2024 IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation (IoTDI) | 979-8-3503-7025-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/I10TDI161053.2024.00005

2024 IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation (IoTDI)

Beyond Thresholds: A General Approach to Sensor
Selection for Practical Deep Learning-based HAR

Geffen Cooper
The University of Texas at Austin
Email: geffen@utexas.edu

Abstract—In deep learning (DL) based human activity recogni-
tion (HAR), sensor selection seeks to balance prediction accuracy
and sensor utilization (how often a sensor is used). With advances
in on-device inference, sensors have become tightly integrated
with DL, often restricting access to the underlying model used.
Given only sensor predictions, how can we derive a selection
policy which does efficient classification while maximizing accu-
racy? We propose a cascaded inference approach which, given
the prediction of any one sensor, determines whether to query
all other sensors. Typically, cascades use a sequence of classifiers
which terminate once the confidence of a classifier exceeds a
threshold. However, a threshold-based policy for sensor selection
may be suboptimal; we define a more general class of policies
which can surpass the threshold. We extend to settings where little
or no labeled data is available for tuning the policy. Our analysis
is validated on three HAR datasets by improving upon the F1-
score of a threshold policy across several utilization budgets.
Overall, our work enables practical analytics for HAR by relaxing
the requirement of labeled data for sensor selection and reducing
sensor utilization to directly extend a sensor system’s lifetime.

[. INTRODUCTION

Human activity recognition (HAR) has immense potential
for improving daily life by enabling applications such as fall
detection [1], rehabilitation monitoring [2], and health tracking
[3]. A key driver of such applications are wearable inertial
measurement units (IMUs) which can capture motion data
of multiple body parts using accelerometers and gyroscopes.
These affordable low-power sensors, along with advancements
in deep learning (DL) for time series signals, have led to a
surge in research within the field of IMU-based HAR [3].

Despite this progress, implementing practical analytics for
IMU-based HAR systems using DL remains challenging due
to the limited size of labeled datasets for HAR and data
heterogeneity across users and environments which limit the
generalizability of DL approaches. Thus, it is common to
use multiple wearable IMUs across the body to obtain more
information and build better performing prediction models.

DL-based works for multi-sensor HAR [4]-[6] tend to focus
on architecture design [7]-[10] or sensor fusion [11]-[14]
and assume that synchronous data from multiple sensors is
available for analysis on a central device such as a phone.
However, this disregards the resource requirements for stream-
ing data from wearable devices which have limited battery life.
Processing data from several sources also burdens the mobile
device which already needs to communicate with multiple
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sensors. Hence, such approaches can limit the practicality and
sustainability of DL for wearable HAR.
In light of this, many works [15]-[20] propose to activate
a subset of sensors (or features) at a given time via sensor
selection (or feature selection) to conserve energy while main-
taining a certain level of accuracy. Some works [19] condition
their selection policy on the input data while other works [17]
only use sensor predictions as input to the selection policy. We
work in the latter setting but further assume that each sensor
uses a pretrained ML model which cannot be modified.
While full access to the raw sensor data and ML classifiers
provides more information and flexibility when building the
sensor selection policy, we may not have access to this infor-
mation in practical settings. With the emergence of machine
learning sensors [21], sensors and ML models have become
tightly coupled, and access to the raw sensor data and ML
model can be restricted. In our setting, visualized in Fig. 1a,
only the model output is available to the sensor selection pol-
icy. While these constraints may limit how effective a selection
policy can be, we believe this setting is underexplored yet
important as off-the-shelf ML sensors become more common.
With such limited information, how can we derive a sensor
selection policy to do classification more efficiently while
maximizing accuracy? Given fixed prediction models, we
focus on sensor selection through cascaded inference where
the prediction confidence of any sensor determines whether
to query and ensemble the predictions of all other sensors.
As shown in Fig. 2, an input x is passed into a local model
fr of a sensor si, which outputs a prediction for the current
activity along with a confidence score. This score is passed
into a decision-making policy 7 which either uses the cur-
rent prediction or queries additional sensors. Querying other
sensors typically results in a better prediction, but increases
the utilization of each sensor. Thus, we define the policy 7 to
maximize the collective accuracy of the sensors, while keeping
the utilization of all sensors under a prespecified budget.
Many works that leverage cascaded models [22]-[24] use a
threshold policy, where a second model is queried only if the
first model’s confidence does not exceed a threshold. However,
a threshold may not adequately describe the relationship
between the first model’s confidence and the second model’s
accuracy. For example, the second model may have similar ac-
curacy to the first model when the first model has a confidence
score in the interval [0,0.25] or [0.75,1.0]. Thus, there is no
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Fig. 1. a) ML sensors processes data locally and restrict access to the raw data and ML model. The prediction is sent to a mobile device where the selection
policy is executed. b) An example of sensor utilization for K = 5 sensors over t = 10 steps. Sensors with dark circles at steps 2, 4, and 8 represent their
policies triggering inference of the other sensors to ensemble their predictions. Note, this sequence is shown for an example calculation and is not realistic.

benefit to querying the second model when the first model
has a confidence within those intervals. However, the second
model may have much higher accuracy than the first model
when the first model has a confidence score in the interval
[0.25,0.75]; here, querying the second model does provide an
expected gain in accuracy. This raises the following questions:
Do such unstructured relationships between confidence and
accuracy of successive models arise in practice? Can a policy
which models this relationship be realistically implemented?
What practical benefits does such a policy provide for sensor
selection? Our contributions are as follows:

1) We propose a general class of policies, for which the
threshold is a special case, to tractably analyze the sensor
selection task in the setting of cascaded inference.

We show under what conditions the threshold policy is
optimal within the defined class of policies and when it
can be improved upon. When a threshold is suboptimal,
our policy directly extends the sensor system’s lifetime.
We validate our analysis on three HAR datasets and
extend our results to a practical setting where little to no
labeled data is available for tuning the policy. Without
labels, our policy is competitive with a threshold policy
tuned with labeled data for multiple utilization budgets.

