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Abstract—In deep learning (DL) based human activity recogni-
tion (HAR), sensor selection seeks to balance prediction accuracy
and sensor utilization (how often a sensor is used). With advances
in on-device inference, sensors have become tightly integrated
with DL, often restricting access to the underlying model used.
Given only sensor predictions, how can we derive a selection
policy which does efficient classification while maximizing accu-
racy? We propose a cascaded inference approach which, given
the prediction of any one sensor, determines whether to query
all other sensors. Typically, cascades use a sequence of classifiers
which terminate once the confidence of a classifier exceeds a
threshold. However, a threshold-based policy for sensor selection
may be suboptimal; we define a more general class of policies
which can surpass the threshold. We extend to settings where little
or no labeled data is available for tuning the policy. Our analysis
is validated on three HAR datasets by improving upon the F1-
score of a threshold policy across several utilization budgets.
Overall, our work enables practical analytics for HAR by relaxing
the requirement of labeled data for sensor selection and reducing
sensor utilization to directly extend a sensor system’s lifetime.

I. INTRODUCTION

Human activity recognition (HAR) has immense potential

for improving daily life by enabling applications such as fall

detection [1], rehabilitation monitoring [2], and health tracking

[3]. A key driver of such applications are wearable inertial

measurement units (IMUs) which can capture motion data

of multiple body parts using accelerometers and gyroscopes.

These affordable low-power sensors, along with advancements

in deep learning (DL) for time series signals, have led to a

surge in research within the field of IMU-based HAR [3].

Despite this progress, implementing practical analytics for

IMU-based HAR systems using DL remains challenging due

to the limited size of labeled datasets for HAR and data

heterogeneity across users and environments which limit the

generalizability of DL approaches. Thus, it is common to

use multiple wearable IMUs across the body to obtain more

information and build better performing prediction models.

DL-based works for multi-sensor HAR [4]–[6] tend to focus

on architecture design [7]–[10] or sensor fusion [11]–[14]

and assume that synchronous data from multiple sensors is

available for analysis on a central device such as a phone.

However, this disregards the resource requirements for stream-

ing data from wearable devices which have limited battery life.

Processing data from several sources also burdens the mobile

device which already needs to communicate with multiple

sensors. Hence, such approaches can limit the practicality and

sustainability of DL for wearable HAR.

In light of this, many works [15]–[20] propose to activate

a subset of sensors (or features) at a given time via sensor
selection (or feature selection) to conserve energy while main-

taining a certain level of accuracy. Some works [19] condition

their selection policy on the input data while other works [17]

only use sensor predictions as input to the selection policy. We

work in the latter setting but further assume that each sensor

uses a pretrained ML model which cannot be modified.

While full access to the raw sensor data and ML classifiers

provides more information and flexibility when building the

sensor selection policy, we may not have access to this infor-

mation in practical settings. With the emergence of machine
learning sensors [21], sensors and ML models have become

tightly coupled, and access to the raw sensor data and ML

model can be restricted. In our setting, visualized in Fig. 1a,

only the model output is available to the sensor selection pol-

icy. While these constraints may limit how effective a selection

policy can be, we believe this setting is underexplored yet

important as off-the-shelf ML sensors become more common.

With such limited information, how can we derive a sensor

selection policy to do classification more efficiently while

maximizing accuracy? Given fixed prediction models, we

focus on sensor selection through cascaded inference where

the prediction confidence of any sensor determines whether

to query and ensemble the predictions of all other sensors.

As shown in Fig. 2, an input x is passed into a local model

fk of a sensor sk, which outputs a prediction for the current

activity along with a confidence score. This score is passed

into a decision-making policy π which either uses the cur-

rent prediction or queries additional sensors. Querying other

sensors typically results in a better prediction, but increases

the utilization of each sensor. Thus, we define the policy π to

maximize the collective accuracy of the sensors, while keeping

the utilization of all sensors under a prespecified budget.

Many works that leverage cascaded models [22]–[24] use a

threshold policy, where a second model is queried only if the

first model’s confidence does not exceed a threshold. However,

a threshold may not adequately describe the relationship

between the first model’s confidence and the second model’s

accuracy. For example, the second model may have similar ac-

curacy to the first model when the first model has a confidence

score in the interval [0, 0.25] or [0.75, 1.0]. Thus, there is no
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Fig. 1. a) ML sensors processes data locally and restrict access to the raw data and ML model. The prediction is sent to a mobile device where the selection
policy is executed. b) An example of sensor utilization for K = 5 sensors over t = 10 steps. Sensors with dark circles at steps 2, 4, and 8 represent their
policies triggering inference of the other sensors to ensemble their predictions. Note, this sequence is shown for an example calculation and is not realistic.

benefit to querying the second model when the first model

has a confidence within those intervals. However, the second

model may have much higher accuracy than the first model

when the first model has a confidence score in the interval

[0.25, 0.75]; here, querying the second model does provide an

expected gain in accuracy. This raises the following questions:

Do such unstructured relationships between confidence and
accuracy of successive models arise in practice? Can a policy
which models this relationship be realistically implemented?
What practical benefits does such a policy provide for sensor
selection? Our contributions are as follows:

1) We propose a general class of policies, for which the

threshold is a special case, to tractably analyze the sensor

selection task in the setting of cascaded inference.

2) We show under what conditions the threshold policy is

optimal within the defined class of policies and when it

can be improved upon. When a threshold is suboptimal,

our policy directly extends the sensor system’s lifetime.

