
Algorithms for Canvas-based Attention Scheduling
with Resizing

Yigong Hu†, Ila Gokarn‡, Shengzhong Liu††, Archan Misra‡, Tarek Abdelzaher†
†University of Illinois at Urbana-Champaign, ‡Singapore Management University, ††Shanghai Jiao Tong University,

yigongh2@illinois.edu, ingokarn.2019@phdcs.smu.edu.sg, liu-sz@cs.sjtu.edu.cn,

archanm@smu.edu.sg, zaher@illinois.edu

Abstract—Canvas-based attention scheduling was recently pro-
posed to improve the efficiency of real-time machine perception
systems. This framework introduces a notion of focus locales,
referring to those areas where the attention of the inference
system should “allocate its attention”. Data from these locales
(e.g., parts of the input video frames containing objects of
interest) are packed together into a smaller canvas frame which
is processed by the downstream machine learning algorithm.
Compared with processing the entire input data frame, this
practice saves resources while maintaining inference quality.
Previous work was limited to a simplified solution where the focus
locales are quantized to a small set of allowed sizes for the ease
of packing into the canvas in a best-effort manner. In this paper,
we remove this limiting constraint thus obviating quantization,
and derive the first spatiotemporal schedulability bound for
objects of arbitrary sizes in a canvas-based attention scheduling
framework. We further allow object resizing and design a set of
scheduling algorithms to adapt to varying workloads dynamically.
Experiments on a representative AI-powered embedded platform
with a real-world video dataset demonstrate the improvements
in performance and inform the design and capacity planning of
modern real-time machine perception pipelines.

I. INTRODUCTION

A growing number of Internet of Things (IoT) applications

require real-time machine perception involving the use of

complex Deep Neural Networks (DNN) to process one or

more sensory input streams on resource-constrained edge

devices. These applications increasingly use general-purpose

sensors, such as cameras or LiDARs, and adapt them for

downstream tasks using some form of machine intelligence.

For example, video data streams are increasingly used as a

general-purpose sensing modality that is then analyzed by

intelligent perception systems to serve a diverse range of

applications. Such applications include obstacle localization in

autonomous driving systems [1], suspicious activity detection

in security/surveillance systems [2], visual odometry in vision-

based navigation systems [3], occupancy detection in parking

lots [4], and building defect identification in visual inspection

systems [5].

In applications with time constraints (e.g., collision avoid-

ance in autonomous vehicles or drones), these complex ma-

chine inference algorithms add a heavy burden to the computa-

tional capacity of the edge computing platform. The common-

place approach to overcoming this performance bottleneck is

to provision the edge device with a GPU sufficient to process

the entire input frame at the desired frame rate. However, with

the observation that the application-relevant parts of the stream

usually constitute only a small fraction of the input data,

attention scheduling [6] was proposed to save computational

resources by identifying and processing only the targeted

focus locales in each frame. For example, when processing

a video frame for object detection, only a small fraction of

frame regions contain objects of interest. The work deemed

processing such parts together with less relevant ones (e.g., the

background) an instance of priority inversion. Not surprisingly,

it was shown that ample computational resources can be saved

by processing only the targetted focus locales in each frame.

Attention scheduling introduces an interesting dilemma.

Accelerators, such as GPUs (that are used to run embedded

system AI pipelines), are most efficient when running the same

kernel on all cores. This entails using inputs of standardized

fixed size (since, for example, a neural network that processes

input data will have a different architecture and weights

depending on the input dimensions). In traditional pipelines

where the perception subsystem observes the entire frame, it is

trivially true that the input size (i.e., frame size) is fixed. Thus,

the same neural network architecture is executed on all cores.

Attention scheduling breaks that assumption since the size of

individual focus locales within a frame can be arbitrary. Only

the focus locales with the same sizes are batched together for

execution on the GPU. The desire to unify input size (to the

perception subsystem), while allowing arbitrarily-sized focus

locales, has led to the emergence of canvas-based attention
scheduling [7].

In canvas-based scheduling, the focus locales are packed

into fixed-size bins, called canvas frames, that can then be

processed by the perception subsystem in an efficient manner.

Computational savings result from that the canvas frames are

smaller than the original full frames, leveraging the insight

that only a subset of the input is worth computational attention

at any point in time. Compared with the previous batching-

based solutions, this approach is more efficient because of

the improvement in parallelism on the GPU. Canvas-based

scheduling is interesting from a real-time scheduling per-

spective because schedulability becomes a function of both

temporal attributes of observed objects (such as deadlines

by which an object needs to be inspected by the percep-

tion subsystem) as well as their spatial attributes (e.g., what

348

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00035

20
24

 IE
EE

 3
0t

h
Re

al
-T

im
e

an
d

Em
be

dd
ed

 T
ec

hn
ol

og
y

an
d

Ap
pl

ic
at

io
ns

 S
ym

po
siu

m
 (R

TA
S)

 |
 9

79
-8

-3
50

3-
58

41
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
AS

61
02

5.
20

24
.0

00
35

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

fraction of the canvas frame an object occupies). Tension

arises between the spatial and temporal dimensions. Namely,

the optimal order in which objects should be considered for

packing into a bin (i.e., into a canvas frame) to best utilize bin

capacity is different from the optimal order in which objects

should be processed to meet deadlines. Thus, spatiotemporal

schedulability bounds could be derived for policies that make

different design decisions towards reconciling this tension. An

example of such a bound was proposed in [7] to relate the

ability of the edge-based perception subsystem to keep up with

the state of the environment in real time to the spatiotemporal

properties of surrounding objects. However, this schedulability

condition was obtained under significantly simplified assump-

tions that the focus locales are all squares and quantized

to a limited number of size levels. Such assumptions result

in wasted canvas areas and reduce efficiency. In addition,

the schedulability condition was merely used to estimate the

capacity requirement offline, while not used for adapting to

the dynamic workload online.

This paper builds on our previous study [8]. We remove the

limiting quantization assumptions and derive a new schedula-

bility bound for canvas-based attention scheduling. The bound

yields a sufficient spatiotemporal schedulability condition for a

perception subsystem as a function of (i) the spatial properties

of inputs that need to be inspected by the subsystem (the focus

locales) and (ii) the deadlines by which the inspection must

occur. We further introduce resizing as a useful tool to control

the trade-off between the perception quality and resource

consumption for inference tasks, and design algorithms to

derive the best resizing decisions. Through experiments on

a representative AI-powered embedded platform with a real-

world video dataset, we demonstrate the improvements in

canvas utilization and efficiency. This work provides useful

insights to inform the design and capacity planning for future

real-time machine inference pipelines.

The rest of this paper is organized as follows. Section II

presents the problem formulation. Section III describes the

proposed scheduling algorithm and derives its properties.

