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ABSTRACT

This paper presents FregMAE, a novel self-supervised learning
framework that synergizes masked autoencoding (MAE) with physics-
informed insights to capture feature patterns in multi-modal IoT
sensor data. FreqMAE enhances latent space representation of sen-
sor data, reducing reliance on data labeling and improving accu-
racy for Al tasks. Differing from data augmentation-based methods
like contrastive learning, FreqMAE’s approach eliminates the need
for handcrafted transformations. Adapting MAE for IoT sensing
signals, we present three contributions from frequency domain
insights: First, a Temporal-Shifting Transformer (TS-T) encoder
that enables temporal interactions while distinguishing different
frequency bands; Second, a factorized multi-modal fusion mecha-
nism for leveraging cross-modal correlations and preserving unique
modality features; Third, a hierarchically weighted loss function
that emphasizes important frequency components and high Signal-
to-Noise Ratio (SNR) samples. Comprehensive evaluations on two
sensing applications validate FreqMAE’s proficiency in reducing
labeling needs and enhancing resilience against domain shifts.
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1 INTRODUCTION

The paper advances the state of the art in self-supervised learning
from time-series sensor data. Self-supervised learning aims to trans-
form unlabeled input data into a latent space that captures data
semantics, simplifying extensive downstream tasks. Two popular
methods to achieve this are contrastive learning and masked autoen-
coders. Contrastive learning uses data augmentations, like image
rotations, to train networks on identifying semantically similar
items. On the other hand, MAEs don’t require augmentations; they
conceal parts of the input for the network to reconstruct, leverag-
ing its grasp of higher-level semantics for precise reconstruction
and obscured trait comprehension. This approach enhances latent
space representation of object attributes, streamlining inference
task training. As a label-free method, MAEs simplify training and
boost downstream Al task accuracy with fewer samples [24].
Although MAE:s excelled in vision and natural language domains
[16, 28, 52], they lag behind contrastive methods in processing
time-series sensor data [50]. We find that appropriately integrating
insights from a conventional signal processing perspective can ef-
fectively simplify the optimization space and boost the performance
of MAEs. Therefore, we introduce FreqMAE, a specialized MAE
for multi-modal IoT sensing. It integrates three distinct frequency-
aware insights applicable across sensing tasks, which set FreqMAE
apart from standard MAEs, tailoring it for time-frequency analysis.
First, we introduce a frequency-aware Transformer, the Temporal-
Shifting Transformer (TS-T), tailored for sensor spectrogram encod-
ing. Traditional Transformers [45] and Vision Transformer (ViT)
encoders [19] are less effective with spectrograms due to their
global attention, missing spectrogram-specific traits like frequency
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Figure 1: Masked Autoencoder (MAE) Workflow

translation and scaling invariance, and temporal shifts in ampli-
tudes and frequencies from physical non-stationarity [32]. TS-T
addresses these challenges with a local attention mechanism in the
frequency domain for focused processing of localized short-time
Fourier windows and by adapting attention in the temporal domain
to account for frequency shifts, thus preserving the spectrogram’s
spectral structure while accommodating shifting frequency behaviors.

Second, we introduce a factorized data fusion mechanism em-
phasizing cross-modal correlations and modality-specific features.
This approach recognizes that synchronized modalities share com-
mon information and provide unique, complementary insights [57].
By applying single masking to each modality’s input, we create
two post-encoding feature spaces: (i) a modality-specific private
space for self-reconstruction, and (ii) a shared space capturing cross-
modal information, enabling reconstruction of one modality’s input
with shared embeddings from others. Two specialized lightweight
decoders facilitate this, ensuring minimal overhead during inference.

Third, we propose a hierarchically weighted loss function that
prioritizes important frequency regions and high Signal-to-Noise
Ratio (SNR) samples. To illustrate the benefits of weighting, we con-
sider IoT applications, where crucial information is predominantly
found in the low-frequency components, whereas high-frequency
sections are mostly noise [24]. By focusing on accurately recon-
structing these low-frequency areas and emphasizing high SNR
samples with significant energy content, we improve the effective-
ness of representation learning. For instance, in vehicle classifica-
tion via audio and seismic sensors, measurements captured when
vehicles are nearby are especially informative [51].

This work is driven by the rise in computational power of em-
bedded devices and the robust modeling of deep neural networks
(DNN), advancing the Artificial Intelligence of Things (AIoT) do-
main in areas like activity detection, vehicle tracking, and smart
healthcare [3, 18, 53]. Most existing work [3, 10, 54] depends on su-
pervised learning, demanding large volumes of labeled data, which
is challenging to obtain for time-series in controlled environments,
unlike images and text [39]. Moreover, DNN models trained on data
from limited environments often exhibit sensitivity to unforeseen
changes in the actual deployment setting [48].

By utilizing self-supervised learning, we train the encoder without
the need for labeled data. Subsequently, we perform supervised fine-
tuning using a limited number of data labels to train the downstream
inference task. This approach is highly label-efficient and yields
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pretrained data encoders with enhanced robustness against environ-
mental variations. Unlike contrastive learning frameworks [7, 11]
which heavily rely on human intuition to create label-invariant
transformations, FreqMAE only employs simple random mask-
ing as the preprocessing step. It also integrates physical signal
knowledge that is applicable across various sensing applications as
improvements, resulting in higher automaticity and extensibility.

We extensively evaluate FreqMAE using four datasets, demon-
strating its superior performance over existing approaches in var-
ious sensing applications. The results highlight the exceptional
potential of the self-supervised FreqMAE framework as a step to-
wards building foundation models specially tailored for sensing
streams and time series data. Beyond the dataset evaluations, we use
a real-world case study to demonstrate the robustness of FreqMAE.
One standout feature is its exceptional performance in the face of
environmental variations. FreqMAE shows unparalleled capability
in managing dynamic, real-life scenarios, affirming its utility for
representing information from dynamic sensing streams.

The rest of this paper is organized as follows: Section 2 covers
background information, Section 3 details FreqMAE’s design, Sec-
tion 4 presents experiments and findings, Section 5 reviews related
work, and Section 6 discusses limitations and concludes the study.

2 PRELIMINARIES

This section outlines the foundational concepts of self-supervised
learning and the inspirations behind FreqMAE’s design.