2)

3)

The rest of the paper is organized as follows. Section II
describes how our work differs from the related works. In sec-
tion III, we comprehensively describe our problem formulation
and methodology for sensor selection. Section IV describes
the implementation of our sensor selection policy and the full
experimental procedure. In section V we analyze our results
and discuss their relevance for practical HAR. Finally, section
VI summarizes our work and discusses future directions.

II. RELATED WORK AND NOVEL CONTRIBUTION
A. Sensor Selection

Sensor selection reduces the energy consumption of wear-
able HAR systems by activating a subset of the available
sensors; the goal is to do so while maintaining a suitable
accuracy. Our work relates to dynamic sensor and feature
selection [15]-[19] which determine which sensors or features
to use at prediction time. This is in contrast to static or fixed
sensor selection which determines which sensors are the most
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Fig. 2. Cascade perspective for sensor selection. For every input x, the
prediction confidence is passed to a policy 7 which determines whether to (0)
use the prediction, or (1) query and ensemble all other sensor predictions. The
policy cannot access the raw input or model parameters. A threshold policy
has the form, 7(conf) = conf < 6 where ¢ is the threshold.

important at training time, and proceeds to use all selected
sensors at runtime [25]. The authors of [15] use random forests
to estimate the importance of pose-based features to create
feature subsets. A model is trained on each subset and the best
one is dynamically selected during prediction. The authors of
[17] seek to leverage the predictability of future activities and
weight the sensors based on their activity-sensor dependency.
More recently, the work of [19] exploits activity sequences
as well as instance-level information to minimize the number
of sensors queried during inference using a Markov Decision
Process. Our work approaches the sensor selection task from
a different perspective; we examine the scenario of one level
cascades where the prediction of one sensor determines if
additional sensors should be queried at runtime. Beyond sensor
selection, we provide insight into what factors influence the
performance of a policy in the cascaded inference setting.

B. Cascaded Inference

Cascades enable DL models to adapt to different inputs
using a sequence of classifiers; cascades and selective infer-
ence have been studied extensively [22], [23], [26]-[33]. Each
classifier in a cascade relies on a policy to determine whether
to use the current prediction, or to continue execution through
the next model. We focus on the threshold policy which
uses the current prediction if its confidence (max softmax
score) exceeds a given threshold. While many works use a
threshold policy for cascaded inference [23], [24], [34], only
a few [28], [35] study their limitations. However, [28], [35]
focus on centralized computer vision models where cascaded
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models and their inputs are located on the same device. We
work in the context of multi-sensor HAR where models and
data are distributed across devices. Thus, our approach, which
only requires access to model outputs, is better suited to this
distributed HAR setting. Further, our approach improve upon
the threshold policy by generalizing to multiple thresholds.

C. Model Calibration

Model calibration refers to the alignment of a model’s
output class probabilities (confidence scores) with the true
likelihood of correctness [36]. A miscalibrated model outputs
confidence scores that do not reflect the true probability of a
prediction being correct. Thus, it seems that a miscalibrated
model cannot be effectively used for a downstream task which
relies on its confidence scores. The authors of [35] address
this by integrating calibration into the loss function. They
seek to train a cascade of models such that a classifier’s
confidence score not only reflects whether the current classifier
will be correct, but also if the next classifier in the cascade
will be correct. While optimizing cascaded models to output
‘informative’ confidence scores is appealing, it requires access
to the ML models. Our setting considers pretrained models
whose parameters are restricted; thus we extract any meaning-
ful relationship between cascades solely from the confidence
scores. Further, we show that a calibrated sensor model is not
sufficient or necessary for the threshold policy to perform well.

III. PROBLEM FORMULATION AND ANALYSIS

Now we comprehensively describe our methodology. For
convenience, important notation is shown in Table L.

A. Sensor Utilization

Overview: We use sensor utilization as a proxy for the
energy efficiency of a sensor system. Consider a set of K
identical sensor nodes, S = {si1,S$2,...,SKk}, for wearable
HAR!. Each node s, periodically buffers data into a sliding
window wy of length [ from an IMU, but otherwise remains
in a low-power state. At each time step ¢, a subset Syctive € S
of nodes will pass the current window w](:) into their neural
network for inference and send the result to a central device.

Assume inference dominates energy consumption so that the
lifetime of a sensor is defined by I, the number of inferences it
can make before running out of battery. Further assume that at
least one node must do inference at each step t. For simplicity,
we define the system lifetime as the minimum lifetime among
all sensors (if any sensor dies, the entire system dies).

Definition: The utilization of a sensor sy, after ¢ steps is
ug) = QT’C where a; is the number of times sensor s, was
used for inference (see Fig. 1b). To maintain at least one active
sensor at every step we must have Zszl u,(f) > 1. Intuitively,
utilization provides a knob to control a sensor’s lifetime with
higher utilization corresponding to a shorter lifetime.

We assume an application defines a global utilization budget
u such that u,(:> < wu for all s, where u determines the trade-
off between the system lifetime and classification accuracy. A

'Example of such sensors: https://www.movesense.com/movesense-active/
p. p
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higher u corresponds to a shorter lifetime and higher accuracy.
For a given u, we ideally have ugt) = uét) =...= uﬁ? =u
because ‘under-utilizing’ a sensor (having ug) < u) does
not extend the system lifetime since it is bounded by the
most utilized sensor. Then, the global bud§et must satisfy
w € [%,1). If u < L this violates 1, u)” > 1. Further,
u < 1 since a sensor is active at most every round.