Section IV discusses the implementation. The evaluation is

presented in Section V. Section VI overviews related work. A

brief discussion of limitations is covered in Section VII. The

paper concludes with Section VIII that summarizes the key

takeaways and outlines avenues for future extensions.

II. PROBLEM FORMULATION

The scheduling problem addressed in this paper extends

a recently proposed canvas-based scheduling framework [7].

This framework considers machine inference systems in appli-

cations such as intelligent video cameras, autonomous driving

cars, robots, and drones, that require processing complex

sensor inputs such as depth maps, thermal images, or cam-

era frames in real-time, with an AI-based perception model

running on a dedicated accelerator unit such as a GPU. A

processing capacity smaller than what is necessary to process

the original full input volume at the original frame rate

is used. Only selected patches of the data input, enclosing

objects of interest, are placed into a canvas frame in each

frame to be processed. Their processing occurs at different

intervals (multiples of the frame duration), considering the

volatility of their states. For example, static objects in the

field of view of a security camera need to be processed by the

perception subsystem less frequently than moving ones. When

not processed, new inference results (e.g., object type and

location) are updated from predictions based on the previous

ones.

We extend the aforementioned framework in two respects.

First, we allow the selected patches to be of arbitrary size

(up to a maximum limit) as opposed to having to adhere

to one of a few quantized sizes. Quantization results in

wasted canvas areas and reduces efficiency and flexibility.

Second, we consider object resizing as a means to further

improve efficiency. While the previous scheduling framework

provides an explicit schedulability bound for deciding the

best computation capacity offline, it is unable to dynamically

adapt to changing computing loads online if it exceeds the

predetermined capacity. Resizing has been shown to be an

effective way to trade off between inference accuracy and

computation requirements [9]. Introducing resizing to the

canvas-based processing framework results in an interesting

scheduling problem. We formulate the scheduling problem in

this section as follows.

A. Task Model

In this paper, we follow the standard canvas-based schedul-

ing model from earlier work [7], with the two extensions

mentioned above. Below, we recap model assumptions.

Consider a sensor that produces a multidimensional data

input, such as a camera or a depth sensor. It generates a

series of data frames, F , at a fixed frame rate with a per-

frame volume, V . (We use the word volume for generality,

with the understanding that it, in fact, refers to area in the

common case of two-dimensional video frames.) Let us denote

the k-th frame by Fk. Let the interval between two successive

frames (i.e., frame duration) be regarded as the time unit.

Frame processing by the perception system occurs on some

accelerator, with a capacity to process a total volume of at

most VGPU < V in each time unit. We call this volume the

canvas frame, denoted by C.

At time k, a set of objects of interest, Ok, are located in the

field of view of the sensor. Their rough locations are identified

by algorithms such as background subtraction or optical flow.

Let object oi ∈ Ok occupy a volume vi. Let Fai
and Ffi

denote the frames when the object oi enters and leaves the

sensor’s view, respectively. For simplicity, if an object exits

the field of view and then re-appears again, it is treated as

a new object. Each object must be processed periodically by

the perception subsystem while it is within the field of view.

This leads to a quasi-periodic task model, where a logical

task is associated with the processing of an object. The first

invocation of such a task for object oi occurs when the object

first enters the sensor field of view, at time ai. We then follow

an implicit deadline model, where the object is selected for

349

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An example of canvas-based attention scheduling.

inspection again after time Dk
i has elapsed from the start of

the current period, where Dk
i is the inspection deadline (and

period). Thus, if object oi is selected for inspection in frame

Fk, it must be processed by the inference model within time

Dk
i . Otherwise, the inspection deadline is considered missed.

The object must be packed in some canvas frame Ck+m, where

0 ≤ m ≤ Dik . The next invocation happens at frame Fk+Dk
i

,

with a new inspection interval not necessarily the same as Dk
i ,

depending on the factors affecting the volatility of the object.

For example, steady and static objects may have a larger D,

and faster-moving objects may have a smaller D. Between

invocations, the object locations are updated with predictions

from a tracking algorithm by utilizing the redundancy between

video frames.

B. Resizing and Packing

In each frame k, a subset of objects Os ⊆ Ok are selected

for execution, each with a new size choice. Let Vs denote the

set of all allowed new size choices, and v′i ∈ Vs denote the

new resize choice for each selected object oi ∈ Os. The resize

choice for oi is vmin ≤ v′i ≤ vi ≤ vmax, where vmin is the

smallest allowed object size and vmax is the largest allowed

object size. The objects are not allowed to be up-sized because

increasing the size beyond the original size does not provide

new information and hence does not improve inference quality.

The selected objects are resized and placed into the canvas

frame following a packing P that maps objects to canvas

frames so that their union is contained in the canvas frame

and no two objects overlap. Resize reduces object volume

and assists packing but also results in accuracy loss, hence

resizing decisions must be judiciously made so that the impact

on inference quality is minimized.

C. Scheduling Problem

We define the scheduling problem in this paper as an

optimization problem to derive online for each frame: a set of

objects Os ⊆ Ok selected and their optimal resizing choices

Vs, and a corresponding packing P , so that all deadlines are

met and the inference quality is maximized. We aim to derive

a bound for the equivalent canvas volume that can be used for

schedulability analysis. The bound quantifies the least amount

of volume that can be processed in each frame when there

are enough objects in the frame. Then the equivalent canvas

can be treated as a uniprocessor serving the object volumes.

Schedulability can be determined by simply considering the

scalar object volumes and their inspection deadlines. If a

schedule exists on the equivalent canvas, then the tasks must

be schedulable on the corresponding actual canvas frame.

An illustration of the scheduling problem with a simple

example is shown in Figure 1. We consider a surveillance

camera looking at a road intersection to detect objects in the

field of view. In each frame, selected objects are placed into

the actual canvas frame smaller than the camera frame for

processing with the machine inference model. New objects

entering the frame have to be processed within the same frame.

After that, their processing frequency is determined by their

speeds. In this example, the fast-moving purple car has to

be processed every frame while the other cars have to be

processed every two frames, and the pedestrians only have

to be processed every three frames.

This example shows a feasible schedule both on the equiv-

alent canvas and with packing results on the actual canvas

frames. While the volume of one object can span multiple

equivalent canvases, the real focal locale of the object has to be

placed into one canvas in its entirety. For example, in frame 2,

there are three existing cars, a pedestrian, and one new car.

Both the new green car and the purple car are put into the

equivalent canvas because they have to be processed within

this frame. Then the remaining capacity of the equivalent

canvas is used for processing the blue car, and a fraction of the

brown car. While the volume of the brown car is split between

equivalent canvases 2 and 3, it is actually placed into canvas 2

in its entirety. Note that the volume processed in this canvas

frame is larger than that of the equivalent canvas. Similarly,

both the volumes of the blue car in frame 4 and the green

car in frame 5 span two equivalent canvases, but both cars are

350

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

placed into one of the real canvas frames. Both of the two real

canvas frames hold a larger volume than that of the equivalent

canvas.

