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Abstract—This paper describes Acies-OS, a content-centric
platform for edge AI twinning and orchestration that allows easy
deployment, re-configuration, and control of edge AI services,
augmented by a digital twin. The work is motivated by the
proliferation of edge AI in a plethora of IoT applications,
ranging from home automation to military defense, and the
emergence of digital twins that go beyond monitoring and
emulation into configuration management and optimization of
edge capabilities. While past work focused on either the edge
capabilities themselves or the digital twin, this work focuses
on their seamless interactions, offering abstractions that enable
the digital twin to manage and optimize an increasingly diverse
edge AI system. Acies-OS features a structured namespace, a
thin client library with flexible pub/sub-based communication,
health monitoring support, and a control plane for twin-based
value-added analysis and optimization. To illustrate the use of
Acies-OS, we implemented a multi-node multi-modality vehicle
classification application and used Acies-OS to interface it to
a digital twin. We then deployed the system in the field to
showcase run-time twin-based optimizations of inference latency,
classification accuracy, and robustness to failures in noisy and
challenging conditions.

Index Terms—Digital Twin, Digital Twin Control Plane,
Content-Centric Network, Internet of Things, Cyber Physical
Systems, Edge AI.

I. INTRODUCTION

Acies-OS is a novel content-centric platform for edge AI

twinning and orchestration. It is motivated by two recent

advances in IoT applications. The first is the proliferation of in-

telligent IoT services, or edge AI. The second is the emergence

of digital twins [1] that go beyond emulation into run-time

orchestration (perhaps based on running multiple emulations

to arrive at a most favorable configuration of the deployed

system or based on outputs of compute-intensive algorithms

for twin-based functional optimization). These advances call

for solutions to interface digital twins to the systems they

emulate, optimize, and manage in a manner that facilitates

not only state monitoring but also control.

Importantly, unlike many other application domains where

the twinned system is fairly static (e.g., a vehicle that generally

consists of the same types of components and interconnec-

tions), thereby allowing for a static custom interface with the

twin, IoT deployments can differ dramatically from one to

another. They may differ in the types of sensors used, the

number of nodes deployed, the types of analytics executed,

and the allocation of functions to computing resources, among

other factors. Thus, general support is needed for describing

the implemented system to the digital twin, as well as for

describing the knobs exposed by the system for twin-based

management and control. This support is the goal of AciesOS.

Acies-OS1 assumes a microservices-based application archi-

tecture, where deployed analytics consist of multiple discrete

stages executed across multiple hosts [2, 3]. The end-to-

end functionality is modeled as a processing graph. This

abstraction is particularly well-suited for Edge AI applications,

where resource constraints call for careful distribution of

functionality across multiple heterogeneous nodes, such that

each node contains only one or a few steps of the pipeline.

Unique to Acies-OS is the assumption of a built-in digital

twin that helps configure, troubleshoot, and optimize edge

performance [4]. As deployment conditions continually push

for innovations that optimize operations and decision-making

processes, digital twins have emerged as pivotal tools. The

paper enables seamless integration of edge AI and digital twin-

based orchestration to leverage their full joint potential.

Applying digital twin technology to edge AI applications

presents several challenges, especially when combined with

complex and dynamic deployment environments. We deployed

a vehicle classification application and conducted real-world

experiments to assess system performance. Evaluation results

indicate that our digital twin framework helps identify an

optimal accuracy-latency tradeoff [5], improve classification

accuracy through model selection, and ensure uninterrupted

application data flow during failures, demonstrating the flexi-

bility, utility, and extensibility of the proposed design.

1The code for this project is available at https://github.com/acies-os/acies-os
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II. SYSTEM DESIGN

A key challenge explored in Acies-OS is to develop a

flexible interface between a digital twin and its twinned edge

AI system that not only allows for state monitoring and

twin-based emulation but also enables flexible control of the

twinned system’s workflow configuration to enable a wide

range of system optimizations and adaptations to a dynamic,

possibly unfriendly, environment.

Acies-OS features a middleware library that exports the

abstraction of nodes, much like ROS [6], interconnected by

a computation graph. The application is modeled as a set of

services, where a service constitutes a node (in the compu-

tation graph) that processes incoming messages from topics,

produces results, and publishes them to other topics. The

services also subscribe to a special control (or configuration)

topic that allows manipulation of service-specific parameters.

A control plane allows the twin to publish on configuration

topics, thereby manipulating system configuration. All com-

munication is content-centric, following a simple but flexible

namespace that allows posting to nodes, services, and control

channels. Below, we describe key elements of the namespace

first, then elaborate the middleware library and control plane.