2.1 Masked Autoencoders

Compared to the prevalent contrastive learning paradigm for IoT
data [9, 42, 47], reliant on domain-specific augmentations, we in-
troduce a fully automated, augmentation-free self-supervised MAE
method [16] that significantly reduces labeled data dependence across
sensing contexts. Figure 1 illustrates the MAE setup, including an
encoder, decoder, and classifier, focusing on two-phase training:
self-supervised pretraining followed by supervised fine-tuning.

Pretraining leverages unlabeled data to derive versatile repre-
sentations for various tasks, by employing random masking on seg-
ments of unlabeled spectrograms. The encoder transforms masked
data into low-dimensional embeddings, which the decoder uses
to reconstruct masked areas. The training aims to minimize the
discrepancy between the decoded results and the original data in
masked areas. To encourage the model to capture overarching se-
mantics over low-level interpolations, we apply masking at the
granularity of frequency patches with a high masking ratio.

In the fine-tuning stage, we discard the decoder and directly con-
nect the encoder to a lightweight classifier (i.e., one fully connected
layer). During this phase, the pretrained encoder parameters remain
fixed, and the linear classifier is updated using the representations
generated by FreqMAE, which are based on limited labels specific
to the downstream task. This approach offers two advantages: (i)
the need for fewer labels for convergence [21] and (ii) faster training.

2.2 Characteristics of IoT Sensing Data

IoT sensing data exhibit unique characteristics that set them apart
from other contexts. Following common practices [22, 54], we use
spectrogram data after a short-time Fourier transform (STFT) on
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Figure 2: Audio FFT signatures for a moving vehicle. € The
presence of characteristic peaks in localized regions needs
local harmonic associations and shift-sensitive representa-
tions. 9 Higher frequency regions mostly contain noise.

the raw input, as the modality input. We carefully examine the
fundamental properties of such spectrograms to guide the design of
FreqMAE. Figure 2 presents two sensor (audio and seismic) readings
from two consecutive time windows for a moving vehicle, collected
as it passes by the sensors. Several observations are highlighted.

2.2.1 No Scale and Shift Invariance. While vanilla MAE em-
ploys global attention due to visual objects’ invariance to translation
or scaling, this assumption doesn’t hold for IoT data. Here, the po-
sitioning and scaling of frequency content significantly influence
semantics. Thus, global self-attention might be less effective when
time-frequency information is predominantly local. For instance,
only linking harmonic patches vertically through frequency (see €
in Figure 2) may be suboptimal due to recurring harmonics while
associating the shifted harmonics horizontally through time can
yield more comprehensive insights into non-stationary patterns.

2.2.2 Multi-Modal Fusion. 10T data stems from various sensors,
such as accelerometers, gyroscopes, and magnetometers, each pro-
viding a distinct perspective into the observed event. By fusing
information from multiple sensors, a richer understanding and in-
creased system efficacy can be achieved [6]. Therefore, aligning
with the emerging trend on multi-modal fusion [5, 26, 37, 46, 54], an
effective SSL framework should support data fusion across diverse
modalities and feature generalization across various sensors.

2.2.3 Differentiated Frequency and Sample Importance. Re-
garding the reconstruction objective in MAE, we observed that
differentiated importance should be imposed locally among differ-
ent frequency bands and globally among different samples. First, in
physical sensing tasks, it is well-known that valuable information
tends to be found in the low-frequency sections of the spectrogram
[24]. Conversely, the very high-frequency sections often consist
mostly of noise (e.g., @ in Figure 2). Second, due to external factors
and the nature of physical sensing data, some samples are more
important than others regarding the detection of the observed phe-
nomenon. For instance, samples with higher SNR provide more
useful information than lower SNR samples that include noise.

3 FRAMEWORK

In this section, we introduce FregMAE and its three novel compo-
nents (motivated by the aforementioned characteristics).
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3.1 Overview

FreqMAE generates embeddings for unlabeled time series data from
multiple sensory modalities. With P modalities M = M;, Ma, ..., Mp
and N unlabeled training samples X = x1,x2,...,xN, where each
xij is input from modality M; of sample xi, the goal is hij = E;(xij),
using encoders & = Ey, E, . . ., Ep for embedding generation. Inputs
are transformed into spectrograms via STFT for time-frequency
analysis. Pretraining, as shown in Figure 3, segments spectrograms
into patches for linear projection embeddings, excluding positional
embeddings as supported by [27] (see Appendix D.5 for details).

We then randomly mask a significant portion of spectrogram
patches, crucial for efficient self-supervised pretraining [16], follow-
ing a Bernoulli process with each patch having a probability p of
being masked, termed the masking ratio. Given the two-dimensional
nature of spectrograms for time-frequency analysis, we compared
unstructured and structured masking, finding unstructured random
masking superior for pretraining (details in Appendix D.2). Sim-
ilar to image processing [16], a high masking rate of 70% to 80%
optimally supports representation learning.

FreqMAE utilizes Temporal-Shifting (TS) Transformer encoders
for each modality, a transformer design incorporating localized
attention with a spectrogram-compatible shifting mechanism in-
spired by the SwinTransformer[27]. The encoder-generated em-
beddings are merged into private and shared modality representa-
tions through the factorized fusion mechanism. Private embeddings
capture modality-specific information, while shared embeddings
encapsulate information common to all modalities. This approach
facilitates the learning of cross-modality representations and the
association of diverse information available across modalities.

Decoders, also constructed from TS-Transformers, utilize modal-
ity embeddings to reconstruct the pre-masking input. Different from
prior work [16, 29], FreqMAE employs a weighted reconstruction
objective, leveraging preliminary signal knowledge to prioritize
important patches and samples during the pretraining. Specifically,
the objective prioritizes lower-frequency areas rich in information
and samples with higher Signal-to-Noise Ratios (SNRs), over their
higher-frequency, noisier counterparts during pretraining.

3.2 Temporal-Shifting (TS) Transformer

The vanilla MAE [16] uses global self-attention in Transformers,
ideal for visual contexts where object semantics are spatially and
scale-independent. However, for time-frequency spectrograms, the
importance of positions, scales, and shifts critically affects signal
semantics [34], highlighting a misfit with the original design for
our domain. Figure 2-(a) reveals that while lower frequency band
harmonics can predict higher frequency bands vertically, they’re
less adept at horizontal predictions in the time domain. This is due to
higher frequency harmonics shifting gradually from inherent non-
stationarity in physical signals. As seen between Figure 2-(a) and
(b), this shift complicates predictions using lower frequency bands.
The sequence and positioning of spectrogram patches are critical
for accurate signal interpretation, indicating that global attention
might not be the most effective approach for spectrograms where
time-frequency details are predominantly local with gradual shifts.