III. SCHEDULING ALGORITHMS

The scheduling problem involves deciding the sequence

of selecting objects, choosing the best new sizes for them,

and deriving a feasible packing of selected objects into the

canvas frame. Let us consider a special sub-case where the

deadline for all objects is 1 and resizing is not allowed (i.e.,

all objects have to be processed in every frame at their original

sizes). Then the schedulability problem becomes whether all

objects in each frame can be packed into the canvas. This

problem of packing rectangles into a unit square is known to

be strongly NP-Hard. Then we consider another special case

where all objects are released at the same frame and have

the same deadlines. Then the schedulability problem becomes

whether these objects can be placed in a set of bins with

the number equal to the deadline. The solution involves a

bin packing problem to allocate objects to canvases, which is

known to be NP-hard. Hence, the original scheduling problem

we consider is NP-hard, as the sub-problems in both the spatial

and temporal dimensions are NP-hard. In order to derive a

solution that is feasible for real-time scheduling, we must

apply reasonable constraints and approximations.

To ensure real-time guarantees, we limit ourselves to the

case where all objects are selected in EDF order so that

a solution can be derived in a reasonable amount of time.

While EDF may not be optimal for the packing problem,

fixing the sequence of object choices makes the analysis more

tractable, and produces a sufficient condition that ensures no

deadline miss. Furthermore, we later show that the bound of

the equivalent canvas volume is the same for all algorithms,

indicating that EDF has the same worst-case performance as

any other algorithms. We then derive the equivalent canvas

volume and compare two sets of algorithms with different

packing strategies.

A. Packing of Quantized Objects

The first packing strategy we consider is object quantization

used by Hu et al. [7]. Specifically, in that version, the aspect

ratios of objects are restricted to 1:1, 1:2, and 2:1, and the

sides are quantized to the side length of the canvas frame

divided by powers of 2. As a result, any sequence of objects

whose sum of volumes is smaller than VGPU can be packed.

We then derive the bound on equivalent canvas volume with

this packing strategy.

1) Schedulability Analysis: Hu et al. proved when objects

are packed in EDF order, the set of objects in the field of

view at time k meets inspection deadlines if the instantaneous

utilization ratio is no larger than 1 − vmax/VGPU . This

translates to an equivalent canvas volume bound of:

Vequiv. = VGPU − vmax

With this, our scheduling problem can be simplified into

finding the optimal resizing choices V so that the tasks can be

scheduled with EDF on the equivalent canvas, and the accuracy

loss is minimized.

Formally,

max
V

∑
oi∈O(k)

E(oi, v
′
i)

s.t.
∑

oi∈O(k)

v′i
Dki

i

≤ VGPU − vmax

where E(oi, v
′
i) is a function reflecting the expected accuracy

(or quality) of the inference algorithm on object oi when it

is reduced to the new volume v′i. This function is obtained

from offline profiling. Intuitively, larger-sized objects can with-

stand more aggressive resizing before causing the accuracy of

downstream processing to diminish, whereas smaller objects

are more sensitive to resizing.

2) Online Scheduling Algorithm: The choices for new

sizes are quantized to a limited set: v′i ∈ {VGPU/2
n, n =

1, 2, 3, ...}. The optimization problem becomes a classic

Multiple-Choice Knapsack Problem (MCKP), where the ob-

jective is to choose from a set of multiple-choice items

to maximize total reward (accuracy expectation), while the

total weight (object volumes weighted by deadlines) does

not exceed the knapsack capacity (equivalent canvas volume).

MCKP is known to be NP-hard, making an exact solution

impractical to obtain in real-time. Instead, we apply a greedy

heuristic to arrive at an approximate solution. It starts with

all objects not selected, with v′i = 0 for each object. Then it

incrementally increases the sizes of objects with the highest

incremental accuracy expectation over incremental volume.

Let v′−i denote the object volume one level smaller than v′i,
and v′+i denote the object volume one level larger than v′i. We

define:

Ai,v′
i
=

{
E(oi, v

′
i)− E(i, v′−i) if v′i > vmin

E(oi, vmin) if v′i = vmin

and

Bv′
i
=

{
(v′i − v′−i)/Dki

i if v′i > vmin

v′i/D
ki
i if v′i = vmin

where Ai,v′
i

is the incremental accuracy expectation and Bv′
i

is

the incremental weighted volume. The incremental efficiency

is then: Gi,v′
i
= Ai,v′

i
/Bv′

i
. We calculate G for all objects

and sizes, and sort them in decreasing order, together with

the indices i and v′i. Intuitively, the smaller the object is,

the more easily it loses information when downsized. Sup-

ported by the empirical profiling results, we have that G
monotonically decreases with vi, satisfying the Karush-kuhn-

tucker conditions [10] and ensuring that a smaller volume will

always be chosen before a larger one. We iteratively select

volume increments for objects and update the new sizes for

corresponding tasks, until the total weighted volume reaches

the equivalent canvas volume. With these resizing decisions,

the tasks are schedulable on the canvas.

After we find the optimal resizing choices, the objects

351

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

are chosen according to the EDF order just before their

total resized volume exceeds the equivalent canvas volume:

VGPU − vmax ≤ ∑
oi∈Os

v′i ≤ VGPU , where Os is the set

of selected objects. These objects are going to be packed into

the canvas for execution in the current frame. This ensures

that at least Vequiv. = VGPU − vmax volume is processed

in each canvas frame. The reason to not pack the canvas

to its maximum is that, because any sequence of objects

whose sum of volumes is smaller than that VGPU can be

packed into the canvas, we have the opportunity to partially

reverse the downsizing of some objects when the canvas is not

full. The sizes of the selected objects are incremented in the

same manner as before until the cumulative weighted volume

exceeds the bound.

The scheduling algorithm is detailed in Algorithm 1. Lines

5-12 calculate the best resizing choices so that the total

weighted volume is below the equivalent canvas capacity;

Lines 14-22 pick the resized objects in EDF order so that they

fit in the equivalent canvas; Lines 23-34 use the remaining

available canvas volume to partially reverse the downsizing of

some objects. The algorithm derives resizing choices Vs and

packing P .

B. Packing of Unquantized Objects

Because of the restriction on aspect ratios and quantization,

the quantized volume is generally larger than the focus locale

of an object, which results in wasted volume. Thus, next, we

derive a schedulability result for the case where quantization

is not used and objects maintain their original aspect ratios.

1) Schedulability Analysis: When we remove the con-

straints of quantization and aspect ratios, objects with total

volumes equal to the canvas volume will most likely not fit

into the canvas. Previous work [11] proved a tight lower bound

of 1
2 on packing rectangles with side lengths smaller than 1

into a unit square when the rotation of 90◦ is allowed and

provided a simple packing heuristic that supports the bound.

