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Abstract—A decreasing Cartesian code is defined by evaluating
a monomial set closed under divisibility on a Cartesian set.
Some well-known examples are the Reed-Solomon, Reed-Muller,
and (some) toric codes. The affine permutations consist of the
permutations of the code that depend on an affine transformation.
In this work, we study the affine permutations of some decreasing
Cartesian codes, including the case when the Cartesian set has
copies of multiplicative or additive subgroups.

Index Terms—permutation group, affine transformation, eval-
uation code, decreasing code, Cartesian code.

I. INTRODUCTION

Let Fy; be a finite field with ¢ elements and C C Fy a
linear code. As we focus only on linear codes, we omit the
word linear from now on. The permutation group of the code
C consists of all the permutations 7 of the symmetric group
Sy, such that 7(C') = C, where w actson ¢ = (c1,...,¢,) € C
in the natural way as 7(c1,...,¢n) = (Cx(1), -1 Cr(n))-

Recently, the permutation groups of codes have attracted
a lot of attention due to their implementation in the auto-
morphism ensemble decoding (AED) [_8], [9]], [[17] and the
analysis of capacity-achieving codes for erasure channels [|12]],
[13]. The AED uses several decoders in parallel, along with
some code permutations. However, not every permutation can
be used since there are permutations that commute with the
decoder; for instance, the lower triangular affine permutations
with the successive cancellation decoder for binary polar codes
[9f, [[18].

The affine permutation group consists of permutations that
depend on an invertible matrix and a vector; see Definition
[l The affine permutation groups have been studied for their
implementation in AED to decode binary polar codes [17]]
due to their characterization as monomial codes [1]. The
affine permutation group of polar codes has been completely
determined in [10].

A monomial code is defined by evaluating certain monomi-
als on a set of points (evaluation points). Some well-known
examples include the Reed-Solomon and the Reed-Muller
codes. When the set of evaluation points ;" is replaced by
a Cartesian set in a Reed-Muller code, the evaluation code is
called an affine Cartesian code [[15]. A monomial Cartesian
code is generated by evaluating a fixed set of monomials on
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a Cartesian set [|14]. If the set of monomials is closed under
divisibility, we call it a decreasing Cartesian code.

Finding the affine permutation group of a decreasing code is
equivalent to finding a subgroup of matrices that fixes a mono-
mial set. Thus, it is related to the problem of characterizing
generic initial ideals. Such ideals are invariant under the action
of the Borel group of upper triangular non-singular matrices
[7]. These are characterized as Borel ideals [2] in characteristic
zero and as p-Borel ideals [[16] in positive characteristic. A
generalization of this concept is ()-Borel ideals [6].

In this work, we explore the affine permutation group of
decreasing Cartesian codes, including the case when the Carte-
sian set has copies of multiplicative or additive subgroups.
This family matters because we can associate a monomial
structure to some nonbinary kernels [4], [S]. However, even
for the classical Arikan kernel, the affine permutation group
of polar codes depends on the characteristic of the field.

II. PRELIMINARIES

A. Monomial Cartesian codes

Let A = H:;l A; be a Cartesian set with 4; C [, and
n; = |A;| > 2. Let R = Fy[z,...,zy] be the polynomial
ring in m variables and denote by M the monomials of R.
For any f € R, we define f(A) = (f(P1),..., f(P,)), where
A={Py,...,P,} with n =ny - ny,.

Definition 1. Fix a set of monomials L C A := {u € M
deg,, u < n;}. The monomial Cartesian code, which depends
on the evaluation of the monomials L on the Cartesian set A,
is denoted and defined by

L(A) = Spang_{f(A) : fe€L}.

The set L is closed under divisibility if f in L and g a
divisor of f implies that g is also in L. In this case, we say
that the code L(.A) is a decreasing monomial Cartesian code.

The vanishing ideal of A, denoted by I4, is the set of
all polynomials in R that vanish at every point of A. The
vanishing ideal plays an important role in defining evaluation
codes since for any two polynomials f and ¢ in R, we have
that f(A) = g(A) if and only if f — g € I4. In other words,
the evaluation map f — f(A) induces a linear isomorphism
R/I4 = 7. This shows that the evaluation code depends
only on polynomials modulo the vanishing ideal 4. For a



Cartesian set A, we have I4 = (HaeAj (x; — a)) . by
[15, Lemma 2.3]. Thus, for any polynomial g € Rj, there
exists a polynomial f € Spang, (A) with g — f € I4 and
so f(A) = g(A). We denote such f by g. Furthermore, for a
monomial set . C A, we use L to denote the set of all geER
such that g € L.