Inspired by SwinTransformer [27], TS-Transformer incorporates
two fundamental insights: (i) the local nature of time-frequency
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components in spectrograms requiring association between local
harmonics, and (ii) the necessity to represent shifting frequency
components due to non-stationarity. Localized attention is crucial
for limited invariance, as (slightly) shifted frequencies from non-
stationarity might represent the same physical phenomenon at
different times. Thus, effective learning should capture these shifts
while maintaining the frequency components’ position and scale.

Figure 4 illustrates the TS-Transformer design. The masked spec-
trograms are fed into the patch embedding layer, a convolutional
layer that produces a vector embedding from the unmasked patch
signals with a dimension of Hy;,,,. Masked spectrograms enter a
patch embedding (convolutional) layer, creating Hy;,,-dimensional
embeddings from unmasked patches. The TS-Transformer has two
sequential transformer blocks, processing H-dimensional embed-
dings over R iterations to produce representations of the same
dimensionality, described by:

Air_l} = WMSA (LayerNorm (H{r_l})) +HUY,
P — MLP (LayerNorm (Airil})) +A§r71}’
AlrY - Ts-wMsA (LayerNorm (P{r‘”)) +PlY,

HV) = MLP (LayerNorm (Agr_l})) + Agr_l},

where LayerNorm(-) is the layer normalization [2]. The MLP(-) com-
prises two fully-connected layers. Both WMSA(-) and TS-WMSA(+)
are multi-head self-attention modules [45] configured with regular
(Local Window MSA) and temporally shifted window (TS-Window
MSA) attention settings and A attention heads, respectively.
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To capture local frequency structures, we use a local attention
mechanism targeting short frequency bands, organizing spectro-
gram patches into local windows in spatial dimension and applying
self-attention within these windows to identify relationships among
local frequencies. Furthermore, to tackle temporal non-stationarity,
we introduce a temporal shifting procedure that associates harmon-
ics with their temporally shifted counterparts. Figure 5 demon-
strates local window attention regions and how temporally shifted
windows are partitioned. Local windows move 50% horizontally (i.e.,
in the time dimension) across layers for cross-window interactions,
with no frequency dimension shifts due to the unique physical
meanings of frequency bands. This approach allows for focused
attention on specific frequency bands and recognizes temporal
correlations between shifted harmonics, as shown in Figure 2.

3.3 Factorized Modality Fusion

Multi-modal fusion leverages the diverse and rich information pro-
vided by different modalities, each offering a unique perspective on
the observed phenomenon. To effectively extract representations
from multi-modal data, we emphasize the necessity for a comple-
mentary modality fusion approach. On one hand, it’s vital to extract
shared information between collaborating modalities to understand
their semantic relationships. On the other hand, these modalities
mutually enrich each other by offering unique, private informa-
tion that complements the data from other modalities. A practical
framework should be capable of extracting both shared and unique
patterns across modalities to enhance generalizability.

To achieve this, we introduce a factorized fusion mechanism
within FreqMAE, encompassing both modality self-reconstruction
and cross-modality reconstruction. Figure 6 provides a visual expla-
nation of this approach. After fusion, each modality’s embedding
space is partitioned into two subsets: private and shared spaces.
Private embeddings come directly from the encoding of the cur-
rent modality. Conversely, shared embeddings are generated by
fusing the embeddings of other modalities through a shared fusion
layer, comprising two feed-forward layers. Both private and shared
embeddings are then fed into separate decoders to reconstruct the
current modality. This reconstruction uses the same weighted loss
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function, resulting in two distinct reconstruction losses: Lyyivate
and Lghared- The overall pretraining loss is calculated as follows:
1
where y is the hyperparameter that controls the weight between
two loss components. Because of the asymmetric structure between
the deep encoders and lightweight decoders in MAE, we will show
later in the evaluation that the introduced extra decoder only incurs
negligible computation overhead. Moreover, decoders are discarded
after the pretraining stage, removing overhead at inference time.
The proposed factorized fusion mechanism, unique to FreqMAE,
ensures encoded embeddings carry semantical information for self
and peer modality input reconstruction. Experiments show that
a higher y value, favoring shared embeddings, suits datasets with
many modalities (e.g., IMU data with 3+ modalities), while a lower
y benefits tasks with fewer, distinct modalities (e.g., audio-seismic
pairs, with audio offering rich semantics). The impact of y is further
explored in Appendix D.3. Hence, our fusion scheme is flexible to
accommodate diverse sensor combinations and distributions, with ad-
Jjustable contributions from private and shared modality information.

Liotal = Lprivate + ¥ Lshared

3.4 Importance Weighting Loss Function

This module is motivated by two key insights. First, we should
emphasize informative content within the signal samples using
physical primitives that are common among the sensory data. For
instance, in most physical sensing tasks, such as vehicle classifica-
tion (see Figure 2) and human activity recognition, where the fre-
quency content of most activities lie between 0 and 20 Hz [1], most
of the useful information is located in the lower frequency parts
of the spectrogram, while high-frequency parts are usually noise
[24]. Second, an efficient pretraining objective should emphasize
the signal samples containing richer information for the observed
physical phenomenon without using labels. Since pretraining is per-
formed with a large amount of unlabeled data, the inherent “class
imbalance” is even more evident in such large datasets, where most
of the measurements do not contain any activity or context. Devot-
ing excessive attention to reconstructing such samples may cause
the model to struggle in capturing meaningful feature patterns.
The vanilla MAE utilizes Mean-Squared Error (MSE) for recon-
structing the masked patches during pretraining, defined as:

MSE = (2)

(X(f n-X(f.0)
= f=1

where X and X refer to the original and reconstructed spectrograms

and T X F represents the time-frequency dimensionality of the spec-

trogram. Although it is suitable for images where no preliminary

knowledge about object location is known, MSE doesn’t perform
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optimally with sensing spectrogram input. To address this, we lever-
age our initial insight on prioritizing lower frequency regions, and
thus, define the Weighted Mean Squared Error (WMSE) as follows:

T F 2
> 2 W (x(rn -X(fn)

t=1 f=1

1
WMSE =
TXF

®)
where Wy refers to the weights of the corresponding spectrogram
frequencies. As shown in Figure 7, the weight for the highest fre-
quency is minimum and the weights linearly increase as the fre-
quency decrease. In particular, we set

Wg =Wnin, Wi =Wpin,
(f = 1) (Wmax — Wiin)
Wf = Whax — f Fnia}; L B (4)

where we set Wpin = 0 and Wk = 1 in our experiments.