In practice, we cannot ensure ugt) == u(f? = u for each
t. To enforce both Zﬁ(zl u,(f) > 1and ug/) < u, we query each
sensor in a round-robin fashion at each ¢ as shown in Fig. 1b
to maintain the minimum utilization. Then, if the policy for a
given sensor signals to call the ensemble, we check if this will
cause any sensor’s utilization ug) to exceed the budget u. If
it does we do not call the ensemble. Thus, we only consider
budget violations as a result of calling the ensemble.

Implementation Considerations: In our setting we only
control when a sensor does inference which fixes the cost
of data processing from the perspective of the policy. For
communication costs, BLE (Bluetooth Low Energy) based
sensors would maintain a synchronized periodic connection
with a central device based on a connection interval which
we assume occurs more often than each time step ¢t. Each
time step, the central device queries the next sensor to do
inference for window w,(:), which returns a confidence score.
If the policy, which executes on the central device, signals to
call the ensemble, the central device will query all sensors
s, for K # k, to do inference for the buffered window w](:,>
on the next connection event which occurs before step ¢ + 1.
Given that only the model prediction and policy result need
to be communicated, we assume that these BLE transmissions
are negligible compared to the cost of inference.

B. Confidence Based Sensor Selection Policy

Utilization Budget: Our goal is to maximize the prediction
accuracy for a given utilization budget u. We consider the
scenario where the confidence of any one sensor determines
whether to do inference on all other sensors. First, we derive
ae € [0,1], the fraction of time the ensemble can be called
while maintaining the budget u. By default, one sensor does
inference each step so v > % If we call the ensemble, the
remaining K — 1 sensors do inference. Thus, we express the
budget as u > (o) - 2+ £ and a < (u—%)/(£22). To
interpret this expression, consider the two extremes. If u = %,
then o, = 0 because there is no budget to use the ensemble. In
contrast, if u = 1, then a. = 1 because there is effectively no
budget constraint and we can call the ensemble every round.

Sensor Selection: Define each sensor’s neural network as a
function fj which outputs softmax scores across C' classes so
that for input x we have f;(x) € [0,1]¢ and >°_ fr(x). = 1.
Define a confidence-based policy for sensor s; as a function
m : (0,1] — {0,1}; it takes as input the confidence (conf),
max.{fx(x)}, of sensor s, and outputs a binary decision:
1 to call the ensemble or O to use argmax.{fx(x)} as the
prediction. As shown in Fig. 3, the policy 7 can be expressed
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as a piecewise function of .J disjoint intervals which specify
which decision a confidence score corresponds to:

1, 3y s.t.conf € (a;,b5], j=1,...,J

7 (conf) = 1
k( ) 0, otherwise M
f
i (cont) S N
0
0 ai 1 az b2 agj bJ 1 conf)

Fig. 3. Visualization of confidence-based policy based on the form in (1)

TABLE I
NOTATION
Notation Description
S ={s1,...,sKx} Asetof K sensors, indexed by k
t Time index when prediction occurs
w,(:) Data window for k" sensor at time step ¢
ay Total # of times the k" sensor did inference
ug) = “T’“ Utilization of k' sensor at time step ¢
u € [%, 1] Utilization budget of a sensor system
Qe Fraction of time the ensemble can be called

Ik Classifier for the k*" sensor

Tl Policy of the k' sensor

M # of bins used to discretize confidence distribution

(am,bm) Interval of bin m

pr € RM Probability that k*" sensor’s prediction is correct
given its confidence score (bin)

Peji € RM Probability that ensemble’s prediction is correct
given k" sensor’s confidence score (bin)

e # of bins that can be allocated to the ensemble

xp € RM Optimized policy of the k" sensor

ace, € RM Empircal estimate of py

Empircal estimate of pej

ace. |, € RM
1 Lifespan of sensor in terms of # of inferences

This form of the policy is intractable since we need to
optimize over the number of intervals, and the width of each
interval. Further, such a flexible class of policies can easily
overfit by setting the intervals to memorize exact confidence
values. Therefore, we add explicit structure to simplify the
policy class. Consider f, the model for a single sensor. Over
a range of inputs for a given user, this model will output
a distribution of confidence values. First, we discretize the
confidence distribution of f; into M bins. The width of each
bin is set such that the number of a predictions in each
bin is equal. For bin m € {1,...,M}, we can estimate
pr = P(gr = y|confy € (am,bmn]), the probability that a
prediction in bin m will be correct, using the accuracy of each
bin. Here, 9,y are the class prediction (for sj) and label for
a given sample, and confy, € (ay,,b,,] means the confidence
score from sensor sy, falls into bin m. This empirical estimate
of py creates a reliability diagram [36]-[38] which describes
a model’s accuracy as a function of its confidence.

Reliability Diagram: Define the reliability diagram for the
model f; as acc € RM We also define a conditional reliabil-
ity diagram acc, ), € R as the ensemble model’s accuracy as
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a function of the confidence of sensor sj. This is the empirical
estimate of p., = P(J. = y|confy € (a,,by,]), the proba-
bility that the ensemble’s prediction will be correct given the
sensor confidence. Intuitively, accy, and ace,y, tell us how the
sensor model compares to the ensemble in terms of accuracy
for each confidence bin. With this information, the form of
the policy reduces to a binary vector x;, € {0,1}* that says
whether to allocate predictions from each confidence bin to the
ensemble. Specifically, we map confy, the confidence of sensor
sk, to bin m; the policy returns the m!* entry of x; which
will be 1 if the ensemble should be called and 0 otherwise.

C. Optimizing the Policy

Using the formulation in section III-B, we can determine
the policy which will maximize the probability of a correct
prediction for a given utilization budget u. Suppose we know
pPr = P(gx = ylconfy € (am,bn]) and pepp = P(ge =
y | confy, € (am,by]), the true probability that the sensor s
and ensemble are correct given the confidence of sensor sg.

