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Abstract—Exposure notification applications are designed to
help trace disease spreading by alerting exposed individuals to get
tested. However, false alarms can cause users to become hesitant
to respond, making the applications ineffective. To address the
shortcomings of slow manual contact tracing, costly lockdowns,
and unreliable exposure notification applications, better disease
mitigation strategies are needed. In this paper, we propose a new
disease mitigation paradigm where people can reduce infection
spreading while maintaining some mobility (i.e., Quarantine
in Motion). Our approach utilizes Graph Neural Networks
(GNNs) to predict disease hotspots such as restaurants, shops
and parks, and Multi-Agent Reinforcement Learning (MARL)
to collaboratively manage human mobility to reduce disease
transmission. As proof of concept, we simulate an infection using
real-world mobility data from New York City (over 200,000
devices) and Austin (over 36,000 devices) and train 10,000 agents
from each city to manage disease dynamics. Through simulation,
we show that a trained population suppresses their reproduction
rate below 1, thereby mitigating the outbreak.

Index Terms—Graph Neural Networks, Multi-Agent Rein-
forcement Learning, Epidemics, COVID-19

I. INTRODUCTION

While large populations, bustling commerce, and inter-
regional travel are hallmarks of a modern society’s success,
these factors also create a favorable environment for spreading
infectious diseases [1]. Considering the vulnerabilities of big
cities to disease outbreaks, we ask whether we can train agents
to optimize their visits at various points of interest (POI), (e.g.,
restaurants, gyms, parks, etc.) to lessen disease spreading.

The intersection of epidemics, model forecasting, and
disease mitigation has been successful at testing non-
pharmaceutical interventions at the macro-level (regions, coun-
tries, cities) [2]. However, with access to Foursquare mobility
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Fig. 1. Quarantine in Motion, i.e., application that collaboratively optimizes
human mobility to mitigate disease spreading. (a) When given the user’s
destination queue, each device has access to the predicted transmission risk
for each POI. For example, (b) Susceptible person is suggested to avoid the
disease hotpots on its destination queue, and instead go to a safer location. (c)
Infectious person is directed to go to their next intended location. (d) Older
Susceptible individual is suggested to stay at home instead, likely because
their immunity is too low to risk exposure.
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data [3] and machine learning techniques, we can now relay
the knowledge of disease forecasting back to the individ-
ual—in other words, we can provide actionable risk analysis.

In fact, we envision a new disease-aware mobility applica-

tion where users self-report their disease status (i.e, Suscepti-
ble, Exposed, Infectious, Recovered) and input their planned
visits for the day. The application utilizes reinforcement learn-
ing to suggest visits with respect to the user’s willingness to
cooperate and immunity to the virus (e.g., vaccination status,
health factors, mask compliance, etc.). Each agent (i.e., smart
device) takes into account the predicted infectious densities at
each POI and suggests the user to go to a safer location, visit
the next location on their queue, or return home (Fig. 1).

To this end, our contributions are as follows:

1) We propose a GNN node regression problem that per-
forms highly granular (i.e., hourly) risk predictions at
various POIs using real-world mobility data.

2) We present a novel MARL disease mitigation framework
that can handle thousands of agents.
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3) Our experimental findings demonstrate that the agents
successfully mitigate disease spreading across scales in
two major cities, i.e., Austin and New York City (NYC).

Taken together, our contributions can help move exposure
notification applications from reactive to preemptive risk man-
agement tools. The remainder of this paper is organized as
follows: Section II discusses prior work, Section III describes
our approach, Section IV presents our experimental results.
Finally, Section V summarizes our contributions.

II. PRIOR WORK

In this section we present prior work in disease mitigation
and MARL.

A. Disease Mitigation

The majority of work in epidemics such as differential
equations, compartmental models, and network approaches
has been done at the macro-scale (i.e., counties, countries,
continents) for estimating disease spread [4] and underlying
social dynamics [5]. Because of these readily available macro-
scale epidemic approaches, in response to COVID-19, govern-
ments enacted regional lock-downs and travel bans to reduce
population mixing. Though successful in reducing new cases,
the cost of maintaining long term lock-downs led to pandemic
fatigue [6] and thus proved to be an unsustainable strategy.

