2024 |EEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS) | 979-8-3503-5841-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/RTAS61025.2024.00035

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

Algorithms for Canvas-based Attention Scheduling
with Resizing

Yigong Huf, Ila Gokarn?, Shengzhong Liuf, Archan Misra!, Tarek Abdelzaher®
TUniversity of Illinois at Urbana-Champaign, *Singapore Management University, IShanghai Jiao Tong University,
yigongh2 @illinois.edu, ingokarn.2019@phdcs.smu.edu.sg, liu-sz@cs.sjtu.edu.cn,
archanm@smu.edu.sg, zaher@illinois.edu

Abstract—Canvas-based attention scheduling was recently pro-
posed to improve the efficiency of real-time machine perception
systems. This framework introduces a notion of focus locales,
referring to those areas where the attention of the inference
system should ‘“allocate its attention”. Data from these locales
(e.g., parts of the input video frames containing objects of
interest) are packed together into a smaller canvas frame which
is processed by the downstream machine learning algorithm.
Compared with processing the entire input data frame, this
practice saves resources while maintaining inference quality.
Previous work was limited to a simplified solution where the focus
locales are quantized to a small set of allowed sizes for the ease
of packing into the canvas in a best-effort manner. In this paper,
we remove this limiting constraint thus obviating quantization,
and derive the first spatiotemporal schedulability bound for
objects of arbitrary sizes in a canvas-based attention scheduling
framework. We further allow object resizing and design a set of
scheduling algorithms to adapt to varying workloads dynamically.
Experiments on a representative AI-powered embedded platform
with a real-world video dataset demonstrate the improvements
in performance and inform the design and capacity planning of
modern real-time machine perception pipelines.

I. INTRODUCTION

A growing number of Internet of Things (IoT) applications
require real-time machine perception involving the use of
complex Deep Neural Networks (DNN) to process one or
more sensory input streams on resource-constrained edge
devices. These applications increasingly use general-purpose
sensors, such as cameras or LiDARs, and adapt them for
downstream tasks using some form of machine intelligence.
For example, video data streams are increasingly used as a
general-purpose sensing modality that is then analyzed by
intelligent perception systems to serve a diverse range of
applications. Such applications include obstacle localization in
autonomous driving systems [1], suspicious activity detection
in security/surveillance systems [2], visual odometry in vision-
based navigation systems [3], occupancy detection in parking
lots [4], and building defect identification in visual inspection
systems [5].

In applications with time constraints (e.g., collision avoid-
ance in autonomous vehicles or drones), these complex ma-
chine inference algorithms add a heavy burden to the computa-
tional capacity of the edge computing platform. The common-
place approach to overcoming this performance bottleneck is
to provision the edge device with a GPU sufficient to process

the entire input frame at the desired frame rate. However, with
the observation that the application-relevant parts of the stream
usually constitute only a small fraction of the input data,
attention scheduling [6] was proposed to save computational
resources by identifying and processing only the targeted
focus locales in each frame. For example, when processing
a video frame for object detection, only a small fraction of
frame regions contain objects of interest. The work deemed
processing such parts together with less relevant ones (e.g., the
background) an instance of priority inversion. Not surprisingly,
it was shown that ample computational resources can be saved
by processing only the targetted focus locales in each frame.

Attention scheduling introduces an interesting dilemma.
Accelerators, such as GPUs (that are used to run embedded
system Al pipelines), are most efficient when running the same
kernel on all cores. This entails using inputs of standardized
fixed size (since, for example, a neural network that processes
input data will have a different architecture and weights
depending on the input dimensions). In traditional pipelines
where the perception subsystem observes the entire frame, it is
trivially true that the input size (i.e., frame size) is fixed. Thus,
the same neural network architecture is executed on all cores.
Attention scheduling breaks that assumption since the size of
individual focus locales within a frame can be arbitrary. Only
the focus locales with the same sizes are batched together for
execution on the GPU. The desire to unify input size (to the
perception subsystem), while allowing arbitrarily-sized focus
locales, has led to the emergence of canvas-based attention
scheduling [7].

In canvas-based scheduling, the focus locales are packed
into fixed-size bins, called canvas frames, that can then be
processed by the perception subsystem in an efficient manner.
Computational savings result from that the canvas frames are
smaller than the original full frames, leveraging the insight
that only a subset of the input is worth computational attention
at any point in time. Compared with the previous batching-
based solutions, this approach is more efficient because of
the improvement in parallelism on the GPU. Canvas-based
scheduling is interesting from a real-time scheduling per-
spective because schedulability becomes a function of both
temporal attributes of observed objects (such as deadlines
by which an object needs to be inspected by the percep-
tion subsystem) as well as their spatial attributes (e.g., what

2642-7346/24/$31.00 ©2024 IEEE 348
DOI 10.1109/RTAS61025.2024.00035
Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

fraction of the canvas frame an object occupies). Tension
arises between the spatial and temporal dimensions. Namely,
the optimal order in which objects should be considered for
packing into a bin (i.e., into a canvas frame) to best utilize bin
capacity is different from the optimal order in which objects
should be processed to meet deadlines. Thus, spatiotemporal
schedulability bounds could be derived for policies that make
different design decisions towards reconciling this tension. An
example of such a bound was proposed in [7] to relate the
ability of the edge-based perception subsystem to keep up with
the state of the environment in real time to the spatiotemporal
properties of surrounding objects. However, this schedulability
condition was obtained under significantly simplified assump-
tions that the focus locales are all squares and quantized
to a limited number of size levels. Such assumptions result
in wasted canvas areas and reduce efficiency. In addition,
the schedulability condition was merely used to estimate the
capacity requirement offline, while not used for adapting to
the dynamic workload online.

This paper builds on our previous study [8]. We remove the
limiting quantization assumptions and derive a new schedula-
bility bound for canvas-based attention scheduling. The bound
yields a sufficient spatiotemporal schedulability condition for a
perception subsystem as a function of (i) the spatial properties
of inputs that need to be inspected by the subsystem (the focus
locales) and (ii) the deadlines by which the inspection must
occur. We further introduce resizing as a useful tool to control
the trade-off between the perception quality and resource
consumption for inference tasks, and design algorithms to
derive the best resizing decisions. Through experiments on
a representative Al-powered embedded platform with a real-
world video dataset, we demonstrate the improvements in
canvas utilization and efficiency. This work provides useful
insights to inform the design and capacity planning for future
real-time machine inference pipelines.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III describes the
proposed scheduling algorithm and derives its properties.
Section IV discusses the implementation. The evaluation is
presented in Section V. Section VI overviews related work. A
brief discussion of limitations is covered in Section VII. The
paper concludes with Section VIII that summarizes the key
takeaways and outlines avenues for future extensions.

