

Non-IID (v = 0.1)

IID (o = 100)
Dataset ko 2 5 10 2 5 10
SemiFL 393 219 239 309 319 289
SVHN FixMatch 87 89 99 99 119 129
Acc. thresh. 85% CHESSFL 47 64 79 55 79 89
Avg. improvement | 5.11x 241x 214x | 3.71x 2.77x  2.35x
SemiFL 211 239 259 283 264 299
CIFAR10 FixMatch 145 159 179 187 189 189
Acc. thresh. 70% CHESSFL 83 99 109 91 114 139
Avg. improvement | 2.14x  2.01x  2.01x | 2.58x 1.99x  1.76x
SemiFL 181 219 269 187 209 299
CIFAR100 FixMatch 151 184 209 157 169 209
Acc. thresh. 45% CHESSFL 93 124 149 93 124 149
Avg. improvement | 1.78x  1.63x 1.6 x 1.85x  1.52x 1.7x

TABLE III: Global test accuracies for ko = 2 and variations of k; and k. in IID and non-IID settings. On average, CHESSFL
maintains the highest accuracy in both IID and non-IID settings, across all datasets.

Dataset ‘ ‘ ) ' SVHN . CIFARIO ' CIFARIOO

k1 ke SemiFL  FixMatch CHESSFL | SemiFL  FixMatch CHESSFL | SemiFL  FixMatch =~ CHESSFL

1 1 87.91% 91.96% 93.06% 77.34% 77.92% 83.61% 52.86% 54.09% 57.95%

1D 1 5 90.77% 92.89% 93.79 % 82.28% 82.14% 84.28% 53.79% 55.28% 55.67%

(o = 100) 5 1 91.75% 93.81% 94.44 % 89.07 % 82.22% 85.93% 52.17% 54.28% 58.66 %

5 5 91.25% 93.70% 94.07 % 87.62% 83.16% 85.48% 53.22% 55.42% 56.32%

1 1 87.62% 90.73% 92.21% 73.62% 76.01% 82.81% 52.10% 53.90% 57.65%

Non-IID 1 5 89.86% 92.66% 93.45% 80.89% 81.63% 84.05% 53.43% 55.09% 56.20%

(a=0.1) 5 1 90.22% 92.76% 93.29% 80.91% 77.91% 84.14% 52.31% 54.82% 57.99%

5 5 90.76% 93.05% 93.70% 84.24% 82.71% 84.64% 53.88% 55.51% 56.27%

TABLE IV: Number of communication round required to reach a certain threshold (Acc. thresh.) for ks = 2 and variations of
k1 and k. in IID and non-IID settings. We show the average improvement of CHESSFL compared to both baselines, reaching
up to 4.13x faster convergence. Overall, CHESSFL converges faster in both IID and non-IID settings, for all datasets.

SVHN (Acc. thresh. 85%)

CIFARI10 (Acc. thresh. 70%)

CIFAR100 (Acc. thresh. 45%)

Dataset ‘ ki ke | SemiFL  FixMatch CHESSFL Improv. | SemiFL  FixMatch CHESSFL Improv. | SemiFL  FixMatch CHESSFL Improv.
11 224 78 50 3.02x 194 146 80 2.13x 176 140 92 172
1D 1 s 50 20 12 2.92x 48 32 20 2% 50 38 24 1.83x
(@=100) | 5 1 128 66 44 2.2% 120 130 146 0.86 180 154 108 1.55x
5 5 38 16 10 27x 28 26 16 1.69% 46 38 22 1.91x
11 336 94 52 4.13x 302 154 88 2.59x 196 146 92 1.86
NondID | 1 5 7 18 12 3.75x% 50 36 20 2.15x% 48 40 24 1.83x
(@=01 | 5 1 154 74 48 2.38x 182 180 140 1.29x 194 148 110 1.55x
5 5 44 18 10 31 x 42 28 20 1.75x% 46 36 22 1.86

TABLE V: Wall clock time elapsed and energy consumption to
reach 70% accuracy on CIFAR10 using IID setting for k1 = 1
ke = 1 and ko = 2 on NVIDIA Jetson Orin Nano 8GB. We
observe CHESSFL reaches 70% test accuracy using 2.61x less
total energy and 2.74x less the wall clock time, on average.