At the meso-scale, early in the COVID-19 pandemic, hos-
pitals deployed a cohort model that sectioned off health
care providers and patients to reduce population mixing [7].
Schools then followed suit by organizing student-teacher co-
horts to reduce disease spreading [8]. If one cohort experiences
an outbreak, the others can continue functioning without going
into a full lockdown. In this paper, we propose pushing this
cohort paradigm to highly dynamic systems (e.g., population
in a city) by training RL agents to self-organize into mobility
cohorts where we can incentivize Infectious people to frequent
different locations from the Susceptible people.

As a means to manage economic and social costs, re-
searchers apply RL to optimize disease mitigation mandates
at the government level [9], [10]. In their work, the agent
(i.e., government) manages a city while under a disease threat.
Alternatively, Libin et. al. deploy single-agent RL to manage
school shut downs as a means to reduce infection spreading at
disease hubs like classrooms [11]. Though helpful in advising
decision making at the macro-scale, we are rather interested
in informing distributed decisions at the micro-scale (i.e.,
individual level) to ultimately mitigate disease spreading at
the meso-scale. We envision an anti-fragile society whose
individuals can continue their daily lives while collaboratively
avoiding infection hot-spots. To this end, we investigate using
MARL to mitigate spreading.

B. Multi-Agent Reinforcement Learning

MARL is a field within reinforcement learning that focuses
on studying the interaction and coordination of multiple agents
in complex environments. Unlike single-agent reinforcement
learning, where a single agent learns to maximize its own
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rewards, MARL involves multiple agents learning and inter-
acting with each other to achieve collective goals [12].

One of the key challenges in MARL is the dynamic nature
of the environment. As agents learn and adapt, the environment
can change as a result of the actions taken by other agents,
leading to non-stationarity [13]. This creates a complex learn-
ing problem as agents must continuously adjust their strategies
based on the actions and policies of other agents. In addition,
as agents affect their environment and thereby affect other
agent’s learning policies, scalability remains challenging due
to the compounding dependencies. While recent efforts have
focused on tackling scalability [14]-[16], to the best of our
knowledge, our work stands as the first implementation of
MARL at a scale of thousands of agents.

We build on prior work in exposure notification applications,
risk assessment, graph learning in epidemics, and disease
mitigation by 1) implementing node regression to predict risk
at various POIs and 2) proposing a new MARL framework that
manages population mixing during an infectious outbreak.

III. APPROACH

We present a high level overview of our Approach in Fig.
2. We work with the Foursquare mobility dataset [3] that logs
real visits at POIs on an hourly basis by compiling location
tracking data from third party smart device applications.
Because we do not have access to the health status of the
anonymous individuals within the dataset, we fill in this gap
by simulating a viral outbreak. We then train a GNN to predict
infectious densities at various POIs through two metropolitan
areas, namely Austin and NYC. To test our mitigation strategy,
we load 10,000 agents with mobility decisions made by
real people during the COVID-19 pandemic (May-August of
2020). The agents then learn to suggest visits for each user.
Finally, we evaluate our mitigation strategy by comparing the
final reproduction number of the mitigated population against
the original simulated infection.

In this section we define our approach for network construc-
tion, graph learning set up, and RL problem formulation.

A. Network Construction

We construct the network as a composition of spatial and
mobility graphs, G = (Gs,Gy) where G, is the spatial
network and G is the mobility (i.e., foot traffic) network.
We define the spatial network G, = (V, Es) where V is a set
of nodes that represent each POI, F; is the set of edges that
connect two POIs according to their physical proximity. To
form the spatial edges E;, we calculate the Haversine Distance
[17] between each POTI’s latitude and longitude coordinates.
Then for each POI, we connect their nearest neighbors. We
define the mobility (foot traffic) network Gy = (V, Ey) where
V' is the same set of POIs, and Ey connects two POIs when
an individual visits both locations. We note that by utilizing
these two types of edges, we can capture both the spatial and
mobility relationships between POIs (Fig. 3).
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Fig. 2. A high level overview of the Quarantine in Motion: 1) the Foursquare mobility data gets processed into a POI-to-POI network to capture the spatial
infectious spreading and a Person-to-Person network to keep track of individual infections. 2) We establish a baseline by simulating a disease on the untrained
initial population. We collect features for each POI on the network on an hourly basis using three months of Foursquare data. 3) We then train a GNN to
predict the risk of transmission for the following month and feed the predictions into the agents. 4) Each smart-device agent then learns to suggest which
location to choose next on their destination queue, or alternatively go home. When all agents suggest their user’s next action, the environment updates and
records the latest health status of all users. The rewards are then calculated and relayed back to each agent to update their suggestion policies. 5) To evaluate
our approach, we compare the new infections from the risk-informed (mitigated) population against the baseline (initial) to see if our approach reduces

infection spreading.