Besides, in order to prioritize informative samples with move-
ment over background samples, we calculate the mean cumulative
energy of the sample across modalities M:

T F
T MxTxF ZZZX(f,t)Z,

m=1 t=1 f:1

®)

~

where M is the number of modalities. Note that using the mean
cumulative energy across modalities, as opposed to the energies
of individual modalities, helps avoid bias towards modalities with
typically higher energy content. Since our aim is to comparatively
differentiate across samples, the mean energy across modalities
provides fair supervision for the training objective. Inspired by the
commonly used peak-signal-to-noise ratio (PSNR) metric [17] for
comparing image reconstruction quality [38], we define the overall
training objective of FreqMAE (in dB) as:

WPSNR =10 - log ( (6)

EA.
WMSE) ’
where A is the hyperparameter, ranging from 0 to 1, that controls the
scale of the energy component. We utilize the negative of WPSNR
as the pretraining loss for FreqMAE. Since MSE fundamentally
represents the “mean residual energy”, both the logarithm in the
numerator and the denominator are in the same unit.

The WPSNR objective guides pretraining to prioritize high-fidelity
reconstruction of high-energy (low WMSE) samples. In summary,
the WPSNR enables the model to emphasize essential frequency
components within a sample while comparatively assessing the se-
mantic importance of different samples for efficient representation.



WWW °24, May 13-17, 2024, Singapore, Singapore

Table 1: Dataset Summary

Dataset # Classes Modalities' ~# Samples Application
MOD 7 MP, S 39,609 vC
ACIDS 9 MP, S 27,597 vC
RealWorld-HAR 8 A, G, ML 12,887 HAR
PAMAP2 18 A,GM 9,611 HAR

4 EVALUATION

Here, we present our experimental setups and extensive evaluations
to demonstrate FregMAE’s performance, resiliency, and feasibility.

4.1 Experimental Setup

4.1.1 Datasets and Preprocessing. We evaluate FreqMAE using
four datasets from prior work [8, 33, 46, 54] across two application
domains, (i) Vehicle Classification (VC) and (ii) Human Activity
Recognition (HAR). Datasets feature diverse sensors, classes, and
environments (see Table 1): (1) MOD is a self-collected dataset with
microphone arrays (acoustic) and geophones (seismic) for classify-
ing six vehicle types and human walking. (2) ACIDS is from the US
Army Research Lab, focusing on acoustic and seismic identification
with 9 vehicle types across three terrains. (3) RealWorld-HAR
is a public dataset with accelerometer, gyroscope, magnetometer,
and light sensors for detecting eight physical activities collected
from 15 participants. (4) PAMAP2 is another public dataset cap-
turing 18 physical human activities via accelerometer, gyroscope,
and magnetometers. More dataset details are given in Appendix A.

In preprocessing, we divide time-series data into evenly sized
windows and apply the Fourier transform to each to generate spec-
trograms, with lengths based on data characteristics. FreqMAE
processes these spectrograms for feature representation. Note that
FreqMAE can handle different sampling rates among modalities since
they have separate feature encoders. During training, datasets are
split into training, validation, and test sets in an 8:1:1 ratio, leaving
sessions out for a realistic split. Training data is further split into dif-
ferent ratios of available labels (100%, 10%, 1%)—the label ratio—to
show FreqMAE’s effectiveness under label scarcity. For additional
preprocessing and training details, see Appendix B.

4.1.2 Baselines. We compare FreqMAE with 10 baselines: a su-
pervised benchmark, five self-supervised frameworks (MAE [16],
SimCLR [7], CAV-MAE [14], AudioMAE [19], LIMU-BERT [53]),
two modality-matching contrastive baselines (CMC [42], Cosmo
[30]), and two state-of-the-art (SOTA) contrastive time series frame-
works (TS-TCC [11], TS2Vec [55]). Detailed introductions of base-
lines are in Appendix C. We append a linear classification layer
for downstream tasks during fine-tuning. For the contrastive set-
tings, we keep the backbone encoders the same as FreqMAE for a
fair comparison. A set of eight time-domain augmentations, and a
frequency domain augmentation is used from common practices
[20, 25, 41] for contrastive baselines (details in Appendix B). Note
that contrastive frameworks’ performance depends on the used
augmentations, while FreqMAE eliminates dependency on used aug-
mentations and is generalizable (analysis at Section 4.2.1).

1MP:microphone, A=accelerometer,

M=magnetometer.

S=seismic, G=gyroscope,  L=light,
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4.2 Evaluation Results

4.2.1 Overall Performances. Table 2 compares the performance of
FreqMAE with other baselines using a 100% label ratio. All evalu-
ations use fixed encoders and a linear layer on top of pretrained
sample features for a fair assessment of representational quality. The
results show FreqMAE surpasses all baselines by at least 6.6 % and
8 % in average accuracy and F1, affirming its effectiveness. While
supervised training slightly outperforms FreqMAE on the PAMAP2
task with full labels, we suspect this is due to PAMAP2 including hu-
man activities with shorter bandwidth (similar to RealWorld-HAR),
therefore self-supervised representations being less detailed to out-
perform supervised training with full labels. Moreover, supervised
training suffers from label shortage and degrades significantly with
fewer labels (see Section 4.2.2). Thus, FreqMAE’s overall superior
performance indicates the high quality of its extracted features. The
primary competitors of FreqMAE, TS-TCC and CMC frameworks,
are heavily dependent on augmentation design and often underper-
form with fewer augmentations [49]. Figure 9 demonstrates their
performance drop when using only six or three out of nine random
augmentations. Further evaluations of FreqMAE on downstream
tasks and representation quality are in Appendix D.