II. PROBLEM FORMULATION

The scheduling problem addressed in this paper extends
a recently proposed canvas-based scheduling framework [7].
This framework considers machine inference systems in appli-
cations such as intelligent video cameras, autonomous driving
cars, robots, and drones, that require processing complex
sensor inputs such as depth maps, thermal images, or cam-
era frames in real-time, with an Al-based perception model
running on a dedicated accelerator unit such as a GPU. A
processing capacity smaller than what is necessary to process
the original full input volume at the original frame rate
is used. Only selected patches of the data input, enclosing

349

objects of interest, are placed into a canvas frame in each
frame to be processed. Their processing occurs at different
intervals (multiples of the frame duration), considering the
volatility of their states. For example, static objects in the
field of view of a security camera need to be processed by the
perception subsystem less frequently than moving ones. When
not processed, new inference results (e.g., object type and
location) are updated from predictions based on the previous
ones.

We extend the aforementioned framework in two respects.
First, we allow the selected patches to be of arbitrary size
(up to a maximum limit) as opposed to having to adhere
to one of a few quantized sizes. Quantization results in
wasted canvas areas and reduces efficiency and flexibility.
Second, we consider object resizing as a means to further
improve efficiency. While the previous scheduling framework
provides an explicit schedulability bound for deciding the
best computation capacity offline, it is unable to dynamically
adapt to changing computing loads online if it exceeds the
predetermined capacity. Resizing has been shown to be an
effective way to trade off between inference accuracy and
computation requirements [9]. Introducing resizing to the
canvas-based processing framework results in an interesting
scheduling problem. We formulate the scheduling problem in
this section as follows.

A. Task Model

In this paper, we follow the standard canvas-based schedul-
ing model from earlier work [7], with the two extensions
mentioned above. Below, we recap model assumptions.

Consider a sensor that produces a multidimensional data
input, such as a camera or a depth sensor. It generates a
series of data frames, F', at a fixed frame rate with a per-
frame volume, V. (We use the word volume for generality,
with the understanding that it, in fact, refers to area in the
common case of two-dimensional video frames.) Let us denote
the k-th frame by Fj. Let the interval between two successive
frames (i.e., frame duration) be regarded as the time unit.
Frame processing by the perception system occurs on some
accelerator, with a capacity to process a total volume of at
most Vapy < V in each time unit. We call this volume the
canvas frame, denoted by C.

At time k, a set of objects of interest, Oy, are located in the
field of view of the sensor. Their rough locations are identified
by algorithms such as background subtraction or optical flow.
Let object o; € Oy occupy a volume v;. Let F,, and F,
denote the frames when the object o; enters and leaves the
sensor’s view, respectively. For simplicity, if an object exits
the field of view and then re-appears again, it is treated as
a new object. Each object must be processed periodically by
the perception subsystem while it is within the field of view.
This leads to a quasi-periodic task model, where a logical
task is associated with the processing of an object. The first
invocation of such a task for object o; occurs when the object
first enters the sensor field of view, at time a;. We then follow
an implicit deadline model, where the object is selected for

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

£y &
- FTa ST o Ra BT a8
Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
& I QD QD
- [e i) i) i
oo [N == 1= 1
P ez ez ez
G 18RS)
e =S =S
i 1@ = D)
oo o G\ o050 ocobo
Actual & st =Y
Canvas oo oo had -
1 Taskinvokation Inspection intervals: @1 @bl 2 &ir 2 #3
(O Object volume o 2 S 2 60 2

Fig. 1: An example of canvas-based attention scheduling.

inspection again after time DY has elapsed from the start of
the current period, where Df is the inspection deadline (and
period). Thus, if object o; is selected for inspection in frame
F}, it must be processed by the inference model within time
Df . Otherwise, the inspection deadline is considered missed.
The object must be packed in some canvas frame C.,,,, where
0 <m < D;, . The next invocation happens at frame Fy, pr,
with a new inspection interval not necessarily the same as DZ“,
depending on the factors affecting the volatility of the object.
For example, steady and static objects may have a larger D,
and faster-moving objects may have a smaller D. Between
invocations, the object locations are updated with predictions
from a tracking algorithm by utilizing the redundancy between
video frames.

B. Resizing and Packing

In each frame k, a subset of objects Oy C Oy, are selected
for execution, each with a new size choice. Let V, denote the
set of all allowed new size choices, and v, € Vs denote the
new resize choice for each selected object o; € Og. The resize
choice for 0; is Vimin < V) < v; < Vg, Where vy, is the
smallest allowed object size and v,,,4, is the largest allowed
object size. The objects are not allowed to be up-sized because
increasing the size beyond the original size does not provide
new information and hence does not improve inference quality.
The selected objects are resized and placed into the canvas
frame following a packing P that maps objects to canvas
frames so that their union is contained in the canvas frame
and no two objects overlap. Resize reduces object volume
and assists packing but also results in accuracy loss, hence
resizing decisions must be judiciously made so that the impact
on inference quality is minimized.

C. Scheduling Problem

We define the scheduling problem in this paper as an
optimization problem to derive online for each frame: a set of
objects O; C Oy, selected and their optimal resizing choices
Vs, and a corresponding packing P, so that all deadlines are

350

met and the inference quality is maximized. We aim to derive
a bound for the equivalent canvas volume that can be used for
schedulability analysis. The bound quantifies the least amount
of volume that can be processed in each frame when there
are enough objects in the frame. Then the equivalent canvas
can be treated as a uniprocessor serving the object volumes.
Schedulability can be determined by simply considering the
scalar object volumes and their inspection deadlines. If a
schedule exists on the equivalent canvas, then the tasks must
be schedulable on the corresponding actual canvas frame.

An illustration of the scheduling problem with a simple
example is shown in Figure 1. We consider a surveillance
camera looking at a road intersection to detect objects in the
field of view. In each frame, selected objects are placed into
the actual canvas frame smaller than the camera frame for
processing with the machine inference model. New objects
entering the frame have to be processed within the same frame.
After that, their processing frequency is determined by their
speeds. In this example, the fast-moving purple car has to
be processed every frame while the other cars have to be
processed every two frames, and the pedestrians only have
to be processed every three frames.

This example shows a feasible schedule both on the equiv-
alent canvas and with packing results on the actual canvas
frames. While the volume of one object can span multiple
equivalent canvases, the real focal locale of the object has to be
placed into one canvas in its entirety. For example, in frame 2,
there are three existing cars, a pedestrian, and one new car.
Both the new green car and the purple car are put into the
equivalent canvas because they have to be processed within
this frame. Then the remaining capacity of the equivalent
canvas is used for processing the blue car, and a fraction of the
brown car. While the volume of the brown car is split between
equivalent canvases 2 and 3, it is actually placed into canvas 2
in its entirety. Note that the volume processed in this canvas
frame is larger than that of the equivalent canvas. Similarly,
both the volumes of the blue car in frame 4 and the green
car in frame 5 span two equivalent canvases, but both cars are

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

placed into one of the real canvas frames. Both of the two real
canvas frames hold a larger volume than that of the equivalent
canvas.

I11.

