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ABSTRACT

This paper presents FreqMAE, a novel self-supervised learning

framework that synergizesmasked autoencoding (MAE)with physics-

informed insights to capture feature patterns in multi-modal IoT

sensor data. FreqMAE enhances latent space representation of sen-

sor data, reducing reliance on data labeling and improving accu-

racy for AI tasks. Differing from data augmentation-based methods

like contrastive learning, FreqMAE’s approach eliminates the need

for handcrafted transformations. Adapting MAE for IoT sensing

signals, we present three contributions from frequency domain

insights: First, a Temporal-Shifting Transformer (TS-T) encoder

that enables temporal interactions while distinguishing different

frequency bands; Second, a factorized multi-modal fusion mecha-

nism for leveraging cross-modal correlations and preserving unique

modality features; Third, a hierarchically weighted loss function

that emphasizes important frequency components and high Signal-

to-Noise Ratio (SNR) samples. Comprehensive evaluations on two

sensing applications validate FreqMAE’s proficiency in reducing

labeling needs and enhancing resilience against domain shifts.
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1 INTRODUCTION

The paper advances the state of the art in self-supervised learning

from time-series sensor data. Self-supervised learning aims to trans-

form unlabeled input data into a latent space that captures data

semantics, simplifying extensive downstream tasks. Two popular

methods to achieve this are contrastive learning and masked autoen-

coders. Contrastive learning uses data augmentations, like image

rotations, to train networks on identifying semantically similar

items. On the other hand, MAEs don’t require augmentations; they

conceal parts of the input for the network to reconstruct, leverag-

ing its grasp of higher-level semantics for precise reconstruction

and obscured trait comprehension. This approach enhances latent

space representation of object attributes, streamlining inference

task training. As a label-free method, MAEs simplify training and

boost downstream AI task accuracy with fewer samples [24].

Although MAEs excelled in vision and natural language domains

[16, 28, 52], they lag behind contrastive methods in processing

time-series sensor data [50]. We find that appropriately integrating

insights from a conventional signal processing perspective can ef-

fectively simplify the optimization space and boost the performance

of MAEs. Therefore, we introduce FreqMAE, a specialized MAE

for multi-modal IoT sensing. It integrates three distinct frequency-

aware insights applicable across sensing tasks, which set FreqMAE

apart from standard MAEs, tailoring it for time-frequency analysis.

First, we introduce a frequency-aware Transformer, the Temporal-

Shifting Transformer (TS-T), tailored for sensor spectrogram encod-

ing. Traditional Transformers [45] and Vision Transformer (ViT)

encoders [19] are less effective with spectrograms due to their

global attention, missing spectrogram-specific traits like frequency
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Figure 1: Masked Autoencoder (MAE) Workflow

translation and scaling invariance, and temporal shifts in ampli-

tudes and frequencies from physical non-stationarity [32]. TS-T

addresses these challenges with a local attention mechanism in the

frequency domain for focused processing of localized short-time

Fourier windows and by adapting attention in the temporal domain

to account for frequency shifts, thus preserving the spectrogram’s

spectral structure while accommodating shifting frequency behaviors.

Second, we introduce a factorized data fusion mechanism em-

phasizing cross-modal correlations and modality-specific features.

This approach recognizes that synchronized modalities share com-

mon information and provide unique, complementary insights [57].

By applying single masking to each modality’s input, we create

two post-encoding feature spaces: (i) a modality-specific private

space for self-reconstruction, and (ii) a shared space capturing cross-

modal information, enabling reconstruction of one modality’s input

with shared embeddings from others. Two specialized lightweight

decoders facilitate this, ensuring minimal overhead during inference.

Third, we propose a hierarchically weighted loss function that

prioritizes important frequency regions and high Signal-to-Noise

Ratio (SNR) samples. To illustrate the benefits of weighting, we con-

sider IoT applications, where crucial information is predominantly

found in the low-frequency components, whereas high-frequency

sections are mostly noise [24]. By focusing on accurately recon-

structing these low-frequency areas and emphasizing high SNR

samples with significant energy content, we improve the effective-

ness of representation learning. For instance, in vehicle classifica-

tion via audio and seismic sensors, measurements captured when

vehicles are nearby are especially informative [51].

This work is driven by the rise in computational power of em-

bedded devices and the robust modeling of deep neural networks

(DNN), advancing the Artificial Intelligence of Things (AIoT) do-

main in areas like activity detection, vehicle tracking, and smart

healthcare [3, 18, 53]. Most existing work [3, 10, 54] depends on su-

pervised learning, demanding large volumes of labeled data, which

is challenging to obtain for time-series in controlled environments,

unlike images and text [39]. Moreover, DNN models trained on data

from limited environments often exhibit sensitivity to unforeseen

changes in the actual deployment setting [48].

By utilizing self-supervised learning, we train the encoderwithout

the need for labeled data. Subsequently, we perform supervised fine-

tuning using a limited number of data labels to train the downstream

inference task. This approach is highly label-efficient and yields

pretrained data encoders with enhanced robustness against environ-

mental variations. Unlike contrastive learning frameworks [7, 11]

which heavily rely on human intuition to create label-invariant

transformations, FreqMAE only employs simple random mask-

ing as the preprocessing step. It also integrates physical signal

knowledge that is applicable across various sensing applications as

improvements, resulting in higher automaticity and extensibility.

We extensively evaluate FreqMAE using four datasets, demon-

strating its superior performance over existing approaches in var-

ious sensing applications. The results highlight the exceptional

potential of the self-supervised FreqMAE framework as a step to-

wards building foundation models specially tailored for sensing

streams and time series data. Beyond the dataset evaluations, we use

a real-world case study to demonstrate the robustness of FreqMAE.

One standout feature is its exceptional performance in the face of

environmental variations. FreqMAE shows unparalleled capability

in managing dynamic, real-life scenarios, affirming its utility for

representing information from dynamic sensing streams.

The rest of this paper is organized as follows: Section 2 covers

background information, Section 3 details FreqMAE’s design, Sec-

tion 4 presents experiments and findings, Section 5 reviews related

work, and Section 6 discusses limitations and concludes the study.

2 PRELIMINARIES

This section outlines the foundational concepts of self-supervised

learning and the inspirations behind FreqMAE’s design.