B. Affine permutations

Let C be a code in Fy. The permutation group of C is
denoted and defined by

Perm(C) = {r € S, : 7(C) = C},

e C as ¢ =
aPﬂ'(n))

where 7 acts on ¢ = (c1,...,¢p)
(Cr(1)s -+ Cr(n))- We also denote 7(A) = (Pr(1y, ...
for a permutation ™ € S,,.

Remark 2. Note that for any element ¢ of the evaluation
code L(A), there is a polynomial f € Spang (L) such that
f(A) = c. Thus, if 7 € Perm(L(A)), then there exists a
polynomial f; such that

fx(A) = cr = f(m(A)).
Then, we can understand 7 as a function on R/I 4, f — fr.

We are interested in those 7 that can be understood as affine
transformations in the following setting.

Let A be an m x m matrix with entries in F, and b € F".
As usual, the affine transformation 7'(z) = Az + b acts on
F7* by T(P) = AP +b, where P = (p1,...,pm)" € F)". But
T(x) also acts on R by

T(f) = f(yr,---

where (y1,...,ym)" = A(z1,...,2,)" + b. Consequently,
T'(z) acts on the set of evaluation vectors by

T(f(A) =T()(A)
= [(T(A)).

The last two equations lead to the following definition.

7ym)7

Definition 3. Let A be an m x m matrix with entries in F,
and b € F7". We say that T is an affine permutation of L(A) if
T leaves invariant L and A; i.e. the following two conditions
hold:

(1) T(A) = A and

(2) T(L) C Spang, (L).
Condition (2) means that for any f € L, T(f) may not
be an element of Spany (L), but T'(f(A)) is an element of
L(A). The set of affine permutations of L(.A) is denoted by

Perm 4 (L(A)).

The following example shows that condition (1) T'(A) = A
is necessary, otherwise, 7' may not define a permutation.

Example 4. Take L = {z3,21,1}, A = Fi x {0,1} =

{(1,0),(1,1),(2,0),(2,1)}, and T(x) = (1 2. We have

A\l
T(A) = {(17 1)7 (1’ 2)) (27 2)’ (2a O)} # A

and T(f(l‘hxg)) = f([L‘l, xr1 + $2).

For f(x1,22) = xo—x1+1, we have T'(f (1, 22)) = xo+1.
Thus, f(A) = (0,1,2,0) and T(f(A)) = (1,2, 1,2), meaning
that T does not even define an isometry of the code L(.A).

C. Borel movements

Let uw be a monomial in R = Fy[z1,...,z,]. If the
indeterminate x; divides w, and j < 4, the monomial i—]u
is called a Borel movement of wu. '

We say that a monomial set L satisfies the Borel property
if L is closed under Borel movements; i.e., if « is a monomial
of L, then any Borel movement of w is also in L. In this case,
we say that the monomial code L(.A) has the Borel property.

Let p = char(F,). For any m,n € N, we write m <, n if
and only if my, < ny, for all k € N, where m = Y7, myp*
and n = Y7 nyp" are the p-adic expansions.

Let u be a monomial in R. If the indeterminate x; dilyides

u, £ <, degmi u, and j < 4, then the monomial (i—f) u is
called a standard p-Borel movement of wu.

III. ALL THE POINTS

This manuscript aims to describe the affine permutation
group for certain monomial Cartesian codes L(.A). In this
section, we study the case when A = F;*. This family of
codes covers, for instance, the Reed-Muller codes.

Example 5. The affine permutation group of the Reed-Muller
codes is the set of all bijective affine transformations [3]].

In [1]], the authors proved that a polar code is a decreasing
monomial code L(.A) where L has the Borel property and
A =TF15.

Remark 6. In [1]], a monomial set closed under divisibility is
called weakly decreasing. A weakly decreasing set with the
Borel property is called decreasing. Here, we use the term
Borel property in analogy to the property satisfied by Borel
ideals in characteristic zero [2].