B. Epidemic model

We apply the SEIR model [18] to individuals where an
agent moves from the initial Susceptible state to the Exposed
state when coming into contact with Infectious individuals. We
then transition a Susceptible person to incubating when they
visit a POI where the Infectious population density exceeds
their immunity ¢ threshold. After an agent is incubating,
they transition to being Infectious after the incubation period
(5 days), and to Recovered state after an illness period (7
days). Note that the immunity threshold, incubation period,
and illness period, are all tunable parameters that could be fit
to simulate a different infectious disease.

We seed the outbreak by choosing 10% of the Foursquare
population that have the most data points (hence are the most
active) and initialize their health as Infectious. We define a
POI's hourly risk metric as the ratio between the number
of Susceptible people that catch the virus (and change to
Incubating) after exposure to Infectious people at a POL

C. Graph Learning Set Up

We utilize node regression to predict the hourly risk at each
POI. We deploy neural network for each node in the graph
that inputs the collected features, performs convolution across
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the neighborhoods, and then outputs the predicted risk value
(Fig. 4). We utilize the deep graph learning library (DGL)
[19] to implement the SAGE convolutional layers. The SAGE
algorithm utilizes message passing along edges to aggregate
(in our case, average) feature weights [20].

We add a sigmoid layer to predict the exposure risk Y; per
each node ¢ (POI) between O and 1, where 1 means 100%
of Susceptible people will transition to Incubating in the next
hour following a visit to node i. We define the input features
per node per hour Xy = [I, S, 6+, p+,m:] as the number of
Infectious people I, number of Susceptible people S; , number
of people that transition from Susceptible to Incubating 6., the
infectious density p;, and the percent of total population 7, that
the POI is responsible for infecting. Of note, these features are
collected in the COVID-19 simulation using the SEIR model.

D. MARL Problem Formulation

We define the MARL problem as follows. The environment
consists of the POIs within a city. Each agent is loaded with
destination queues pulled from real people’s data within the
Foursquare visits dataset. At each time step (i.e., hour), the
agents can choose from three actions, namely 'go fo the next
location on the queue’, ’stay at home’, or ’choose a safer
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First, we calculate the distances between each POI pair within the Foursquare Dataset and, second, determine the nearest neighbors to form the

spatial edge Es. In the third step, we count how many people flow between two POIs where a person dwells at the source POI and then travels and dwells at
the next POI and consider this the foot-traffic edge Ey. Lastly, we abstract the POIs as nodes and connect them via the spatial edges and foot traffic edges.

location’ (see Fig. 1). To account for data sparsity on the
temporal axis, we assume that the users behind the smart
devices are moving every hour and thus repopulate their
destination queues when they run out of locations to visit.
We define the reward functions for each health status as a
composition of sub-rewards Rezposure (€quation 1), Ryatigue
(equation 2), Ryootprint (equation 3) and Rgopq; (equation 4):

Reaposure = 1— | 6 — #infectionspor 0
#peoplepor

Ratigue = 1— | o — % | o

Ryootprint = m 3)

Rglobal = 1 (4)

global in fectionsy

The Reyposure € [0,1] is meant to incentivize agents to
reduce exposure to infectious people with respect to their
user’s immunity threshold ¢ € [0, 1]. For example, an agent
for a Susceptible user with a higher immunity ¢ receives less
of a penalty for suggesting POIs with more #in fectionspor
(number of infections at a POI) than an agent whose user has
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Fig. 4. The GNN inputs hourly node features [I¢,St, d¢, pt,ne] as the

number of Infectious people I , number of Susceptible people S , number
of people that transition from Susceptible to incubating J¢, the infectious
density p¢, and the percent of total population 7; that the POI is responsible
for infecting. The features go through two convolution layers, with a ReLU
activation function in between. The output of these layers is then fed forward
into a sigmoid activation function, which predicts the risk of transmission Y;
at each node <.