2.1 Masked Autoencoders

Compared to the prevalent contrastive learning paradigm for IoT

data [9, 42, 47], reliant on domain-specific augmentations, we in-

troduce a fully automated, augmentation-free self-supervised MAE

method [16] that significantly reduces labeled data dependence across

sensing contexts. Figure 1 illustrates the MAE setup, including an

encoder, decoder, and classifier, focusing on two-phase training:

self-supervised pretraining followed by supervised fine-tuning.

Pretraining leverages unlabeled data to derive versatile repre-

sentations for various tasks, by employing random masking on seg-

ments of unlabeled spectrograms. The encoder transforms masked

data into low-dimensional embeddings, which the decoder uses

to reconstruct masked areas. The training aims to minimize the

discrepancy between the decoded results and the original data in

masked areas. To encourage the model to capture overarching se-

mantics over low-level interpolations, we apply masking at the

granularity of frequency patches with a high masking ratio.

In the fine-tuning stage, we discard the decoder and directly con-

nect the encoder to a lightweight classifier (i.e., one fully connected

layer). During this phase, the pretrained encoder parameters remain

fixed, and the linear classifier is updated using the representations

generated by FreqMAE, which are based on limited labels specific

to the downstream task. This approach offers two advantages: (i)

the need for fewer labels for convergence [21] and (ii) faster training.

2.2 Characteristics of IoT Sensing Data

IoT sensing data exhibit unique characteristics that set them apart

from other contexts. Following common practices [22, 54], we use

spectrogram data after a short-time Fourier transform (STFT) on
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Figure 2: Audio FFT signatures for a moving vehicle. 1 The

presence of characteristic peaks in localized regions needs

local harmonic associations and shift-sensitive representa-

tions. 2 Higher frequency regions mostly contain noise.

the raw input, as the modality input. We carefully examine the

fundamental properties of such spectrograms to guide the design of

FreqMAE. Figure 2 presents two sensor (audio and seismic) readings

from two consecutive time windows for a moving vehicle, collected

as it passes by the sensors. Several observations are highlighted.

2.2.1 No Scale and Shift Invariance. While vanilla MAE em-

ploys global attention due to visual objects’ invariance to translation

or scaling, this assumption doesn’t hold for IoT data. Here, the po-

sitioning and scaling of frequency content significantly influence

semantics. Thus, global self-attention might be less effective when

time-frequency information is predominantly local. For instance,

only linking harmonic patches vertically through frequency (see 1

in Figure 2) may be suboptimal due to recurring harmonics while

associating the shifted harmonics horizontally through time can

yield more comprehensive insights into non-stationary patterns.

2.2.2 Multi-Modal Fusion. IoT data stems from various sensors,

such as accelerometers, gyroscopes, and magnetometers, each pro-

viding a distinct perspective into the observed event. By fusing

information from multiple sensors, a richer understanding and in-

creased system efficacy can be achieved [6]. Therefore, aligning

with the emerging trend on multi-modal fusion [5, 26, 37, 46, 54], an

effective SSL framework should support data fusion across diverse

modalities and feature generalization across various sensors.

2.2.3 Differentiated Frequency and Sample Importance. Re-

garding the reconstruction objective in MAE, we observed that

differentiated importance should be imposed locally among differ-

ent frequency bands and globally among different samples. First, in

physical sensing tasks, it is well-known that valuable information

tends to be found in the low-frequency sections of the spectrogram

[24]. Conversely, the very high-frequency sections often consist

mostly of noise (e.g., 2 in Figure 2). Second, due to external factors

and the nature of physical sensing data, some samples are more

important than others regarding the detection of the observed phe-

nomenon. For instance, samples with higher SNR provide more

useful information than lower SNR samples that include noise.

3 FRAMEWORK

In this section, we introduce FreqMAE and its three novel compo-

nents (motivated by the aforementioned characteristics).

3.1 Overview

FreqMAE generates embeddings for unlabeled time series data from

multiple sensorymodalities.With 𝑃 modalitiesM = 𝑀1, 𝑀2, . . . , 𝑀𝑃

and 𝑁 unlabeled training samples X = x1, x2, . . . , x𝑁 , where each

x𝑖 𝑗 is input frommodality𝑀𝑗 of sample x𝑖 , the goal is h𝑖 𝑗 = 𝐸 𝑗 (x𝑖 𝑗),

using encoders E = 𝐸1, 𝐸2, . . . , 𝐸𝑃 for embedding generation. Inputs

are transformed into spectrograms via STFT for time-frequency

analysis. Pretraining, as shown in Figure 3, segments spectrograms

into patches for linear projection embeddings, excluding positional

embeddings as supported by [27] (see Appendix D.5 for details).

We then randomly mask a significant portion of spectrogram

patches, crucial for efficient self-supervised pretraining [16], follow-

ing a Bernoulli process with each patch having a probability 𝑝 of

beingmasked, termed themasking ratio. Given the two-dimensional

nature of spectrograms for time-frequency analysis, we compared

unstructured and structured masking, finding unstructured random

masking superior for pretraining (details in Appendix D.2). Sim-

ilar to image processing [16], a high masking rate of 70% to 80%

optimally supports representation learning.

FreqMAE utilizes Temporal-Shifting (TS) Transformer encoders

for each modality, a transformer design incorporating localized

attention with a spectrogram-compatible shifting mechanism in-

spired by the SwinTransformer[27]. The encoder-generated em-

beddings are merged into private and shared modality representa-

tions through the factorized fusion mechanism. Private embeddings

capture modality-specific information, while shared embeddings

encapsulate information common to all modalities. This approach

facilitates the learning of cross-modality representations and the

association of diverse information available across modalities.

Decoders, also constructed from TS-Transformers, utilize modal-

ity embeddings to reconstruct the pre-masking input. Different from

prior work [16, 29], FreqMAE employs a weighted reconstruction

objective, leveraging preliminary signal knowledge to prioritize

important patches and samples during the pretraining. Specifically,

the objective prioritizes lower-frequency areas rich in information

and samples with higher Signal-to-Noise Ratios (SNRs), over their

higher-frequency, noisier counterparts during pretraining.

3.2 Temporal-Shifting (TS) Transformer

The vanilla MAE [16] uses global self-attention in Transformers,

ideal for visual contexts where object semantics are spatially and

scale-independent. However, for time-frequency spectrograms, the

importance of positions, scales, and shifts critically affects signal

semantics [34], highlighting a misfit with the original design for

our domain. Figure 2-(a) reveals that while lower frequency band

harmonics can predict higher frequency bands vertically, they’re

less adept at horizontal predictions in the time domain. This is due to

higher frequency harmonics shifting gradually from inherent non-

stationarity in physical signals. As seen between Figure 2-(a) and

(b), this shift complicates predictions using lower frequency bands.

