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Abstract—A decreasing Cartesian code is defined by evaluating
a monomial set closed under divisibility on a Cartesian set.
Some well-known examples are the Reed-Solomon, Reed-Muller,
and (some) toric codes. The affine permutations consist of the
permutations of the code that depend on an affine transformation.
In this work, we study the affine permutations of some decreasing
Cartesian codes, including the case when the Cartesian set has
copies of multiplicative or additive subgroups.

Index Terms—permutation group, affine transformation, eval-
uation code, decreasing code, Cartesian code.

I. INTRODUCTION

Let Fq be a finite field with q elements and C ⇢ Fn
q a

linear code. As we focus only on linear codes, we omit the
word linear from now on. The permutation group of the code
C consists of all the permutations ⇡ of the symmetric group
Sn such that ⇡(C) = C, where ⇡ acts on c = (c1, . . . , cn) 2 C

in the natural way as ⇡(c1, . . . , cn) = (c⇡(1), . . . , c⇡(n)).
Recently, the permutation groups of codes have attracted

a lot of attention due to their implementation in the auto-
morphism ensemble decoding (AED) [8], [9], [17] and the
analysis of capacity-achieving codes for erasure channels [12],
[13]. The AED uses several decoders in parallel, along with
some code permutations. However, not every permutation can
be used since there are permutations that commute with the
decoder; for instance, the lower triangular affine permutations
with the successive cancellation decoder for binary polar codes
[9], [18].

The affine permutation group consists of permutations that
depend on an invertible matrix and a vector; see Definition
3. The affine permutation groups have been studied for their
implementation in AED to decode binary polar codes [17]
due to their characterization as monomial codes [1]. The
affine permutation group of polar codes has been completely
determined in [10].

A monomial code is defined by evaluating certain monomi-
als on a set of points (evaluation points). Some well-known
examples include the Reed-Solomon and the Reed-Muller
codes. When the set of evaluation points Fm

q is replaced by
a Cartesian set in a Reed-Muller code, the evaluation code is
called an affine Cartesian code [15]. A monomial Cartesian
code is generated by evaluating a fixed set of monomials on
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a Cartesian set [14]. If the set of monomials is closed under
divisibility, we call it a decreasing Cartesian code.

Finding the affine permutation group of a decreasing code is
equivalent to finding a subgroup of matrices that fixes a mono-
mial set. Thus, it is related to the problem of characterizing
generic initial ideals. Such ideals are invariant under the action
of the Borel group of upper triangular non-singular matrices
[7]. These are characterized as Borel ideals [2] in characteristic
zero and as p-Borel ideals [16] in positive characteristic. A
generalization of this concept is Q-Borel ideals [6].

In this work, we explore the affine permutation group of
decreasing Cartesian codes, including the case when the Carte-
sian set has copies of multiplicative or additive subgroups.
This family matters because we can associate a monomial
structure to some nonbinary kernels [4], [5]. However, even
for the classical Arikan kernel, the affine permutation group
of polar codes depends on the characteristic of the field.

II. PRELIMINARIES

A. Monomial Cartesian codes
Let A =

Qm
i=1 Ai be a Cartesian set with Ai ✓ Fq and

ni := |Ai| � 2. Let R = Fq[x1, . . . , xm] be the polynomial
ring in m variables and denote by M the monomials of R.
For any f 2 R, we define f(A) = (f(P1), . . . , f(Pn)), where
A = {P1, . . . , Pn} with n = n1 · · ·nm.

Definition 1. Fix a set of monomials L ✓ � := {u 2 M :
degxi

u < ni}. The monomial Cartesian code, which depends
on the evaluation of the monomials L on the Cartesian set A,
is denoted and defined by

L(A) = SpanFq
{f(A) : f 2 L} .

The set L is closed under divisibility if f in L and g a
divisor of f implies that g is also in L. In this case, we say
that the code L(A) is a decreasing monomial Cartesian code.