a lower immunity threshold. The Rjqiigue € [0,1] is meant
to incentivize agents to respect their user’s cooperation by
suggesting to alter their user’s intended behavior with respect
to their fatigue parameter « € [0, 1]. For example, an agent
whose user has a high pandemic fatigue o will be penalized
for suggesting to deviate from their user’s intended visits by
’staying at home’ or ’going to safer location’ more times
than their threshold o allows. To keep track of the number
of deviations, we calculate the cumulative #deviations and
#actions from the beginning (i.e., t) to the end (i.e., T) of the
episode. The Ryfootprint € [0,1] is meant to penalize agents
whenever their user infects other people by incriminating their
number of #infectees every time their user is Infectious
and visiting a POI that produces a new infection. Finally,
Rgiobal € [0, 1] is meant to motivate agents to suggest altering
behavior if the population’s global infections; are high at
each time step ¢, even if their user is not getting exposed.
The rewards for each health status are defined in Table I. We
incentivize Susceptible agents to take into account their risk
of exposure at a POI with respect to their own willingness
to change behavior for the social good. When Infectious, they
no longer worry about being exposed, but instead, they keep
track of the number of people they directly infect (R fo0tprint)
to weigh against their respective pandemic fatigue «. The
Incubating and Recovered reward functions are similar, as
these agents do not worry about being exposed. Because each
sub-reward (e.g., Regposure) € [0, 1], the maximum reward for
each agent is 1. As a starting point, we weigh each sub-reward
equally and leave optimizing the weights for future work.

TABLE I
REWARD FUNCTIONS FOR EACH HEALTH STATUS

Health Status Reward
Susceptible | % Reaposure + 5 Rfatigue + 5 Rglobal
Incubating 3 Ryatigue + 3 Rgiobal
Infectious | % Rfatigue + 5 Rfootprint + 5 Rglobal
Recovered 1 Ryatigue + 3 Rgiobal
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exists at the POI (i.e., during business hours).

E. MARL Algorithm

We deploy the policy gradient REINFORCE [21], [22]
algorithm with a value approximation baseline on each agent.
In each episode, we seed a Susceptible population with the
same 10% Infectious people that are considered the most
active within the Foursquare dataset. At every timestep, each
agent suggests their user’s next action A;y; based on their
respective policy m = p(A¢4+1]S:) given their current state S;.
We terminate the episode when the virus has no one left to
infect and consider this time 7.

Between each episode, for each agent, we accumulate the
rewards R,, at each timestep from the beginning of an episode
t to its termination 7" into an accumulative reward GG reduced
by a discount parameter y (equation 5) to approximate the
long term returned rewards. We then subtract the state value
0(S;), which represents the updated expected return, to use
as a baseline (equation 6). We approximate the 9(.S;) using a
two layer neural network that updates the weights w where «
denotes the learning rate and A denotes the gradient (equation
7). We then update the policy gradient 6 (equation 8) by using
another two layer neural network that outputs the probability
of maximizing the reward for each action.

T

G« Z ,ynftfan (5)
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Predicted vs Actual infectious density at POIs within (a) Austin and (b) NYC, at an hourly basis. Here we concatenate the results from when data

0 < 0+ a’y'sAInm(ASs, 0) (8)

Our approach can be summarized as follows: first, pre-
process the Foursquare mobility dataset into a spatio-temporal
network of POIs, then simulate an infectious outbreak on the
population using SEIR to collect node features, then perform
node regression to predict hourly risk of transmission. Finally,
we cast disease mitigation as an MARL problem that allows
for analyzing the collective behavior from many individual’s
decisions and performing epidemic analysis at the meso-scale.

IV. RESULTS

In this section we present our experimental results for the
graph learning predictions and disease mitigation.

A. Graph Learning

We utilize Mean Squared Error (MSE) as the evaluation
metric for our graph learning model. For each city, we train
the GNN to learn the risk of transmission at each POI over
three months (May - July 2020) and test the predictions over
the next month (August 2020). To get a more granular feel, we
visualize the dynamic predictions at POIs shown in Fig. 5. To
get a diverse representation of the data, we choose locations
with various functions, for example, post office, supermarket,
church, transportation center, hotel, department store, etc.