Optimization Problem: We first derive the discrete bin
budget a. from the continuous budget u. First, map the budget
u to «., the fraction of predictions which can be allocated
to the ensemble. Given a., let a, = Llc/"j\ | where a. is
the number of bins that can be allocated to the ensemble.
For example, if o, = 0.25 and M = 20, then a. = 5
(allocate at most 5 bins to the ensemble where each contains
ﬁ fraction of the predictions). M can be set to match the
desired budget fidelity in terms of ca.; with M = 10 we
can set o, = 0.0,0.1,0.2,...,1.0. Now, to maximize the
probability of a correct prediction under the budget a., we
solve the following optimization problem for each sensor sy:

maximize
Xk

1/ 1 T
Vi (Pk (1 —xp) + pe\kxk’)
subject to x;—l < a,

where p;, € RM, Pejk € RM, x5, € {0,1}M, and M is the
number of bins. xj, is the optimization variable; it is a binary
vector that says whether to allocate predictions from each bin
to the ensemble. The objective function is the probability of a
prediction being correct; the factor of ﬁ is the probability of
landing in each confidence region (bin). This factor is omitted
in the remaining analysis since it is a constant. The first term in
the objective function is the contribution of the sensor and the
second term is the contribution of the ensemble. The constraint
ensures we do not exceed the utilization budget. If we expand
the objective function we get:

2

P 1 — Pg Xk + P/ Xk 3)
p; 1 is a constant so it can be taken out of the objective:
- P;Xk + p;kxk @)
= (Pelk — pk)TXk = ngka
The optimization problem has reduced to
maximize X
- )

subject to le < a,
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where pgir represents how much more (or less) probable the
ensemble is to be correct compared to sensor sy for each bin.
Analysis: This objective will be maximized when xy, selects
the a. largest positive entries of pgr. If there are negative
entries, this corresponds to the sensor having better accuracy
than the ensemble for a certain bin. In these cases, we do not
select the ensemble even if we have not used up the budget a..
Overall, the optimal x;, (in terms of maximizing the objective)
for sensor s, is set by: (1) defining paitt = Pejx — Pk» (2) then
the x; which has 1’s in the a, largest positive entries of pgisr
is optimal. Intuitively, this allocates the bins with the largest
positive accuracy margin (over sensor si) to the ensemble.
Discussion: Now recognize that a threshold is a special case
where the a. largest entries of pgir are adjacent; specifically,
there is a single separation point (i.e., a confidence threshold)
where bins on one side are zeros and bins on the other side
are ones. We can increase the number of bins M to match
the fidelity of the threshold policy. For example, if M = 100
then we can represent all threshold policies which consider
the n € {0.0,0.01,...,0.99,1.0} most confident predictions
(n = 0.75 corresponds to a threshold which allocates the 25
percent of sensor predictions with the lowest confidence to the
ensemble). Thus, our policy class is more general and should
perform at least as well as the threshold policy. In practice,
this is challenging since we can only empirically estimate pg;sr
and can’t set M too high to avoid overfitting. Regardless, our
empirical results in section V show consistent improvement
over the threshold policy even when using M = 10 bins.
Implications: In theory, a threshold policy will match the
optimal x; in our policy class when pg has a monotonic
structure because the a. largest entries of pgisr will be adjacent.
If the sensor model fj, is calibrated, pj, will be monotonically
increasing. However, this does not imply that pgis will be
monotonic since it relies on p, as well. In other words,
a calibrated sensor model is not sufficient or necessary for
a threshold policy to be successful. We observe that poorly
calibrated sensor models with non-monotonically increasing
reliability diagrams can still perform well with a threshold
policy. Thus, the sub-optimality of the threshold is not due
to miscalibration of the sensor model, but a misalignment
between the confidence of the sensor and the accuracy of the
ensemble. Our policy class overcomes this by generalizing to
multiple thresholds represented by confidence regions. When
the relationship between the sensor confidence and ensemble
accuracy is unstructured (i.e. pgir 1S not monotonic), we
improve over the threshold policy by avoiding confidence
regions for which the ensemble provides no accuracy gain.
Note that monotonicity of pg;ff iS not necessary, but sufficient
for a threshold to perform well. See Figs. 7, 8, 9 for examples.

D. Semi-supervised and Unsupervised Cases

A limitation of confidence based policies is that they require
labeled data to find the best threshold, or in our case the best
bin allocation. This is problematic if there are few labeled sam-
ples from the target user. Thus, we extend our methodology
to cases where little to no labeled data is available.

5

Unsupervised Scenario: Suppose no labeled data for tuning
the policy is available. In this setting, we cannot to measure the
accuracy of the sensor model or the ensemble. Thus, assume:
Pe|k = Pk, i.e. we assume the probability of the ensemble
being correct is always higher than the sensor being correct,
given the sensor confidence. Under this assumption, we use the
agreement of the sensor model with the ensemble as a notion
of accuracy because we don’t know p.;, either. Specifically,
let p.r, = 1 which equally weights each bin of p.; and
ensures Pejp > Pk. Then replace py with Pagree = Py, =
Je | confi € (am, b)), the probability that the sensor agrees
with the ensemble for a given bin. Substituting these into the
simplified objective function from expression (4) we have:

(pe|k - Pk)Tch =1~ pagree)Txk (6)
which overall corresponds to
maximize (1 — pagree)—rx;g
x ™

subject to xgl < a,

The optimal xj then corresponds to selecting the a. bins
which have the highest disagreement with the ensemble. It
is important to note that the optimal x; can be poor if the
predictions for which the sensor agrees with the ensemble
are not uniformly distributed over the correct and incorrect
predictions of the ensemble. For example, the sensor can have
many predictions which disagree with the ensemble when the
sensor is actually right. Fig. 4 shows an example for this.