The vanishing ideal of A, denoted by IA, is the set of
all polynomials in R that vanish at every point of A. The
vanishing ideal plays an important role in defining evaluation
codes since for any two polynomials f and g in R, we have
that f(A) = g(A) if and only if f � g 2 IA. In other words,
the evaluation map f 7! f(A) induces a linear isomorphism
R/IA ⇠= Fn

q . This shows that the evaluation code depends
only on polynomials modulo the vanishing ideal IA. For a



Cartesian set A, we have IA =
⇣Q

↵2Aj
(xj � ↵)

⌘m

j=1
by

[15, Lemma 2.3]. Thus, for any polynomial g 2 R, there
exists a polynomial f 2 SpanFq

(�) with g � f 2 IA and
so f(A) = g(A). We denote such f by g. Furthermore, for a
monomial set L ⇢ �, we use L to denote the set of all g 2 R

such that g 2 L.

B. Affine permutations
Let C be a code in Fn

q . The permutation group of C is
denoted and defined by

Perm(C) = {⇡ 2 Sn : ⇡(C) = C},

where ⇡ acts on c = (c1, . . . , cn) 2 C as c⇡ =
(c⇡(1), . . . , c⇡(n)). We also denote ⇡(A) = (P⇡(1), . . . , P⇡(n))
for a permutation ⇡ 2 Sn.

Remark 2. Note that for any element c of the evaluation
code L(A), there is a polynomial f 2 SpanFq

(L) such that
f(A) = c. Thus, if ⇡ 2 Perm(L(A)), then there exists a
polynomial f⇡ such that

f⇡(A) = c⇡ = f(⇡(A)).

Then, we can understand ⇡ as a function on R/IA, f 7! f⇡ .

We are interested in those ⇡ that can be understood as affine
transformations in the following setting.

Let A be an m⇥m matrix with entries in Fq and b 2 Fm
q .

As usual, the affine transformation T (x) = Ax + b acts on
Fm
q by T (P ) = AP + b, where P = (p1, . . . , pm)t 2 Fm

q . But
T (x) also acts on R by

T (f) = f(y1, . . . , ym),

where (y1, . . . , ym)t = A(x1, . . . , xm)t + b. Consequently,
T (x) acts on the set of evaluation vectors by

T (f(A)) = T (f)(A)

= f(T (A)).

The last two equations lead to the following definition.

Definition 3. Let A be an m ⇥m matrix with entries in Fq

and b 2 Fm
q . We say that T is an affine permutation of L(A) if

T leaves invariant L and A; i.e. the following two conditions
hold:

(1) T (A) = A and
(2) T (L) ✓ SpanFq

(L).
Condition (2) means that for any f 2 L, T (f) may not
be an element of SpanFq

(L), but T (f(A)) is an element of
L(A). The set of affine permutations of L(A) is denoted by
PermA(L(A)).

The following example shows that condition (1) T (A) = A
is necessary, otherwise, T may not define a permutation.

Example 4. Take L = {x2, x1, 1}, A = F⇤
3 ⇥ {0, 1} =

{(1, 0), (1, 1), (2, 0), (2, 1)}, and T (x) =

✓
1 0
1 1

◆
x. We have

T (A) = {(1, 1), (1, 2), (2, 2), (2, 0)} 6= A

and T (f(x1, x2)) = f(x1, x1 + x2).

For f(x1, x2) = x2�x1+1, we have T (f(x1, x2)) = x2+1.
Thus, f(A) = (0, 1, 2, 0) and T (f(A)) = (1, 2, 1, 2), meaning
that T does not even define an isometry of the code L(A).

C. Borel movements

Let u be a monomial in R = Fq[x1, . . . , xm]. If the
indeterminate xi divides u, and j < i, the monomial xj

xi
u

is called a Borel movement of u.
We say that a monomial set L satisfies the Borel property

if L is closed under Borel movements; i.e., if u is a monomial
of L, then any Borel movement of u is also in L. In this case,
we say that the monomial code L(A) has the Borel property.

Let p = char(Fq). For any m,n 2 N, we write m p n if
and only if mk  nk for all k 2 N, where m =

P1
k=0 mkp

k

and n =
P1

k=0 nkp
k are the p-adic expansions.