3) We validate our analysis on three HAR datasets and

extend our results to a practical setting where little to no

labeled data is available for tuning the policy. Without
labels, our policy is competitive with a threshold policy

tuned with labeled data for multiple utilization budgets.

The rest of the paper is organized as follows. Section II

describes how our work differs from the related works. In sec-

tion III, we comprehensively describe our problem formulation

and methodology for sensor selection. Section IV describes

the implementation of our sensor selection policy and the full

experimental procedure. In section V we analyze our results

and discuss their relevance for practical HAR. Finally, section

VI summarizes our work and discusses future directions.

II. RELATED WORK AND NOVEL CONTRIBUTION

A. Sensor Selection

Sensor selection reduces the energy consumption of wear-

able HAR systems by activating a subset of the available

sensors; the goal is to do so while maintaining a suitable

accuracy. Our work relates to dynamic sensor and feature

selection [15]–[19] which determine which sensors or features

to use at prediction time. This is in contrast to static or fixed
sensor selection which determines which sensors are the most

Policy

ensemble
prediction

sensor
prediction

Fig. 2. Cascade perspective for sensor selection. For every input x, the
prediction confidence is passed to a policy π which determines whether to (0)
use the prediction, or (1) query and ensemble all other sensor predictions. The
policy cannot access the raw input or model parameters. A threshold policy
has the form, π(conf) = conf < δ where δ is the threshold.

important at training time, and proceeds to use all selected

sensors at runtime [25]. The authors of [15] use random forests

to estimate the importance of pose-based features to create

feature subsets. A model is trained on each subset and the best

one is dynamically selected during prediction. The authors of

[17] seek to leverage the predictability of future activities and

weight the sensors based on their activity-sensor dependency.

More recently, the work of [19] exploits activity sequences

as well as instance-level information to minimize the number

of sensors queried during inference using a Markov Decision

Process. Our work approaches the sensor selection task from

a different perspective; we examine the scenario of one level
cascades where the prediction of one sensor determines if

additional sensors should be queried at runtime. Beyond sensor

selection, we provide insight into what factors influence the

performance of a policy in the cascaded inference setting.

B. Cascaded Inference

Cascades enable DL models to adapt to different inputs

using a sequence of classifiers; cascades and selective infer-
ence have been studied extensively [22], [23], [26]–[33]. Each

classifier in a cascade relies on a policy to determine whether

to use the current prediction, or to continue execution through

the next model. We focus on the threshold policy which

uses the current prediction if its confidence (max softmax

score) exceeds a given threshold. While many works use a

threshold policy for cascaded inference [23], [24], [34], only

a few [28], [35] study their limitations. However, [28], [35]

focus on centralized computer vision models where cascaded

2
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models and their inputs are located on the same device. We

work in the context of multi-sensor HAR where models and

data are distributed across devices. Thus, our approach, which

only requires access to model outputs, is better suited to this

distributed HAR setting. Further, our approach improve upon

the threshold policy by generalizing to multiple thresholds.

C. Model Calibration

Model calibration refers to the alignment of a model’s

output class probabilities (confidence scores) with the true

likelihood of correctness [36]. A miscalibrated model outputs

confidence scores that do not reflect the true probability of a

prediction being correct. Thus, it seems that a miscalibrated

model cannot be effectively used for a downstream task which

relies on its confidence scores. The authors of [35] address

this by integrating calibration into the loss function. They

seek to train a cascade of models such that a classifier’s

confidence score not only reflects whether the current classifier

will be correct, but also if the next classifier in the cascade

will be correct. While optimizing cascaded models to output

‘informative’ confidence scores is appealing, it requires access

to the ML models. Our setting considers pretrained models

whose parameters are restricted; thus we extract any meaning-

ful relationship between cascades solely from the confidence

scores. Further, we show that a calibrated sensor model is not

sufficient or necessary for the threshold policy to perform well.

III. PROBLEM FORMULATION AND ANALYSIS

Now we comprehensively describe our methodology. For

convenience, important notation is shown in Table I.

A. Sensor Utilization

Overview: We use sensor utilization as a proxy for the

energy efficiency of a sensor system. Consider a set of K
identical sensor nodes, S = {s1, s2, . . . , sK}, for wearable

HAR1. Each node sk periodically buffers data into a sliding

window wk of length l from an IMU, but otherwise remains

in a low-power state. At each time step t, a subset Sactive ⊆ S

of nodes will pass the current window w
(t)
k into their neural

network for inference and send the result to a central device.

Assume inference dominates energy consumption so that the

lifetime of a sensor is defined by I , the number of inferences it

can make before running out of battery. Further assume that at

least one node must do inference at each step t. For simplicity,

we define the system lifetime as the minimum lifetime among

all sensors (if any sensor dies, the entire system dies).

Definition: The utilization of a sensor sk after t steps is

u
(t)
k = ak

t where ak is the number of times sensor sk was

used for inference (see Fig. 1b). To maintain at least one active

sensor at every step we must have
∑K

k=1 u
(t)
k ≥ 1. Intuitively,

utilization provides a knob to control a sensor’s lifetime with

higher utilization corresponding to a shorter lifetime.

We assume an application defines a global utilization budget
u such that u

(t)
k ≤ u for all sk where u determines the trade-

off between the system lifetime and classification accuracy. A

1Example of such sensors: https://www.movesense.com/movesense-active/

higher u corresponds to a shorter lifetime and higher accuracy.