A. Namespace Design

Acies-OS features a namespace design geared to support

a flexible and extensible control plane. The design aims to

(i) support interoperability among heterogeneous components,

(ii) enhance fault tolerance, and (iii) enable flexible twin-

based control of system state. Towards that end, it adopts a

content-centric approach [7], leveraging a pub/sub-based sys-

tem. By combining a pub/sub-based middleware with carefully

designed namespaces, different subsystems can be seamlessly

integrated and interoperable through topics. Pub/sub-based

communication patterns offer location-transparent communi-

cation, while the control plane provides robustness and fault

tolerance. While many existing frameworks and middleware

employ pub/sub-based communication [8, 9, 10], and some

even offer namespace support [8, 9], the semantics and orga-

nization of the namespace are typically left to the discretion

of the application developer. This variability from one appli-

cation to another complicates system integration and impedes

component reuse. In contrast, our well-designed simple (but

extensible) namespace simplifies dataflow management and

facilitates flexible and extensible development of control plane

software. Next, we discuss the proposed namespace design,

which consists of three main components.

Service Space: The application workload is modeled as a

processing pipeline comprising multiple services running on

one or multiple nodes. Each service is uniquely identified by

a namespace in the format of row 1.1 as illustrated in Table I.

Services may subscribe to multiple topics, process incoming

messages, and publish resulting messages to output topics

(row 1.2). Additionally, each service has a dedicated control

topic to receive messages from the control plane (row 1.4) All

services on a node fall under the node namespace (row 1). In

cases where a node runs backup services for another node, the

Row ID Address

1 node_id/*

1.1 node_id/service_id/*

1.2 node_id/service_id/output

1.3 node_id1/backup/node_id2/service_id/*

1.4 node_id/service_id/ctrl

2 twin/*

2.1 twin/node_id/*

2.2 twin/node_id/service_id/*

2.3 twin/node_id/service_id/ctrl

3 cp/*

3.1 cp/heartbeat

3.2 cp/controller_id/*

3.3 cp/controller_id/ctrl

3.4 */ctrl

TABLE I: Namespace design

address of the backup service is the fully qualified address of

the primary service placed under the backup/ subspace (row

1.3).

Twin Space: The address of a digital twin corresponds

to the fully qualified address of its physical counterpart,

placed under the twin namespace (row 2.2, Table I). Each

twinned component, akin to its physical counterpart, possesses

a dedicated control topic to receive messages from the control

plane (row 2.3). Additionally, the node-service mapping is

preserved within the twin space (row 2.1), facilitating the

straightforward management and control of all services on a

node. For instance, this allows for the simultaneous spawning

of all twins of a node on similar hardware or a virtual

machine. Consolidating all twinned components under the

same namespace (row 2) streamlines the physical-digital twin

address conversion process.

Control Space: All control topics are located within the

control space (row 3, Table I). Each service transmits heart-

beats and diagnostic messages to the heartbeat topic (row 3.1),

which controllers may subscribe to for control functionalities

such as monitoring, anomaly detection, and failover. Con-

trollers, specialized services residing in the control space, have

their own control topic to receive replies from the controlled

services (row 3.3). Controllers can issue control messages to

the control topics of selected targets or all services (row 3.4).

B. Twin middleware library

We implement a digital twin middleware library that adopts

the proposed namespace design. The programming model and

two example services implemented with the library are shown

in Figure 1.

As mentioned earlier, a service is modeled as a node in

a computation graph that processes incoming messages from

topics, produces results, and publishes them to topics. The

twin library handles control messages, including synchroniza-

tion (Sync) [11], getting and setting service parameters, and

maintaining heartbeats. The application handles the rest of the

messages through message queues.
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Fig. 1: Digital Twin middleware library and example services

We provide two examples in Figure 1. To implement a

microphone service that records samples from a microphone

and publishes the messages to the microphone topic, we only

need to implement the application logic that reads samples

from the sound driver and calls the Service.send() API

with the target topic (.e.g, node1/mic) and a vector of

samples as the payload. To implement a processing service

that runs a neural network classifier on the incoming data and

publishes the classification result to a topic, we need to provide

the following application logics: (1) loading the neural network

model on service start, (2) listening on input topics, (3) running

the classifier when there are enough data, and (4) publish the

classification to the downstream pipeline. The twin middleware

handles message serialization and deserialization, distributes

data to all subscribers, and responds to control messages.

C. Control Plane Architecture

The control plane monitors and oversees system states

as shown in Figure 2a. The twin library sends out heart-

beats to the cp/heartbeat topic, which the controller

subscribes to. Each service has a dedicated control topic

in its own namespace <node>/<service>/ctrl that

receives control messages from the controller. Similarly, a

controller can receive replies from the twins in its control topic

cp/controller/ctrl.