4.2.2 Varying Labeling Ratio. In this experiment, we evaluate the
performances of baselines and FreqMAE with different labeling
rates, varying from 1% to 100%. Figure 8 presents the comparison re-
sults with all datasets. Higher labeling rates tend to yield improved
accuracies across most models. However, FreqMAE consistently
outperforms the baseline models in all scenarios. Notably, there are
consistent performance gaps between FreqMAE and other models
toward lower labeling rates. We note that only TS-TCC consistently
competes with FreqMAE. This is because TS-TCC efficiently lever-
ages the temporally correlated nature of sensing signals through
temporal contrasting views. However, TS-TCC also relies on a rich
set of augmentations and experiences performance degradation
with fewer augmentations, as shown in Figure 9. This suggests that
FreqMAE effectively learns general representations from unlabeled
data, and thus a linear classifier is enough to achieve higher accuracy.

4.2.3 Ablation Study. Table 3 presents an ablation study using
ACIDS for VC and PAMAP2 for HAR tasks to assess the contribu-
tion of each design component. We studied four FreqMAE variants:
w/o Weighted Loss using standard MSE for reconstruction (Equa-
tion 2), w/o Energy Scaling applying only WMSE loss without
energy scaling (Equation 3), w/o TS-T employing Swin Transformer
instead of TS-Transformer, and w/o Fusion without shared fusion
and doing separate modality reconstruction during training.

First, the contribution of all components is evident in both tasks.
Comparatively, the fusion component and weighted loss scheme are
more helpful in improving task performance, which shows learning
relations across modalities can reveal underlying patterns in the
frequency domain. Such patterns might be hard to capture without
considering modality relations, as different sensor modalities often
provide complementary information [31]. Second, the focus of the
weighted loss objective on prioritizing informative content within
and across samples offers extra self-supervision for pretraining.
Finally, the absence of TS-T configuration has a larger impact on the
PAMAP?2 task than on ACIDS. We suspect this difference is due to
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Table 2: Finetune results with 100 % labels. We mark the best and second best values.

\ ACIDS \ MOD |  PAMAP2 | RealWorld-HAR | Average
Metric ‘ Acc F1 ‘ Acc F1 ‘ Acc F1 ‘ Acc F1 ‘ Acc F1
Supervised 0.9137 0.7770 0.8948 0.8931 0.8612 0.8384 0.9313 0.9278 0.9002 0.8591
CMC 0.7813 0.6216 0.9049 0.9023 0.7571 0.7223 0.8211 0.8384 0.8161 0.7712
Cosmo 0.8776 0.7298 0.3228 0.3241 0.7910 0.7469 0.8529 0.7968 0.7111 0.6494
SimCLR 0.5658 0.4879 0.7535 0.7434 0.7346 0.6635 0.7830 0.7181 0.7092 0.6532
TS2Vec 0.6539 0.4913 0.7649 0.7632 0.5706 0.4942 0.6117 0.5002 0.6503 0.5622
TS-TCC 0.9046 0.7651 0.7709 0.7744 0.7871 0.7107 0.8684 0.8227 0.8328 0.7682
Vanilla MAE | 0.8872 0.7604 0.9015 0.8460 0.7382 0.6999 0.8638 0.8700 0.8477 0.7941
LIMU-BERT 0.5023 0.3171 0.2157 0.1236 0.7847 0.7612 0.7946 0.7261 0.5743 0.4820
CAV-MAE 0.7995 0.6711 0.5184 0.4941 0.7697 0.7351 0.9215 0.9267 0.7523 0.7068
AudioMAE 0.7845 0.6120 0.7274 0.7249 0.7808 0.7478 0.8163 0.7437 0.7773 0.7071
FreqMAE 0.9365 0.7919 ‘ 0.9524 0.9514 ‘ 0.8420 0.8205 0.9250 0.9327 0.9140 0.8741
—— Supervised ——CMC Cosmo SimCLR ——TS2Vec ——TS-TCC —— Vanilla MAE LIMU-BERT —— FreqMAE
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Figure 8: Accuracy comparison of FreqMAE with different labeling rates.
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Table 3: Ablation Study on FreqMAE components.

Dataset | ACIDS PAMAP2
Metric ‘ Acc F1 ‘ Acc F1
w/o Weighted Loss | 0.9068 0.7674 | 0.8249  0.8046
w/o Energy Scaling | 0.9265 0.7642 | 0.8222  0.8013
w/o TS-T 0.9324 0.7876 | 0.8238  0.7991
w/o Fusion 0.9183  0.7636 | 0.8186  0.7905
FreqMAE | 0.9365 0.7919 | 0.8420 0.8205

the audio and seismic data from the moving vehicles having sparser
frequency content with larger temporal correlation (i.e., more stable
movement) than HAR tasks. Therefore, the contribution of localized
attention and temporal interaction is relatively more limited.

4.3 Feasibility in Real-World Deployment

4.3.1 Computation Overhead. Table 4 compares FreqMAE with
baselines in terms of parameters, model size, and inference time. By
running FreqMAE on a single-board Raspberry Pi 3 with 1 GB RAM
and a 1.2 GHz quad-core CPU, we evaluate memory and inference
time on deployment. The inference time is the execution time for
inferring one sample (2-seconds length), averaged over 1000 exper-
iments. Results show that although FreqMAE incurs slightly more
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Table 4: Compute Overhead Comparison.

Model Parameters (M) Size (MB) Infer. Time (s)
DeepSense 0.563 2.193 0.491
ViT 2.821 10.850 1.503
Vanilla MAE 2.821 10.849 1.538
FreqMAE 3.036 11.693 0.972

Table 5: MOD variations for robustness experiments.

Variations ‘ Sensor Locations ~ Vehicle Types Terrain ‘ # Labels

MOD-A 4 X X 3229
MOD-B X 4 X 6748
MOD-C X X 4 1163

inference time than DeepSense [54], a state-of-the-art supervised
model for performance comparisons [23, 53], the overhead is com-
parable and affordable for the considered COTS devices. Moreover,
the localized attention mechanism significantly reduces the compu-
tational overhead compared to Vanilla MAE, which utilizes a global
attention mechanism. Finally, although FreqMAE has comparable
size to the ViT, FreqMAE’s local attention mechanism significantly
reduces the computational overhead and inference time while improv-
ing performance in sensory data. Hence, FreqMAE incurs 37% less
overhead than its counterparts and allows real-time inference.