For a given u, we ideally have u
(t)
1 = u

(t)
2 = · · · = u

(t)
K = u

because ‘under-utilizing’ a sensor (having u
(t)
k < u) does

not extend the system lifetime since it is bounded by the

most utilized sensor. Then, the global budget must satisfy

u ∈ [ 1K , 1]. If u < 1
K this violates

∑K
k=1 u

(t)
k ≥ 1. Further,

u ≤ 1 since a sensor is active at most every round.

In practice, we cannot ensure u
(t)
1 = · · · = u

(t)
K = u for each

t. To enforce both
∑K

k=1 u
(t)
k ≥ 1 and u

(t)
k ≤ u, we query each

sensor in a round-robin fashion at each t as shown in Fig. 1b

to maintain the minimum utilization. Then, if the policy for a

given sensor signals to call the ensemble, we check if this will

cause any sensor’s utilization u
(t)
k to exceed the budget u. If

it does we do not call the ensemble. Thus, we only consider

budget violations as a result of calling the ensemble.

Implementation Considerations: In our setting we only

control when a sensor does inference which fixes the cost

of data processing from the perspective of the policy. For

communication costs, BLE (Bluetooth Low Energy) based

sensors would maintain a synchronized periodic connection

with a central device based on a connection interval which

we assume occurs more often than each time step t. Each

time step, the central device queries the next sensor to do

inference for window w
(t)
k , which returns a confidence score.

If the policy, which executes on the central device, signals to

call the ensemble, the central device will query all sensors

sk′ , for k
′ �= k, to do inference for the buffered window w

(t)

k′

on the next connection event which occurs before step t+ 1.

Given that only the model prediction and policy result need

to be communicated, we assume that these BLE transmissions

are negligible compared to the cost of inference.

B. Confidence Based Sensor Selection Policy

Utilization Budget: Our goal is to maximize the prediction

accuracy for a given utilization budget u. We consider the

scenario where the confidence of any one sensor determines

whether to do inference on all other sensors. First, we derive

αe ∈ [0, 1], the fraction of time the ensemble can be called

while maintaining the budget u. By default, one sensor does

inference each step so u ≥ 1
K . If we call the ensemble, the

remaining K − 1 sensors do inference. Thus, we express the

budget as u ≥ (αe) · K−1
K + 1

K and αe ≤ (u− 1
K )/(K−1

K ). To

interpret this expression, consider the two extremes. If u = 1
K ,

then αe = 0 because there is no budget to use the ensemble. In

contrast, if u = 1, then αe = 1 because there is effectively no

budget constraint and we can call the ensemble every round.

Sensor Selection: Define each sensor’s neural network as a

function fk which outputs softmax scores across C classes so

that for input x we have fk(x) ∈ [0, 1]C and
∑

c fk(x)c = 1.

Define a confidence-based policy for sensor sk as a function

πk : (0, 1] → {0, 1}; it takes as input the confidence (conf),

maxc{fk(x)}, of sensor sk and outputs a binary decision:

1 to call the ensemble or 0 to use argmaxc{fk(x)} as the

prediction. As shown in Fig. 3, the policy πk can be expressed

3

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 07,2024 at 01:05:31 UTC from IEEE Xplore.  Restrictions apply. 



as a piecewise function of J disjoint intervals which specify

which decision a confidence score corresponds to:

πk(conf) =

{
1, ∃j s.t. conf ∈ (aj , bj ], j = 1, . . . , J

0, otherwise
(1)

0

1

0 1

...

Fig. 3. Visualization of confidence-based policy based on the form in (1)

TABLE I
NOTATION

Notation Description
S = {s1, . . . , sK} A set of K sensors, indexed by k
t Time index when prediction occurs

w
(t)
k Data window for kth sensor at time step t

ak Total # of times the kth sensor did inference

u
(t)
k = ak

t
Utilization of kth sensor at time step t

u ∈ [ 1
K
, 1] Utilization budget of a sensor system

αe Fraction of time the ensemble can be called

fk Classifier for the kth sensor

πk Policy of the kth sensor
M # of bins used to discretize confidence distribution
(am, bm] Interval of bin m
pk ∈ R

M Probability that kth sensor’s prediction is correct
given its confidence score (bin)

pe|k ∈ R
M Probability that ensemble’s prediction is correct

given kth sensor’s confidence score (bin)
ae # of bins that can be allocated to the ensemble

xk ∈ R
M Optimized policy of the kth sensor

acck ∈ R
M Empircal estimate of pk

acce|k ∈ R
M Empircal estimate of pe|k

I Lifespan of sensor in terms of # of inferences

This form of the policy is intractable since we need to

optimize over the number of intervals, and the width of each

interval. Further, such a flexible class of policies can easily

overfit by setting the intervals to memorize exact confidence

values. Therefore, we add explicit structure to simplify the

policy class. Consider fk, the model for a single sensor. Over

a range of inputs for a given user, this model will output

a distribution of confidence values. First, we discretize the

confidence distribution of fk into M bins. The width of each

bin is set such that the number of a predictions in each

bin is equal. For bin m ∈ {1, . . . ,M}, we can estimate

pk = P (ŷk = y | confk ∈ (am, bm]), the probability that a

prediction in bin m will be correct, using the accuracy of each

bin. Here, ŷk, y are the class prediction (for sk) and label for

a given sample, and confk ∈ (am, bm] means the confidence

score from sensor sk falls into bin m. This empirical estimate

of pk creates a reliability diagram [36]–[38] which describes

a model’s accuracy as a function of its confidence.
Reliability Diagram: Define the reliability diagram for the

model fk as acck ∈ R
M . We also define a conditional reliabil-

ity diagram acce|k ∈ R
M as the ensemble model’s accuracy as

a function of the confidence of sensor sk. This is the empirical

estimate of pe|k = P (ŷe = y | confk ∈ (am, bm]), the proba-

bility that the ensemble’s prediction will be correct given the

sensor confidence. Intuitively, acck and acce|k tell us how the

sensor model compares to the ensemble in terms of accuracy

for each confidence bin. With this information, the form of

the policy reduces to a binary vector xk ∈ {0, 1}M that says

whether to allocate predictions from each confidence bin to the

ensemble. Specifically, we map confk, the confidence of sensor

sk, to bin m; the policy returns the mth entry of xk which

will be 1 if the ensemble should be called and 0 otherwise.