The sequence and positioning of spectrogram patches are critical

for accurate signal interpretation, indicating that global attention

might not be the most effective approach for spectrograms where

time-frequency details are predominantly local with gradual shifts.

Inspired by SwinTransformer [27], TS-Transformer incorporates

two fundamental insights: (i) the local nature of time-frequency
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components in spectrograms requiring association between local

harmonics, and (ii) the necessity to represent shifting frequency

components due to non-stationarity. Localized attention is crucial

for limited invariance, as (slightly) shifted frequencies from non-

stationarity might represent the same physical phenomenon at

different times. Thus, effective learning should capture these shifts

while maintaining the frequency components’ position and scale.

Figure 4 illustrates the TS-Transformer design. The masked spec-

trograms are fed into the patch embedding layer, a convolutional

layer that produces a vector embedding from the unmasked patch

signals with a dimension of 𝐻𝑑𝑖𝑚 . Masked spectrograms enter a

patch embedding (convolutional) layer, creating 𝐻𝑑𝑖𝑚-dimensional

embeddings from unmasked patches. The TS-Transformer has two

sequential transformer blocks, processing 𝐻 -dimensional embed-

dings over 𝑅 iterations to produce representations of the same

dimensionality, described by:

A
{𝑟−1}
1 = WMSA

(

LayerNorm
(

H
{𝑟−1}

))

+ H
{𝑟−1},

P
{𝑟−1}

= MLP
(

LayerNorm
(

A
{𝑟−1}
1

))

+ A
{𝑟−1}
1 ,

A
{𝑟−1}
2 = TS-WMSA

(

LayerNorm
(

P
{𝑟−1}

))

+ P
{𝑟−1},

H
{𝑟 }

= MLP
(

LayerNorm
(

A
{𝑟−1}
2

))

+ A
{𝑟−1}
2 ,

where LayerNorm(·) is the layer normalization [2]. The MLP(·) com-

prises two fully-connected layers. Both WMSA(·) and TS-WMSA(·)

are multi-head self-attention modules [45] configured with regular

(Local Window MSA) and temporally shifted window (TS-Window

MSA) attention settings and 𝐴 attention heads, respectively.

Layer L Layer L+1

Figure 5: Local attention and temporal shifted windows.

To capture local frequency structures, we use a local attention

mechanism targeting short frequency bands, organizing spectro-

gram patches into local windows in spatial dimension and applying

self-attention within these windows to identify relationships among

local frequencies. Furthermore, to tackle temporal non-stationarity,

we introduce a temporal shifting procedure that associates harmon-

ics with their temporally shifted counterparts. Figure 5 demon-

strates local window attention regions and how temporally shifted

windows are partitioned. Local windowsmove 50% horizontally (i.e.,

in the time dimension) across layers for cross-window interactions,

with no frequency dimension shifts due to the unique physical

meanings of frequency bands. This approach allows for focused

attention on specific frequency bands and recognizes temporal

correlations between shifted harmonics, as shown in Figure 2.

3.3 Factorized Modality Fusion

Multi-modal fusion leverages the diverse and rich information pro-

vided by different modalities, each offering a unique perspective on

the observed phenomenon. To effectively extract representations

from multi-modal data, we emphasize the necessity for a comple-

mentary modality fusion approach. On one hand, it’s vital to extract

shared information between collaborating modalities to understand

their semantic relationships. On the other hand, these modalities

mutually enrich each other by offering unique, private informa-

tion that complements the data from other modalities. A practical

framework should be capable of extracting both shared and unique

patterns across modalities to enhance generalizability.

To achieve this, we introduce a factorized fusion mechanism

within FreqMAE, encompassing both modality self-reconstruction

and cross-modality reconstruction. Figure 6 provides a visual expla-

nation of this approach. After fusion, each modality’s embedding

space is partitioned into two subsets: private and shared spaces.

Private embeddings come directly from the encoding of the cur-

rent modality. Conversely, shared embeddings are generated by

fusing the embeddings of other modalities through a shared fusion

layer, comprising two feed-forward layers. Both private and shared

embeddings are then fed into separate decoders to reconstruct the

current modality. This reconstruction uses the same weighted loss
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function, resulting in two distinct reconstruction losses: Lprivate

and Lshared. The overall pretraining loss is calculated as follows:

Ltotal = Lprivate + 𝛾Lshared (1)

where 𝛾 is the hyperparameter that controls the weight between

two loss components. Because of the asymmetric structure between

the deep encoders and lightweight decoders in MAE, we will show

later in the evaluation that the introduced extra decoder only incurs

negligible computation overhead. Moreover, decoders are discarded

after the pretraining stage, removing overhead at inference time.

The proposed factorized fusion mechanism, unique to FreqMAE,

ensures encoded embeddings carry semantical information for self

and peer modality input reconstruction. Experiments show that

a higher 𝛾 value, favoring shared embeddings, suits datasets with

many modalities (e.g., IMU data with 3+ modalities), while a lower

𝛾 benefits tasks with fewer, distinct modalities (e.g., audio-seismic

pairs, with audio offering rich semantics). The impact of 𝛾 is further

explored in Appendix D.3. Hence, our fusion scheme is flexible to

accommodate diverse sensor combinations and distributions, with ad-

justable contributions from private and shared modality information.

3.4 Importance Weighting Loss Function

This module is motivated by two key insights. First, we should

emphasize informative content within the signal samples using

physical primitives that are common among the sensory data. For

instance, in most physical sensing tasks, such as vehicle classifica-

tion (see Figure 2) and human activity recognition, where the fre-

quency content of most activities lie between 0 and 20 Hz [1], most

of the useful information is located in the lower frequency parts

of the spectrogram, while high-frequency parts are usually noise

[24]. Second, an efficient pretraining objective should emphasize

the signal samples containing richer information for the observed

physical phenomenon without using labels. Since pretraining is per-

formed with a large amount of unlabeled data, the inherent łclass

imbalancež is even more evident in such large datasets, where most

of the measurements do not contain any activity or context. Devot-

ing excessive attention to reconstructing such samples may cause

the model to struggle in capturing meaningful feature patterns.