The scheduling problem involves deciding the sequence
of selecting objects, choosing the best new sizes for them,
and deriving a feasible packing of selected objects into the
canvas frame. Let us consider a special sub-case where the
deadline for all objects is 1 and resizing is not allowed (i.e.,
all objects have to be processed in every frame at their original
sizes). Then the schedulability problem becomes whether all
objects in each frame can be packed into the canvas. This
problem of packing rectangles into a unit square is known to
be strongly NP-Hard. Then we consider another special case
where all objects are released at the same frame and have
the same deadlines. Then the schedulability problem becomes
whether these objects can be placed in a set of bins with
the number equal to the deadline. The solution involves a
bin packing problem to allocate objects to canvases, which is
known to be NP-hard. Hence, the original scheduling problem
we consider is NP-hard, as the sub-problems in both the spatial
and temporal dimensions are NP-hard. In order to derive a
solution that is feasible for real-time scheduling, we must
apply reasonable constraints and approximations.

To ensure real-time guarantees, we limit ourselves to the
case where all objects are selected in EDF order so that
a solution can be derived in a reasonable amount of time.
While EDF may not be optimal for the packing problem,
fixing the sequence of object choices makes the analysis more
tractable, and produces a sufficient condition that ensures no
deadline miss. Furthermore, we later show that the bound of
the equivalent canvas volume is the same for all algorithms,
indicating that EDF has the same worst-case performance as
any other algorithms. We then derive the equivalent canvas
volume and compare two sets of algorithms with different
packing strategies.

SCHEDULING ALGORITHMS

A. Packing of Quantized Objects

The first packing strategy we consider is object quantization
used by Hu et al. [7]. Specifically, in that version, the aspect
ratios of objects are restricted to 1:1, 1:2, and 2:1, and the
sides are quantized to the side length of the canvas frame
divided by powers of 2. As a result, any sequence of objects
whose sum of volumes is smaller than Vg prr can be packed.
We then derive the bound on equivalent canvas volume with
this packing strategy.

1) Schedulability Analysis: Hu et al. proved when objects
are packed in EDF order, the set of objects in the field of
view at time k meets inspection deadlines if the instantaneous
utilization ratio is no larger than 1 — v,4./Vepy. This
translates to an equivalent canvas volume bound of:

’UWLU.CL‘

‘/cquiv. = VGPU -

With this, our scheduling problem can be simplified into
finding the optimal resizing choices V' so that the tasks can be

351

scheduled with EDF on the equivalent canvas, and the accuracy
loss is minimized.

Formally,
max Z E(o;,v
0,€0(k)
U/
s.t. Z Dkq‘ < VGPU Umazx
0,€0(k) @
where E(o0;,v}) is a function reflecting the expected accuracy

(or quality) of the inference algorithm on object o; when it
is reduced to the new volume v. This function is obtained
from offline profiling. Intuitively, larger-sized objects can with-
stand more aggressive resizing before causing the accuracy of
downstream processing to diminish, whereas smaller objects
are more sensitive to resizing.

2) Online Scheduling Algorithm: The choices for new
sizes are quantized to a limited set: v, € {Vapy /2", n
1,2,3,...}. The optimization problem becomes a classic
Multiple-Choice Knapsack Problem (MCKP), where the ob-
jective is to choose from a set of multiple-choice items
to maximize total reward (accuracy expectation), while the
total weight (object volumes weighted by deadlines) does
not exceed the knapsack capacity (equivalent canvas volume).
MCKP is known to be NP-hard, making an exact solution
impractical to obtain in real-time. Instead, we apply a greedy
heuristic to arrive at an approximate solution. It starts with
all objects not selected, with v, = 0 for each object. Then it
incrementally increases the sizes of objects with the highest
incremental accuracy expectation over incremental volume.
Let vf denote the object volume one level smaller than v/,
and v,ﬁ' denote the object volume one level larger than v;. We
define:

ho E(os,v}) — E(i,v)”) if v} > vmn
v E(Oi7 Umin) if U; = Umin
and .
B, = (UZ U:_)/Dz ‘ if ’U; > Umin
o v:/Dfl if v; = Umin

where A;, »; 18 the incremental accuracy expectation and B, is
the incremental weighted volume. The incremental efﬁc1ency
is then: Gy, = Awi/Bvi' We calculate G for all objects
and sizes, and sort them in decreasing order, together with
the indices ¢ and vj. Intuitively, the smaller the object is,
the more easily it loses information when downsized. Sup-
ported by the empirical profiling results, we have that G
monotonically decreases with v;, satisfying the Karush-kuhn-
tucker conditions [10] and ensuring that a smaller volume will
always be chosen before a larger one. We iteratively select
volume increments for objects and update the new sizes for
corresponding tasks, until the total weighted volume reaches
the equivalent canvas volume. With these resizing decisions,
the tasks are schedulable on the canvas.

After we find the optimal resizing choices, the objects

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

are chosen according to the EDF order just before their
total resized volume exceeds the equivalent canvas volume:
Veru — Umazr < Zoieos v < Vapu, where Oy is the set
of selected objects. These objects are going to be packed into
the canvas for execution in the current frame. This ensures
that at least Veguiv. = VaPU — Umaa VOlume is processed
in each canvas frame. The reason to not pack the canvas
to its maximum is that, because any sequence of objects
whose sum of volumes is smaller than that Vgpy can be
packed into the canvas, we have the opportunity to partially
reverse the downsizing of some objects when the canvas is not
full. The sizes of the selected objects are incremented in the
same manner as before until the cumulative weighted volume
exceeds the bound.

The scheduling algorithm is detailed in Algorithm 1. Lines
5-12 calculate the best resizing choices so that the total
weighted volume is below the equivalent canvas capacity;
Lines 14-22 pick the resized objects in EDF order so that they
fit in the equivalent canvas; Lines 23-34 use the remaining
available canvas volume to partially reverse the downsizing of
some objects. The algorithm derives resizing choices V, and
packing P.

B. Packing of Unquantized Objects

Because of the restriction on aspect ratios and quantization,
the quantized volume is generally larger than the focus locale
of an object, which results in wasted volume. Thus, next, we
derive a schedulability result for the case where quantization
is not used and objects maintain their original aspect ratios.