Semi-supervised Scenario: Next, suppose we have a small
amount of weak labels for the ensemble predictions. A weak
label is a form of binary feedback that indicates if a model
was correct or incorrect. This feedback is more convenient
and practical for a user of a HAR system to collect as they
only need to respond to an activity prediction with a yes or no
answer. With this feedback, we can estimate p.;. Since the
full label is not provided, we cannot use this information to
also estimate py. However, we can use the estimate of p.; to
estimate pPi S P X Pe|k © Pagree Where © corresponds to the
element-wise product. Intuitively, if the sensor model agrees
with the ensemble model 50% of the time, then we expect it to
achieve around 50% of the ensemble’s accuracy. Substituting
into the objective function in expression (4) we have:

)T

(pe\k —Pr) Xk
= (Pelk — Pelk © Pagree) ' Xk (®)
=(Pep © (1 — pagree))TXk'
which overall corresponds to
maximize  (Pejr @ (1~ Pagee)) o

subject to kal < a,

The optimal xj then corresponds to selecting the a. bins
which have the highest disagreement with the ensemble, but
now scaled by pe;. Thus the objective function is essentially
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predictions for confidence bin m

TABLE II

SUMMARY OF DATASETS
sensor predictions 0.5 0.5
ensemble predictions 0.25 0.25 0.5 Name activities  users  sampling  sensors  Channels
DSADS 19 8 25 Hz 5 acc. XYZ
[ W W
disagr y disagr RWHAR 8 13 50 Hz 7 acc. XYZ
Isagree agree Isagree Opportunity 5 4 30 Hz 7 acc. XYZ

Pagree(m) = 0.25 pj(m) = 0.5

Peje(m) = 0.75  Pi(m) = 0.75-0.25 = 0.1875

Fig. 4. A possible failure case of estimating py using Pagree. The diagram
shows how correct (green) and incorrect (red) predictions of the sensor and
ensemble align for a given confidence bin m. For predictions in this bin, the
probability the sensor is correct is 0.5, the probability the ensemble is correct
is 0.75, and the probability that the sensor agrees with the ensemble is 0.25.
Using pg(m) & Pe|k(m) - Pagree(m) drastically underestimates the sensor
performance since the sensor is correct for a large number of predictions
where it disagrees with the ensemble. This may result in a suboptimal policy.

the same as the unsupervised case, except we use the weak
label information to update the prior assumption pg, = 1
which equally weighted each bin of p.|;,. However, as with the
unsupervised case, the assumption pg & Pejr © Pagree Can fail
if the distribution of predictions for which the sensor agrees
with the ensemble is not uniformly distributed over the correct
and incorrect predictions of the ensemble (see Fig. 4).

IV. EXPERIMENTAL PROCEDURE

A. Datasets and Preprocessing

We evaluate our methods on the DSADS [39], RWHAR
[40], and Opportunity [41] datasets. These contain ac-
celerometer data for multiple users completing many activities.
The details are described below with a summary in table II.

o DSADS (Daily Sports and Activities Dataset): 19 daily
and sports activities performed by 8 subjects for 5 min-
utes. Five IMUs are used on the torso, arms, and legs. We
use accelerometer data from all body parts and activities.

o RWHAR (Real World HAR): Uses acceleration, GPS,
gyroscope, light, magnetic field, and sound level data of
users completing 8 activities. We use accelerometer data
from all body parts and activities. We exclude users 2
and 6 as they have missing data for some body parts.

o Opportunity: Has readings of motion sensors from users
doing daily activities in a natural sequence. Users com-
pleted multiple runs (we use run 5 for validation and
others for training). We use accelerometer data from the
right and left upper arm, right and left shoe, right and
left lower arm, and back. Classes are imbalanced.

We preprocess each dataset as follows. For each user in a
dataset, we partition the data from each activity using a sliding
window of two seconds with an overlap of 50%. Since each
dataset has a different sampling rate, these windows vary in
length. Before partitioning, we split the data from each activity
into training and validation segments. We use the first 80%
for training and the last 20% for validation. Each window has
three channels for the XYZ accelerometer signals. We rescale
the data to be in the range [—1,1] and then standardize by
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subtracting the mean and dividing by the standard deviation.
We apply the statistics (min, max, mean, standard deviation)
from the U — 1 training users to the held out test user.

B. Training Details

We train a 1D CNN (see section IV-D) independently for
each body part. For all models, we use the cross entropy loss
with a label smoothing value of 0.1 which replaces the one-hot
labels with softened probabilities. Without label smoothing the
majority of the confidence scores of each model tend to be very
close to one. Label smoothing helps spread out the confidence
distribution. We train the models on DSADS and Opportunity
for 50 epochs using a batch size of 128. For RWHAR, we train
for 25 epochs using a batch size of 32. For all models, we use
the SGD optimizer with a learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0001. We also use a cosine
annealing learning rate scheduler. We train a model for each
body part across three random seeds.

C. Evaluation Procedure

For evaluation, we use leave-one-user-out cross validation
which means we train a model on the data from U —1 users and
test on the held out user. We do this for every user, resulting
in K - U - 3 models for each dataset where K and U are the
number of body parts and users in each dataset respectively
and 3 is the number of random seeds. Each sample x € R3*!
is a window of [ samples across the XYZ channels.

We evaluate three policies: random, threshold, and the
optimal estimate. To define the policies, we set aside 10% of
the data from the held out test user. The random policy simply
selects the ensemble with probability c.. The threshold selects
a confidence value and allocates all the predictions less than it
to the ensemble. We search for the threshold which gives the
best accuracy on the 10% of the data from the held out test
user (under the constraint of «.). For the optimal estimate,
we use accy, and ace.;, to estimate pgisr for each sensor and
then select the top a. positive bins as explained in section
III-C. Algorithm 1 explains this step-by-step. Recall that in
our setting, we do not have direct access to the model fj and
the raw data x but we show these algorithm 1 for clarity.

For the unsupervised scenario, we do not use any labeled
data and estimate pygree from the 10% of data set aside for
defining the policies. For the semi-supervised scenario, we
only set aside 1% or 5% of the dataset to estimate p.|;. Recall
that this only requires weak feedback, not the full label.