Let u be a monomial in R. If the indeterminate xi divides
u, ` p degxi

u, and j < i, then the monomial
⇣

xj

xi

⌘`
u is

called a standard p-Borel movement of u.

III. ALL THE POINTS

This manuscript aims to describe the affine permutation
group for certain monomial Cartesian codes L(A). In this
section, we study the case when A = Fm

q . This family of
codes covers, for instance, the Reed-Muller codes.

Example 5. The affine permutation group of the Reed-Muller
codes is the set of all bijective affine transformations [3].

In [1], the authors proved that a polar code is a decreasing
monomial code L(A) where L has the Borel property and
A = Fm

2 .

Remark 6. In [1], a monomial set closed under divisibility is
called weakly decreasing. A weakly decreasing set with the
Borel property is called decreasing. Here, we use the term
Borel property in analogy to the property satisfied by Borel
ideals in characteristic zero [2].

The lower triangular affine transformations are the trans-
formations T = Ax + b with an invertible lower triangular
matrix A. We denote the subgroup of lower triangular affine
transformations by LTAm.

Similar to the binary case, if L has the Borel property, the
L(Fm

q ) contains the lower triangular affine transformations.
We generalize this result in theorem 11.

Theorem 7. If L(Fm
q ) is a decreasing code with the Borel

property, then

LTAm ✓ PermA(L(Fm
q )).

Proof. Let T = Ax+ b an element in LTAm. As detA 6= 0,
T is an automorphism of Fn

q , meaning that T (Fn
q ) = Fn

q .
Let x⌫ be a monomial in L. Note that

T (xi) =
iX

j=1

Aijxj + bi.



Thus, T (x⌫) is a polynomial supported on the Borel move-
ments of the divisors of x⌫ . Since L is decreasing and satisfies
the Borel property, T (x⌫) 2 SpanFq

(L).

We can extend Theorem 7 to any decreasing code L(Fm
q )

without the Borel property by looking at the pairs (xi, xj)
such that if u is an element in L, and xi divides u, then
the monomial xj

xi
u is also an element in L. Defining a set

of matrices with the (i, j) entry equals zero if (xi, xj) is not
such a pair, we can obtain a subgroup of affine transformations
fixing the code. However, due to the characteristic of the field,
sets of monomials with the Borel property are not the only
ones that the action of such matrices can fix, as the following
example shows.

Example 8. Consider the following sets of monomials in
F9[x1, x2]: L1 is the set of monomials of degree at most
3, L2 = {x4

2, x1x
3
2, x

3
1x2, x

4
1}, and L = L1 [ L2. Take the

affine transformation T (x) =

✓
a 0
b c

◆
x. Observe T (L1) ✓

SpanF9
(L1) by Theorem 7 and because L1 has the Borel

property.
As T (x1) = ax1 and T (x2) = bx1 + cx2, we have

T (x4
2) = b

4
x
4
1 + b

3
c x2x

3
1 + bc

3
x
3
2x1 + c

4
x
4
2

T (x1x
3
2) = ab

3
x
4
1 + ac

3
x1x

3
2

T (x3
1x2) = a

3
b x

4
1 + a

3
c x

3
1x2

T (x4
1) = a

4
x
4
1.

Thus, T (L2) ✓ SpanF9
(L2). Note that the characteristic of

the field F9 matters when computing T (x4
2), T (x1x

3
2) and

T (x3
1x2).

The monomial x2
1x

2
2 is a Borel movement of x1x

3
2 2 L, but

x
2
1x

2
2 is not in L. So, L does not have the Borel property.

We conclude that any lower triangular affine transformation
T fixes L, meaning T (L) ✓ SpanF9

(L), even when L does
not have the Borel property.

We capture some of those sets using the p-Borel movement.