1) Schedulability Analysis: When we remove the con-
straints of quantization and aspect ratios, objects with total
volumes equal to the canvas volume will most likely not fit
into the canvas. Previous work [11] proved a tight lower bound
of % on packing rectangles with side lengths smaller than 1
into a unit square when the rotation of 90° is allowed and
provided a simple packing heuristic that supports the bound.
We prove that when packing the objects according to EDF
order, this bound results in an equivalent canvas volume of

1
QVGPU — Umazx-

Theorem 1: The bound on the equivalent canvas volume for
unquantized rectangular objects is at most %VG PU — Umaz-

Proof: Let us assume that the bound on the equivalent canvas
volume for unquantized rectangular objects can be larger than
%VG PU — Umaz- Consider a set of inspection tasks, all with an
inspection period of D; = 1, and the sum of object volumes
is Zl v; = 1/2 — Uppae + €, where € is infinitesimally larger
than 0. Another object o; has a size equal to v,,4,, and an
inspection period of D >> 1. If we include object o; into
any of the canvas frames, then the total area of objects in that
canvas frame is:). v; + Umaz = 1/2 + €, which is greater
than 1/2. According to [11], when the total area of objects
is larger than 1/2, successful packing is not guaranteed, so
object 0; may miss its inspection deadline. The total weighted
volume of objects is: Y, ;/1 4+ Vmaa/D = 1/2 = Vpar +€+
Umaz /D, which is arbitrarily close to 1/2 — vy,q, When D is

352

Algorithm 1: Quantized Objects Scheduling

input : Objects O, inspection intervals D¥, canvas capacity
Ve pu, max object volume vpqz, accuracy-resizing

profile £/
output: Selected objects Objects O, Resize decision Vs,

packing P

1 Sort O in EDF order

2 Initialize V : {vj = 0,Yo; € O}, U =0

3 Calculate G = A/B for all objects in O

4 Sort and index G such that G; > ... > Gn

5 fori=1,2,...,N do

6 U=U + Bi

7 if U < Vgpu — Umas then

8 | idz =i break

9 else

10 | v =it

11 end

12 end

Ba=0,V,=0 0,=10

—
'

for o; in O do

ifa—}—v; < VepPu — Umaz then
a=a-+v;

Os =05+ 04

Vs = Vs + 0

[
[SER-NTY

—
®

else
| break
end

[-
= 8%

end
for i = idx, ..., N do
if 0; in O, then
if a + (vjT —v}) > Vgpu then
| break
else

Wow W oW » RN N
SRR, BRI RSN
i~
o
<

34 end
35 Generate packing P from Og and Vs
36 returnV,, P

sufficiently large and e is sufficiently small. This contradicts
our assumption. L

Notice that in the above proof, we do not make any
assumptions about the scheduling algorithm, hence the result
applies to any scheduling algorithms including EDF. Next, we
show that the above bound is tight. Similar to [7], We define
the EDF busy period as a set of successive busy frames starting
at the frame &£ when some task associated with object o; starts
and ends at frame k + Df when this object eventually misses
its inspection deadline.

Lemma 1: Within an EDF busy period, each canvas includes
objects with a total volume of at least %VG PU — Umaz-

Proof: Consider a canvas frame C}, in the EDF busy period.
Since all objects are no larger than v,,,,, assume the total
volume in the canvas is less than or equal to %VG PU — Umaz-
After including o; in this canvas, the canvas is less than or
equal to 1/2 utilized. According to [11], a feasible packing

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

exists for these objects so object o; can be put into this canvas
frame and processed before its deadline, which contradicts our
assumption. L

Theorem 2: A set of objects O in the input frame k meet all
inspection deadlines if:

>

0;€0(k)

K%

ki
Di

1
< §VGPU — Umazx

Proof: Imagine a hypothetical uniprocessor of speed
(%VG PU — Umaz) Cycles per time unit and a set of aperiodic
tasks ¢; that each has a deadline of Dfl time units, and needs
v; time units to finish. According to Lemma 1, a canvas
frame will process at least (%VG PU — Umaz) Volume of data.
When comparing objects processed with the canvas and tasks
processed on the hypothetical uniprocessor, tasks that finish at
the end of a time unit correspond to objects that have been
processed by the perception system. So, if the hypothetical
uniprocessor is schedulable, so is the canvas-based perception
system.

The schedulability condition for aperiodic tasks on a unipro-
cessor with EDF is known to be [12]:

G,

25

%

K3

Where C; is the execution time of task ¢; on the hypothetical
uniprocessor, calculated by the number of cycles it needs
divided by the number of cycles the uniprocessor executes
each time unit, or C; = vi/(%Vng — Upnag)- Substituting C;
in the EDF schedulability condition and rearranging, we get
the schedulability condition for the hypothetical uniprocessor
with the aperiodic tasks:

(3 1
§ k. < *VGPU — Umazx
Dy~ 2
0;€0(k) 2

With the argument made above, this condition also applies
to the canvas-based perception system. From Theorem 1, we
can conclude that this bound on the equivalent canvas volume
is tight. O

2) Online Scheduling Algorithm: Since the quantization
restriction is removed, the volume of the resized object can be
any number between v,,;, and v,,4.. In order to support more
flexible resizing options, instead of allowing a finite number of
resizing choices, we obtain an approximated function R(d) of
the accuracy expectation with regard to the object’s larger side
length d through offline profiling. Let the aspect ratio of object
o0; be b; > 1, obtained by dividing the longer side length by the
shorter side length, then the volume v = d?/b. Let v denote
the new volume of object o; after resizing, and let u; = v}/ Dfi
denote the weighted volume of object o;. The relation between
the accuracy expectation F and the object weighted volume u
is: E(u;)

R(y\/b; * Dfi * u;). The optimization problem is:

max Z E;(u;)

P 0,€0(k)

353

1
s.t. Z u; < §VGPU — Umax
0,€0(k)

As the offline accuracy profiling suggests, the closer the
new size is to the original size, the slower the accuracy in-
creases. For this reason, we assume that R(d;) is concave and
monotonically increasing, satisfying the Karush-kuhn-tucker
conditions [10]. As a result, E(u;) = R(y/b; * Df’ * ;) 1S
also concave and monotonically increases with u;. We obtain
this function by polynomial fitting to the profiling results. We
then show that the optimal solution is when function E;(u;)
has the same slope at all ;.

Lemma 2: At the optimal solution, >, u; = Vapu — Vmas-

Proof: Since F(u;) monotonically increases with w;, this is
trivially true. 0

Theorem 3: At the optimal solution, the slopes of all functions
E;(u;) are the same.

Proof: Let us denote the slope of F;(u;) as m;(u;). Assume
that at the optimal solution, at least one function F;(u;)
has a different slope. Consider this function and any other
function with a different slope. Without loss of generality, let
Ey(u) denote the one having a larger slope at optimal value
uy and Fo(u) denote one having a smaller slope at optimal
value uy. Let W = FEjy(u1) + E2(uz2) denote the cumulative
accuracy expectation. Since functions E'(u) are monotonically
increasing and concave, their slopes m(u) are monotonically
decreasing, then there exists u} and uj, where:

ma(uy) = ma(uh) = mo
ml(ul) > mg > mQ(UQ)
uyp < uj
ug > ub
The new cumulative accuracy expectation is:
W' = Eq1(u)) + Ea(uj)
then:
W' =W = Ei(u}) — Bi(u1) — (E2(u2) — Ea(u3))
> mg * (U] —u1) — mo * (us — ub)
= o * ((uh +) = (w1 + w2))
By Lemma 2, u} 4+ u5 = uj +ug, so W —W > 0, indicating
that W’ > W, which contradicts with the assumption that
W is optimal. Hence, the slopes of functions F;(u;) for all
objects are the same at the optimal solution. L
For each o; we can derive a function for u; when the slope
equals m: u; = S;(m). To limit v in the valid range, it is
clipped by i, and ;. The optimization problem is then to
find the m so that:

1
E Sz(m) = §VGPU — Umax
0,€0(k)

As there is no closed-form solution for this equation, we find
the optimal new volumes by performing a binary search on m.