We evaluate on a uniform sweep of 11 utilization bud-
gets from % — 1. This corresponds to . values of
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Algorithm 1 Estimate Optimal Policy for Sensor sy,

Algorithm 2 Policy Evaluation

Require: fj, the sensor model; f., the ensemble model; M,
the # of bins; D = {x;,y;}"_,, ~500 labeled IID samples
from the test user; «., the ensemble budget

: Predsy, < argmax_{fx(D)} > get sensor predictions

1

2: Confsy, +— max.{fx(D)} > get sensor confidence scores
3: Preds. < argmax {f.(D)} > get ensemble predictions
4: Confs, < max.{f.(D)} > get ensemble conf. scores
5: sort(Predsy, Confs) > sort sensor preds. by T confidence
6: sort(Preds., Confsy) > sort ens. preds. by 1 sensor conf.
7: Partition sensor and ens. preds. into M bins of size %
8: for bin m in M do

9: accy,[m] « accuracy of Preds, [ : W

10: acc,|;[m] + accuracy of Preds. [ (le N

11: end for

12: acegifr <— ACC|, — ACCy > get accuracy margin
13: ae < Ll‘/’—M > get discrete bin budget
14: idxs < sort(acegir)[: a] > indices of values in | order
15: x5, < 0 > initialize policy to M zeros
16: xj[acegig[idxs] > 0] «— 1 > set a, most positive entries
17: return xj

{0.0,0.1,0.2,...,1.0}. We use M = 10 bins for the reliability
diagrams since ﬁ = 0.1 so we can exactly capture each a.

The evaluation procedure is as follows. We truncate the
remaining 90% of the test user data to be a multiple of K.
We then query the sensors in a round-robin fashion. At each
prediction round, we use the current’s sensor prediction and
policy to determine whether to call the ensemble. If the policy
signals to call the ensemble, we first check if such an action
will not cause any sensor to exceed the specified utilization
budget. If it does, we use the current sensor’s prediction. See
Algorithm 2 for the control flow. Note that the ensemble model
simply averages the softmax scores from each sensor but we
show it as a model f. in Algorithm 2 to be clear and concise.

Since these policies are subject to randomness in the order
of the data samples, we run our evaluation across three random
seeds and get the average and standard deviation of the results.
For the evaluation metric, we use the macro-averaged F1-
score since there is some class imbalance in the RWHAR and
Opportunity datasets. This metric is most commonly used for
HAR evaluation. When tuning the policies, we use accuracy
rather than the F1-score since we may only have a few samples
per class in each bin which can result in a large variance of
F1-scores. This can make the policies much more sensitive to
the random selection of the samples used for tuning.

D. Model Architectures

We use simple 1D convolutional neural network architec-
tures given that these models would be running on resource
constrained devices. The architectures, parameters, and MACs
(multiply accumulate) used for each dataset are summarized in
table III. In the table, channels is abbreviated to ‘Ch., ‘S/P’
means Stride/Padding and ‘-’ means that the column is not
applicable for the corresponding layer.
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Require: {x;}# |, the policies for all K sensors; {fi}H<
the models for all sensors; f., the ensemble model; D =
{x;,y;}Y,,, the remaining labeled samples from the test
user (assume N%K = 0); u, the utilization budget

Lu+0 > init sensor utilizations
2: for sample (x;,y;) in D do

3 k=i%K > round-robin
4: Predy,, Confy, = argmax _{ fx(x;)}, max.{ fr(x;)}

5: m < bin index for Conf},

6 d + xp[m)] > policy decision
7 if (d==1) and (3k s.t. (u[k] +1)/i > u) then

8 d<+0 > budget exceeded
9: end if

10: if d == 0 then > choose sensor prediction
11: output_prediction <— Predy,

12: ulk] <~ ulk] +1

13: else > choose ensemble prediction
14: output_prediction <— argmax _.{ fe(x;)}

15: u—u+l

16: end if

17: end for

V. RESULTS AND DISCUSSION

In this section, the Fl-score for all policies are plotted
over a sweep of utilization budgets to visualize the trade-
off of each policy. Given the variation induced by different
users as well as the random seeds, we plot the mean and
standard deviation for each scenario. Specifically, Fig. 5 shows
the mean and standard deviation of F1-scores across all held
out test users, while Fig. 6 shows the mean and standard
deviation of Fl-scores across each random seed. In figures
5 and 6 optmial_estimate_U (dashed red) is the unsuper-
vised policy, while optimal_estimate_I (dashed purple) and
optimal_estimate_5 (dashed brown) are the semi-supervised
policies. The 1 and 5 correspond to the percent of data used
for weak feedback in the semi-supervised scenario.

Note that the F1-score and utilization budget are competing
objectives. Thus, in the plots, curves which are higher (larger
Fl-score) for a given utilization budget are better. To em-
phasize the differences between the optimal estimate and the
threshold policy, we show three explicit examples of how the
reliability diagram structure influences the resulting policies
in figures 7, 8, 9. Note that each of these examples show the
policies for one sensor from the RWHAR dataset. The tangible
implications of these results are discussed in section V-B.