4.3.2  Robustness Test. Figure 10 illustrates our field testbed deploy-
ment across three distinct parking lot environments: MOD-A, B,
and C. We placed FreqMAE sensor nodes with acoustic and seismic
sensors strategically. The pretrained model from the MOD (see Ta-
ble 1) is utilized for each classification, including variations listed in
Table 5. MOD-A aligns closely with the original data, differing only
in sensor placement. MOD-B has a similar terrain to MOD-A but
uses different vehicles, while MOD-C is set on a concrete building
rooftop, introducing distinct acoustic and seismic behaviors.
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Figure 10: Robustness experiments were conducted in three
environments with different variations.

Table 6 presents the robustness evaluations, demonstrating Freq-
MAE’s impressive resilience to environmental variations across deploy-
ments. In MOD-A, changes to sensor locations are less challenging
for models, as they mostly influence measurement intensity with-
out significantly altering frequency signatures. For MOD-B, all
frameworks struggle with vehicles absent during pretraining due
to differing acoustic and seismic signatures with vehicle types. Yet,
FreqMAE'’s performance excels, showcasing its ability to generalize
and classify even unseen targets. Finally, in MOD-C, seismic alter-
ations arise due to the concrete environment. However, FreqMAE
effectively harnesses insights from physics-based pretraining and
the fusion of complementary stable acoustic information, proving
adept at distinguishing features even with domain shifts.

Contrastive baselines TS-TCC and CMC, though competitive in
standard benchmarks (refer to Table 2 and Figure 8), underperform
in changing environments. This drop can be attributed to the nature
of contrastive frameworks. While they excel at extracting patterns
through similarities among various sample "views", they lack the
robustness provided by guidance based on generalized physical
features, thereby affecting adaptability in dissimilar environments.

5 RELATED WORK

Self-Supervised Multi-Modal Representation Learning. Self-
supervised learning advancements in language and vision have
leveraged contrastive methods, relying on tailored spatial augmen-
tations [7, 15], and generative approaches such as MAE [16]. While
frameworks like CMC [42] and GMC [35] handle multimodal data,
they overlook frequency aspects in time series. Unimodal time
series have seen contrastive adaptations [11, 43, 55-57], and multi-
modal sensing has been addressed by Cosmo [30] and Cocoa [9],
but without fine-tuning for modality-specific characteristics. Par-
allel to contrastive learning, Masked Image Modeling has shown
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Table 6: Robustness against deployment variations.

| MOD-A | MOD-B |  MOD-C

Metric ‘ Acc F1 ‘ Acc F1 ‘ Acc F1
CMC 0.7415  0.7390 | 0.5760  0.4983 | 0.6412  0.5691
Cosmo 0.4205 0.3059 | 0.5816  0.5214 | 0.5496 0.2376
SimCLR 0.6733  0.6685 | 0.5377  0.3922 | 0.6107  0.3730
TS2Vec 0.6563  0.6439 | 0.5260  0.3521 | 0.5725  0.4487
TS-TCC 0.6051  0.5910 | 0.5012  0.1720 | 0.5802  0.4099
Vanilla MAE | 0.8580  0.8602 | 0.6626  0.6347 | 0.6794 0.6326
LIMU-BERT | 0.5000 0.1667 | 0.4233  0.1983 | 0.5649  0.2407
CAV-MAE | 0.4801 0.4431 | 0.50309 0.21076 | 0.5419  0.3409
AudioMAE | 05113 04981 | 0.4839  0.3475 | 0.4961  0.4571
FreqMAE | 0.8750 0.8766 | 0.6885 0.6622 | 0.7710 0.7340

equivalent performance in vision [4, 16, 52]. Vision-language mul-
timodal modeling has been widely explored [12], and LIMU-BERT
[53] specifically targets generative modeling for IMU data. Differing
from these, FreqMAE uniquely integrates multimodal features with
a masked fusion approach and a physical domain-weighted objec-
tive, improving multi-modal sensor data representation learning.

Masked Spectrogram Learning. MAE, prevalent in vision-based
self-supervised learning, is now being applied to Masked Spectro-
gram Learning [13]. While AudioMAE [19] and MSM-MAE [29]
tackle single-modality audio spectrograms, and CAV-MAE [14]
blends modality matching with MAE for image and audio, none
address the unique characteristics of physical sensory data we
motivate. Contrarily, FreqMAE integrates physical insights in a mul-
timodal approach for enhanced time series representation learning.

6 DISCUSSION AND CONCLUSIONS

The paper introduced an IoT-centric masked autoencoding frame-
work, informed by physics-based insights for sensor signals, to
effectively capture crucial semantics for intelligent sensing tasks.
Experimental evaluations showed that FreqMAE surpasses cur-
rent state-of-the-art baselines across different tasks and reduces
the need for data labeling, maintaining robustness during domain
shifts. A potential limitation of FreqMAE may arise when a signifi-
cant portion of the unlabeled pretraining data is noisy, potentially
affecting the energy supervision from the weighted loss. In such sce-
narios, adjusting the energy contribution in the training objective
to emphasize the reconstruction of important frequency content,
typically less noisy, can be beneficial. In future work, we aim to
explore training objectives more resilient to such noisy data.
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A DATASETS

FreqMAE was tested on four datasets from Vehicle Classification
(VC) and Human Activity Recognition (HAR) applications, covering
various sensors, classes and environments, as shown in Table 1.
Moving Object Detection (MOD). This dataset, collected with a
RaspberryShake 1D and microphone array at two sites, records vi-
brations from passing vehicles, including seven object types such as
humans, at various speeds and distances. Seismic data was sampled
at 100 Hz and acoustic at 16000 Hz.

Acoustic-seismic identification Data Set (ACIDS) [8]. Created
by the US Army Research Lab, ACIDS includes over 270 runs of
nine ground vehicle types across three environmental conditions,
digitized at 1025 Hz. In VC, we added speed and distance classifica-
tion tasks to evaluate FreqMAE’s domain shift adaptability, with
speeds (5, 10, 15, 20 mph) and distances (close, mid-range, far).
RealWorld-HAR [40]. This dataset records eight human activities
using accelerometers, gyroscopes, magnetometers, and light sensors
at 100 Hz from 15 participants’ waists.

PAMAP2 [36]. It includes 18 physical activities from nine indi-
viduals, monitored using IMUs on the wrist, capturing data from a
3-axis accelerometer, gyroscope, and magnetometer at 100 Hz. This
study focused solely on wrist data.