Definition 9. For a monomial set L ⇢ Fq[x1, . . . , xm], we
define the p-Borel graph of L as the directed graph GL with
the vertex set {x1, . . . , xm} and the edge set E(GL) where
(xi, xj) 2 E(GL) if and only if for any u 2 L divisible by xi

the monomial
⇣

xj

xi

⌘`
u lies in L for all 0  ` p degxi

(u).
For u 2 L, if u

0 can be obtained through a sequence of
p-Borel movements involving pairs (xi, xj) 2 E(GL), we say
that u0 is a valid p-Borel movement of u with respect to L.

Definition 10. Let GL be the p-Borel graph of the monomial
set L. We define the space of L-stable matrices as

ML = {A 2 Fm⇥m
q : Aij = 0 if (xi, xj) /2 E(GL)}.

We come to one of the main results of this section, where
we prove that the group of affine permutations of a decreasing
code contains the affine permutations that depend on the
invertible L-stable matrices.

Theorem 11. If L(Fm
q ) is a decreasing code, then

{Ax+ b : A invertible, A 2 ML} ✓ PermA(L(Fm
q )).

Proof. Let A = (aij)mij=1 2 ML be invertible and let T (x) =
Ax + b be the corresponding affine transformation, for some
b 2 Fm

q . Clearly, T (Fn
q ) = Fn

q .
Let u = x

v1
1 · · ·xvm

m 2 L. We have T (u) = y
v1
1 · · · yvmm ,

where yi =
Pm

j=1 aijxj + bi. Consider w 2 supp(T (u)).
Then w = u1 · · ·um where each ui is in the support of y

vi
i .

We will show below that each ui corresponds to a sequence
of valid p-Borel movements of x

v0
i

i for some v
0
i  vi. This

implies that w is realized through a sequence of valid p-Borel
movements of a divisor of u, and thus w 2 L, which implies
that T (u) lies in the span of L.

To show the claim, let us compute the support of y
v
i for

some 1  v < q. We have

y
v
i =

0

@
mX

j=1

aijxj + bi

1

A
v

=
X

k0+...+km=v,
ks�0

✓
v

k0, . . . , km

◆
b
k0
i

mY

j=1

(aijxj)
kj .

It is known that p does not divide
�v�Pt�1

s=0 ks

kt

�
if and only

if ktpv �
Pt�1

s=0 ks (cf. [16, Corollary II.3]). If a monomial
u
0 appears in the support of yvi , then there are k0, . . . , km with

k0 + k1 + . . .+ km = v such that

u
0 = (xi)

v�k0

✓
x1

xi

◆k1

· · ·
✓
xm

xi

◆km

, (1)

where each kt p v �
Pt�1

s=0
s 6=i

ks. Thus, if kt 6= 0, then

(xi, xt) 2 E(GL) or i = t. Thus, the monomials in the support
of yvi are valid p-Borel movements.

IV. MULTIPLICATIVE SUBGROUPS

We now consider the case when every Ai of the Cartesian
set A =

Qm
i=1 Ai is either Fq or a subgroup of F⇤

q . This family
of evaluation codes contains, for example, the Reed-Solomon
codes with F⇤

q as the evaluation set and the well-known family
of toric codes whose evaluation set is the torus [11].

Let F⇤
q = h�i = h1,�, . . . ,�q�2i. Any proper subgroup of

F⇤
q of size s has the form G = h�ti, with 1 < t, t|q � 1, and

|G| = s = q�1
t .

Remark 12. Note that G = {x 2 Fq : x
s � 1 = 0}. In

particular, the sum of the elements of G is zero when |G| > 1.

Lemma 13. Let G1 and G2 be nontrivial (not necessarily
distinct) subgroups of F⇤

q . For any a 2 Fq and b 2 F⇤
q , we

have
aG1 + b 6= G2.

Proof. Assume aG1+ b = G2. Then, the sum of the elements
of aG1 + b equals the sum of the elements of G2, which is 0
by Remark 12. Then

0 =
X

g2G1

(ag + b) = a

X

g2G1

g + sb = sb.



Since b 6= 0 and char(Fq) 6 | s, we get a contradiction.