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Rectangular Objects Scheduling

input : Objects O, inspection period D*, canvas capacity
Ve pu, max object volume vsmq4, Volume-slope
function S;

output: Selected objects Objects O, Resize decision Vs,
packing P

Sort O in EDF order

Calculate the minimum slope mo and maximum slope m;

Binary search in [mg, m1] for the smallest m such that:
ZOZ‘EO Sl(m) > %VGPU — Umazx

I S

4 Calculate V: {v] = S;(m),0; € O}
5a=0,0,=0

6 for o; in O do

7 if a + ’U; < Vgpu then

8 a=a-+v,

9 Os =05+ o0;

10 else

1 | break

12 end

13 end

Binary search in in [m, m.] for the smallest m such that:
O, rezised to V: {vj = Si(m),0; € O} can be packed

Vs =V

Generate packing P from Oy and Vs

returnVs, P

15
16
17

After deriving the best new volumes to satisfy the equivalent
canvas volume, the resized objects are selected according to
EDF order until their total volume just exceeds the bound.
Similar to before, the downsizing of the selected objects can
be partially restored by utilizing the unused canvas area. [11]
shows that any sequence of rectangles with a total area smaller
than 1/2 can be packed into a square of size 1. However, when
the total area is larger than % the existence of a valid packing
is unclear. For the selected objects, We find the optimal m
with binary search to utilize the remaining canvas volume as
much as possible, taking advantage of the efficient packing
scheme in [11] to decide if a feasible packing exists. The
scheduling algorithm is detailed in Algorithm 2. It first derives
the best resizing choices. Then lines 6-13 select resized objects
in EDF order so that their cumulative weighted volume is
just smaller than the equivalent canvas capacity. Then the
algorithm partially reverses the downsizing with binary search
and generates the final resizing choices Vs and packing P.

IV. IMPLEMENTATION

In this section, we describe the implementation details of
the canvas-based attention scheduling framework. We consider
a video surveillance application that requires the detection of
objects of interest in the camera frames.

Taking advantage of the statically mounted cameras, a
background subtraction-based algorithm is used to locate new
and foreground objects. Starting with a one-time initial full-
frame inspection of all objects, each subsequent frame is
first passed through background subtraction to locate dif-
ferences from the previous frame. The system thus builds
a background model that needs to be updated only where
differences are indicated. These differences typically identify
foreground moving objects. The algorithm remembers the

354

last position of each such object and has a notion of object
permanence: if an object does not move between two frames
(i.e., it is not detectable by background subtraction), it is
assumed to be not moving. Whenever motion (i.e., change)
is observed in a place not previously occupied by an object,
a new object is assumed to have entered the field of view.
If motion is observed at a position that is consistent with
a previously observed (trajectory of an existing) object, the
location of that object is updated accordingly. Finally, if a
moving object stops, even though the stopped object becomes
“invisible” to the background subtraction algorithm (that only
identifies motion/change), thanks to the assumption of object
permanence, the system assumes that the object remains at its
last recorded location and such location is kept track of for
future inspection.

The selection of deadlines, Df, is another implementation
decision. In this paper, the inspection deadline is set inversely
proportional to object speed. The intuition is that items with a
more rapidly changing state need to be tracked more closely.
Specifically, the speed of an object is calculated according
to optical flow and the value is mapped to a finite set of
inspection interval values ranging from 1 to 5, corresponding
to the object being included for inference every frame to at
least once every 5 frames. Other heuristics are possible but
left to future work. For example, one may opt to inspect less
predictably-moving objects more often. When an object is not
selected for inference, its new location is approximated with
an optical flow-based tracking algorithm [13].

V. EVALUATION

In this section, we evaluate the different scheduling policies
with a realistic surveillance camera dataset on an Al-powered
embedded platform.

A. Experiment Setup

1) Hardware Platform: We use the NVIDIA Jetson AGX
Xavier SoC for our experiments. It is a representative Al-
powered embedded platform equipped with an 8-core Carmel
Arm v8.2 64-bit CPU, a 512-core Volta GPU, and 32 GB
memory shared by both the CPU and the GPU. The Jetson
AGX Xavier consumes 30 Watts at the highest performance
mode and can deliver over 30 TOPs for deep learning applica-
tions. We set the power mode to “MAXN” and configure the
GPU to run at a constant clock frequency for a more stable
performance.

2) Dataset: We use the VIRAT Video Dataset [14] for
all of our experiments. This dataset was originally collected
for video surveillance applications. It consists of video feeds
of natural and realistic scenes captured by surveillance cam-
eras, covering various lighting and weather conditions. This
dataset is primarily designed for activity recognition so it only
provides labels for objects involved in its target activities,
and only the humans and objects involved in the actions are
labeled. We generate “pseudo ground truth” labels for all
objects of relevance to our application. We use a pre-trained

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

“Xlarge” YOLOVS5 ! model to label the objects in each frame.
The “Xlarge” model is the largest of all Yolo variants and
thus has the best performance (close to human accuracy). The
accuracy calculated based on these pseudo-labels is then used
as a metric to evaluate the quality of inference of our tested
algorithms. We restrict our attention to three object categories:
person, bicycle, and vehicle. Motorcycles and bicycles are
merged into class bicycle. Trucks, cars, and buses are merged
into class vehicle.

3) Load Manipulation: To evaluate the performance of
the algorithms under different computation loads, we need to
manipulate the number of objects in the frames. We achieve
this by stitching frames from various numbers of video sources
together to control the number of objects in the video feed.
When frames from n video feeds are combined together, each
new frame is n times larger and the overall utilization ratio is
roughly increased to n times.

4) Perception Model and Canvas: We use the YOLOvVS
model as the inference model for object detection. Specifically,
we use the model with the “large” configuration, with both the
depth and the width multipliers set to 1. The YOLOvVS model
includes a convolutional network that runs on the GPU which
dominates the execution time, and a non-max suppression
(NMS) process that runs on the CPU. The model is trained on
the COCO [15] dataset, and the precision is set to FP16 for
inference. The model is configured to only produce detection
on the objects of our interest. We profile the inference latency
with different input sizes and batch sizes in advance on the
hardware platform. In order to maintain a reasonably high
detection frequency for surveillance camera applications while
considering the computing capacity of the hardware, we select
the frame rate to be 20H z, corresponding to a canvas size of
512 x 512 according to the profiling results. The max side
length of objects is set to dy,qr = 256, corresponding to
Vinaz/Vapu = 1/4. Larger objects are simply downsized to
meet this size constraint. The smallest size is set to d,,;, = 32.