The vanilla MAE utilizes Mean-Squared Error (MSE) for recon-

structing the masked patches during pretraining, defined as:

MSE =

1

𝑇 × 𝐹

𝑇
∑︁

𝑡=1

𝐹
∑︁

𝑓 =1

(

X(𝑓 , 𝑡) − X̂(𝑓 , 𝑡)
)2

, (2)

whereX and X̂ refer to the original and reconstructed spectrograms

and𝑇 ×𝐹 represents the time-frequency dimensionality of the spec-

trogram. Although it is suitable for images where no preliminary

knowledge about object location is known, MSE doesn’t perform

Figure 7: Weighted Mean Square Error weights.

optimally with sensing spectrogram input. To address this, we lever-

age our initial insight on prioritizing lower frequency regions, and

thus, define the Weighted Mean Squared Error (WMSE) as follows:

WMSE =

1

𝑇 × 𝐹

𝑇
∑︁

𝑡=1

𝐹
∑︁

𝑓 =1

W𝑓

(

X(𝑓 , 𝑡) − X̂(𝑓 , 𝑡)
)2

, (3)

where𝑊𝑓 refers to the weights of the corresponding spectrogram

frequencies. As shown in Figure 7, the weight for the highest fre-

quency is minimum and the weights linearly increase as the fre-

quency decrease. In particular, we set

W𝐹 = Wmin, W1 = Wmin,

W𝑓 = Wmax −
(𝑓 − 1) (Wmax −Wmin)

𝐹 − 1
, (4)

where we set Wmin = 0 and Wmax = 1 in our experiments.

Besides, in order to prioritize informative samples with move-

ment over background samples, we calculate the mean cumulative

energy of the sample across modalities𝑀 :

E =

1

𝑀 ×𝑇 × 𝐹

𝑀
∑︁

𝑚=1

𝑇
∑︁

𝑡=1

𝐹
∑︁

𝑓 =1

X(𝑓 , 𝑡)2, (5)

where M is the number of modalities. Note that using the mean

cumulative energy across modalities, as opposed to the energies

of individual modalities, helps avoid bias towards modalities with

typically higher energy content. Since our aim is to comparatively

differentiate across samples, the mean energy across modalities

provides fair supervision for the training objective. Inspired by the

commonly used peak-signal-to-noise ratio (PSNR) metric [17] for

comparing image reconstruction quality [38], we define the overall

training objective of FreqMAE (in dB) as:

𝑊𝑃𝑆𝑁𝑅 = 10 · log

(

𝐸𝜆

𝑊𝑀𝑆𝐸

)

, (6)

where 𝜆 is the hyperparameter, ranging from 0 to 1, that controls the

scale of the energy component. We utilize the negative of WPSNR

as the pretraining loss for FreqMAE. Since MSE fundamentally

represents the łmean residual energyž, both the logarithm in the

numerator and the denominator are in the same unit.

TheWPSNR objective guides pretraining to prioritize high-fidelity

reconstruction of high-energy (low WMSE) samples. In summary,

the WPSNR enables the model to emphasize essential frequency

components within a sample while comparatively assessing the se-

mantic importance of different samples for efficient representation.
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Table 1: Dataset Summary

Dataset # Classes Modalities1 # Samples Application

MOD 7 MP, S 39,609 VC

ACIDS 9 MP, S 27,597 VC

RealWorld-HAR 8 A, G, M, L 12,887 HAR

PAMAP2 18 A, G, M 9,611 HAR

4 EVALUATION

Here, we present our experimental setups and extensive evaluations

to demonstrate FreqMAE’s performance, resiliency, and feasibility.

4.1 Experimental Setup

4.1.1 Datasets and Preprocessing. We evaluate FreqMAE using

four datasets from prior work [8, 33, 46, 54] across two application

domains, (i) Vehicle Classification (VC) and (ii) Human Activity

Recognition (HAR). Datasets feature diverse sensors, classes, and

environments (see Table 1): (1) MOD is a self-collected dataset with

microphone arrays (acoustic) and geophones (seismic) for classify-

ing six vehicle types and human walking. (2) ACIDS is from the US

Army Research Lab, focusing on acoustic and seismic identification

with 9 vehicle types across three terrains. (3) RealWorld-HAR

is a public dataset with accelerometer, gyroscope, magnetometer,

and light sensors for detecting eight physical activities collected

from 15 participants. (4) PAMAP2 is another public dataset cap-

turing 18 physical human activities via accelerometer, gyroscope,

and magnetometers. More dataset details are given in Appendix A.

In preprocessing, we divide time-series data into evenly sized

windows and apply the Fourier transform to each to generate spec-

trograms, with lengths based on data characteristics. FreqMAE

processes these spectrograms for feature representation. Note that

FreqMAE can handle different sampling rates among modalities since

they have separate feature encoders. During training, datasets are

split into training, validation, and test sets in an 8:1:1 ratio, leaving

sessions out for a realistic split. Training data is further split into dif-

ferent ratios of available labels (100%, 10%, 1%)Ðthe label ratioÐto

show FreqMAE’s effectiveness under label scarcity. For additional

preprocessing and training details, see Appendix B.

4.1.2 Baselines. We compare FreqMAE with 10 baselines: a su-

pervised benchmark, five self-supervised frameworks (MAE [16],

SimCLR [7], CAV-MAE [14], AudioMAE [19], LIMU-BERT [53]),

two modality-matching contrastive baselines (CMC [42], Cosmo

[30]), and two state-of-the-art (SOTA) contrastive time series frame-

works (TS-TCC [11], TS2Vec [55]). Detailed introductions of base-

lines are in Appendix C. We append a linear classification layer

for downstream tasks during fine-tuning. For the contrastive set-

tings, we keep the backbone encoders the same as FreqMAE for a

fair comparison. A set of eight time-domain augmentations, and a

frequency domain augmentation is used from common practices

[20, 25, 41] for contrastive baselines (details in Appendix B). Note

that contrastive frameworks’ performance depends on the used

augmentations, while FreqMAE eliminates dependency on used aug-

mentations and is generalizable (analysis at Section 4.2.1).

1MP=microphone, S=seismic, A=accelerometer, G=gyroscope, L=light,
M=magnetometer.