We see that the GNN can predict the dynamic infectious
densities for POIs within Austin (5a) and NYC (5b). In
principle, a user who was planning on going clothes shopping
at Ross Dress for Less on August 8th can be informed of
the predicted infectious density and choose to go a couple of
days later, say on August 13th, instead. Alternatively, the user
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Fig. 6. Spatio-temporal representation of the maximum MSE at POIs within
Austin (a) and New York City (b). The yellow color indicates MSE of 40%
whereas the purple indicates very low MSE.

could choose to go to a different clothing store with a less
risky infectious density.

In Fig. 6, we then visualize the maximum MSE loss at each
POI for the month of August 2020 in both Austin (6a) and
NYC (6b). In both cities, we see that the maximum MSE
loss stays under 40% for any given POI. A breakdown of the
maximum loss at various POIs is shown in Table II.

TABLE 11
MAaXIMUM MSE AT VARIOUS POIS IN AUSTIN AND NYC.
City MSE > 0.2 | MSE > 0.25
Austin 9% 2%
New York City 7.6% 3.5%

B. Mitigation

Because we aim to keep the Susceptible and Infectious
people separate from each other, we formulate the contamina-
tion metric C' (equation 9). The Ipo; represents the number
of Infectious or incubating users within a POI, and Npo;
represents the total people within the POL. We consider an
infectious density of 50% percent to mean complete population
mixing between infectious and non-infectious people at a POI
(C = 1). Therefore, we divide the difference by 0.5 to make
the contamination metric C' € [0, 1].

| Ipor _
Npor

0.5 ©)
In Fig. 7, we plot the maximum contamination C' for Austin
(7a, 7b) and NYC (7c, 7d). Each dot represents a POI and the
dark red color indicates that C' is close to 1, whereas, the
green indicates low population mixing. We can see that the
baseline for both Austin (7a) and NYC (7c) have more highly
contaminated POIs than in the mitigated SEIR runs (7b, 7d).
After confirming that the MARL mitigation technique results
in a decrease in population mixing, we investigate its social
feasibility by examining our approximated user satisfaction.
Because our MARL strategy comes in the context of a
mobility suggestion application, we incentivize the agents to
take into consideration their user’s willingness to socially
cooperate. We define cooperation as the number of deviations
taken from a user’s recorded destination queue. For the agent,
cooperation means suggesting a user to 'go home’ or to

0.5 |
C=1-

87

Fig. 7. Population mixing at various POIs for Austin (a,b) and NYC (c,d),
where each dot represents a POIL. The red dots show when contamination
C =~ 1 while the green dots show C' is closer to 0. For each plot, we run
an SEIR simulation of 10,000 agents using: (a) Austin baseline, (b) Austin
MARL mitigation, (¢) NYC baseline and (d) NYC MARL mitigation. We find
that Austin’s MARL mitigation is able to reduce the number of POIs with
contamination greater than 20% by =~ 97% where the baseline has 7,998 POIs
and the MARL mitigation has 287 POlIs. Similarly, NYC’s MARL mitigation
is able to reduce the number of POIs with contamination greater than 20% by
~ 87% where the baseline has 10,512 POIs and mitigation has 1,296 POls.

"choose a safer location’. Each agent is aware of their user’s
social fatigue parameter (), and are trained, in part, by the
Rtatigue (equation 2) reward function which penalizes the
agent any time they suggest to deviate from their queue beyond
the user’s willingness. For this reason, we approximate a user’s
satisfaction as being the difference between accumulative
suggested social cooperation (number of times their agent
suggests to deviate) and the user’s fatigue parameter «. In
fact, we can draw an analogy of the agents ability to satisfy
the user to the acceleration and deceleration in a car. Because
a user’s satisfaction is accumulative in nature, the agent tries to
balance the user’s actions by suggesting to socially cooperate
(deviate from their path), or to defect (continue to their next
intended location). Before training, we assign heterogeneous «
values to the users on a Gaussian distribution with a mean of
70%. Then after training, we plot the agents over-cooperation
(v +) or under-cooperation (« -) for every health group in
Fig. 8. For example, if an agent suggests to cooperate 100%
of the time, however their user’s a = 0.7, then the resulting
cooperation vs time plot would show a4+ 0.3 over-cooperation.