The lower triangular affine transformations are the trans-
formations 7' = Az + b with an invertible lower triangular
matrix A. We denote the subgroup of lower triangular affine
transformations by LTA,,.

Similar to the binary case, if L has the Borel property, the
L(F7") contains the lower triangular affine transformations.
We generalize this result in theorem

Theorem 7. If L(Fy") is a decreasing code with the Borel
property, then

LTA,, C Perma(L(F7")).

Proof. Let T'= Ax + b an element in LTA,,. As det A # 0,
T' is an automorphism of Fy, meaning that T'(IF}) = Iy .
Let ¥ be a monomial in L. Note that

T(:I,‘Z) = ZAijl‘j + b;.
=1



Thus, T'(z"”) is a polynomial supported on the Borel move-
ments of the divisors of x¥. Since L is decreasing and satisfies
the Borel property, T'(z") € Spang,_(L). O

We can extend Theorem [7| to any decreasing code L(IFy")
without the Borel property by looking at the pairs (x;,x;)
such that if « is an element in L, and z; divides u, then
the monomial z—Ju is also an element in L. Defining a set
of matrices with the (i, ) entry equals zero if (z;, x;) is not
such a pair, we can obtain a subgroup of affine transformations
fixing the code. However, due to the characteristic of the field,
sets of monomials with the Borel property are not the only
ones that the action of such matrices can fix, as the following
example shows.

Example 8. Consider the following sets of monomials in
Fo[z1,x2]: Ly is the set of monomials of degree at most
3, Ly = {a3, 7123, 2329, 21}, and L = Ly U Ly. Take the
Z (c) x. Observe T'(L1) C
Spang, (L1) by Theorem [7| and because L; has the Borel
property.

As T(z1) = axy and T(z2) = bx1 + cxa,

affine transformation 7'(z) =

we have

T(z3) = b*a} + bdcagad + b3 adx + * 23
T(z123) = ab® 2t + ac® x123
T(z3x0) = a’b z} + adc xixy

T(xy) = a'ry.

Thus, T'(L2) € Spang,(L2). Note that the characteristic of
the field Fy matters when computing 7'(x3), T(z123) and
T(z3z2).
The monomial x?z3 is a Borel movement of x5 € L, but
x2x3 is not in L. So, L does not have the Borel property.
We conclude that any lower triangular affine transformation
T fixes L, meaning T'(L) C Spang, (L), even when L does

not have the Borel property.
We capture some of those sets using the p-Borel movement.

Definition 9. For a monomial set L C Fy[z1,..., 2], we
define the p-Borel graph of L as the directed graph G with
the vertex set {z1,...,z,} and the edge set E(G) where
(xi,2;) € E(GL) ifeand only if for any u € L divisible by z;

u lies in L for all 0 < ¢ <, deg,, (u).

For u € L, if ' can be obtained through a sequence of
p-Borel movements involving pairs (z;,z;) € E(GL), we say
that v’ is a valid p-Borel movement of u with respect to L.

the monomial (x—’

Definition 10. Let G, be the p-Borel graph of the monomial
set L. We define the space of L-stable matrices as
My, = {A S F;nxvn : Aij =0 if (xi7xj) ¢ E(GL)}
We come to one of the main results of this section, where
we prove that the group of affine permutations of a decreasing

code contains the affine permutations that depend on the
invertible L-stable matrices.

Theorem 11. If L(IF;") is a decreasing code, then
{Az +b: A invertible, A € M1} C Perma(L(F(")).

Proof. Let A = (a;;)}_; € M, be invertible and let T'(x) =
Az + b be the corresponding affine transformation, for some
belF. Clearly, T(Fy) =TFy.

Let u = = z{* a2l € L. We have T'(u) = yi*---yom,
where y; = ijl a;;x; + b;. Consider w € supp(T(u)).

Then w = uy - - - u,, Where each w; is in the support of y;".
We will show below that each wu; corresponds to a sequence

of valid p-Borel movements of 33 ¢ for some v; < v;. This
implies that w is realized through a sequence of valld p-Borel
movements of a divisor of u, and thus w € L, which implies
that T'(u) lies in the span of L.