4.2 Evaluation Results

4.2.1 Overall Performances. Table 2 compares the performance of

FreqMAE with other baselines using a 100% label ratio. All evalu-

ations use fixed encoders and a linear layer on top of pretrained

sample features for a fair assessment of representational quality. The

results show FreqMAE surpasses all baselines by at least 6.6 % and

8 % in average accuracy and F1, affirming its effectiveness. While

supervised training slightly outperforms FreqMAE on the PAMAP2

task with full labels, we suspect this is due to PAMAP2 including hu-

man activities with shorter bandwidth (similar to RealWorld-HAR),

therefore self-supervised representations being less detailed to out-

perform supervised training with full labels. Moreover, supervised

training suffers from label shortage and degrades significantly with

fewer labels (see Section 4.2.2). Thus, FreqMAE’s overall superior

performance indicates the high quality of its extracted features. The

primary competitors of FreqMAE, TS-TCC and CMC frameworks,

are heavily dependent on augmentation design and often underper-

form with fewer augmentations [49]. Figure 9 demonstrates their

performance drop when using only six or three out of nine random

augmentations. Further evaluations of FreqMAE on downstream

tasks and representation quality are in Appendix D.

4.2.2 Varying Labeling Ratio. In this experiment, we evaluate the

performances of baselines and FreqMAE with different labeling

rates, varying from 1% to 100%. Figure 8 presents the comparison re-

sults with all datasets. Higher labeling rates tend to yield improved

accuracies across most models. However, FreqMAE consistently

outperforms the baseline models in all scenarios. Notably, there are

consistent performance gaps between FreqMAE and other models

toward lower labeling rates. We note that only TS-TCC consistently

competes with FreqMAE. This is because TS-TCC efficiently lever-

ages the temporally correlated nature of sensing signals through

temporal contrasting views. However, TS-TCC also relies on a rich

set of augmentations and experiences performance degradation

with fewer augmentations, as shown in Figure 9. This suggests that

FreqMAE effectively learns general representations from unlabeled

data, and thus a linear classifier is enough to achieve higher accuracy.

4.2.3 Ablation Study. Table 3 presents an ablation study using

ACIDS for VC and PAMAP2 for HAR tasks to assess the contribu-

tion of each design component. We studied four FreqMAE variants:

w/o Weighted Loss using standard MSE for reconstruction (Equa-

tion 2), w/o Energy Scaling applying only WMSE loss without

energy scaling (Equation 3),w/oTS-T employing Swin Transformer

instead of TS-Transformer, and w/o Fusion without shared fusion

and doing separate modality reconstruction during training.

First, the contribution of all components is evident in both tasks.

Comparatively, the fusion component and weighted loss scheme are

more helpful in improving task performance, which shows learning

relations across modalities can reveal underlying patterns in the

frequency domain. Such patterns might be hard to capture without

considering modality relations, as different sensor modalities often

provide complementary information [31]. Second, the focus of the

weighted loss objective on prioritizing informative content within

and across samples offers extra self-supervision for pretraining.

Finally, the absence of TS-T configuration has a larger impact on the

PAMAP2 task than on ACIDS. We suspect this difference is due to
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Table 2: Finetune results with 100 % labels. We mark the best and second best values.

ACIDS MOD PAMAP2 RealWorld-HAR Average

Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Supervised 0.9137 0.7770 0.8948 0.8931 0.8612 0.8384 0.9313 0.9278 0.9002 0.8591

CMC 0.7813 0.6216 0.9049 0.9023 0.7571 0.7223 0.8211 0.8384 0.8161 0.7712

Cosmo 0.8776 0.7298 0.3228 0.3241 0.7910 0.7469 0.8529 0.7968 0.7111 0.6494

SimCLR 0.5658 0.4879 0.7535 0.7434 0.7346 0.6635 0.7830 0.7181 0.7092 0.6532

TS2Vec 0.6539 0.4913 0.7649 0.7632 0.5706 0.4942 0.6117 0.5002 0.6503 0.5622

TS-TCC 0.9046 0.7651 0.7709 0.7744 0.7871 0.7107 0.8684 0.8227 0.8328 0.7682

Vanilla MAE 0.8872 0.7604 0.9015 0.8460 0.7382 0.6999 0.8638 0.8700 0.8477 0.7941

LIMU-BERT 0.5023 0.3171 0.2157 0.1236 0.7847 0.7612 0.7946 0.7261 0.5743 0.4820

CAV-MAE 0.7995 0.6711 0.5184 0.4941 0.7697 0.7351 0.9215 0.9267 0.7523 0.7068

AudioMAE 0.7845 0.6120 0.7274 0.7249 0.7808 0.7478 0.8163 0.7437 0.7773 0.7071

FreqMAE 0.9365 0.7919 0.9524 0.9514 0.8420 0.8205 0.9250 0.9327 0.9140 0.8741
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Figure 8: Accuracy comparison of FreqMAE with different labeling rates.
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Figure 9: Sensitivity to Data Augmentations.

Table 3: Ablation Study on FreqMAE components.

Dataset ACIDS PAMAP2

Metric Acc F1 Acc F1

w/o Weighted Loss 0.9068 0.7674 0.8249 0.8046

w/o Energy Scaling 0.9265 0.7642 0.8222 0.8013

w/o TS-T 0.9324 0.7876 0.8238 0.7991

w/o Fusion 0.9183 0.7636 0.8186 0.7905

FreqMAE 0.9365 0.7919 0.8420 0.8205

the audio and seismic data from the moving vehicles having sparser

frequency content with larger temporal correlation (i.e.,more stable

movement) than HAR tasks. Therefore, the contribution of localized

attention and temporal interaction is relatively more limited.

4.3 Feasibility in Real-World Deployment

4.3.1 Computation Overhead. Table 4 compares FreqMAE with

baselines in terms of parameters, model size, and inference time. By

running FreqMAE on a single-board Raspberry Pi 3 with 1 GB RAM

and a 1.2 GHz quad-core CPU, we evaluate memory and inference

time on deployment. The inference time is the execution time for

inferring one sample (2-seconds length), averaged over 1000 exper-

iments. Results show that although FreqMAE incurs slightly more

Table 4: Compute Overhead Comparison.

Model Parameters (M) Size (MB) Infer. Time (s)

DeepSense 0.563 2.193 0.491

ViT 2.821 10.850 1.503

Vanilla MAE 2.821 10.849 1.538

FreqMAE 3.036 11.693 0.972

Table 5: MOD variations for robustness experiments.