A. Supervised Scenario Results

The supervised scenario serves as the upper bound for pol-
icy performance since we use labeled data to tune the policies.
In figures 5 and 6 the supervised policies are the threshold
(solid orange) and optimal_estimate (solid green) lines. For all
random seeds and datasets in Fig. 5, the curve for the optimal
estimate matches or improves upon the threshold. For the per-
user results across datasets in Fig. 6, we see that the threshold
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TABLE III
MODEL ARCHITECTURES

DSADS Architecture (3 x 50 Input)

RWHAR Architecture (3 x 100 Input)

Opportunity Architecture (3 x 60 Input)

Layer | InCh. Out Ch. Kernel S/P || InCh. Out Ch. Kernel S/P || InCh. Out Ch. Kernel S/P
1D Conv/ReLU 3 16 5 1/1 3 16 5 1/None 3 16 5 12
1D Conv/ReLU 16 16 3 3/None 16 16 3 3/None 16 16 3 3/None
1D Conv/ReLU 16 16 3 1/None 16 16 3 1/None 16 16 3 1/None
1D Conv/ReLU 16 16 3 1/None 16 16 3 3/None 16 16 3 3/None
1D Conv/ReL.U 16 32 12 1/None 16 32 10 1/None 16 24 16 1/None

Linear 32 19 - -/- 32 8 - -/- 24 5 - -/-

Model Statistics

# Params: 941 K # MACs: 52.02 K || # Params: 8.02 K # MACs: 84.44 K || # Params: 899 K # MACs: 63.99 K

and optimal estimate policies perform similarly for some users
while for others there is a large gap. As discussed in the
implications portion of section III-C, our policy improves upon
the threshold when pgif is unstructured which depends on the
model and data; otherwise the performance will be similar.

B. Extending the Sensor System Lifetime

To interpret the improvement of our policy over the
threshold in terms of energy savings, recall the following
from section III-A: assume that inference dominates energy
consumption so that the lifetime of a sensor is defined by I,
the number of inferences it can make before running out of
battery. Under this setting, the ratio of two utilization budgets
is proportional to the increase in the system lifetime. Suppose
a sensor can last / = 1000 inferences. If a sensor has a budget
of u = 0.5, then it can last % = % = 2000 time steps, where
the sensor system makes a prediction every time step.

Now consider two utilization budgets u; and ug. Under
budget u;, the sensor system will last u% / u% = ;2 times as
long as the system under budget uo. For example, if u; = 0.8
and up = 0.4, the system will last % = % as long under
budget u; compared to ug. As a tangible result, consider the
middle plot from Fig. 5 (Seed 456, RWHAR Dataset). Suppose
we fix the Fl-score at 0.85 based on the desired performance
for some application. We see that our policy (green) crosses
this point at a utilization of «; = 0.6 while the threshold policy
(orange) crosses this point at a utilization of uy = 0.75. Then
under this Fl-score constraint, the sensor system would last

06.765 = 1.25 times as long using our policy.

C. Unsupervised and Semi-supervised Scenario Results

In general, the unsupervised scenario serves as the lower
bound (beyond the random policy) since no labeled data is
used, while the semi-supervised scenarios represent interme-
diate cases between the lower and upper bounds. In Fig. 5
we see that the unsupervised and semi-supervised policies
are competitive with the supervised threshold, matching the
Fl-score for many utilization budgets. We note that past a
certain budget, the unsupervised and semi-supervised policies
plateau towards the peak of the random policy while the
supervised threshold policy plateaus toward the peak of the
optimal estimate. This discrepancy is a result of the poor
estimates of pj discussed in Fig. 4. For higher utilization
budgets, the unsupervised and semi-supervised policies are
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underestimating pj and thus they prioritize the ensemble.
At the extreme of v = 1.0, the the unsupervised and semi-
supervised policies match the peak of the random policy
which corresponds to always choosing the ensemble. However,
as seen by the supervised policies, a higher Fl-score can
be achieved by choosing the sensor over the ensemble for
certain bins. Without a mechanism to estimate p, we cannot
determine when the sensor outperforms the ensemble which
is a limitation of the semi-supervised and unsupervised cases.
Despite this, we see strong results for lower and mid-
utilization budgets which may serve as more practical budgets
since a given application will want to minimize utilization
to extend the system lifetime. In addition, since the semi-
supervised and unsupervised policies do not require full
labels, they can be updated over time. Thus, if a user
changes the way they carry out activities (e.g. by moving
to a new environment), the supervised policies may perform
poorly as they were tuned using labels from a different data
distribution. In such a case where a distribution shift could be
detected, the supervised policy may revert to a random policy
which clearly performs worse than the unsupervised policy.

D. Reliability Diagram Analysis

As discussed in section III-C, the structure of the reliability
diagrams influence the optimality of the threshold policy. We
show three examples, one in which the threshold is optimal
(Fig. 8) and two in which the threshold is suboptimal (figures
7 and 9). For these examples, o, = 0.5 and a. = 5. In these
figures, the green numbers correspond to the a. bins with
largest positive accuracy margin for the ensemble, while the
orange arrow corresponds to the threshold.

For the reliability diagrams, blue bars represent the accuracy
of a bin, while red bars represent the gap to the confidence
of each bin. Bins with red bars above blue bars represent
overconfident bins whose confidence is higher than their
accuracy while bins with red bars below blue bars represent
underconfident bins whose confidence is lower than their
accuracy. The bins in the reliability diagrams have variable
width since they each have an equal number of predictions.
Thus, the earlier bins tend to be wider since the majority of
predictions tend to be concentrated at high confidence values.

The results clearly show that it is not sufficient or necessary
for the sensor model to be calibrated for a threshold based
policy to perform well; rather the relationship between the
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Fig. 5. Comparison of six policies on the DSADS, RWHAR, and Opportunity datasets. Each row of plots corresponds to a different dataset and each column

of plots corresponds to a different random seed. We plot the Fl-score for a sweep of utilization budgets from

7 — 1. Higher Fl-score for each utilization

budget is better. Each curve is the average over the held out users and the error bars show the standard deviation. The standard deviation across users varies
more than across random seeds reflecting how heterogeneity in the data significantly affects the policy. The main takeaway from these plots is described in
section V-B which describes the tangible benefit of our policy requiring less utilization for a given accuracy in terms of extending the sensor lifetime.