C. Optimizing the Policy

Using the formulation in section III-B, we can determine

the policy which will maximize the probability of a correct

prediction for a given utilization budget u. Suppose we know

pk = P (ŷk = y | confk ∈ (am, bm]) and pe|k = P (ŷe =
y | confk ∈ (am, bm]), the true probability that the sensor sk
and ensemble are correct given the confidence of sensor sk.

Optimization Problem: We first derive the discrete bin
budget ae from the continuous budget u. First, map the budget

u to αe, the fraction of predictions which can be allocated

to the ensemble. Given αe, let ae = 	 αe

1/M 
 where ae is

the number of bins that can be allocated to the ensemble.

For example, if αe = 0.25 and M = 20, then ae = 5
(allocate at most 5 bins to the ensemble where each contains
1
M fraction of the predictions). M can be set to match the

desired budget fidelity in terms of αe; with M = 10 we

can set αe = 0.0, 0.1, 0.2, . . . , 1.0. Now, to maximize the

probability of a correct prediction under the budget ae, we

solve the following optimization problem for each sensor sk:

maximize
xk

1

M

(
p�
k (1− xk) + p�

e|kxk

)
subject to x�

k 1 ≤ ae

(2)

where pk ∈ R
M , pe|k ∈ R

M , xk ∈ {0, 1}M , and M is the

number of bins. xk is the optimization variable; it is a binary

vector that says whether to allocate predictions from each bin

to the ensemble. The objective function is the probability of a

prediction being correct; the factor of 1
M is the probability of

landing in each confidence region (bin). This factor is omitted

in the remaining analysis since it is a constant. The first term in

the objective function is the contribution of the sensor and the

second term is the contribution of the ensemble. The constraint

ensures we do not exceed the utilization budget. If we expand

the objective function we get:

p�
k 1− p�

k xk + p�
e|kxk (3)

p�
k 1 is a constant so it can be taken out of the objective:

− p�
k xk + p�

e|kxk

=(pe|k − pk)
�xk = p�

diffxk

(4)

The optimization problem has reduced to

maximize
xk

p�
diffxk

subject to x�
k 1 ≤ ae

(5)

4
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where pdiff represents how much more (or less) probable the

ensemble is to be correct compared to sensor sk for each bin.

Analysis: This objective will be maximized when xk selects

the ae largest positive entries of pdiff. If there are negative

entries, this corresponds to the sensor having better accuracy

than the ensemble for a certain bin. In these cases, we do not

select the ensemble even if we have not used up the budget ae.

Overall, the optimal xk (in terms of maximizing the objective)

for sensor sk is set by: (1) defining pdiff = pe|k−pk, (2) then

the xk which has 1’s in the ae largest positive entries of pdiff

is optimal. Intuitively, this allocates the bins with the largest

positive accuracy margin (over sensor sk) to the ensemble.

Discussion: Now recognize that a threshold is a special case

where the ae largest entries of pdiff are adjacent; specifically,

there is a single separation point (i.e., a confidence threshold)

where bins on one side are zeros and bins on the other side

are ones. We can increase the number of bins M to match

the fidelity of the threshold policy. For example, if M = 100
then we can represent all threshold policies which consider

the n ∈ {0.0, 0.01, . . . , 0.99, 1.0} most confident predictions

(n = 0.75 corresponds to a threshold which allocates the 25

percent of sensor predictions with the lowest confidence to the

ensemble). Thus, our policy class is more general and should

perform at least as well as the threshold policy. In practice,

this is challenging since we can only empirically estimate pdiff

and can’t set M too high to avoid overfitting. Regardless, our

empirical results in section V show consistent improvement

over the threshold policy even when using M = 10 bins.

Implications: In theory, a threshold policy will match the

optimal xk in our policy class when pdiff has a monotonic

structure because the ae largest entries of pdiff will be adjacent.

If the sensor model fk is calibrated, pk will be monotonically

increasing. However, this does not imply that pdiff will be

monotonic since it relies on pe|k as well. In other words,

a calibrated sensor model is not sufficient or necessary for

a threshold policy to be successful. We observe that poorly

calibrated sensor models with non-monotonically increasing

reliability diagrams can still perform well with a threshold

policy. Thus, the sub-optimality of the threshold is not due

to miscalibration of the sensor model, but a misalignment

between the confidence of the sensor and the accuracy of the

ensemble. Our policy class overcomes this by generalizing to

multiple thresholds represented by confidence regions. When

the relationship between the sensor confidence and ensemble

accuracy is unstructured (i.e. pdiff is not monotonic), we

improve over the threshold policy by avoiding confidence

regions for which the ensemble provides no accuracy gain.

Note that monotonicity of pdiff is not necessary, but sufficient

for a threshold to perform well. See Figs. 7, 8, 9 for examples.