Variations Sensor Locations Vehicle Types Terrain # Labels

MOD-A ✓ ✗ ✗ 3229

MOD-B ✗ ✓ ✗ 6748

MOD-C ✗ ✗ ✓ 1163

inference time than DeepSense [54], a state-of-the-art supervised

model for performance comparisons [23, 53], the overhead is com-

parable and affordable for the considered COTS devices. Moreover,

the localized attention mechanism significantly reduces the compu-

tational overhead compared to Vanilla MAE, which utilizes a global

attention mechanism. Finally, although FreqMAE has comparable

size to the ViT, FreqMAE’s local attention mechanism significantly

reduces the computational overhead and inference time while improv-

ing performance in sensory data. Hence, FreqMAE incurs 37% less

overhead than its counterparts and allows real-time inference.

4.3.2 Robustness Test. Figure 10 illustrates our field testbed deploy-

ment across three distinct parking lot environments: MOD-A, B,

and C. We placed FreqMAE sensor nodes with acoustic and seismic

sensors strategically. The pretrained model from the MOD (see Ta-

ble 1) is utilized for each classification, including variations listed in

Table 5. MOD-A aligns closely with the original data, differing only

in sensor placement. MOD-B has a similar terrain to MOD-A but

uses different vehicles, while MOD-C is set on a concrete building

rooftop, introducing distinct acoustic and seismic behaviors.
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Figure 10: Robustness experiments were conducted in three

environments with different variations.

Table 6 presents the robustness evaluations, demonstrating Freq-

MAE’s impressive resilience to environmental variations across deploy-

ments. In MOD-A, changes to sensor locations are less challenging

for models, as they mostly influence measurement intensity with-

out significantly altering frequency signatures. For MOD-B, all

frameworks struggle with vehicles absent during pretraining due

to differing acoustic and seismic signatures with vehicle types. Yet,

FreqMAE’s performance excels, showcasing its ability to generalize

and classify even unseen targets. Finally, in MOD-C, seismic alter-

ations arise due to the concrete environment. However, FreqMAE

effectively harnesses insights from physics-based pretraining and

the fusion of complementary stable acoustic information, proving

adept at distinguishing features even with domain shifts.

Contrastive baselines TS-TCC and CMC, though competitive in

standard benchmarks (refer to Table 2 and Figure 8), underperform

in changing environments. This drop can be attributed to the nature

of contrastive frameworks. While they excel at extracting patterns

through similarities among various sample "views", they lack the

robustness provided by guidance based on generalized physical

features, thereby affecting adaptability in dissimilar environments.

5 RELATEDWORK

Self-Supervised Multi-Modal Representation Learning. Self-

supervised learning advancements in language and vision have

leveraged contrastive methods, relying on tailored spatial augmen-

tations [7, 15], and generative approaches such as MAE [16]. While

frameworks like CMC [42] and GMC [35] handle multimodal data,

they overlook frequency aspects in time series. Unimodal time

series have seen contrastive adaptations [11, 43, 55ś57], and multi-

modal sensing has been addressed by Cosmo [30] and Cocoa [9],

but without fine-tuning for modality-specific characteristics. Par-

allel to contrastive learning, Masked Image Modeling has shown

Table 6: Robustness against deployment variations.

MOD-A MOD-B MOD-C

Metric Acc F1 Acc F1 Acc F1

CMC 0.7415 0.7390 0.5760 0.4983 0.6412 0.5691

Cosmo 0.4205 0.3059 0.5816 0.5214 0.5496 0.2376

SimCLR 0.6733 0.6685 0.5377 0.3922 0.6107 0.3730

TS2Vec 0.6563 0.6439 0.5260 0.3521 0.5725 0.4487

TS-TCC 0.6051 0.5910 0.5012 0.1720 0.5802 0.4099

Vanilla MAE 0.8580 0.8602 0.6626 0.6347 0.6794 0.6326

LIMU-BERT 0.5000 0.1667 0.4233 0.1983 0.5649 0.2407

CAV-MAE 0.4801 0.4431 0.50309 0.21076 0.5419 0.3409

AudioMAE 0.5113 0.4981 0.4839 0.3475 0.4961 0.4571

FreqMAE 0.8750 0.8766 0.6885 0.6622 0.7710 0.7340

equivalent performance in vision [4, 16, 52]. Vision-language mul-

timodal modeling has been widely explored [12], and LIMU-BERT

[53] specifically targets generative modeling for IMU data. Differing

from these, FreqMAE uniquely integrates multimodal features with

a masked fusion approach and a physical domain-weighted objec-

tive, improving multi-modal sensor data representation learning.

Masked Spectrogram Learning. MAE, prevalent in vision-based

self-supervised learning, is now being applied to Masked Spectro-

gram Learning [13]. While AudioMAE [19] and MSM-MAE [29]

tackle single-modality audio spectrograms, and CAV-MAE [14]

blends modality matching with MAE for image and audio, none

address the unique characteristics of physical sensory data we

motivate. Contrarily, FreqMAE integrates physical insights in a mul-

timodal approach for enhanced time series representation learning.

6 DISCUSSION AND CONCLUSIONS

The paper introduced an IoT-centric masked autoencoding frame-

work, informed by physics-based insights for sensor signals, to

effectively capture crucial semantics for intelligent sensing tasks.

Experimental evaluations showed that FreqMAE surpasses cur-

rent state-of-the-art baselines across different tasks and reduces

the need for data labeling, maintaining robustness during domain

shifts. A potential limitation of FreqMAE may arise when a signifi-

cant portion of the unlabeled pretraining data is noisy, potentially

affecting the energy supervision from the weighted loss. In such sce-

narios, adjusting the energy contribution in the training objective

to emphasize the reconstruction of important frequency content,

typically less noisy, can be beneficial. In future work, we aim to

explore training objectives more resilient to such noisy data.
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A DATASETS

FreqMAE was tested on four datasets from Vehicle Classification

(VC) and Human Activity Recognition (HAR) applications, covering

various sensors, classes and environments, as shown in Table 1.

Moving Object Detection (MOD). This dataset, collected with a

RaspberryShake 1D and microphone array at two sites, records vi-

brations from passing vehicles, including seven object types such as

humans, at various speeds and distances. Seismic data was sampled

at 100 Hz and acoustic at 16000 Hz.