To show the claim, let us compute the support of y; for
some 1 < v < gq. We have

Zaijxj+bi
Jj=1
DN PR 1

ko+...+km=v,
ks>0
It is known that p does not divide (” st, 0 ) if and only
if ky<,v— Zi;é ks (cf. [16, Corollary I1.3]). If a monomial
u’ appears in the support of y?, then there are ko, . . . , ky,,, with
ko + ki + ...+ k,, = v such that

’ k g M Lm o
o (2) (=)

where each k; <, v — ZZ;B ks. Thus, if k; # 0, then

S#i
(i,2¢) € E(GL) or i = t. Thus, the monomials in the support
of y? are valid p-Borel movements. O

v

Yi =

(aij x]
Jj=1

IV. MULTIPLICATIVE SUBGROUPS

We now consider the case when every A; of the Cartesian
set A =[], A; is either F, or a subgroup of 7. This family
of evaluation codes contains, for example, the Reed-Solomon
codes with [} as the evaluation set and the well-known family
of toric codes whose evaluation set is the torus [11].

Let F; = (8) = (1,0,... , 3972). Any proper subgroup of
F? of size s has the form G = (%), with 1 < t, t|g — 1, and
Gl =s= o

Remark 12. Note that G = {z € F, 2*—1=0}In
particular, the sum of the elements of G is zero when |G| > 1.

Lemma 13. Let G; and Go be nontrivial (not necessarily
distinct) subgroups of ¥y. For any a € Fy and b € Fy, we
have

aG1+b # Gs.

Proof. Assume aG1 +b = G5. Then, the sum of the elements
of aGy + b equals the sum of the elements of G5, which is 0
by Remark [12] Then

0= Z(ag+b):a29+sb:sb.

geGy geG1



Since b # 0 and char(FF,) s, we get a contradiction. O

Lemma 14. Let A = H:;l G, where every G; is a nontrivial
subgroup of ¥3. For any 1 < i < m, a € Fi" of weight at
least two, and b € By, there exists g in A such that

a-g + b ¢ Gi7
where - represents the standard Euclidean inner product.

Proof. Without loss of generality, we may assume that
ay,as # 0, where a = (ay,...,am,). fas+---+am+b#0,
we let go = 1; otherwise, we let go be an arbitrary non-unit
element of G. Then d = gaas + as + -+ + an, + b # 0. By
Lemma there exists g1 € G; such that a;g1 +d ¢ G;.
Therefore, we can take g = (g1, 92,1,...,1) in A O

Proposition 15. Assume A = [[;-, G;, where every G, is
a nontrivial subgroup of ¥;. Then, an dffine transformation
T(x) = Ax + b satisfies T(A) = A if and only if b =0 and
A = P, D, for a permutation matrix P, and a diagonal matrix
D such that G, ;) = G; and Dy; € G for all 1 <i < m.

Proof. The “if” part is clear. Let T'(x) = Az + b be an affine
transformation such that 7'(A) = A. We claim that each row
of A has exactly one nonzero entry. Clearly, A cannot have
zero rows. Let a be a row of A with a weight of at least two.
By Lemma|14] there is g € A such that a-g+b; ¢ G;, where
i is the position of the row a in A. Thus, T(A) # A and we
have a contradiction.

Now, since the weight of each row of A is one, Lemma
implies that b = 0 and so T'(x) = Az. Let a;; be the only
nonzero entry of the i-th row of A. Then a;;G; = G;. But
then G; = G and a;; € G, so we have the conclusion. [J

Let T™ = (IF;)™ be the m-dimensional algebraic torus.

Corollary 16. An affine transformation T(x) = Az + b
satisfies T(T™) = T™ if and only if b = 0 and A = PD,
where P is a permutation matrix and D is a nonsingular
diagonal matrix.

We now consider the Cartesian set A = [[/~, A;, where
for every 1 <4 < m either 4; = F, or 4; = [F7,. Without
loss of generality, we may assume A = F; x (F;)™~°
since the permutation of variables is an affine transformation
corresponding to a permutation matrix.

Proposition 17. Assume A =TF; x (F;)™™* and let T(x) =
Az + b be an dffine transformation. We have T(A) = A if
and only if b; = 0 for i > s and

Aa

PD)

Ay
A= (4
where P is an (m — s) x (m — s) permutation matrix, D a

nonsingular diagonal matrix, and Ay is an s X s nonsingular
matrix.