D. Semi-supervised and Unsupervised Cases

A limitation of confidence based policies is that they require

labeled data to find the best threshold, or in our case the best

bin allocation. This is problematic if there are few labeled sam-

ples from the target user. Thus, we extend our methodology

to cases where little to no labeled data is available.

Unsupervised Scenario: Suppose no labeled data for tuning

the policy is available. In this setting, we cannot to measure the

accuracy of the sensor model or the ensemble. Thus, assume:

pe|k ≥ pk, i.e. we assume the probability of the ensemble

being correct is always higher than the sensor being correct,

given the sensor confidence. Under this assumption, we use the

agreement of the sensor model with the ensemble as a notion

of accuracy because we don’t know pe|k either. Specifically,

let pe|k = 1 which equally weights each bin of pe|k and

ensures pe|k ≥ pk. Then replace pk with pagree = P (ŷk =
ŷe | confk ∈ (am, bm]), the probability that the sensor agrees

with the ensemble for a given bin. Substituting these into the

simplified objective function from expression (4) we have:

(pe|k − pk)
�xk = (1− pagree)

�xk (6)

which overall corresponds to

maximize
xk

(1− pagree)
�xk

subject to x�
k 1 ≤ ae

(7)

The optimal xk then corresponds to selecting the ae bins

which have the highest disagreement with the ensemble. It

is important to note that the optimal xk can be poor if the

predictions for which the sensor agrees with the ensemble

are not uniformly distributed over the correct and incorrect

predictions of the ensemble. For example, the sensor can have

many predictions which disagree with the ensemble when the

sensor is actually right. Fig. 4 shows an example for this.

Semi-supervised Scenario: Next, suppose we have a small

amount of weak labels for the ensemble predictions. A weak

label is a form of binary feedback that indicates if a model

was correct or incorrect. This feedback is more convenient

and practical for a user of a HAR system to collect as they

only need to respond to an activity prediction with a yes or no
answer. With this feedback, we can estimate pe|k. Since the

full label is not provided, we cannot use this information to

also estimate pk. However, we can use the estimate of pe|k to

estimate pk as pk ≈ pe|k�pagree where � corresponds to the

element-wise product. Intuitively, if the sensor model agrees

with the ensemble model 50% of the time, then we expect it to

achieve around 50% of the ensemble’s accuracy. Substituting

into the objective function in expression (4) we have:

(pe|k − pk)
�xk

=(pe|k − pe|k � pagree)
�xk

=
(
pe|k � (1− pagree)

)�
xk

(8)

which overall corresponds to

maximize
xk

(
pe|k � (1− pagree)

)�
xk

subject to x�
k 1 ≤ ae

(9)

The optimal xk then corresponds to selecting the ae bins

which have the highest disagreement with the ensemble, but

now scaled by pe|k. Thus the objective function is essentially

5
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predictions for confidence bin m

ensemble predictions

disagree agree disagree

sensor predictions

Fig. 4. A possible failure case of estimating pk using pagree. The diagram
shows how correct (green) and incorrect (red) predictions of the sensor and
ensemble align for a given confidence bin m. For predictions in this bin, the
probability the sensor is correct is 0.5, the probability the ensemble is correct
is 0.75, and the probability that the sensor agrees with the ensemble is 0.25.
Using pk(m) ≈ pe|k(m) · pagree(m) drastically underestimates the sensor
performance since the sensor is correct for a large number of predictions
where it disagrees with the ensemble. This may result in a suboptimal policy.

the same as the unsupervised case, except we use the weak
label information to update the prior assumption pe|k = 1
which equally weighted each bin of pe|k. However, as with the

unsupervised case, the assumption pk ≈ pe|k �pagree can fail

if the distribution of predictions for which the sensor agrees

with the ensemble is not uniformly distributed over the correct

and incorrect predictions of the ensemble (see Fig. 4).

IV. EXPERIMENTAL PROCEDURE

A. Datasets and Preprocessing

We evaluate our methods on the DSADS [39], RWHAR
[40], and Opportunity [41] datasets. These contain ac-

celerometer data for multiple users completing many activities.

The details are described below with a summary in table II.

• DSADS (Daily Sports and Activities Dataset): 19 daily

and sports activities performed by 8 subjects for 5 min-

utes. Five IMUs are used on the torso, arms, and legs. We

use accelerometer data from all body parts and activities.

• RWHAR (Real World HAR): Uses acceleration, GPS,

gyroscope, light, magnetic field, and sound level data of

users completing 8 activities. We use accelerometer data

from all body parts and activities. We exclude users 2

and 6 as they have missing data for some body parts.

• Opportunity: Has readings of motion sensors from users

doing daily activities in a natural sequence. Users com-

pleted multiple runs (we use run 5 for validation and

others for training). We use accelerometer data from the

right and left upper arm, right and left shoe, right and

left lower arm, and back. Classes are imbalanced.

We preprocess each dataset as follows. For each user in a

dataset, we partition the data from each activity using a sliding

window of two seconds with an overlap of 50%. Since each

dataset has a different sampling rate, these windows vary in

length. Before partitioning, we split the data from each activity

into training and validation segments. We use the first 80%

for training and the last 20% for validation. Each window has

three channels for the XYZ accelerometer signals. We rescale

the data to be in the range [−1, 1] and then standardize by

TABLE II
SUMMARY OF DATASETS

Name activities users sampling sensors Channels

DSADS 19 8 25 Hz 5 acc. XYZ
RWHAR 8 13 50 Hz 7 acc. XYZ

Opportunity 5 4 30 Hz 7 acc. XYZ

subtracting the mean and dividing by the standard deviation.