We prove that when packing the objects according to EDF

order, this bound results in an equivalent canvas volume of
1
2VGPU − vmax.

Theorem 1: The bound on the equivalent canvas volume for
unquantized rectangular objects is at most 1

2VGPU − vmax.

Proof: Let us assume that the bound on the equivalent canvas

volume for unquantized rectangular objects can be larger than
1
2VGPU −vmax. Consider a set of inspection tasks, all with an

inspection period of Di = 1, and the sum of object volumes

is
∑

i vi = 1/2 − vmax + ε, where ε is infinitesimally larger

than 0. Another object ol has a size equal to vmax, and an

inspection period of D >> 1. If we include object ol into

any of the canvas frames, then the total area of objects in that

canvas frame is:
∑

i vi + vmax = 1/2 + ε, which is greater

than 1/2. According to [11], when the total area of objects

is larger than 1/2, successful packing is not guaranteed, so

object ol may miss its inspection deadline. The total weighted

volume of objects is:
∑

i vi/1+ vmax/D = 1/2− vmax+ ε+
vmax/D, which is arbitrarily close to 1/2− vmax when D is

Algorithm 1: Quantized Objects Scheduling

input : Objects O, inspection intervals Dk, canvas capacity
VGPU , max object volume vmax, accuracy-resizing
profile E

output: Selected objects Objects Os, Resize decision Vs,
packing P

1 Sort O in EDF order
2 Initialize V : {v′i = 0, ∀oi ∈ O}, U = 0
3 Calculate G = A/B for all objects in O
4 Sort and index G such that G1 > ... > GN

5 for i = 1, 2, ..., N do
6 U = U +Bi

7 if U ≤ VGPU − vmax then
8 idx = i break
9 else

10 v′i = v′+i
11 end
12 end
13 a = 0, Vs = ∅, Os = ∅
14 for oi in O do
15 if a+ v′i < VGPU − vmax then
16 a = a+ v′i
17 Os = Os + oi
18 Vs = Vs + v′i
19 else
20 break
21 end
22 end
23 for i = idx, ..., N do
24 if oi in Os then
25 if a+ (v′+i − v′i) > VGPU then
26 break
27 else
28 v′i = v′+i
29 a = a+ (v′+i − v′i)
30 end
31 else
32 Pass
33 end
34 end
35 Generate packing P from Os and Vs

36 returnVs, P

sufficiently large and ε is sufficiently small. This contradicts

our assumption.

Notice that in the above proof, we do not make any

assumptions about the scheduling algorithm, hence the result

applies to any scheduling algorithms including EDF. Next, we

show that the above bound is tight. Similar to [7], We define

the EDF busy period as a set of successive busy frames starting

at the frame k when some task associated with object oi starts

and ends at frame k+Dk
i when this object eventually misses

its inspection deadline.

Lemma 1: Within an EDF busy period, each canvas includes
objects with a total volume of at least 1

2VGPU − vmax.

Proof: Consider a canvas frame Ck in the EDF busy period.

Since all objects are no larger than vmax, assume the total

volume in the canvas is less than or equal to 1
2VGPU − vmax.

After including oi in this canvas, the canvas is less than or

equal to 1/2 utilized. According to [11], a feasible packing

352

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

exists for these objects so object oi can be put into this canvas

frame and processed before its deadline, which contradicts our

assumption.

Theorem 2: A set of objects O in the input frame k meet all
inspection deadlines if:∑

oi∈O(k)

vi

Dki
i

≤ 1

2
VGPU − vmax

Proof: Imagine a hypothetical uniprocessor of speed

(12VGPU − vmax) cycles per time unit and a set of aperiodic

tasks ti that each has a deadline of Dki
i time units, and needs

vi time units to finish. According to Lemma 1, a canvas

frame will process at least (12VGPU − vmax) volume of data.

When comparing objects processed with the canvas and tasks

processed on the hypothetical uniprocessor, tasks that finish at

the end of a time unit correspond to objects that have been

processed by the perception system. So, if the hypothetical

uniprocessor is schedulable, so is the canvas-based perception

system.

The schedulability condition for aperiodic tasks on a unipro-

cessor with EDF is known to be [12]:∑
i

Ci

Di
≤ 1

Where Ci is the execution time of task ti on the hypothetical

uniprocessor, calculated by the number of cycles it needs

divided by the number of cycles the uniprocessor executes

each time unit, or Ci = vi/(
1
2VGPU − vmax). Substituting Ci

in the EDF schedulability condition and rearranging, we get

the schedulability condition for the hypothetical uniprocessor

with the aperiodic tasks:

∑
oi∈O(k)

vi

Dki
i

≤ 1

2
VGPU − vmax

With the argument made above, this condition also applies

to the canvas-based perception system. From Theorem 1, we

can conclude that this bound on the equivalent canvas volume

is tight.

2) Online Scheduling Algorithm: Since the quantization

restriction is removed, the volume of the resized object can be

any number between vmin and vmax. In order to support more

flexible resizing options, instead of allowing a finite number of

resizing choices, we obtain an approximated function R(d) of

the accuracy expectation with regard to the object’s larger side

length d through offline profiling. Let the aspect ratio of object

oi be bi > 1, obtained by dividing the longer side length by the

shorter side length, then the volume v = d2/b. Let v′i denote

the new volume of object oi after resizing, and let ui = v′i/D
ki
i

denote the weighted volume of object oi. The relation between

the accuracy expectation E and the object weighted volume u

is: E(ui) = R(
√

bi ∗Dki
i ∗ ui). The optimization problem is:

max
u′
i

∑
oi∈O(k)

Ei(ui)

s.t.
∑

oi∈O(k)

ui ≤ 1

2
VGPU − vmax

As the offline accuracy profiling suggests, the closer the

new size is to the original size, the slower the accuracy in-

creases. For this reason, we assume that R(di) is concave and

monotonically increasing, satisfying the Karush-kuhn-tucker

conditions [10]. As a result, E(ui) = R(
√
bi ∗Dki

i ∗ ui) is

also concave and monotonically increases with ui. We obtain

this function by polynomial fitting to the profiling results. We

then show that the optimal solution is when function Ei(ui)
has the same slope at all ui.

Lemma 2: At the optimal solution,
∑

i ui =
1
2VGPU − vmax.

Proof: Since E(ui) monotonically increases with ui, this is

trivially true.

Theorem 3: At the optimal solution, the slopes of all functions
Ei(ui) are the same.