Proof. Consider i > s. Lemma|l4|implies that there is g € T™
such that (Ag + b); = 0, unless the weight of the i-th row of
A'is 1 and b; = 0. Thus, (Az +b); = a;z; for some a; € F.

Also, j > s, otherwise for any point v € A with v; =0
we have (Av + b); = 0 and thus Av + b ¢ A. This proves
that the bottom m — s rows of A form a block (0 PD) for
some permutation matrix P and some nonsingular diagonal
matrix D.

If Ay is singular, there is nonzero v € IF; such that A;v = 0.
Let w = (v,1,...,1) € F® and v’ = (0,...,0,1,...,1) €
[y, with wt(w') = m —s. We have w,w’ € A and Aw+b =
Aw’ + b, thus Az + b is not an injection. The other direction
is trivial. O

Corollary 18. Take A = F; x (IF;)™~°. If L(A) is a decreas-
ing code with the Borel property, then an affine transformation
T(z) = Az + b lies in Perm s (L(A)) if

(A0
=)

where Ay is a lower triangular matrix, I,,_, is the identity
of size m — s, and b; =0 for ¢ > s.

Proof. Since L has the Borel property, then L is stabilized
by lower triangular affine transformations. The matrices in
Proposition that are lower triangular are precisely those
of the given shape. O

Proposition 19. Take A = F7 x [[\_, G, where the G;’s

are distinct subgroups of ¥. Then, an dffine transformation
T(x) = Az + b fixes A if and only if b; = 0 for i > mg and

Ay A ... A
A |0 BDo0 |
0 0 P,D,

where P; is an m; X m; permutation matrix, D; a nonsingular
diagonal matrix with entries in G;, and Ay is an mg X mg
nonsingular matrix.

Proof. The “if” direction is clear. Consider T'(xz) = Ax+b. Let
A’ be the submatrix of A obtained by removing the first my
rows and the first mg columns. Let b’ be the vector obtained by
removing the first mg entries of b. Then A’z +b' is a bijective
affine transformation of G7"* x --- x G}"" and by Proposition
we have that &’ = 0 and A’ has the desired form. Lemma
proves that for ¢ > mg and j < mg, A;; = 0. Thus, A
has the desired property. Finally, since A is nonsingular, A
is also nonsingular. O

Theorem 20. Let A = Ty x Hizl G, where the G;’s are
distinct subgroups of Fy. If L(A) is a decreasing code with
the Borel property, then T(x) = Az +0 lies in Perm 4 (L(A))

if b, =0 for all © > mg and

Ay 0 ... 0
0 I, 0
A =
0 0 I,

Proof. The proof is similar to the one of Corollary It
follows from Proposition |19]and the fact that lower triangular
affine transformations stabilize L. O



V. ADDITIVE GROUPS

We now consider additive subgroups of IF, to build Carte-
sian sets. While in the case of multiplicative subgroups, the
affine permutation group is heavily reduced to a subgroup of
permutation matrices, additive subgroups can still have a richer
structure in their automorphism group. However, the choice of
points still imposes several limitations on the matrices.

Recall that if G is an additive subgroup of I, then G is a
vector space over IF,, where p is the characteristic of ;. We
now prove which possible affine transformations preserve G.

Proposition 21. Let G' be an additive subgroup of ¥, and
T(xz) =ax+b, a,b ey, a bijection of G. Then b € G and
a € Fy, where Fy is the largest subfield of ¥ such that G
is an Ty -vector subspace.

Proof. We have T'(0) = b € G since T is a bijection. Since
the effect of b is trivial, we can assume that T'(z) = ax. It
can be readily seen that the set H = {a € F, : aG =G} is a
subring and, hence, a subfield of IF,. Therefore, H = IF,, for
some ¢'|q, as required. O

Example 22. Let o be a primitive element of Fy5 with a* +
a+1=0.Let G = aSF; + a''F,. Note that G is a vector
subspace of dimension 2 over ' and of dimension 1 over Fy.
In fact, G = aFFy, and so T'(z) = ax + b is a bijection of G
if and only if b € G and a € Fy.