5) Size and Accuracy Profile: We profile the detection
accuracy expectations at different object sizes to facilitate the
resizing decisions. Specifically, we define the object size by
the length of their larger side d and vary it from 32 to 256 with
an interval of 32. For each d, we iterate through all objects in
the COCO dataset, select all the larger objects, and downsize
them to this size. Then the resized objects are processed by the
perception model and the average accuracy is calculated. For
packing with rectangles with unquantized sizes, we obtain the
accuracy profile function R(d) by fitting a polynomial function
and ensuring that it is concave and non-decreasing. In order
to prevent the algorithms from selecting a size outside the
allowed size range, we define the accuracy expectation to 0
when d < dypin OF d > dpas-

B. Evaluation Metrics

We consider the detection accuracy as a metric for the
overall perception performance of the framework. We use

"https://github.com/ultralytics/yolovs

355

mean average precision (mAP) as an end-to-end metric to
simultaneously capture both the detection and classification
performance. It is calculated by comparing the detection
results with the ground truth labels and finding matches based
on the intersection of the union (IoU) metric between bounding
boxes [16]. A detection is only considered correct when the
IoU between it and the ground truth bounding box exceeds a
predefined threshold (we use 0.5 in this paper) and the object
class matches. To evaluate the ability of algorithms to utilize
the canvas area, we consider the average canvas utilization
ratio. Canvas utilization is defined as the fraction of canvas
volume occupied by packed input segments. Because of the
quantization, these areas can be larger than the objects of
interest (focus locales) enclosed in them. We also calculate
the real canvas utilization as the fraction of the canvas area
occupied by the objects of interest from the input frame.
With these considerations, we define the evaluation metrics
as follows:

o Mean Average Precision (mAP): The average precision
of all object classes. It is an indicator of the overall
inference performance of the system.

« Average Precision (AP): The average precision for each
object class. It simultaneously captures the error in object
detection and classification.

« Average Canvas Utilization: The average canvas utiliza-
tion ratio. It evaluates how much of the canvas space is
used by the algorithm.

« Average Real Canvas Utilization: The average area ratio
of areas of interest in the canvas. It evaluates how much
of the canvas is used towards the essential part of the
input frame.

C. Experiment Results

1) Compared Algorithms: We compare in total four
scheduling algorithms with two different packing strategies:

a) Quantized no resize (baseline): The baseline schedul-
ing algorithm proposed in [7]. It quantizes the areas of interest
and places them into the canvas for processing following EDF
in a best-effort manner.

b) Quantized resize: The scheduling algorithm detailed
in section III-A. It quantizes the areas of interest, calculates
the best resizing choices under the utilization bound, and then
packs the resized objects into the canvas.

¢) Rectangle boost: The scheduling algorithm detailed in
section III-B. It calculates the best resizing choices to meet the
deadlines and then packs the resized objects into the canvas.

d) Rectangle no boost: Same as Rectangle boost except
that the sizes of the objects are not boosted back to utilize the
remaining canvas volume.

The overall performance of the system, characterized by
the mAP, is shown in Figure 2. As the load increases, more
objects have to be processed, hence the performance of all
algorithms drops. However, at all computation loads, the
algorithm Rectangle boost consistently performs better than
any other algorithm. Quantized resize performs better than
Quantized no resize at all loads except when the number of

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

100

80 -

mMAP (%)
o
o

N
o

Rectangle boost
Quantize resize
Quantize no resize
Rectangle no boost

20 A

Load (frames)

Fig. 2: The mean average precision comparison.

frames is 3, and maintains relatively high performance when
the system load varies. This demonstrates the effectiveness
of the resizing algorithm to selectively trade the detection
accuracy of larger objects for more space to accommodate
other objects. When system load increases, more objects in
Quantized no resize miss their deadlines but the impact on
detection accuracy degrades slowly, due to the utilization of
temporal redundancy between frames. Rectangle no boost
performs the worst, because of the pessimistic 25% equivalent
canvas volume bound. Although the algorithm ensures no
deadline is missed by meeting the bound, the aggressive
downsizing results in too much information loss and affects
the inference performance.

In order to obtain more insight into the impact of size
manipulation, we compare the per-class average precision at
different system loads, as shown in Figure 3. We observe
that the algorithms with resizing maintain better accuracy for
class people when the system load increases. People in the
camera frames are usually small in size so downsizing larger
objects will make enough room to include them in the canvas,
maintaining the required inference frequency. Quantized no
resize, on the other hand, processes the objects in a best-
effort manner and randomly misses deadlines of objects as the
load exceeds the utilization bound, essentially decreasing the
inference frequency, resulting in more accuracy loss. For the
object class vehicle, the average precision with Quantized no
resize decreases slower than that of the other three algorithms.
This is because there are a considerable number of parked
vehicles in the camera frames. When the processing of these
objects is skipped, the new location predictions are very accu-
rate. With resizing, however, the detection accuracy of these
objects decreases, and chances are that they will be removed
from the memory because of a failed detection. Because of
the nature of background subtraction, these objects are part of
the background and will not be detected again. The accuracy
for class bicycle of Rectangle boost drops much more sharply
compared with class vehicle. This is because we use the same
accuracy-resize function for all classes, while class bicycle is

356

100

501

People

50 -

AP (%)
Bicycle

100

50 -

Vehicle

B Rectangle boost
BN Quantize resize

BN Quantize no resize
Il Rectangle no boost

1 2 3 4
Load (frames)

Fig. 3: Average precision of different object classes.

more susceptible to accuracy loss when downsized compared
with class vehicle. This indicates the potential benefit of per-
class treatment when making downsizing decisions.

To evaluate the ability of different algorithms to utilize the
canvas, we calculate the average canvas utilization rate, as
shown in Figure 4. As the load increases, the canvas utilization
rate of both Rectangle boost and Quantized resize increases,
indicating that they are able to utilize the unused canvas area
and partially reverse the downsizing of some objects. The
utilization rate of Quantized no resize is lower compared with
Quantized resize, because it packs the canvas in a best-effort
manner and lacks the size boost mechanism to better utilize the
canvas. The utilization rate of Rectangle no boost stays close
to 25% because it downsizes objects to meet the bound and
does not restore the sizes of the objects. We further compare
the real canvas utilization rate, calculated as the portion of
the canvas volume that is occupied by the actual unquantized
object, as shown in Figure 5. The real canvas utilization rates
for the two algorithms with quantized objects are lower than
the average canvas utilization rate because of the wasted area
caused by quantization. In comparison, although the average
utilization of Rectangle boost is lower, when considering the
quantization area waste, it is able to utilize more canvas area
for the use of the focus locales in the input frame, contributing
to its better inference performance.

2) Scheduling Overhead: We report the cumulative distri-
bution function (CDF) of the latency overhead of the schedul-
ing algorithms, as shown in Figure 6. It reflects the latency
induced by the scheduling algorithm under different conditions
(number of objects, their sizes and speeds) encountered in
the tested dataset. Due to the iterative binary search process
involved, both Rectangle boost and Rectangle no boost require
a longer time to finish compared with Quantized resize and
Quantized no resize. Comparing Rectangle no boost and
Rectangle boost we can conclude that boosting the downsized
objects back towards their original sizes induces acceptable
latency overhead, but contributes to a considerable amount
of performance improvement, indicating the necessity of this

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

100

Bl Rectangle boost
B Quantize resize
EEE Quantize no resize
I Rectangle no boost

80 -

60 -

401

Canvas utilization (%)

20 A

Load (frames)

Fig. 4: The average canvas utilization rate.