Acoustic-seismic identification Data Set (ACIDS) [8]. Created

by the US Army Research Lab, ACIDS includes over 270 runs of

nine ground vehicle types across three environmental conditions,

digitized at 1025 Hz. In VC, we added speed and distance classifica-

tion tasks to evaluate FreqMAE’s domain shift adaptability, with

speeds (5, 10, 15, 20 mph) and distances (close, mid-range, far).

RealWorld-HAR [40]. This dataset records eight human activities

using accelerometers, gyroscopes, magnetometers, and light sensors

at 100 Hz from 15 participants’ waists.

PAMAP2 [36]. It includes 18 physical activities from nine indi-

viduals, monitored using IMUs on the wrist, capturing data from a

3-axis accelerometer, gyroscope, and magnetometer at 100 Hz. This

study focused solely on wrist data.

B PREPROCESSING AND TRAINING
STRATEGIES

Here, we give preprocessing and training strategies at Section 4.1.

B.1 Preprocessing

During preprocessing, time-series data is segmented into equal-

sizedwindows and further split into overlapping or non-overlapping

intervals for creating spectrograms with Fourier transform. Freq-

MAE accommodates varying sampling rates of each modality with

different encoders, using spectrograms for feature representation.

Datasets are split into training, validation, and test sets in an 8:1:1

ratio, with a realistic session-based division. Training data is varied

in label availability (100%, 10%, 1%) for finetuning’s label ratio.

Self-supervised pretraining uses unlabeled data, and finetuning

uses a linear classifier trained on the labeled training set.

B.2 Data Augmentations

This section details the augmentationmethods from Section 4.1 used

for contrastive baselines, chosen based on established practices to

improve training. Note that, unlike contrastive frameworks, FreqMAE

does not require crafted augmentations as a self-automated framework

capable of generalizing across various IoT task domains.

Time-domain augmentations prior to spectrogram conversion:

• Scaling:Multiplies signals by Gaussian random values for scaling.

• Permutation: Randomly rearranges intervals within samples.

• Jitter. We introduce random Gaussian noise into the signals.

• Negation: Applies a -1 multiplier to signal values.

• TimeWarp: Uses a smooth curve to warp signal time locations.

•MagnitudeWarp:Modifies magnitudes with a cubic spline curve.

• Horizontal Flip: Flips the time series along the time axis.

• Channel Shuffle: Shuffles channels in multivariate data, such

asthree-axis accelerometer input (X, Y, Z dimensions).

Frequency-domain augmentations after spectrogram conversion:

• Phase Shift: Applies a random phase shift in the range of −𝜋 to

𝜋 to the complex frequency spectrum’s phase values.

B.3 Training Strategies

This section describes the hyperparameters and training methods

for the models, as detailed in Section 4 and Table 7. Configurations

remain mostly uniform across models. We utilize the AdamW opti-

mizer with cosine scheduling, adjusting the initial learning rate for

each model, a batch size of 128, and fine-tuning the temperature

parameter for peak performance, as indicated in Table 8. We apply

a 0.05 weight decay for regularization. For fine-tuning, we switch

to the Adam optimizer with a step scheduler, lowering the learning

rate by 0.2 every epoch across 200 epochs with 50 periods each, and

adjusting weight decay to optimize training outcomes.

C BASELINES

Here, we provide baselines’ introductions described in Section 4.1.

• Supervised.We train the entire model (i.e., the encoder and linear

classifier) in a supervised way with all of the available labels.

• SimCLR [7]. Uses contrastive learning and NT-Xent loss to

facilitate similarity between augmented views of the same sample.

• CMC [42]. Creates embeddings by matching same-sample repre-

sentations across modalities (positive pairs) and distancing different

samples (negative pairs), leveraging multimodal data to enhance

modality agreement using random batches and augmentations.

• TS2VEC [55]. Enhances time series representation through con-

trastive tasks across window sizes, identifying same-sample aug-

mentations and contexts as positive, and different samples or se-

quences as negative, supporting temporal and instance learning.

•Cosmo [30].Createsmultimodal time-series representation through

contrastive fusion, mapping modal embeddings to a hypersphere. It

treats similar features as positive and dissimilar as negative pairs.

•MAE [16]. MAE uses a self-supervised auto-encoding approach

with Transformers, masking significant input parts and focusing

on unmasked segments. It encodes modalities separately, then inte-

grates embeddings to minimize reconstruction errors, using modal-

ity encoders and linear layers for inference.

• LIMU-BERT [53].Designed for unlabeled IMU data, LIMU-BERT

adapts BERT’s self-supervised learning to sensor data, capturing

temporal patterns with custom adjustments for IMU specifics.

• CAV-MAE [14]. CAV-MAE merges MAE’s approach with con-

trastive learning for audio-visual data, using multi-stream process-

ing for input reconstruction, distinct encoders for each modality,

and a combined encoder to enhance cross-modal learning.
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Table 7: TS-Transformer Configurations.

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2

Patch Size aud: [1, 40], sei: [1, 1] [1, 8] [1, 2] [1, 2]

Temporal Window Size [1, 9] [1, 8] [1, 9] [1, 8]

Mod Feature Block Num [2, 2, 4] [2, 2, 4] [2, 2, 2] [2, 2, 2]

Mod Feature Block Channels [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]

Mod Fusion Channel 256 256 128 128

Mod Fusion Head Num 4 4 4 4

Mod Fusion Block 2 2 2 2

FC Dim 512 512 256 128

Temporal Shift 1 1 1 1

Table 8: Training configurations. (We use LR for Learning Rate)

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Temperature 0.07 0.2 0.07 0.07

Lambda 0.1 0.3 1.0 0.3

Gamma 0.5 1.0 4.0 1.0

Pretrain Optimizer AdamW AdamW AdamW AdamW

Pretrain Max LR Default: 1e − 5 Default: 1e − 4 Default: 1e − 4 Default: 1e − 4

Pretrain Epochs 6000 3000 1000 1000

Finetune Start LR 0.0001 0.0003 0.0005 0.001

•AudioMAE [19].AudioMAE, building onMAE [16], uses a Trans-

former with global and local attention for audio representation,

setting a baseline for TS-T design evaluations. It transforms audio

into spectrogram patches, masking some for efficient encoding.

D ADDITIONAL EVALUATIONS

D.1 Additional Downstream Tasks.

We assess pretrained models on distance and speed classification

tasks using the MOD dataset. Results in Figure 13 reveal consis-

tent outperformance by contrastive frameworks (SimCLR, CMC,

TS-TCC) over other self-supervised methods (MAE, LIMU-BERT).