We apply the statistics (min, max, mean, standard deviation)

from the U − 1 training users to the held out test user.

B. Training Details

We train a 1D CNN (see section IV-D) independently for

each body part. For all models, we use the cross entropy loss

with a label smoothing value of 0.1 which replaces the one-hot

labels with softened probabilities. Without label smoothing the

majority of the confidence scores of each model tend to be very

close to one. Label smoothing helps spread out the confidence

distribution. We train the models on DSADS and Opportunity

for 50 epochs using a batch size of 128. For RWHAR, we train

for 25 epochs using a batch size of 32. For all models, we use

the SGD optimizer with a learning rate of 0.01, momentum

of 0.9, and weight decay of 0.0001. We also use a cosine

annealing learning rate scheduler. We train a model for each

body part across three random seeds.

C. Evaluation Procedure

For evaluation, we use leave-one-user-out cross validation

which means we train a model on the data from U−1 users and

test on the held out user. We do this for every user, resulting

in K · U · 3 models for each dataset where K and U are the

number of body parts and users in each dataset respectively

and 3 is the number of random seeds. Each sample x ∈ R
3×l

is a window of l samples across the XYZ channels.

We evaluate three policies: random, threshold, and the

optimal estimate. To define the policies, we set aside 10% of

the data from the held out test user. The random policy simply

selects the ensemble with probability αe. The threshold selects

a confidence value and allocates all the predictions less than it

to the ensemble. We search for the threshold which gives the

best accuracy on the 10% of the data from the held out test

user (under the constraint of αe). For the optimal estimate,

we use acck and acce|k to estimate pdiff for each sensor and

then select the top ae positive bins as explained in section

III-C. Algorithm 1 explains this step-by-step. Recall that in

our setting, we do not have direct access to the model fk and

the raw data x but we show these algorithm 1 for clarity.

For the unsupervised scenario, we do not use any labeled

data and estimate pagree from the 10% of data set aside for

defining the policies. For the semi-supervised scenario, we

only set aside 1% or 5% of the dataset to estimate pe|k. Recall

that this only requires weak feedback, not the full label.

We evaluate on a uniform sweep of 11 utilization bud-

gets from 1
K → 1. This corresponds to αe values of
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Algorithm 1 Estimate Optimal Policy for Sensor sk
Require: fk, the sensor model; fe, the ensemble model; M ,

the # of bins; D = {xi, yi}ni=1, ∼500 labeled IID samples

from the test user; αe, the ensemble budget

1: Predsk ← argmaxc{fk(D)} � get sensor predictions

2: Confsk ← maxc{fk(D)} � get sensor confidence scores

3: Predse ← argmaxc{fe(D)} � get ensemble predictions

4: Confse ← maxc{fe(D)} � get ensemble conf. scores

5: sort(Predsk, Confsk) � sort sensor preds. by ↑ confidence

6: sort(Predse, Confsk) � sort ens. preds. by ↑ sensor conf.

7: Partition sensor and ens. preds. into M bins of size N
M

8: for bin m in M do
9: acck[m] ← accuracy of Predsk[

mN
M : (m+1)N

M ]

10: acce|k[m] ← accuracy of Predse[
mN
M : (m+1)N

M ]
11: end for
12: accdiff ← acce|k − acck � get accuracy margin

13: ae ← 	 αe

1/M 
 � get discrete bin budget

14: idxs ← sort(accdiff)[: ae] � indices of values in ↓ order

15: xk ← 0 � initialize policy to M zeros

16: xk[accdiff[idxs] > 0] ← 1 � set ae most positive entries

17: return xk

{0.0, 0.1, 0.2, . . . , 1.0}. We use M = 10 bins for the reliability

diagrams since 1
M = 0.1 so we can exactly capture each αe.

The evaluation procedure is as follows. We truncate the

remaining 90% of the test user data to be a multiple of K.

We then query the sensors in a round-robin fashion. At each

prediction round, we use the current’s sensor prediction and

policy to determine whether to call the ensemble. If the policy

signals to call the ensemble, we first check if such an action

will not cause any sensor to exceed the specified utilization

budget. If it does, we use the current sensor’s prediction. See

Algorithm 2 for the control flow. Note that the ensemble model

simply averages the softmax scores from each sensor but we

show it as a model fe in Algorithm 2 to be clear and concise.

Since these policies are subject to randomness in the order

of the data samples, we run our evaluation across three random

seeds and get the average and standard deviation of the results.

For the evaluation metric, we use the macro-averaged F1-

score since there is some class imbalance in the RWHAR and

Opportunity datasets. This metric is most commonly used for

HAR evaluation. When tuning the policies, we use accuracy

rather than the F1-score since we may only have a few samples

per class in each bin which can result in a large variance of

F1-scores. This can make the policies much more sensitive to

the random selection of the samples used for tuning.

D. Model Architectures

We use simple 1D convolutional neural network architec-

tures given that these models would be running on resource

constrained devices. The architectures, parameters, and MACs

(multiply accumulate) used for each dataset are summarized in

table III. In the table, channels is abbreviated to ‘Ch.’, ‘S/P’

means Stride/Padding and ‘-’ means that the column is not

applicable for the corresponding layer.