Lemma 14. Let A =
Qm

i=1 Gi, where every Gi is a nontrivial
subgroup of F⇤

q . For any 1  i  m, a 2 Fm
q of weight at

least two, and b 2 Fq , there exists g in A such that

a · g + b /2 Gi,

where · represents the standard Euclidean inner product.

Proof. Without loss of generality, we may assume that
a1, a2 6= 0, where a = (a1, . . . , am). If a2+ · · ·+am+b 6= 0,
we let g2 = 1; otherwise, we let g2 be an arbitrary non-unit
element of G2. Then d = g2a2 + a3 + · · ·+ am + b 6= 0. By
Lemma 13, there exists g1 2 G1 such that a1g1 + d /2 Gi.
Therefore, we can take g = (g1, g2, 1, . . . , 1) in A.

Proposition 15. Assume A =
Qm

i=1 Gi, where every Gi is
a nontrivial subgroup of F⇤

q . Then, an affine transformation
T (x) = Ax + b satisfies T (A) = A if and only if b = 0 and
A = P�D, for a permutation matrix P� and a diagonal matrix
D such that G�(i) = Gi and Dii 2 Gi for all 1  i  m.

Proof. The “if” part is clear. Let T (x) = Ax+ b be an affine
transformation such that T (A) = A. We claim that each row
of A has exactly one nonzero entry. Clearly, A cannot have
zero rows. Let a be a row of A with a weight of at least two.
By Lemma 14, there is g 2 A such that a ·g+ bi /2 Gi, where
i is the position of the row a in A. Thus, T (A) 6= A and we
have a contradiction.

Now, since the weight of each row of A is one, Lemma 13
implies that b = 0 and so T (x) = Ax. Let aij be the only
nonzero entry of the i-th row of A. Then aijGj = Gi. But
then Gi = Gj and aij 2 Gi, so we have the conclusion.

Let Tm = (F⇤
q)

m be the m-dimensional algebraic torus.

Corollary 16. An affine transformation T (x) = Ax + b

satisfies T (Tm) = Tm if and only if b = 0 and A = PD,
where P is a permutation matrix and D is a nonsingular
diagonal matrix.

We now consider the Cartesian set A =
Qm

i=1 Ai, where
for every 1  i  m either Ai = Fq or Ai = F⇤

q . Without
loss of generality, we may assume A = Fs

q ⇥ (F⇤
q)

m�s

since the permutation of variables is an affine transformation
corresponding to a permutation matrix.

Proposition 17. Assume A = Fs
q ⇥ (F⇤

q)
m�s and let T (x) =

Ax + b be an affine transformation. We have T (A) = A if
and only if bi = 0 for i > s and

A =

✓
A1 A2

0 PD

◆
,

where P is an (m � s) ⇥ (m � s) permutation matrix, D a
nonsingular diagonal matrix, and A1 is an s⇥ s nonsingular
matrix.

Proof. Consider i > s. Lemma 14 implies that there is g 2 Tm

such that (Ag + b)i = 0, unless the weight of the i-th row of
A is 1 and bi = 0. Thus, (Ax+ b)i = ajxj for some aj 2 F⇤

q .

Also, j > s, otherwise for any point v 2 A with vj = 0
we have (Av + b)i = 0 and thus Av + b /2 A. This proves
that the bottom m � s rows of A form a block (0 PD) for
some permutation matrix P and some nonsingular diagonal
matrix D.

If A1 is singular, there is nonzero v 2 Fs
q such that A1v = 0.

Let w = (v, 1, . . . , 1) 2 Fm
q and w

0 = (0, . . . , 0, 1, . . . , 1) 2
Fm
q , with wt(w0) = m�s. We have w,w

0 2 A and Aw+b =
Aw

0 + b, thus Ax+ b is not an injection. The other direction
is trivial.

Corollary 18. Take A = Fs
q⇥(F⇤

q)
m�s. If L(A) is a decreas-

ing code with the Borel property, then an affine transformation
T (x) = Ax+ b lies in PermA(L(A)) if

A =

✓
A1 0
0 Im�s

◆
,

where A1 is a lower triangular matrix, Im�s is the identity
of size m� s, and bi = 0 for i > s.