Fig. 8a shows the population of 1,000 untrained agents from
Austin (at the Oth epoch) using a random policy to make their
suggestions. Regardless of timestep, the population of agents
bounce between over- and under -cooperation showing that
the decision-making does not respect the user’s willingness to
cooperate . However in contrast, 8b shows the cooperation in
the last epoch of training. At the population level, Susceptible
users are asked to over-cooperate more than the other health
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choose random actions in the Oth epoch and then learn in between each epoch for the remainder of training. One epoch represents an episode that spans one
month of Foursquare data (August 2020). As shown in each plot above, the trained agents are able to push RO below 1, meaning they can direct infectious
traffic to effectively decrease the speed case reproduction and dampen spreading.
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able to reduce their RO to less than RO = 0.3 in both Austin
and NYC. This can be interpreted as both cities were able
to decrease spreading such that three infections would lead to
only one new infection. To test the feasibility at a larger scale,
we run our mitigation experiment on 10,000 agents. We are
interested to see if population mixing reduction would max
out at some population density, however, even in the case of
10,000 agents (shown in 9c) we get a clear reduction of RO to
less than 0.5 for both Austin and NYC. These results suggest
that MARL is able to manage a city’s mobility to mitigate a
disease without a complete lockdown.

groups throughout the outbreak. However, Incubating and
Infectious agents respect their user’s « in periods of low
contagion and then over-cooperate (a+) when infections rise.

For each experiment, we use the reproduction number met-
ric RO [23] to evaluate the efficacy of the mitigation strategy.
The reproduction number RO is a measure used to describe
the potential spread of an infectious disease. It represents
the average number of people who will contract the disease
from an infected person. For example, if the RO is 2, then on
average, each infected person will transmit the disease to two
others. If RO is below 1, it means that the disease is slowing

down and the outbreak is likely to be contained. If the RO
TABLE III

is above 1, then the disease spreading is still on the rise. We
compare the experimental RO values for Austin and NYC to

CONTACT NETWORK PROPERTIES BEFORE AND AFTER TRAINING

their respective baseline RO values, in which agents follow [ Population | Nodes | Edges | Avg Degree | CC | APL
their users’ destination queue without making any deviations. Initial 1000 | 34,838 69 0.14 2
The agents update their policies and value approximations Trained 1000 | 6,336 13 0.04 3

between each epoch and use their updated policies to suggest
which location to visit (or whether to go home) in the next
epoch. Over 20 epochs, we see a significant reduction of RO
in each experiment compared to the baseline.

In the case of of 1,000 agents (9a) and 5,000 agents (9b) are
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We then analyze the network properties from the original
and mitigated contact networks (Table III). We build the
contact networks by connecting two nodes (people) when they
co-locate at a POI within the same hour. We use 1,000 people




from Austin during August 2020 for the original Foursquare
co-location network and build another network after the
MARL mitigation training. We find that though the number of
nodes stays the same, the edges decrease significantly resulting
in a smaller average clustering coefficient (CC) and a higher
average path length (APL). By dismantling the small world
effect, the trained agents make disease spreading harder.

V. CONCLUSION

In conclusion, we have presented a smart phone recommen-
dation system that advises people on how to optimize their
mobility during an disease outbreak. To this end, we have
trained a GNN on Foursquare mobility data from Austin and
NYC during May-July 2020 to predict risk of transmission
for the following month of August. Finally, we have provided
a disease mitigation framework and proposed a location sug-
gestion application that is backed by MARL. We have shown
that a trained population of 1,000, 5,000, and 10,000 agents
effectively reduce the disease reproduction number (R0) below
1, while maintaining some mobility.

Our work is limited by the lack of ground truth health labels
that would otherwise be self-reported by app users, therefore
we have to rely on disease spreading simulations. Furthermore,
scalability remains a problem when pushing this centralized
MARL framework to the hundreds of thousands of agents due
to the large computational complexity. However, we intend for
this framework to become decentralized when pushed to edge
devices; thus we leave this for future work.
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