B PREPROCESSING AND TRAINING
STRATEGIES

Here, we give preprocessing and training strategies at Section 4.1.

[52]

[53]

[54]

[55]

[56

[57]

B.1 Preprocessing

During preprocessing, time-series data is segmented into equal-
sized windows and further split into overlapping or non-overlapping
intervals for creating spectrograms with Fourier transform. Freq-
MAE accommodates varying sampling rates of each modality with
different encoders, using spectrograms for feature representation.
Datasets are split into training, validation, and test sets in an 8:1:1
ratio, with a realistic session-based division. Training data is varied
in label availability (100%, 10%, 1%) for finetuning’s label ratio.
Self-supervised pretraining uses unlabeled data, and finetuning
uses a linear classifier trained on the labeled training set.
B.2 Data Augmentations

This section details the augmentation methods from Section 4.1 used
for contrastive baselines, chosen based on established practices to
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improve training. Note that, unlike contrastive frameworks, FregqMAE
does not require crafted augmentations as a self-automated framework
capable of generalizing across various IoT task domains.
Time-domain augmentations prior to spectrogram conversion:
o Scaling: Multiplies signals by Gaussian random values for scaling.
e Permutation: Randomly rearranges intervals within samples.
e Jitter. We introduce random Gaussian noise into the signals.
o Negation: Applies a -1 multiplier to signal values.
e TimeWarp: Uses a smooth curve to warp signal time locations.
e MagnitudeWarp: Modifies magnitudes with a cubic spline curve.
¢ Horizontal Flip: Flips the time series along the time axis.
o Channel Shuffle: Shuffles channels in multivariate data, such
asthree-axis accelerometer input (X, Y, Z dimensions).
Frequency-domain augmentations after spectrogram conversion:
e Phase Shift: Applies a random phase shift in the range of —r to
7 to the complex frequency spectrum’s phase values.

B.3 Training Strategies

This section describes the hyperparameters and training methods
for the models, as detailed in Section 4 and Table 7. Configurations
remain mostly uniform across models. We utilize the AdamW opti-
mizer with cosine scheduling, adjusting the initial learning rate for
each model, a batch size of 128, and fine-tuning the temperature
parameter for peak performance, as indicated in Table 8. We apply
a 0.05 weight decay for regularization. For fine-tuning, we switch
to the Adam optimizer with a step scheduler, lowering the learning
rate by 0.2 every epoch across 200 epochs with 50 periods each, and
adjusting weight decay to optimize training outcomes.

C BASELINES

Here, we provide baselines’ introductions described in Section 4.1.
o Supervised. We train the entire model (i.e., the encoder and linear
classifier) in a supervised way with all of the available labels.

e SimCLR [7]. Uses contrastive learning and NT-Xent loss to
facilitate similarity between augmented views of the same sample.
e CMC [42]. Creates embeddings by matching same-sample repre-
sentations across modalities (positive pairs) and distancing different
samples (negative pairs), leveraging multimodal data to enhance
modality agreement using random batches and augmentations.

e TS2VEC [55]. Enhances time series representation through con-
trastive tasks across window sizes, identifying same-sample aug-
mentations and contexts as positive, and different samples or se-
quences as negative, supporting temporal and instance learning.

o Cosmo [30]. Creates multimodal time-series representation through
contrastive fusion, mapping modal embeddings to a hypersphere. It
treats similar features as positive and dissimilar as negative pairs.
e MAE [16]. MAE uses a self-supervised auto-encoding approach
with Transformers, masking significant input parts and focusing
on unmasked segments. It encodes modalities separately, then inte-
grates embeddings to minimize reconstruction errors, using modal-
ity encoders and linear layers for inference.

¢ LIMU-BERT [53]. Designed for unlabeled IMU data, LIMU-BERT
adapts BERT’s self-supervised learning to sensor data, capturing
temporal patterns with custom adjustments for IMU specifics.

e CAV-MAE [14]. CAV-MAE merges MAE’s approach with con-
trastive learning for audio-visual data, using multi-stream process-
ing for input reconstruction, distinct encoders for each modality,
and a combined encoder to enhance cross-modal learning,.
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Table 7: TS-Transformer Configurations.

Dataset MOD ACIDS RealWorld-HAR ~ PAMAP2
Dropout Ratio 0.2 0.2 0.2 0.2
Patch Size aud: [1, 40], sei: [1,1] [1,8] [1,2] [1,2]
Temporal Window Size [1,9] [1,8] [1,9] [1,8]
Mod Feature Block Num [2,2,4] [2,2,4] [2,2,2] [2,2,2]
Mod Feature Block Channels [64,128, 256] [64, 128, 256] [32, 64, 128] [32,64,128]
Mod Fusion Channel 256 256 128 128
Mod Fusion Head Num 4 4 4 4
Mod Fusion Block 2 2 2 2
FC Dim 512 512 256 128
Temporal Shift 1 1 1 1

Table 8: Training configurations. (We use LR for Learning Rate)

Dataset MOD ACIDS RealWorld-HAR PAMAP2
Temperature 0.07 0.2 0.07 0.07
Lambda 0.1 0.3 1.0 0.3
Gamma 0.5 1.0 4.0 1.0
Pretrain Optimizer AdamW AdamW AdamW AdamW
Pretrain Max LR~ Default: 1e — 5 Default: 1le —4  Default: le — 4  Default: 1e — 4
Pretrain Epochs 6000 3000 1000 1000
Finetune Start LR 0.0001 0.0003 0.0005 0.001

o AudioMAE [19]. AudioMAE, building on MAE [16], uses a Trans-
former with global and local attention for audio representation,
setting a baseline for TS-T design evaluations. It transforms audio
into spectrogram patches, masking some for efficient encoding.

D ADDITIONAL EVALUATIONS
D.1 Additional Downstream Tasks.

We assess pretrained models on distance and speed classification
tasks using the MOD dataset. Results in Figure 13 reveal consis-
tent outperformance by contrastive frameworks (SimCLR, CMC,
TS-TCC) over other self-supervised methods (MAE, LIMU-BERT).
FreqMAE’s integration of modality, temporal characteristics, and
physical insights enables superior adaptation on both tasks.

D.1.1 Representation Visualization. We employ the t-SNE algo-
rithm [44] to visualize the fused embeddings of FreqMAE to show
representation quality. Figure 11 illustrates FreqMAE embeddings,
showing well-separated clusters in ACIDS and RealWorld-HAR
datasets, indicating effective capture of underlying data structure
In MOD and PAMAP2, cohesive clusters are observed, albeit with
more overlap, due to a more challenging dataset structure.