We can characterize the affine permutations preserving G™
for an additive subgroup G of F,.

Corollary 23. Let A = G™, where G is an additive subgroup
of Fy. Let Fy be the largest subfield of Fy such that G is an
F-vector space. Then an affine transformation T(x) = Az+b
fixes A if and only if b € A and A is a nonsingular matrix
over Fg.

Proof. Let T'(x) = Ax + b be an affine transformation that
fixes A. Since 0 € A, we have b € A and so we can assume
that b = 0.

By Proposition A should have entries in Fy. A should
be nonsingular, otherwise there exists 0 # v € 7 such that
Av=0.1f0 # a € G, then av € A™ and T is not a bijection.
Thus A should be nonsingular over . O

With this, we can characterize some of the affine permuta-
tions of Cartesian codes evaluated over G™ for some additive
subgroup G.

Theorem 24. Let A = G™, where G is an additive subgroup
of Fy. Let Fy be the largest subfield of Fy such that G is an
F-vector space. If L(A) is a decreasing code with the Borel
property, then T(x) = Ax + b lies in Permy (L(A)) ifbe G
and A is a nonsimgular lower triangular matrix over Fy.

Proof. Since L has the Borel property, it is stabilized by lower
triangular affine transformations. By Corollary 23] we have the
conclusion. O

In the case when A = [[", G; where the G,’s are not
necessarily different additive subgroups of F,, the answer is
not as elegant as in Theorem [24| above.

Let T'(x) = Ax + b be an affine transformation that fixes
A. As before, since 0 € A, we have b € A, and so we can
assume that b = 0. Let v € A be an element with just one
nonzero entry in position i. Then T'(v) = v; A;, where A; is
the i-th column of A. Since v;A; € A = H:Zl G,;, then

Aij S Hij = {a € Fq | aG; C GJ} 2)

For the case where G; = G, we now that H,; is the biggest
subfield F s of Fy such that G; is an IFs vector-space. If |G| >
|G,|, then H;; = {0}. If |G;| < |G,|, H;; is an additive
subgroup, but it is not necessarily closed under products, and
thus, it is no longer a field. Even in the case where G; C G
and G is a Fy/-vector space, H;; can be bigger than /.

Example 25. In Fg, let o be a primitive element with o +
a+1=0.Let Gy =Fy + oF5 + o?F5 and G5 = aF,4 and
G35 = F5. Then

Hy1=F, Hipy=o 'F, Hiz=G4
Hy ={0} Hyp =T, Hoy3 =Gy
H3 = {0} Hzy = {0} H3z = G3

where H;; is defined in . Despite the matrices A € Fg**™
such that A;; € H;; are not necessarily trivial, an incompatible
structure of a monomial set L may impose extra conditions
that reduces the affine permutation to a trivial one.

Example 26. Let G, G2, G5 C Fy6 as in Example [25] Let L

be the set of divisors of the monomials in {x%, z122}.
Observe that L has the Borel property. A matrix A € F3*?,

with A;; € H;; defined in , is an upper triangular matrix

a b ¢
forany 1 <4, <3.Thus, A=(0 d e|.UlfT= Az,
0 0 f

T(23) = a®x? + abx1xy + acryxs + bexoxs + b2wd + 2.

The last four terms are not in L, so b = ¢ = 0. Analogously,
e = 0. Thus, the only affine permutations of L(.A), where
A=G1 X Gy X Gs, are T =x+ b for any b € A.

VI. CONCLUSION

An evaluation code depends on the evaluation of certain
monomials at some points. An affine transformation 7'(x) =
Ax+b defines a permutation of an evaluation code if the sets of
monomials and points are invariant under the action of 7'. This
paper studies the affine permutations of monomial Cartesian
codes when the Cartesian set has copies of multiplicative or
additive subgroups. This family of codes includes, in particular
cases, the Reed-Muller and the Reed-Solomon codes. When
the set of monomials is decreasing (closed under divisibility)
or has the Borel property (closed under Borel movements), we
provide the conditions for A and b to determine if 7" defines
a permutation. Our findings give insight into studying the
automorphism of polar codes that are associated with Reed-
Solomon kernels and can be seen as decreasing Cartesian
codes.
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