Proof. Since L has the Borel property, then L is stabilized
by lower triangular affine transformations. The matrices in
Proposition 17 that are lower triangular are precisely those
of the given shape.

Proposition 19. Take A = Fm0
q ⇥

Ql
i=1 G

mi
i , where the Gi’s

are distinct subgroups of F⇤
q . Then, an affine transformation

T (x) = Ax+ b fixes A if and only if bi = 0 for i > m0 and

A =

0

BB@

A0 A1 . . . Al

0 P1D1 . . . 0
. . . . . . . . . . . .

0 0 . . . PlDl

1

CCA ,

where Pi is an mi⇥mi permutation matrix, Di a nonsingular
diagonal matrix with entries in Gi, and A0 is an m0 ⇥ m0

nonsingular matrix.

Proof. The “if” direction is clear. Consider T (x) = Ax+b. Let
A

0 be the submatrix of A obtained by removing the first m0

rows and the first m0 columns. Let b0 be the vector obtained by
removing the first m0 entries of b. Then A

0
x+b

0 is a bijective
affine transformation of Gm1

1 ⇥ · · ·⇥G
ml
l and by Proposition

15 we have that b0 = 0 and A
0 has the desired form. Lemma

14 proves that for i > m0 and j  m0, Aij = 0. Thus, A
has the desired property. Finally, since A is nonsingular, A0

is also nonsingular.

Theorem 20. Let A = Fm0
q ⇥

Ql
i=1 G

mi
i , where the Gi’s are

distinct subgroups of F⇤
q . If L(A) is a decreasing code with

the Borel property, then T (x) = Ax+ b lies in PermA(L(A))
if bi = 0 for all i > m0 and

A =

0

BBB@

A0 0 . . . 0
0 Im1 . . . 0

. . . . . .
. . . . . .

0 0 . . . Iml

1

CCCA
.

Proof. The proof is similar to the one of Corollary 18. It
follows from Proposition 19 and the fact that lower triangular
affine transformations stabilize L.



V. ADDITIVE GROUPS

We now consider additive subgroups of Fq to build Carte-
sian sets. While in the case of multiplicative subgroups, the
affine permutation group is heavily reduced to a subgroup of
permutation matrices, additive subgroups can still have a richer
structure in their automorphism group. However, the choice of
points still imposes several limitations on the matrices.

Recall that if G is an additive subgroup of Fq , then G is a
vector space over Fp, where p is the characteristic of Fq . We
now prove which possible affine transformations preserve G.

Proposition 21. Let G be an additive subgroup of Fq and
T (x) = ax + b, a, b 2 Fq , a bijection of G. Then b 2 G and
a 2 Fq0 , where Fq0 is the largest subfield of Fq such that G
is an Fq0 -vector subspace.

Proof. We have T (0) = b 2 G since T is a bijection. Since
the effect of b is trivial, we can assume that T (x) = ax. It
can be readily seen that the set H = {a 2 Fq : aG = G} is a
subring and, hence, a subfield of Fq . Therefore, H = Fq0 for
some q

0|q, as required.

Example 22. Let ↵ be a primitive element of F16 with ↵
4 +

↵ + 1 = 0. Let G = ↵
6F2 + ↵

11F2. Note that G is a vector
subspace of dimension 2 over F2 and of dimension 1 over F4.
In fact, G = ↵F4, and so T (x) = ax + b is a bijection of G

if and only if b 2 G and a 2 F4.

We can characterize the affine permutations preserving G
m

for an additive subgroup G of Fq .

Corollary 23. Let A = G
m, where G is an additive subgroup

of Fq . Let Fq0 be the largest subfield of Fq such that G is an
Fq0 -vector space. Then an affine transformation T (x) = Ax+b

fixes A if and only if b 2 A and A is a nonsingular matrix
over Fq0 .

Proof. Let T (x) = Ax + b be an affine transformation that
fixes A. Since 0 2 A, we have b 2 A and so we can assume
that b = 0.