confidence and accuracy of successive models needs to be
structured. Further, we see that highly unstructured reliability
diagrams appear in practice, reflecting the need for a more gen-
eral policy to account for this to avoid allocating predictions
to the ensemble when there is no expected gain in accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we carried out an analysis of sensor selection
for IMU-based HAR by optimizing the system accuracy under
the constraint of a sensor utilization budget in the cascaded
inference setting. Our results directly show the need and
benefit of a general policy beyond a single threshold. We ex-
plicitly visualized the unstructured relationship that can appear
between a sensor’s confidence and the ensemble accuracy; a
threshold is not capable of modeling this, leading to wasted

9

computation for certain confidence regions. Our policy can
handle this lack of structure and directly extends the sensor
system lifetime when a threshold is suboptimal. Finally, we
show that these benefits can be achieved in the practical setting
where little to no labeled data is available for tuning the policy.
In future work, we plan to generalize to settings in which any
subset of sensors can be used in the ensemble, rather than all
of them. In this case, sensors can be queried sequentially in a
multi-level cascade allowing for further efficiency gains.

ACKNOWLEDGEMENT

This research was supported in part by NSF Grant CCF-
2107085 and a Graduate Fellowship provided by the Cockrell
School of Engineering at The University of Texas at Austin.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 07,2024 at 01:05:31 UTC from IEEE Xplore. Restrictions apply.



User: 1, DSADS Dataset

User: 2, DSADS Dataset

User: 3, DSADS Dataset

User: 4, DSADS Dataset

0.90
© 0585 o )
4 < 4
S S S
v 0.80 ~F~ random %] wn
— ~E-~ threshold — —
Y075 ~F~ optimal_estimate w w
~E- optimal_estimate_U
optimal_estimate_1
0.70 optimal_estimate_5
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Utilization Budget Utilization Budget Utilization Budget Utilization Budget
User: 5, DSADS Dataset User: 6, DSADS Dataset User: 7, DSADS Dataset User: 8, DSADS Dataset
0.80
0.80
0.75
g g g g
0.75
& @ a & 070
— — — —
w w w w
0.70 0.65
0.60
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Utilization Budget Utilization Budget Utilization Budget Utilization Budget
User: 1, RWHAR Dataset User: 3, RWHAR Dataset User: 4, RWHAR Dataset User: 5, RWHAR Dataset User: 7, RWHAR Dataset
0.85 0.85 0.800
0.80 0.775 0.85
o o o o o
5075 S 5 080 S 0.750 s
S S 3 S S
@ @ ) A s «» 0.80
T 0.70 iy T 075 o ny
0.700
0.75
0.65 optimal_1
~E- optimal_5 0.70 0.675
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Utilization Budget Utilization Budget Utilization Budget Utilization Budget Utilization Budget
User: 8, RWHAR Dataset User: 9, RWHAR Dataset User: 10, RWHAR Dataset User: 11, RWHAR Dataset 0075 User: 12, RWHAR Dataset
0.95 0.950
3 ) o o @ 0.925
s s S 0.90 S S
@ @ @ @ &% 0.900
— — — — —
- v Y oss v Y 0.875
0.850
0.80
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1.0 02 04 06 08 1.0
Utilization Budget Utilization Budget Utilization Budget Utilization Budget Utilization Budget
User: 13, RWHAR Dataset User: 14, RWHAR Dataset User: 15, RWHAR Dataset
0.90
0.85
) o o 0.85
S S S
& 0.80 3 S 0.80
— — ~
w w w0.75
0.75 0.70
0.65
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Utilization Budget Utilization Budget Utilization Budget
User: 1, Opportunity Dataset User: 2, Opportunity Dataset User: 3, Opportunity Dataset User: 4, Opportunity Dataset
0.75 0.650 075
0.68
0.625
0.70
0.66 0.70
0.64 0.600 0.65
@ o o o
5 0.62 5 0.65 50575 5
& & & go
7060 — o 0.550 g
o o o L oss5
0.58 - random 0.60
0.525
—F— threshold 0.50
0.56 - optimal
~E- optimal U 0.500
0.54 ~E- optimal_1 055 0.45
052 ~E- optimal_5 0.475
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Utilization Budget

Utilization Budget

Utilization Budget

Utilization Budget

Fig. 6. Comparison of six policies on the DSADS, RWHAR, and Opportunity datasets. Each set of plots corresponds to per-user results for a given dataset.
We plot the F1-score for a sweep of utilization budgets from % — 1. Higher Fl1-score for each utilization budget is better. Each curve is the average over the
three random seeds and the error bars show the standard deviation. Results across random seeds vary less than across users as shown by the lower standard
deviation. Note that some users benefit greatly from the optimal estimate while for others the threshold performs similarly. Since we can only estimate the
optimal policy, there may be small regions where the threshold performs slightly better in the per-user results. We find that this discrepancy is reduced when
more data and bins are used to estimate the optimal and threshold policies.
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Fig. 7. The reliability diagrams for the shin sensor and ensemble for user 7 in the RWHAR dataset are shown at the top. The bottom shows the difference
in the accuracy of each bin which represents an empirical estimate of pgirr. We see that accger i not monotonic and many bins are actually negative (shown
with no height here) since the sensor has higher accuracy than the ensemble in certain sensor confidence regions. The threshold (orange) policy is not able
to model this and incorrectly allocates the first bin to the ensemble despite the sensor performing significantly better.
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Fig. 8. The reliability diagrams for the thigh sensor and ensemble for user 14 in the RWHAR dataset are shown at the top. The threshold and optimal estimate
policies are approximately the same despite the miscalibration of the sensor model.
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Fig. 9. The reliability diagrams for the waist sensor and ensemble for user 14 in the RWHAR dataset are shown at the top. This shows a scenario where the
threshold and optimal estimate policies are very different even though the sensor model’s reliability diagram is approximately monotonic. This emphasizes
the need to exploit the relationship between the two models and that simply calibrating the sensor model is not sufficient.
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