Proof: Let us denote the slope of Ei(ui) as mi(ui). Assume

that at the optimal solution, at least one function Ei(ui)
has a different slope. Consider this function and any other

function with a different slope. Without loss of generality, let

E1(u) denote the one having a larger slope at optimal value

u1 and E2(u) denote one having a smaller slope at optimal

value u2. Let W = E1(u1) + E2(u2) denote the cumulative

accuracy expectation. Since functions E(u) are monotonically

increasing and concave, their slopes m(u) are monotonically

decreasing, then there exists u′
1 and u′

2, where:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
m1(u

′
1) = m2(u

′
2) = m0

m1(u1) > m0 > m2(u2)

u1 < u′
1

u2 > u′
2

The new cumulative accuracy expectation is:

W ′ = E1(u
′
1) + E2(u

′
2)

then:

W ′ −W = E1(u
′
1)− E1(u1)− (E2(u2)− E2(u

′
2))

> m0 ∗ (u′
1 − u1)−m0 ∗ (u2 − u′

2)

= m0 ∗ ((u′
1 + u′

2)− (u1 + u2))

By Lemma 2, u′
1+u′

2 = u1+u2, so W ′−W > 0, indicating

that W ′ > W , which contradicts with the assumption that

W is optimal. Hence, the slopes of functions Ei(ui) for all

objects are the same at the optimal solution.

For each oi we can derive a function for ui when the slope

equals m: u′
i = Si(m). To limit u′

i in the valid range, it is

clipped by umin and ui. The optimization problem is then to

find the m so that:∑
oi∈O(k)

Si(m) =
1

2
VGPU − vmax

As there is no closed-form solution for this equation, we find

the optimal new volumes by performing a binary search on m.

353

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Rectangular Objects Scheduling

input : Objects O, inspection period Dk, canvas capacity
VGPU , max object volume vmax, volume-slope
function Si

output: Selected objects Objects Os, Resize decision Vs,
packing P

1 Sort O in EDF order
2 Calculate the minimum slope m0 and maximum slope m1

3 Binary search in [m0,m1] for the smallest m such that:∑
oi∈O Si(m) > 1

2
VGPU − vmax

4 Calculate V: {v′i = Si(m), oi ∈ O}
5 a = 0, Os = ∅
6 for oi in O do
7 if a+ v′i < VGPU then
8 a = a+ v′i
9 Os = Os + oi

10 else
11 break
12 end
13 end
14 Binary search in in [m,m1] for the smallest m such that:

Os rezised to V: {v′i = Si(m), oi ∈ O} can be packed
15 Vs = V
16 Generate packing P from Os and Vs

17 returnVs, P

After deriving the best new volumes to satisfy the equivalent

canvas volume, the resized objects are selected according to

EDF order until their total volume just exceeds the bound.

Similar to before, the downsizing of the selected objects can

be partially restored by utilizing the unused canvas area. [11]

shows that any sequence of rectangles with a total area smaller

than 1/2 can be packed into a square of size 1. However, when

the total area is larger than 1
2 , the existence of a valid packing

is unclear. For the selected objects, We find the optimal m
with binary search to utilize the remaining canvas volume as

much as possible, taking advantage of the efficient packing

scheme in [11] to decide if a feasible packing exists. The

scheduling algorithm is detailed in Algorithm 2. It first derives

the best resizing choices. Then lines 6-13 select resized objects

in EDF order so that their cumulative weighted volume is

just smaller than the equivalent canvas capacity. Then the

algorithm partially reverses the downsizing with binary search

and generates the final resizing choices Vs and packing P .

IV. IMPLEMENTATION

In this section, we describe the implementation details of

the canvas-based attention scheduling framework. We consider

a video surveillance application that requires the detection of

objects of interest in the camera frames.

Taking advantage of the statically mounted cameras, a

background subtraction-based algorithm is used to locate new

and foreground objects. Starting with a one-time initial full-

frame inspection of all objects, each subsequent frame is

first passed through background subtraction to locate dif-

ferences from the previous frame. The system thus builds

a background model that needs to be updated only where

differences are indicated. These differences typically identify

foreground moving objects. The algorithm remembers the

last position of each such object and has a notion of object

permanence: if an object does not move between two frames

(i.e., it is not detectable by background subtraction), it is

assumed to be not moving. Whenever motion (i.e., change)

is observed in a place not previously occupied by an object,

a new object is assumed to have entered the field of view.

If motion is observed at a position that is consistent with

a previously observed (trajectory of an existing) object, the

location of that object is updated accordingly. Finally, if a

moving object stops, even though the stopped object becomes

“invisible” to the background subtraction algorithm (that only

identifies motion/change), thanks to the assumption of object

permanence, the system assumes that the object remains at its

last recorded location and such location is kept track of for

future inspection.

The selection of deadlines, Dk
i , is another implementation

decision. In this paper, the inspection deadline is set inversely

proportional to object speed. The intuition is that items with a

more rapidly changing state need to be tracked more closely.

Specifically, the speed of an object is calculated according

to optical flow and the value is mapped to a finite set of

inspection interval values ranging from 1 to 5, corresponding

to the object being included for inference every frame to at

least once every 5 frames. Other heuristics are possible but

left to future work. For example, one may opt to inspect less

predictably-moving objects more often. When an object is not

selected for inference, its new location is approximated with

an optical flow-based tracking algorithm [13].

V. EVALUATION

In this section, we evaluate the different scheduling policies

with a realistic surveillance camera dataset on an AI-powered

embedded platform.

A. Experiment Setup

1) Hardware Platform: We use the NVIDIA Jetson AGX

Xavier SoC for our experiments. It is a representative AI-

powered embedded platform equipped with an 8-core Carmel

Arm v8.2 64-bit CPU, a 512-core Volta GPU, and 32 GB

memory shared by both the CPU and the GPU. The Jetson

AGX Xavier consumes 30 Watts at the highest performance

mode and can deliver over 30 TOPs for deep learning applica-

tions. We set the power mode to “MAXN” and configure the

GPU to run at a constant clock frequency for a more stable

performance.

2) Dataset: We use the VIRAT Video Dataset [14] for

all of our experiments. This dataset was originally collected

for video surveillance applications. It consists of video feeds

of natural and realistic scenes captured by surveillance cam-

eras, covering various lighting and weather conditions. This

dataset is primarily designed for activity recognition so it only

provides labels for objects involved in its target activities,

and only the humans and objects involved in the actions are

labeled. We generate “pseudo ground truth” labels for all

objects of relevance to our application. We use a pre-trained

354

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

“Xlarge” YOLOv5 1 model to label the objects in each frame.

The “Xlarge” model is the largest of all Yolo variants and

thus has the best performance (close to human accuracy). The

accuracy calculated based on these pseudo-labels is then used

as a metric to evaluate the quality of inference of our tested

algorithms. We restrict our attention to three object categories:

person, bicycle, and vehicle. Motorcycles and bicycles are

merged into class bicycle. Trucks, cars, and buses are merged

into class vehicle.

3) Load Manipulation: To evaluate the performance of

the algorithms under different computation loads, we need to

manipulate the number of objects in the frames. We achieve

this by stitching frames from various numbers of video sources

together to control the number of objects in the video feed.