By Proposition 21, A should have entries in Fq0 . A should
be nonsingular, otherwise there exists 0 6= v 2 Fm

q0 such that
Av = 0. If 0 6= ↵ 2 G, then ↵v 2 Am and T is not a bijection.
Thus A should be nonsingular over Fq0 .

With this, we can characterize some of the affine permuta-
tions of Cartesian codes evaluated over Gm for some additive
subgroup G.

Theorem 24. Let A = G
m, where G is an additive subgroup

of Fq . Let Fq0 be the largest subfield of Fq such that G is an
Fq0 -vector space. If L(A) is a decreasing code with the Borel
property, then T (x) = Ax+ b lies in PermA(L(A)) if b 2 G

and A is a nonsimgular lower triangular matrix over Fq0 .

Proof. Since L has the Borel property, it is stabilized by lower
triangular affine transformations. By Corollary 23, we have the
conclusion.

In the case when A =
Qm

i=1 Gi where the Gi’s are not
necessarily different additive subgroups of Fq , the answer is
not as elegant as in Theorem 24 above.

Let T (x) = Ax + b be an affine transformation that fixes
A. As before, since 0 2 A, we have b 2 A, and so we can
assume that b = 0. Let v 2 A be an element with just one
nonzero entry in position i. Then T (v) = viAi, where Ai is
the i-th column of A. Since viAi 2 A =

Qm
i=1 Gi, then

Aij 2 Hij := {a 2 Fq | aGi ✓ Gj}. (2)

For the case where Gi = Gj , we now that Hij is the biggest
subfield Fq0 of Fq such that Gi is an Fq0 vector-space. If |Gi| >
|Gj |, then Hij = {0}. If |Gi|  |Gj |, Hij is an additive
subgroup, but it is not necessarily closed under products, and
thus, it is no longer a field. Even in the case where Gi ( Gj

and Gj is a Fq0 -vector space, Hij can be bigger than Fq0 .

Example 25. In F16, let ↵ be a primitive element with ↵
4 +

↵ + 1 = 0. Let G1 = F2 + ↵F2 + ↵
2F2 and G2 = ↵F4 and

G3 = F2. Then
H11 = F2 H12 = ↵

�1F4 H13 = G1

H21 = {0} H22 = F4 H23 = G2

H31 = {0} H32 = {0} H33 = G3

,

where Hij is defined in (2). Despite the matrices A 2 Fm⇥m
q

such that Aij 2 Hij are not necessarily trivial, an incompatible
structure of a monomial set L may impose extra conditions
that reduces the affine permutation to a trivial one.

Example 26. Let G1, G2, G3 ⇢ F16 as in Example 25. Let L
be the set of divisors of the monomials in {x2

1, x1x2}.
Observe that L has the Borel property. A matrix A 2 F3⇥3

q ,
with Aij 2 Hij defined in (2), is an upper triangular matrix

for any 1  i, j  3. Thus, A =

0

@
a b c

0 d e

0 0 f

1

A . If T = Ax,

T (x3
1) = a

2
x
2
1 + abx1x2 + acx1x3 + bcx2x3 + b

2
x
2
2 + c

2
x
2
3.

The last four terms are not in L, so b = c = 0. Analogously,
e = 0. Thus, the only affine permutations of L(A), where
A = G1 ⇥G2 ⇥G3, are T = x+ b for any b 2 A.

VI. CONCLUSION

An evaluation code depends on the evaluation of certain
monomials at some points. An affine transformation T (x) =
Ax+b defines a permutation of an evaluation code if the sets of
monomials and points are invariant under the action of T . This
paper studies the affine permutations of monomial Cartesian
codes when the Cartesian set has copies of multiplicative or
additive subgroups. This family of codes includes, in particular
cases, the Reed-Muller and the Reed-Solomon codes. When
the set of monomials is decreasing (closed under divisibility)
or has the Borel property (closed under Borel movements), we
provide the conditions for A and b to determine if T defines
a permutation. Our findings give insight into studying the
automorphism of polar codes that are associated with Reed-
Solomon kernels and can be seen as decreasing Cartesian
codes.
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