Algorithm 2 Policy Evaluation

Require: {xk}Kk=1, the policies for all K sensors; {fk}Kk=1

the models for all sensors; fe, the ensemble model; D =
{xi, yi}Ni=n, the remaining labeled samples from the test

user (assume N%K = 0); u, the utilization budget

1: u ← 0 � init sensor utilizations

2: for sample (xi, yi) in D do
3: k = i%K � round-robin

4: Predk,Confk = argmaxc{fk(xi)},maxc{fk(xi)}
5: m ← bin index for Confk
6: d ← xk[m] � policy decision

7: if (d == 1) and (∃k s.t. (u[k] + 1)/i > u) then
8: d ← 0 � budget exceeded

9: end if
10: if d == 0 then � choose sensor prediction

11: output prediction ← Predk
12: u[k] ← u[k] + 1
13: else � choose ensemble prediction

14: output prediction ← argmaxc{fe(xi)}
15: u ← u+ 1
16: end if
17: end for

V. RESULTS AND DISCUSSION

In this section, the F1-score for all policies are plotted

over a sweep of utilization budgets to visualize the trade-

off of each policy. Given the variation induced by different

users as well as the random seeds, we plot the mean and

standard deviation for each scenario. Specifically, Fig. 5 shows

the mean and standard deviation of F1-scores across all held

out test users, while Fig. 6 shows the mean and standard

deviation of F1-scores across each random seed. In figures

5 and 6 optmial estimate U (dashed red) is the unsuper-

vised policy, while optimal estimate 1 (dashed purple) and

optimal estimate 5 (dashed brown) are the semi-supervised

policies. The 1 and 5 correspond to the percent of data used

for weak feedback in the semi-supervised scenario.

Note that the F1-score and utilization budget are competing

objectives. Thus, in the plots, curves which are higher (larger

F1-score) for a given utilization budget are better. To em-

phasize the differences between the optimal estimate and the

threshold policy, we show three explicit examples of how the

reliability diagram structure influences the resulting policies

in figures 7, 8, 9. Note that each of these examples show the

policies for one sensor from the RWHAR dataset. The tangible

implications of these results are discussed in section V-B.

A. Supervised Scenario Results

The supervised scenario serves as the upper bound for pol-

icy performance since we use labeled data to tune the policies.

In figures 5 and 6 the supervised policies are the threshold
(solid orange) and optimal estimate (solid green) lines. For all

random seeds and datasets in Fig. 5, the curve for the optimal

estimate matches or improves upon the threshold. For the per-

user results across datasets in Fig. 6, we see that the threshold
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TABLE III
MODEL ARCHITECTURES

DSADS Architecture (3× 50 Input) RWHAR Architecture (3× 100 Input) Opportunity Architecture (3× 60 Input)

Layer In Ch. Out Ch. Kernel S/P In Ch. Out Ch. Kernel S/P In Ch. Out Ch. Kernel S/P

1D Conv/ReLU 3 16 5 1/1 3 16 5 1/None 3 16 5 1/2
1D Conv/ReLU 16 16 3 3/None 16 16 3 3/None 16 16 3 3/None
1D Conv/ReLU 16 16 3 1/None 16 16 3 1/None 16 16 3 1/None
1D Conv/ReLU 16 16 3 1/None 16 16 3 3/None 16 16 3 3/None
1D Conv/ReLU 16 32 12 1/None 16 32 10 1/None 16 24 16 1/None

Linear 32 19 - -/- 32 8 - -/- 24 5 - -/-

Model Statistics # Params: 9.41 K # MACs: 52.02 K # Params: 8.02 K # MACs: 84.44 K # Params: 8.99 K # MACs: 63.99 K

and optimal estimate policies perform similarly for some users

while for others there is a large gap. As discussed in the

implications portion of section III-C, our policy improves upon

the threshold when pdiff is unstructured which depends on the

model and data; otherwise the performance will be similar.

B. Extending the Sensor System Lifetime

To interpret the improvement of our policy over the
threshold in terms of energy savings, recall the following

from section III-A: assume that inference dominates energy
consumption so that the lifetime of a sensor is defined by I ,
the number of inferences it can make before running out of
battery. Under this setting, the ratio of two utilization budgets

is proportional to the increase in the system lifetime. Suppose

a sensor can last I = 1000 inferences. If a sensor has a budget

of u = 0.5, then it can last I
u = 1000

0.5 = 2000 time steps, where

the sensor system makes a prediction every time step.

Now consider two utilization budgets u1 and u2. Under

budget u1, the sensor system will last I
u1
/ I
u2

= u2

u1
times as

long as the system under budget u2. For example, if u1 = 0.8
and u2 = 0.4, the system will last 0.4

0.8 = 1
2 as long under

budget u1 compared to u2. As a tangible result, consider the

middle plot from Fig. 5 (Seed 456, RWHAR Dataset). Suppose

we fix the F1-score at 0.85 based on the desired performance

for some application. We see that our policy (green) crosses

this point at a utilization of u1 = 0.6 while the threshold policy

(orange) crosses this point at a utilization of u2 = 0.75. Then

under this F1-score constraint, the sensor system would last
0.75
0.6 = 1.25 times as long using our policy.

C. Unsupervised and Semi-supervised Scenario Results

In general, the unsupervised scenario serves as the lower

bound (beyond the random policy) since no labeled data is

used, while the semi-supervised scenarios represent interme-

diate cases between the lower and upper bounds. In Fig. 5

we see that the unsupervised and semi-supervised policies

are competitive with the supervised threshold, matching the

F1-score for many utilization budgets. We note that past a

certain budget, the unsupervised and semi-supervised policies

plateau towards the peak of the random policy while the

supervised threshold policy plateaus toward the peak of the

optimal estimate. This discrepancy is a result of the poor

estimates of pk discussed in Fig. 4. For higher utilization

budgets, the unsupervised and semi-supervised policies are

underestimating pk and thus they prioritize the ensemble.