When frames from n video feeds are combined together, each

new frame is n times larger and the overall utilization ratio is

roughly increased to n times.

4) Perception Model and Canvas: We use the YOLOv5

model as the inference model for object detection. Specifically,

we use the model with the “large” configuration, with both the

depth and the width multipliers set to 1. The YOLOv5 model

includes a convolutional network that runs on the GPU which

dominates the execution time, and a non-max suppression

(NMS) process that runs on the CPU. The model is trained on

the COCO [15] dataset, and the precision is set to FP16 for

inference. The model is configured to only produce detection

on the objects of our interest. We profile the inference latency

with different input sizes and batch sizes in advance on the

hardware platform. In order to maintain a reasonably high

detection frequency for surveillance camera applications while

considering the computing capacity of the hardware, we select

the frame rate to be 20Hz, corresponding to a canvas size of

512 × 512 according to the profiling results. The max side

length of objects is set to dmax = 256, corresponding to

Vmax/VGPU = 1/4. Larger objects are simply downsized to

meet this size constraint. The smallest size is set to dmin = 32.

5) Size and Accuracy Profile: We profile the detection

accuracy expectations at different object sizes to facilitate the

resizing decisions. Specifically, we define the object size by

the length of their larger side d and vary it from 32 to 256 with

an interval of 32. For each d, we iterate through all objects in

the COCO dataset, select all the larger objects, and downsize

them to this size. Then the resized objects are processed by the

perception model and the average accuracy is calculated. For

packing with rectangles with unquantized sizes, we obtain the

accuracy profile function R(d) by fitting a polynomial function

and ensuring that it is concave and non-decreasing. In order

to prevent the algorithms from selecting a size outside the

allowed size range, we define the accuracy expectation to 0
when d < dmin or d > dmax.

B. Evaluation Metrics

We consider the detection accuracy as a metric for the

overall perception performance of the framework. We use

1https://github.com/ultralytics/yolov5

mean average precision (mAP) as an end-to-end metric to

simultaneously capture both the detection and classification

performance. It is calculated by comparing the detection

results with the ground truth labels and finding matches based

on the intersection of the union (IoU) metric between bounding

boxes [16]. A detection is only considered correct when the

IoU between it and the ground truth bounding box exceeds a

predefined threshold (we use 0.5 in this paper) and the object

class matches. To evaluate the ability of algorithms to utilize

the canvas area, we consider the average canvas utilization

ratio. Canvas utilization is defined as the fraction of canvas

volume occupied by packed input segments. Because of the

quantization, these areas can be larger than the objects of

interest (focus locales) enclosed in them. We also calculate

the real canvas utilization as the fraction of the canvas area

occupied by the objects of interest from the input frame.

With these considerations, we define the evaluation metrics

as follows:

• Mean Average Precision (mAP): The average precision

of all object classes. It is an indicator of the overall

inference performance of the system.

• Average Precision (AP): The average precision for each

object class. It simultaneously captures the error in object

detection and classification.

• Average Canvas Utilization: The average canvas utiliza-

tion ratio. It evaluates how much of the canvas space is

used by the algorithm.

• Average Real Canvas Utilization: The average area ratio

of areas of interest in the canvas. It evaluates how much

of the canvas is used towards the essential part of the

input frame.

C. Experiment Results

1) Compared Algorithms: We compare in total four

scheduling algorithms with two different packing strategies:

a) Quantized no resize (baseline): The baseline schedul-

ing algorithm proposed in [7]. It quantizes the areas of interest

and places them into the canvas for processing following EDF

in a best-effort manner.

b) Quantized resize: The scheduling algorithm detailed

in section III-A. It quantizes the areas of interest, calculates

the best resizing choices under the utilization bound, and then

packs the resized objects into the canvas.

c) Rectangle boost: The scheduling algorithm detailed in

section III-B. It calculates the best resizing choices to meet the

deadlines and then packs the resized objects into the canvas.

d) Rectangle no boost: Same as Rectangle boost except

that the sizes of the objects are not boosted back to utilize the

remaining canvas volume.

The overall performance of the system, characterized by

the mAP, is shown in Figure 2. As the load increases, more

objects have to be processed, hence the performance of all

algorithms drops. However, at all computation loads, the

algorithm Rectangle boost consistently performs better than

any other algorithm. Quantized resize performs better than

Quantized no resize at all loads except when the number of

355

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The mean average precision comparison. Fig. 3: Average precision of different object classes.

frames is 3, and maintains relatively high performance when

the system load varies. This demonstrates the effectiveness

of the resizing algorithm to selectively trade the detection

accuracy of larger objects for more space to accommodate

other objects. When system load increases, more objects in

Quantized no resize miss their deadlines but the impact on

detection accuracy degrades slowly, due to the utilization of

temporal redundancy between frames. Rectangle no boost
performs the worst, because of the pessimistic 25% equivalent

canvas volume bound. Although the algorithm ensures no

deadline is missed by meeting the bound, the aggressive

downsizing results in too much information loss and affects

the inference performance.

In order to obtain more insight into the impact of size

manipulation, we compare the per-class average precision at

different system loads, as shown in Figure 3. We observe

that the algorithms with resizing maintain better accuracy for

class people when the system load increases. People in the

camera frames are usually small in size so downsizing larger

objects will make enough room to include them in the canvas,

maintaining the required inference frequency. Quantized no
resize, on the other hand, processes the objects in a best-

effort manner and randomly misses deadlines of objects as the

load exceeds the utilization bound, essentially decreasing the

inference frequency, resulting in more accuracy loss. For the

object class vehicle, the average precision with Quantized no
resize decreases slower than that of the other three algorithms.

This is because there are a considerable number of parked

vehicles in the camera frames. When the processing of these

objects is skipped, the new location predictions are very accu-

rate. With resizing, however, the detection accuracy of these

objects decreases, and chances are that they will be removed

from the memory because of a failed detection. Because of

the nature of background subtraction, these objects are part of

the background and will not be detected again. The accuracy

for class bicycle of Rectangle boost drops much more sharply

compared with class vehicle. This is because we use the same

accuracy-resize function for all classes, while class bicycle is

more susceptible to accuracy loss when downsized compared

with class vehicle. This indicates the potential benefit of per-

class treatment when making downsizing decisions.

To evaluate the ability of different algorithms to utilize the

canvas, we calculate the average canvas utilization rate, as

shown in Figure 4. As the load increases, the canvas utilization

rate of both Rectangle boost and Quantized resize increases,

indicating that they are able to utilize the unused canvas area

and partially reverse the downsizing of some objects. The

utilization rate of Quantized no resize is lower compared with

Quantized resize, because it packs the canvas in a best-effort

manner and lacks the size boost mechanism to better utilize the

canvas. The utilization rate of Rectangle no boost stays close

to 25% because it downsizes objects to meet the bound and

does not restore the sizes of the objects. We further compare

the real canvas utilization rate, calculated as the portion of

the canvas volume that is occupied by the actual unquantized

object, as shown in Figure 5. The real canvas utilization rates

for the two algorithms with quantized objects are lower than

the average canvas utilization rate because of the wasted area

caused by quantization. In comparison, although the average

utilization of Rectangle boost is lower, when considering the

quantization area waste, it is able to utilize more canvas area

for the use of the focus locales in the input frame, contributing

to its better inference performance.