1004

80 -

601

CDF (%)

—— Rectangle boost
—— Quantized resize
—— Quantized no resize
—— Rectangle no boost

401

20

T T T T T

4 6 8 10 12 14
Latency (ms)

Fig. 6: Scheduling algorithm latency overhead.

step. The CDF of the end-to-end inference latency is shown
in Figure 7. Since all the scheduling, preprocessing, and
postprocessing steps are implemented as separated threads
running on different CPU cores, they pose no overhead on
the inference model which is GPU dominant, and thus do not
affect the throughput.

3) Deadline Misses: We also experimentally ascertained
that no deadlines were missed as long as the derived equivalent
canvas volume bound is met at all times, and the algorithms
with resizing do not miss any deadlines. On the other hand,
Quantized no resize misses deadlines. It packs objects in
a best-effort manner (without resizing) until running out of
canvas volume, so when the workload is high, not all objects
can be packed. As a result, the objects that fail to be packed
in time will miss their deadlines. While no figure is needed to
demonstrate this result, we mention it here for completeness.

VI. RELATED WORK

Recently, an increasing number of modern Cyber-Physical
Systems (CPS) applications, such as autonomous driving, start
to incorporate the execution of complex deep neural net-
works into mission-critical pipelines [17]. These systems often
require predictable and efficient performance on resource-
constrained hardware platforms.

While the current mainstream deep learning algorithms have
been successful in terms of accuracy, they are not designed
with explicit time constraints and constrained computation

357

100

I Rectangle boost
B Quantize resize
Bl Quantize no resize

801 mmm Rectangle no boost

60 -

401

Real canvas utilization (%)

20 A

1 2 3 4
Load (frames)

Fig. 5: The average real canvas utilization rate.

100 Rectangle boost

Quantized resize
Quantized no resize
Rectangle no boost

80 A

60 -

404

CDF (%)

20 A

T T T T
40 60 80
Latency (ms)

o4
N
o

100 120

Fig. 7: End-to-end inference latency.

load required by Cyber-Physical Systems. To mitigate this
issue, attention has been paid to optimizing deep learning
frameworks with special consideration for real-time applica-
tions [18]-[24]. On the other hand, the current general-purpose
hardware accelerators such as GPUs are not primarily designed
for predictable timeliness, which reduces confidence in them
for mission-critical real-time applications. To better understand
the timing characteristic of the hardware platforms, numerous
profiling efforts have been made [25]-[31]. The response time
of combinations of complex Al algorithms and heterogeneous
hardware was also studied: Voronov et al. [32] proposed
techniques for response-time analysis of processing graphs
running on complex heterogeneous hardware and was able
to reduce the response-time bounds. The other work aimed
at introducing the notion of imprecise computation to deep
learning models and enabling dynamic execution time and
quality trade-off [33]-[39].

Attention Scheduling [6] was proposed to tackle the priority-
inversion problem commonly found in early perception
pipelines. Instead of processing the incoming data frame in
a first-come-first-served manner, attention scheduling priori-
tizes different regions of the input frame according to their
importance. Given that usually only a small fraction of the
input frame requires processing, the computation hardware is
no longer required to be over-provisioned to keep up with
the entire frame. To control the trade-off between inference
quality and resource consumption, three degrees of freedom

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

are mainly considered: spatial [6], [40], temporal [13], and
quality [9], [33], [41], [42]. To this end, canvas-based attention
scheduling was proposed by Hu et al. [7] to manipulate
the spatial and temporal dimension and take advantage of
canvas-based processing to improve efficiency. They derived a
tight schedulability bound with EDF and object quantization.
However, their proposed framework does not adapt to different
system loads online and only processes tasks in a best-effort
manner. Moreover, the inefficiency caused by quantization
prevents further improving the performance. In this paper, we
extend canvas-based attention scheduling with resizing and lift
the quantization constraint, leading to an interesting scheduling
problem and a more efficient system.

VII. DISCUSSION

The work presented in this paper is an attempt to explore
the emerging area of spatiotemporal scheduling for Al tasks
that process (multidimensional) spatial inputs, with the option
of imprecise computation by resizing, subject to constraints
on time (e.g., object inspection frequency constraints) and
constraints on sizes of “bins” that are presented for processing
with the AI algorithm. We discuss several limitations and
possible extensions of this work.

a) Scheduling Policy: To derive the approximate solu-
tion, the algorithms assume that objects are placed in canvas
bins according to an EDF order. However, because of the bin-
packing-like nature of the canvas-based scheduling problem,
EDF is not necessarily optimal. The topic remains open for
designing an optimal scheduling policy that further improves
canvas utilization.

b) Computational Overheads: The implementation of
our scheduler and background subtraction modules does pose
some overhead. What makes the scheme feasible is the fact
that the Al-based perception subsystem runs on a GPU (and
is itself quite computationally heavy). Background subtraction
and object scheduling, in contrast, use CPU cores. Thus, there
is no conflict and the GPU throughput remains unaffected,
although the end-to-end latency is augmented with the CPU
overhead. If this is an issue, the GPU deadline used in our
equations can simply subtract the CPU overhead (which is
always less than one frame period) from the original deadline.

c) Per-class treatment: In this paper, we use the same
accuracy-size profile for all object classes. However, different
types of objects may have different sensitivity to resizing.
Also, depending on application specifics, different object
classes may have different importance. An algorithm incorpo-
rating per-class object treatment is reserved for future work.

d) Problem Formulation: We followed the original can-
vas scheduling paper [7] and defined the tasks as quasi-
periodic with implicit deadlines. The period of a task was
determined by considering the factors affecting the rate of
change of the object state; more specifically, its speed. Other
formulations are possible. For example, one can consider a
formulation similar to [13], where there is no explicit deadline
for objects and the detection frequency of objects is affected
by the system load. Combined with resizing and canvas-based

358

processing, the optimization problem becomes to minimize
system uncertainty caused by downsizing and object volatility.

e) Safety Considerations: Although resizing facilitates
schedulability, it can cause false negatives in detection and
may, in turn, affect scheduling, and potentially trigger dan-
gerous feedback in detection and scheduling. Since the back-
ground subtraction indicates the existence of an object and
then the detection algorithm decides its type and precise
location, when an object is previously detected, it will only be
removed if the inference algorithm confirms there’s no object
in the tracked location. Therefore, we can enforce that the first
detection should always be at the original size, and a tracked
object can only be removed if no detection is found at the
tracked location at the original size. This way we eliminate
false negatives caused by downsizing and prevent feedback in
detection and scheduling.