At the extreme of u = 1.0, the the unsupervised and semi-

supervised policies match the peak of the random policy

which corresponds to always choosing the ensemble. However,

as seen by the supervised policies, a higher F1-score can

be achieved by choosing the sensor over the ensemble for

certain bins. Without a mechanism to estimate pk, we cannot

determine when the sensor outperforms the ensemble which

is a limitation of the semi-supervised and unsupervised cases.

Despite this, we see strong results for lower and mid-

utilization budgets which may serve as more practical budgets

since a given application will want to minimize utilization

to extend the system lifetime. In addition, since the semi-
supervised and unsupervised policies do not require full
labels, they can be updated over time. Thus, if a user

changes the way they carry out activities (e.g. by moving

to a new environment), the supervised policies may perform

poorly as they were tuned using labels from a different data

distribution. In such a case where a distribution shift could be

detected, the supervised policy may revert to a random policy

which clearly performs worse than the unsupervised policy.

D. Reliability Diagram Analysis

As discussed in section III-C, the structure of the reliability

diagrams influence the optimality of the threshold policy. We

show three examples, one in which the threshold is optimal

(Fig. 8) and two in which the threshold is suboptimal (figures

7 and 9). For these examples, αe = 0.5 and ae = 5. In these

figures, the green numbers correspond to the ae bins with

largest positive accuracy margin for the ensemble, while the

orange arrow corresponds to the threshold.

For the reliability diagrams, blue bars represent the accuracy

of a bin, while red bars represent the gap to the confidence

of each bin. Bins with red bars above blue bars represent

overconfident bins whose confidence is higher than their

accuracy while bins with red bars below blue bars represent

underconfident bins whose confidence is lower than their

accuracy. The bins in the reliability diagrams have variable

width since they each have an equal number of predictions.

Thus, the earlier bins tend to be wider since the majority of

predictions tend to be concentrated at high confidence values.

The results clearly show that it is not sufficient or necessary

for the sensor model to be calibrated for a threshold based

policy to perform well; rather the relationship between the
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Fig. 5. Comparison of six policies on the DSADS, RWHAR, and Opportunity datasets. Each row of plots corresponds to a different dataset and each column
of plots corresponds to a different random seed. We plot the F1-score for a sweep of utilization budgets from 1

K
→ 1. Higher F1-score for each utilization

budget is better. Each curve is the average over the held out users and the error bars show the standard deviation. The standard deviation across users varies
more than across random seeds reflecting how heterogeneity in the data significantly affects the policy. The main takeaway from these plots is described in
section V-B which describes the tangible benefit of our policy requiring less utilization for a given accuracy in terms of extending the sensor lifetime.

confidence and accuracy of successive models needs to be

structured. Further, we see that highly unstructured reliability

diagrams appear in practice, reflecting the need for a more gen-

eral policy to account for this to avoid allocating predictions

to the ensemble when there is no expected gain in accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we carried out an analysis of sensor selection

for IMU-based HAR by optimizing the system accuracy under

the constraint of a sensor utilization budget in the cascaded

inference setting. Our results directly show the need and

benefit of a general policy beyond a single threshold. We ex-

plicitly visualized the unstructured relationship that can appear

between a sensor’s confidence and the ensemble accuracy; a

threshold is not capable of modeling this, leading to wasted

computation for certain confidence regions. Our policy can

handle this lack of structure and directly extends the sensor

system lifetime when a threshold is suboptimal. Finally, we

show that these benefits can be achieved in the practical setting

where little to no labeled data is available for tuning the policy.

In future work, we plan to generalize to settings in which any

subset of sensors can be used in the ensemble, rather than all

of them. In this case, sensors can be queried sequentially in a

multi-level cascade allowing for further efficiency gains.
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Fig. 6. Comparison of six policies on the DSADS, RWHAR, and Opportunity datasets. Each set of plots corresponds to per-user results for a given dataset.
We plot the F1-score for a sweep of utilization budgets from 1

K
→ 1. Higher F1-score for each utilization budget is better. Each curve is the average over the

three random seeds and the error bars show the standard deviation. Results across random seeds vary less than across users as shown by the lower standard
deviation. Note that some users benefit greatly from the optimal estimate while for others the threshold performs similarly. Since we can only estimate the
optimal policy, there may be small regions where the threshold performs slightly better in the per-user results. We find that this discrepancy is reduced when
more data and bins are used to estimate the optimal and threshold policies.
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Fig. 7. The reliability diagrams for the shin sensor and ensemble for user 7 in the RWHAR dataset are shown at the top. The bottom shows the difference
in the accuracy of each bin which represents an empirical estimate of pdiff. We see that accdiff is not monotonic and many bins are actually negative (shown
with no height here) since the sensor has higher accuracy than the ensemble in certain sensor confidence regions. The threshold (orange) policy is not able
to model this and incorrectly allocates the first bin to the ensemble despite the sensor performing significantly better.

Fig. 8. The reliability diagrams for the thigh sensor and ensemble for user 14 in the RWHAR dataset are shown at the top. The threshold and optimal estimate
policies are approximately the same despite the miscalibration of the sensor model.

Fig. 9. The reliability diagrams for the waist sensor and ensemble for user 14 in the RWHAR dataset are shown at the top. This shows a scenario where the
threshold and optimal estimate policies are very different even though the sensor model’s reliability diagram is approximately monotonic. This emphasizes
the need to exploit the relationship between the two models and that simply calibrating the sensor model is not sufficient.
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