Time Energy Total Wall Clock
per Epoch [s]  per Epoch [J]  Energy [J] Time [s]
SemiFL 8.11 15.41 3,252.35 1,712.16
FixMatch 2.99 6.76 980.62 433.19
CHESSFL 4.72 9.77 811.17 391.98
Avg. Improv. 1.18x 1.13x 2.61x 2.74x

C. Ablation Studies - Discussing Endgames

Tactical Tweaks: We show in Table III and Table IV the
impact of varying ki and k. on accuracy and on communi-

cation rounds required to reach a certain threshold accuracy,
respectively. The main observation is that using k. = 5
boosts the convergence rate for all approaches significantly,
by up to 9x compared to k. = 1. This shows how important
training on the edge servers is in order to help the learning
of unlabeled data on all clients. As mentioned before, we find
that training more often on the edge servers makes HFL much
more efficient. We depict in Fig. 5 the global test accuracy
for CIFAR100 in both IID and non-IID settings. As can be
seen, varying k1 and k. has little to no impact on the overall
performance and convergence speed of CHESSFL compared
to the baselines, in both IID and non-IID settings.

Finally, in Fig. 6 we motivate the need for SSHFL by
showing the impact of training only on the limited available
labeled data. For this experiment we use CIFAR10 IID using
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Fig. 5: Global test accuracy results for ko = 2 and variations of k; and k. for CIFAR100 dataset. CHESSFL achieves higher
accuracy in all scenarios when compared to the baselines, for both IID and non-IID settings.
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Fig. 6: Global test accuracy and test loss results using IID
setting for k&1 = 1, k. = 1 and ks = 2. Using 4,000 labeled
images with HierFAVG does not converge, with an accuracy
gap of over 50%, thus motivating the need for SSHFL.

ki = 1, ke = 1 and ks = 2. We use the 4,000 labeled
images split IID between 50 clients with HierFAVG and
compare it against using 4,000 labeled images at the edge
servers and 50 clients with 500 unlabeled images per client,
split IID for SemiFL, FixMatch and CHESSFL. As shown
in Fig. 6, HierFAVG is not converging and even shows signs
of overfitting. With an accuracy gap of over 50% in global
test accuracy, we cannot properly learn in HFL with limited
labeled data. Therefore, we need to leverage unlabeled data
using semi-supervised HFL.

Efficient Endgame: In Table V we evaluate on a NVIDIA
Orin Jetson Nano with 8GB RAM the wall clock time elapsed
and total energy consumption required to reach 70% accuracy
on CIFARI10 IID. For SemiFL, FixMatch and CHESSFL we
run the experiment using k1 = 1, ke = 1 and ky = 2. If
we assume 500 images and 100% pseudo-labeling accuracy,
FixMatch and CHESSFL would use all 500 images, while
SemiFL would use 1,000 images, i.e., 500 for the fixed dataset
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and 500 for the mixed dataset. As shown in Table V, the time
for pseudo-labeling and constructing the mixed dataset makes
the SemiFL approach have up to 72% longer time per epoch.
Even considering that FixMatch has up to 58% less local
computation compared to CHESSFL, the convergence rate of
CHESSFL showed in Table II and Table IV improves the total
wall clock time required to reach a given accuracy threshold
compared to FixMatch, as shown in Table V. In addition to
its computational efficiency, CHESSFL also has negligible
communication overhead. Specifically, an additional 1% of
the edge model size is required for sending the embedding
centroids to the clients. This is valid for most modern model
architectures, since the feature embeddings will always be
significantly smaller compared to the actual model size.

V. CONCLUSION: CLOSING THE GAME

We have proposed Clustering Hierarchical Embeddings for
Semi-Supervised Federated Learning (CHESSFL). To the best
of our knowledge, this is the first semi-supervised solution for
HFL which considers hierarchical embeddings shared between
the clients, edge servers and the cloud. We proposed the
Sicilian Defense Loss (SDLoss) to train the edge servers on
labeled data and enhance their capability to have robust and
diverse feature embeddings. We also introduced the Pawn Pro-
motion Loss (PawnLoss), to facilitate the convergence of client
embeddings toward the embedding centroids received from the
edge server. Compared to state-of-the-art semi-supervised fed-
erated learning approaches, CHESSFL converges up to 5.11x
faster and achieves higher accuracy on SVHN, CIFARIO0
and CIFARI100 datasets for both IID and non-IID settings.
The SDLoss and PawnLoss enable CHESSFL to be more
resilient to non-IID data. CHESSFL achieves this performance
with vastly improved wall clock time for reaching a certain
accuracy threshold and negligible communication overhead.
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Future work: Our method can be improved in several ways,

e.g.,

by adding differential privacy to all communication chan-

nels and by enabling different models to be used by users with
different hardware capabilities. Using labeled and unlabeled
data, new attacks can be devised throughout the client-edge-
cloud hierarchy, hence the need for new adversarial solutions.
All these ideas are left for future work.
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