D.2 Effect of Masking Strategies.

Figure 14 presents FreqMAE’s performance with varying masking
rates (60% to 90%) and strategies, comparing random unstructured
masking to three structured variants: (i) Time masking for vertical
spectrogram patches, (ii) Frequency masking for horizontal patches,
and (iii) Time+Frequency masking, applied with equal probability.
Masking Rate. Similar to MAE in vision, a pretraining masking
ratio of 70%-80% is ideal for learning spectrogram features, utilizing
the redundancy in continuous signals (see Figure 2). Vehicle classi-
fication is more impacted by the masking ratio than HAR tasks, due
to audio and seismic data’s wider, complex frequency range. Very
high masking ratios (e.g., 90%) decrease performance, underscoring
the importance of a balanced self-supervised challenge for IoT data.
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Masking Scheme. Unstructured (random) masking outperforms
structured methods in self-supervised pretraining by using nearby
contexts to estimate missing spectrogram sections. Frequency mask-
ing reduces performance by removing harmonic bands, while time
masking effectively captures temporal correlations by reconstruct-
ing missing temporal content from related elements. Combining
time and frequency masking approaches the effectiveness of un-
structured masking through extrapolation from adjacent content.

D.3 Fusion Hyperparameter (y) Analysis.

Figure 12-(a, b) shows the effect of the information scaling hyperpa-
rameter (y) on combining shared and private feature embeddings,
as detailed in Section 3.3. This was tested with different settings
across two datasets (ACIDS and PAMAP?2) for VC and HAR tasks.
A higher y value emphasizes shared modal features, while a lower
one highlights individual modality information. The aim is to find
the best fusion approach for various tasks with FreqMAE.

Figure 12-(a) shows that VC tasks on the ACIDS dataset perform
better with smaller fusion weights, due to the difficulty in recon-
structing one modality from another in its audio-seismic combina-
tion and the imbalance in spectral content between modalities. Con-
versely, Figure 12-(b) demonstrates that HAR tasks on the PAMAP2
dataset, which involves multiple IMUs, benefit from larger fusion
weights, enhancing classification due to the richer cross-modality
fusion. Such versatility enables FreqMAE to be applied broadly across
various sensing tasks, providing an efficient and generalizable time
series data representation framework for practitioners.

D.4 WPSNR Hyperparameter (1) Analysis.

Figure 12-(c, d) shows the effect of energy contribution (1) on train-
ing outcomes, with tests on ACIDS and PAMAP2 datasets for VC
and HAR tasks, as discussed in Section 3.4. Increasing A prioritizes
high-energy samples, enhancing detection across tasks. Too low
a A decreases performance by failing to distinguish between high
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Figure 11: t-SNE visualization of FreqMAE embeddings.
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Figure 12: Fusion (y) and WPSNR energy contribution (y) hyperparameter anaylsis.
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Figure 14: Effect of masking strategy on performance.

signal-to-noise ratio (SNR) samples and those with negligible in-
formation (e.g., background data or no observed content). For HAR
tasks, a higher A significantly improves performance, leveraging
the energy content in IMU sensor readings to detect human activi-
ties effectively, as confirmed by optimal configurations in Table 8.
This suggests that adjusting the energy contribution within the loss
function can optimize model learning, especially for tasks where
energy content is a critical indicator.

For ACIDS, overly high A values disproportionately prioritize
energy in learned representations, detrimental compared to HAR
tasks where IMU sensors, placed directly on the body, exhibit less
activity-related energy variation [40]. Conversely, in VC tasks, au-
dio and seismic modalities face rapid energy fluctuations due to
external deployment on moving vehicles, suggesting that high A
values might neglect low-energy yet informative signals. Hence,
employing the WPSNR objective with energy supervision refines
model focus towards high-quality representations, enhancing adapt-
ability across sensor types and modality characteristics, positioning
FreqMAE as a versatile framework for diverse sensing applications.
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D.5 Effect of Positional Encodings.

This section evaluates the role of positional encoding in masked
representation learning. Following Swin-Transformers [27], we
add one-dimensional absolute positional embeddings (APE) to the
patches, organizing patch inputs into a sequence by channel, then
time, for various input lengths. These embeddings are combined
with the inputs before entering the backbone network.

Table 9: Effect of positional encoding on FreqMAE

Setting ACIDS PAMAP2 RealWorld-HAR MOD
Acc/F1 Acc/F1 Acc/F1 Acc/F1

With 0.9265/0.7596  0.8312/0.8120 0.8783/0.8916 0.9377/0.9356

Without 0.9365/0.7919  0.8420/0.8205  0.9250/0.9327  0.9524/0.9514

Table 9 shows positional encoding’s effect on frameworks, com-
paring TS-Transformer’s classification with and without embed-
dings. Echoing [27], positional embeddings don’t clearly enhance
and may even reduce accuracy in sensing tasks, likely due to spec-
trogram non-stationarity. Spectrogram harmonic sequences dis-
play temporal shifts, and using positional information could cause
overfitting to these changing sequences, which clashes with the
TS-Transformer’s Temporal Shift approach for temporal decoding.

TS-Transformer distinctively uses local attention for frequency
details and Temporal Shifting for dynamic harmonics, focusing on
inter-frequency links and adapting to physical data’s non-stationarity
without overfitting to exact positional frequency details.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Masked Autoencoders
	2.2 Characteristics of IoT Sensing Data

	3 Framework
	3.1 Overview
	3.2 Temporal-Shifting (TS) Transformer
	3.3 Factorized Modality Fusion
	3.4 Importance Weighting Loss Function

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Results
	4.3 Feasibility in Real-World Deployment

	5 Related Work
	6 Discussion and Conclusions
	Acknowledgments
	References
	A Datasets
	B Preprocessing and Training Strategies
	B.1 Preprocessing
	B.2 Data Augmentations
	B.3 Training Strategies

	C Baselines
	D Additional Evaluations
	D.1 Additional Downstream Tasks.
	D.2 Effect of Masking Strategies.
	D.3 Fusion Hyperparameter () Analysis.
	D.4 WPSNR Hyperparameter () Analysis.
	D.5 Effect of Positional Encodings.