VIII. CONCLUSIONS

The paper touched on an interesting dilemma that arises in
scheduling real-time perception pipelines where different focus
locales (selected from an original input frame) are consolidated
into a smaller area (the canvas frame) for Al-based application-
specific quasi-periodic inspection, subject to respective im-
plicit deadlines. The dilemma lies in the fact that the best
order in which objects need to be considered for attaining
the most efficient packing of canvas frames is different from
the best order in which objects need to be considered to meet
deadlines. Packing frames more efficiently, however, increases
effective available capacity, which improves the ability to meet
deadlines. Thus, the optimal policy for this spatiotemporal
scheduling problem remains unclear. The paper established a
new baseline by deriving a bound for the equivalent canvas
volume and using it to control object resizing online under
EDF. Future extensions will consider optimality results that
further improve the performance for canvas-based attention
scheduling.

ACKNOWLEDGEMENT

This work was sponsored in part by ARL W911NF-17-2-
0196, NSF CNS 20-38817, IBM (IIDAI), the Boeing Com-
pany, the National Research Foundation, Singapore under
NRF-NRFI05-2019-0007, and the National Natural Science
Foundation of China under No. BC0301315 and BC0301340.

REFERENCES

[1] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues,
and future challenges,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1275-1313, 2018.

C. Amrutha, C. Jyotsna, and J. Amudha, “Deep learning approach
for suspicious activity detection from surveillance video,” in 2020
2nd International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA). 1EEE, 2020, pp. 335-339.

D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004., vol. 1. Ieee, 2004, pp.
-1

G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,”
in 2016 IEEE Symposium on Computers and Communication (ISCC).
IEEE, 2016, pp. 1212-1217.

[2]

3

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

[5]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

H. Perez, J. H. Tah, and A. Mosavi, “Deep learning for detecting building
defects using convolutional neural networks,” Sensors, vol. 19, no. 16,
p. 3556, 2019.

S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in 2020 IEEE Real-Time
Systems Symposium (RTSS). 1EEE, 2020, pp. 319-332.

Y. Hu, I. Gokarn, S. Liu, A. Misra, and T. Abdelzaher, “Under-
provisioned gpus: On sufficient capacity for real-time mission-critical
perception,” in 2023 32nd International Conference on Computer Com-
munications and Networks (ICCCN). 1EEE, 2023, pp. 1-10.

Y. Hu, I. Gokarn, S. Liu, A. Misra, and A. Tarek, “Work-in-progress:
Algorithms for canvas-based attention scheduling with resizing,” in 2023
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2023, pp. 435-438.
Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
2021 IEEE 27th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). 1EEE, 2021, pp. 169—
178.

G. Gordon and R. Tibshirani, “Karush-kuhn-tucker conditions,” Opti-
mization, vol. 10, no. 725/36, p. 725, 2012.

J. Januszewski, “Packing rectangles into the unit square,” Geometriae
Dedicata, vol. 81, no. 1-3, pp. 13-18, 2000.

T. F. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for
aperiodic tasks and priority driven scheduling,” IEEE Transactions on
Computers, vol. 53, no. 3, pp. 334-350, 2004.

S. Liu, X. Fu, M. Wigness, P. David, S. Yao, L. Sha, and T. Abdelzaher,
“Self-cueing real-time attention scheduling in criticality-driven visual
machine perception,” in In Proc. 28th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), May 2022.

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-scale
benchmark dataset for event recognition in surveillance video,” in CVPR
2011. 1IEEE, 2011, pp. 3153-3160.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of computer vision, vol. 88, no. 2, pp. 303-338, 2010.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909-4926, 2021.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Generating and exploiting deep learning variants to increase
heterogeneous resource utilization in the NVIDIA XAVIER,” in 3/st
Euromicro Conference on Real-Time Systems (ECRTS 2019), vol. 23,
2019.

Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling
for multi-DNN real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). 1EEE, 2019, pp. 392-405.

W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible
layer-by-layer CPU/GPU scheduling for real-time DNN tasks,” in 2021
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2021, pp. 329-341.
H. Li, J. K. Ng, and T. Abdelzaher, “Enabling real-time Al inference on
mobile devices via GPU-CPU collaborative execution,” in 2022 IEEE
28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). 1EEE, 2022, pp. 195-204.

1. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti,
“ACETONE: Predictable programming framework for ML applications
in safety-critical systems,” in 34th Euromicro Conference on Real-Time
Systems (ECRTS 2022), 2022.

M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson,
and J.-M. Frahm, “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2019, pp. 305-317.

H. Zhou, S. Bateni, and C. Liu, “S™ 3DNN: Supervised streaming
and scheduling for GPU-accelerated real-time DNN workloads,” in
2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 1EEE, 2018, pp. 190-201.

359

[25

[31]

[33]

[34]

[37]

[38]

[39

[40]

[42

T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2017, pp.
104-115.

N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in 2018
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2018, pp. 119-130.
M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, “Avoiding pitfalls when using nvidia gpus for real-time tasks
in autonomous systems,” in 30th Euromicro Conference on Real-Time
Systems (ECRTS 2018), 2018.

J. Hanhirova, T. Kdmiridinen, S. Seppild, M. Siekkinen, V. Hirvisalo, and
A. Yli-Jdaski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, 2018, pp. 204-215.

N. Otterness and J. H. Anderson, “AMD GPUs as an alternative
to NVIDIA for supporting real-time workloads,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020), 2020.

N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D.
Smith, A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,” in 2017 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2017, pp. 353-364.

I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a perfor-
mance and predictability perspective,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 1EEE,
2020, pp. 213-225.

S. Voronov, S. Tang, T. Amert, and J. H. Anderson, “Al meets real-time:
Addressing real-world complexities in graph response-time analysis,” in
2021 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2021, pp.
82-96.

S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and
T. Abdelzaher, “Scheduling real-time deep learning services as imprecise
computations,” in In Proc. IEEE International Conference on Embedded
and Real-time Computing Systems and Applications (RTCSA), August
2020.

S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy
toward real-time dnn inference and training,” in 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 1EEE,
2020, pp. 15-29.

S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection
system with multi-path neural networks,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 1EEE,
2020, pp. 174-187.

A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware 3d
object detection,” in 2022 IEEE 28th International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA).
IEEE, 2022, pp. 31-40.

S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). 1EEE,
2018, pp. 67-79.

M. Yuhas, D. J. X. Ng, and A. Easwaran, “Design methodology for
deep out-of-distribution detectors in real-time cyber-physical systems,”
in 2022 IEEE 28th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). 1EEE, 2022, pp.
180-185.

T. Abdelzaher, K. Agrawal, S. Baruah, A. Burns, R. 1. Davis, Z. Guo,
and Y. Hu, “Scheduling idk classifiers with arbitrary dependences to
minimize the expected time to successful classification,” Real-Time
Systems, pp. 1-60, 2023.

S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun,
L. Sha, and T. Abdelzaher, “Real-time task scheduling for machine
perception in intelligent cyber-physical systems,” IEEE Transactions on
Computers, 2021.

S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017, p. 4.

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). 1EEE, 2016,
pp. 2464-2469.

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