2) Scheduling Overhead: We report the cumulative distri-

bution function (CDF) of the latency overhead of the schedul-

ing algorithms, as shown in Figure 6. It reflects the latency

induced by the scheduling algorithm under different conditions

(number of objects, their sizes and speeds) encountered in

the tested dataset. Due to the iterative binary search process

involved, both Rectangle boost and Rectangle no boost require

a longer time to finish compared with Quantized resize and

Quantized no resize. Comparing Rectangle no boost and

Rectangle boost we can conclude that boosting the downsized

objects back towards their original sizes induces acceptable

latency overhead, but contributes to a considerable amount

of performance improvement, indicating the necessity of this

356

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The average canvas utilization rate. Fig. 5: The average real canvas utilization rate.

Fig. 6: Scheduling algorithm latency overhead. Fig. 7: End-to-end inference latency.

step. The CDF of the end-to-end inference latency is shown

in Figure 7. Since all the scheduling, preprocessing, and

postprocessing steps are implemented as separated threads

running on different CPU cores, they pose no overhead on

the inference model which is GPU dominant, and thus do not

affect the throughput.

3) Deadline Misses: We also experimentally ascertained

that no deadlines were missed as long as the derived equivalent

canvas volume bound is met at all times, and the algorithms

with resizing do not miss any deadlines. On the other hand,

Quantized no resize misses deadlines. It packs objects in

a best-effort manner (without resizing) until running out of

canvas volume, so when the workload is high, not all objects

can be packed. As a result, the objects that fail to be packed

in time will miss their deadlines. While no figure is needed to

demonstrate this result, we mention it here for completeness.

VI. RELATED WORK

Recently, an increasing number of modern Cyber-Physical

Systems (CPS) applications, such as autonomous driving, start

to incorporate the execution of complex deep neural net-

works into mission-critical pipelines [17]. These systems often

require predictable and efficient performance on resource-

constrained hardware platforms.

While the current mainstream deep learning algorithms have

been successful in terms of accuracy, they are not designed

with explicit time constraints and constrained computation

load required by Cyber-Physical Systems. To mitigate this

issue, attention has been paid to optimizing deep learning

frameworks with special consideration for real-time applica-

tions [18]–[24]. On the other hand, the current general-purpose

hardware accelerators such as GPUs are not primarily designed

for predictable timeliness, which reduces confidence in them

for mission-critical real-time applications. To better understand

the timing characteristic of the hardware platforms, numerous

profiling efforts have been made [25]–[31]. The response time

of combinations of complex AI algorithms and heterogeneous

hardware was also studied: Voronov et al. [32] proposed

techniques for response-time analysis of processing graphs

running on complex heterogeneous hardware and was able

to reduce the response-time bounds. The other work aimed

at introducing the notion of imprecise computation to deep

learning models and enabling dynamic execution time and

quality trade-off [33]–[39].

Attention Scheduling [6] was proposed to tackle the priority-
inversion problem commonly found in early perception

pipelines. Instead of processing the incoming data frame in

a first-come-first-served manner, attention scheduling priori-

tizes different regions of the input frame according to their

importance. Given that usually only a small fraction of the

input frame requires processing, the computation hardware is

no longer required to be over-provisioned to keep up with

the entire frame. To control the trade-off between inference

quality and resource consumption, three degrees of freedom

357

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

are mainly considered: spatial [6], [40], temporal [13], and

quality [9], [33], [41], [42]. To this end, canvas-based attention
scheduling was proposed by Hu et al. [7] to manipulate

the spatial and temporal dimension and take advantage of

canvas-based processing to improve efficiency. They derived a

tight schedulability bound with EDF and object quantization.

However, their proposed framework does not adapt to different

system loads online and only processes tasks in a best-effort

manner. Moreover, the inefficiency caused by quantization

prevents further improving the performance. In this paper, we

extend canvas-based attention scheduling with resizing and lift

the quantization constraint, leading to an interesting scheduling

problem and a more efficient system.

VII. DISCUSSION

The work presented in this paper is an attempt to explore

the emerging area of spatiotemporal scheduling for AI tasks

that process (multidimensional) spatial inputs, with the option

of imprecise computation by resizing, subject to constraints

on time (e.g., object inspection frequency constraints) and

constraints on sizes of “bins” that are presented for processing

with the AI algorithm. We discuss several limitations and

possible extensions of this work.

a) Scheduling Policy: To derive the approximate solu-

tion, the algorithms assume that objects are placed in canvas

bins according to an EDF order. However, because of the bin-

packing-like nature of the canvas-based scheduling problem,

EDF is not necessarily optimal. The topic remains open for

designing an optimal scheduling policy that further improves

canvas utilization.

b) Computational Overheads: The implementation of

our scheduler and background subtraction modules does pose

some overhead. What makes the scheme feasible is the fact

that the AI-based perception subsystem runs on a GPU (and

is itself quite computationally heavy). Background subtraction

and object scheduling, in contrast, use CPU cores. Thus, there

is no conflict and the GPU throughput remains unaffected,

although the end-to-end latency is augmented with the CPU

overhead. If this is an issue, the GPU deadline used in our

equations can simply subtract the CPU overhead (which is

always less than one frame period) from the original deadline.

c) Per-class treatment: In this paper, we use the same

accuracy-size profile for all object classes. However, different

types of objects may have different sensitivity to resizing.

Also, depending on application specifics, different object

classes may have different importance. An algorithm incorpo-

rating per-class object treatment is reserved for future work.

d) Problem Formulation: We followed the original can-

vas scheduling paper [7] and defined the tasks as quasi-

periodic with implicit deadlines. The period of a task was

determined by considering the factors affecting the rate of

change of the object state; more specifically, its speed. Other

formulations are possible. For example, one can consider a

formulation similar to [13], where there is no explicit deadline

for objects and the detection frequency of objects is affected

by the system load. Combined with resizing and canvas-based

processing, the optimization problem becomes to minimize

system uncertainty caused by downsizing and object volatility.

e) Safety Considerations: Although resizing facilitates

schedulability, it can cause false negatives in detection and

may, in turn, affect scheduling, and potentially trigger dan-

gerous feedback in detection and scheduling. Since the back-

ground subtraction indicates the existence of an object and

then the detection algorithm decides its type and precise

location, when an object is previously detected, it will only be

removed if the inference algorithm confirms there’s no object

in the tracked location. Therefore, we can enforce that the first

detection should always be at the original size, and a tracked

object can only be removed if no detection is found at the

tracked location at the original size. This way we eliminate

false negatives caused by downsizing and prevent feedback in

detection and scheduling.