FreqMAE’s integration of modality, temporal characteristics, and

physical insights enables superior adaptation on both tasks.

D.1.1 Representation Visualization. We employ the t-SNE algo-

rithm [44] to visualize the fused embeddings of FreqMAE to show

representation quality. Figure 11 illustrates FreqMAE embeddings,

showing well-separated clusters in ACIDS and RealWorld-HAR

datasets, indicating effective capture of underlying data structure

In MOD and PAMAP2, cohesive clusters are observed, albeit with

more overlap, due to a more challenging dataset structure.

D.2 Effect of Masking Strategies.

Figure 14 presents FreqMAE’s performance with varying masking

rates (60% to 90%) and strategies, comparing random unstructured

masking to three structured variants: (i) Time masking for vertical

spectrogram patches, (ii) Frequency masking for horizontal patches,

and (iii) Time+Frequency masking, applied with equal probability.

Masking Rate. Similar to MAE in vision, a pretraining masking

ratio of 70%-80% is ideal for learning spectrogram features, utilizing

the redundancy in continuous signals (see Figure 2). Vehicle classi-

fication is more impacted by the masking ratio than HAR tasks, due

to audio and seismic data’s wider, complex frequency range. Very

high masking ratios (e.g., 90%) decrease performance, underscoring

the importance of a balanced self-supervised challenge for IoT data.

Masking Scheme. Unstructured (random) masking outperforms

structured methods in self-supervised pretraining by using nearby

contexts to estimate missing spectrogram sections. Frequencymask-

ing reduces performance by removing harmonic bands, while time

masking effectively captures temporal correlations by reconstruct-

ing missing temporal content from related elements. Combining

time and frequency masking approaches the effectiveness of un-

structured masking through extrapolation from adjacent content.

D.3 Fusion Hyperparameter (𝛾 ) Analysis.

Figure 12-(a, b) shows the effect of the information scaling hyperpa-

rameter (𝛾 ) on combining shared and private feature embeddings,

as detailed in Section 3.3. This was tested with different settings

across two datasets (ACIDS and PAMAP2) for VC and HAR tasks.

A higher 𝛾 value emphasizes shared modal features, while a lower

one highlights individual modality information. The aim is to find

the best fusion approach for various tasks with FreqMAE.

Figure 12-(a) shows that VC tasks on the ACIDS dataset perform

better with smaller fusion weights, due to the difficulty in recon-

structing one modality from another in its audio-seismic combina-

tion and the imbalance in spectral content between modalities. Con-

versely, Figure 12-(b) demonstrates that HAR tasks on the PAMAP2

dataset, which involves multiple IMUs, benefit from larger fusion

weights, enhancing classification due to the richer cross-modality

fusion. Such versatility enables FreqMAE to be applied broadly across

various sensing tasks, providing an efficient and generalizable time

series data representation framework for practitioners.

D.4 WPSNR Hyperparameter (𝜆) Analysis.

Figure 12-(c, d) shows the effect of energy contribution (𝜆) on train-

ing outcomes, with tests on ACIDS and PAMAP2 datasets for VC

and HAR tasks, as discussed in Section 3.4. Increasing 𝜆 prioritizes

high-energy samples, enhancing detection across tasks. Too low

a 𝜆 decreases performance by failing to distinguish between high

2805



WWW ’24, May 13ś17, 2024, Singapore, Singapore Denizhan Kara et al.

(a) ACIDS (b) MOD (c) PAMAP2 (d) RealWorld-HAR

Figure 11: t-SNE visualization of FreqMAE embeddings. Different colors represent different ground truth labels.
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Figure 12: Fusion (𝛾 ) and WPSNR energy contribution (𝛾 ) hyperparameter anaylsis.

Distance Classification Speed Classification
0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SimCLR CMC MAE Cosmo TS2Vec TS-TCC FreqMAE

Figure 13: Additional downstream tasks on MOD.
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Figure 14: Effect of masking strategy on performance.

signal-to-noise ratio (SNR) samples and those with negligible in-

formation (e.g., background data or no observed content). For HAR

tasks, a higher 𝜆 significantly improves performance, leveraging

the energy content in IMU sensor readings to detect human activi-

ties effectively, as confirmed by optimal configurations in Table 8.

This suggests that adjusting the energy contribution within the loss

function can optimize model learning, especially for tasks where

energy content is a critical indicator.

For ACIDS, overly high 𝜆 values disproportionately prioritize

energy in learned representations, detrimental compared to HAR

tasks where IMU sensors, placed directly on the body, exhibit less

activity-related energy variation [40]. Conversely, in VC tasks, au-

dio and seismic modalities face rapid energy fluctuations due to

external deployment on moving vehicles, suggesting that high 𝜆

values might neglect low-energy yet informative signals. Hence,

employing the WPSNR objective with energy supervision refines

model focus towards high-quality representations, enhancing adapt-

ability across sensor types and modality characteristics, positioning

FreqMAE as a versatile framework for diverse sensing applications.

D.5 Effect of Positional Encodings.

This section evaluates the role of positional encoding in masked

representation learning. Following Swin-Transformers [27], we

add one-dimensional absolute positional embeddings (APE) to the

patches, organizing patch inputs into a sequence by channel, then

time, for various input lengths. These embeddings are combined

with the inputs before entering the backbone network.

Table 9: Effect of positional encoding on FreqMAE

Setting ACIDS PAMAP2 RealWorld-HAR MOD

Acc/F1 Acc/F1 Acc/F1 Acc/F1

With 0.9265/0.7596 0.8312/0.8120 0.8783/0.8916 0.9377/0.9356

Without 0.9365/0.7919 0.8420/0.8205 0.9250/0.9327 0.9524/0.9514

Table 9 shows positional encoding’s effect on frameworks, com-

paring TS-Transformer’s classification with and without embed-

dings. Echoing [27], positional embeddings don’t clearly enhance

and may even reduce accuracy in sensing tasks, likely due to spec-

trogram non-stationarity. Spectrogram harmonic sequences dis-

play temporal shifts, and using positional information could cause

overfitting to these changing sequences, which clashes with the

TS-Transformer’s Temporal Shift approach for temporal decoding.

TS-Transformer distinctively uses local attention for frequency

details and Temporal Shifting for dynamic harmonics, focusing on

inter-frequency links and adapting to physical data’s non-stationarity

without overfitting to exact positional frequency details.
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