VIII. CONCLUSIONS

The paper touched on an interesting dilemma that arises in

scheduling real-time perception pipelines where different focus

locales (selected from an original input frame) are consolidated

into a smaller area (the canvas frame) for AI-based application-

specific quasi-periodic inspection, subject to respective im-

plicit deadlines. The dilemma lies in the fact that the best

order in which objects need to be considered for attaining

the most efficient packing of canvas frames is different from

the best order in which objects need to be considered to meet

deadlines. Packing frames more efficiently, however, increases

effective available capacity, which improves the ability to meet

deadlines. Thus, the optimal policy for this spatiotemporal

scheduling problem remains unclear. The paper established a

new baseline by deriving a bound for the equivalent canvas

volume and using it to control object resizing online under

EDF. Future extensions will consider optimality results that

further improve the performance for canvas-based attention

scheduling.

ACKNOWLEDGEMENT

This work was sponsored in part by ARL W911NF-17-2-

0196, NSF CNS 20-38817, IBM (IIDAI), the Boeing Com-

pany, the National Research Foundation, Singapore under

NRF-NRFI05-2019-0007, and the National Natural Science

Foundation of China under No. BC0301315 and BC0301340.

REFERENCES

[1] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues,
and future challenges,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1275–1313, 2018.

[2] C. Amrutha, C. Jyotsna, and J. Amudha, “Deep learning approach
for suspicious activity detection from surveillance video,” in 2020
2nd International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA). IEEE, 2020, pp. 335–339.

[3] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004., vol. 1. Ieee, 2004, pp.
I–I.

[4] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,”
in 2016 IEEE Symposium on Computers and Communication (ISCC).
IEEE, 2016, pp. 1212–1217.

358

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

[5] H. Perez, J. H. Tah, and A. Mosavi, “Deep learning for detecting building
defects using convolutional neural networks,” Sensors, vol. 19, no. 16,
p. 3556, 2019.

[6] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in 2020 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2020, pp. 319–332.

[7] Y. Hu, I. Gokarn, S. Liu, A. Misra, and T. Abdelzaher, “Under-
provisioned gpus: On sufficient capacity for real-time mission-critical
perception,” in 2023 32nd International Conference on Computer Com-
munications and Networks (ICCCN). IEEE, 2023, pp. 1–10.

[8] Y. Hu, I. Gokarn, S. Liu, A. Misra, and A. Tarek, “Work-in-progress:
Algorithms for canvas-based attention scheduling with resizing,” in 2023
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 435–438.

[9] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
2021 IEEE 27th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2021, pp. 169–
178.

[10] G. Gordon and R. Tibshirani, “Karush-kuhn-tucker conditions,” Opti-
mization, vol. 10, no. 725/36, p. 725, 2012.

[11] J. Januszewski, “Packing rectangles into the unit square,” Geometriae
Dedicata, vol. 81, no. 1-3, pp. 13–18, 2000.

[12] T. F. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for
aperiodic tasks and priority driven scheduling,” IEEE Transactions on
Computers, vol. 53, no. 3, pp. 334–350, 2004.

[13] S. Liu, X. Fu, M. Wigness, P. David, S. Yao, L. Sha, and T. Abdelzaher,
“Self-cueing real-time attention scheduling in criticality-driven visual
machine perception,” in In Proc. 28th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), May 2022.

[14] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-scale
benchmark dataset for event recognition in surveillance video,” in CVPR
2011. IEEE, 2011, pp. 3153–3160.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[16] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[17] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[18] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Generating and exploiting deep learning variants to increase
heterogeneous resource utilization in the NVIDIA XAVIER,” in 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019), vol. 23,
2019.

[19] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling
for multi-DNN real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[20] W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible
layer-by-layer CPU/GPU scheduling for real-time DNN tasks,” in 2021
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2021, pp. 329–341.

[21] H. Li, J. K. Ng, and T. Abdelzaher, “Enabling real-time AI inference on
mobile devices via GPU-CPU collaborative execution,” in 2022 IEEE
28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2022, pp. 195–204.

[22] I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti,
“ACETONE: Predictable programming framework for ML applications
in safety-critical systems,” in 34th Euromicro Conference on Real-Time
Systems (ECRTS 2022), 2022.

[23] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson,
and J.-M. Frahm, “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2019, pp. 305–317.

[24] H. Zhou, S. Bateni, and C. Liu, “Sˆ 3DNN: Supervised streaming
and scheduling for GPU-accelerated real-time DNN workloads,” in
2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2018, pp. 190–201.

[25] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2017, pp.
104–115.

[26] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in 2018
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 119–130.

[27] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, “Avoiding pitfalls when using nvidia gpus for real-time tasks
in autonomous systems,” in 30th Euromicro Conference on Real-Time
Systems (ECRTS 2018), 2018.

[28] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, 2018, pp. 204–215.

[29] N. Otterness and J. H. Anderson, “AMD GPUs as an alternative
to NVIDIA for supporting real-time workloads,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020), 2020.

[30] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D.
Smith, A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,” in 2017 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2017, pp. 353–364.

[31] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a perfor-
mance and predictability perspective,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2020, pp. 213–225.

[32] S. Voronov, S. Tang, T. Amert, and J. H. Anderson, “AI meets real-time:
Addressing real-world complexities in graph response-time analysis,” in
2021 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2021, pp.
82–96.

[33] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and
T. Abdelzaher, “Scheduling real-time deep learning services as imprecise
computations,” in In Proc. IEEE International Conference on Embedded
and Real-time Computing Systems and Applications (RTCSA), August
2020.

[34] S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy
toward real-time dnn inference and training,” in 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
2020, pp. 15–29.

[35] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection
system with multi-path neural networks,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2020, pp. 174–187.

[36] A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware 3d
object detection,” in 2022 IEEE 28th International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA).
IEEE, 2022, pp. 31–40.

[37] S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2018, pp. 67–79.

[38] M. Yuhas, D. J. X. Ng, and A. Easwaran, “Design methodology for
deep out-of-distribution detectors in real-time cyber-physical systems,”
in 2022 IEEE 28th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE, 2022, pp.
180–185.

[39] T. Abdelzaher, K. Agrawal, S. Baruah, A. Burns, R. I. Davis, Z. Guo,
and Y. Hu, “Scheduling idk classifiers with arbitrary dependences to
minimize the expected time to successful classification,” Real-Time
Systems, pp. 1–60, 2023.

[40] S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun,
L. Sha, and T. Abdelzaher, “Real-time task scheduling for machine
perception in intelligent cyber-physical systems,” IEEE Transactions on
Computers, 2021.

[41] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017, p. 4.

[42] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

359

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2024 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.