Figure 2b shows the system architecture of a typical

networked twin system. Each service in the system is

communicating and managed by the control plane as

illustrated in Figure 2a. On the physical twin side, there

may be multiple services running on each node, forming a

processing pipeline. Twins of selected components can be

mirrored on physical nodes, virtual machines on edge servers,

or in the cloud. Digital twins and their mirrored topics exist in

the twin/ namespace. In the example in Figure 2b, Node 1

and Node 2 run the same pipeline where Service 3 consumes

messages from Service 1 and Service 2. The input topics to

Service 3, <node>/s1/topic and <node>/s2/topic

are mirrored to twin/<node>/s1/topic and

twin/<node>/s2/topic. Then, the controller can

perform analyses and optimizations on the digital twins of

Service 3. If the controller finds a better service configuration

or detects an anomaly, the services are reconfigured through

its control topic <node>/<service>/ctrl by the

controller.

The namespace design supports the development of various

control plane analyses and optimizations tailored to the needs

of the application. Next, we discuss two typical control and

management functions that are commonly needed in edge AI

applications and are built into the default controller. These

functions are (i) inference optimization and (ii) failover (see

Section III). They illustrate the utility, flexibility, and ex-

tendibility of the namespace design.

III. CONTROL FUNCTION EXAMPLES

In IoT systems and Edge AI applications, the ability to mon-

itor, respond to, and adapt to environmental dynamics is cru-

cial for ensuring system robustness and reliability. However,

implementing control plane software to manage both physical

and digital twins, monitor their operational status, optimize AI

model performance, and handle failures can be challenging,

given the openness of the system and dynamic environment.

In this section, we demonstrate how the proposed namespace

design facilitates the implementation of such software through

several examples.

A. Dynamic Model Selection

The first example of a twin-based value-added control

function is a dynamic (edge AI) model selection to enhance

inference accuracy and/or latency. Since edge nodes are gen-

erally resource-limited and heterogeneous, it is not always

clear a priori which version of an AI model will offer the

best latency/accuracy trade-off. Larger models may be too

slow on a given edge device, whereas simpler models may

be inaccurate. What is the best model to use given the current

external environmental condition and internal resource avail-

ability/load? The idea is to exploit the substantial capabilities

of a server that executes the digital twin to dynamically

evaluate and select the most appropriate model, given latency

and accuracy specifications.

Let xt denote the data received at time t and X = {xt}
T
t=1

all the data received up to time T . The data synchronized to

the twin space (row 2, Table I) X ′ is a subset: X ′ ⊆ X .

The controller can replay data point xt ∈ X ′ in the temporal

order and observe the prediction of each model:

ŷt,i = f(xt; θi), xt ∈ X ′ (1)

where f(·) is model inference, θi represents the i-th available

model and ŷt,i the inference result of θi for xt. After a certain

period of time, we may gain access to the ground truth label

yt for a certain subset of data points xt ∈ X ′, from stronger

models on the cloud or human operators. To make a timely

and accurate estimation of each model’s trustworthiness, we

evaluate each model’s prediction at the latest time point with

available ground truth. Formally, let ys denote the latest

available ground truth label before time point t, we calculate

and compare the KL divergence between ground truth ys and

prediction ŷs,i made by each model, and select the model

with least-KL-divergence-prediction as the trusted model of

the system at time point t:

i∗t = argmin
i

KL(ys||ŷs,i) (2)
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(a) Control plane (b) System architecture

Fig. 2: Control plane and system architecture

where i∗t denotes the index of the trusted model at time point

t. Then, the controller reconfigures the corresponding physical

twin through the node’s control topic (row 1.4, Table I) to use

i∗t so that the physical twin will run the best model.

B. Inference Latency Profiling and Reconfiguration

Inference latency is another critical aspect of many edge

AI applications, directly influencing their effectiveness and

responsiveness. To address this, our control plane includes a

latency profiling functionality that measures and analyzes the

time it takes for the neural network models to process data.

The controller replays data from X ′ to digital twins (row

2.2, Table I) configured with different parameters θi to record

the resulting latency τi and inference performance Ai. This

data establishes a relationship between τi and Ai, providing

a basis for making informed trade-offs between accuracy and

latency based on specific application needs.

The latency profiling and reconfiguration feature helps iden-

tify configurations that achieve decent accuracy with suffi-

ciently fast response times, balancing performance with speed

to maintain effective operation. We include an experiment in

Section IV-C to showcase this feature.

Apart from edge inference optimizations, the control plane

enables failure detection and can perform appropriate failover

mechanisms to maintain the system’s correctness.

C. Anomaly Detection

To continuously monitor the status of the twined system, the

control plane collects heartbeats and synchronization messages

(row 3.1, Table I). Each time a heartbeat or a state synchro-

nization message is received, the time to live (TTL) value of

the health status record for the corresponding physical twin

is updated. System states, such as memory utilization, CPU

utilization, CPU temperature, and core component voltages,

are periodically piggybacked on the heartbeat messages. The

system states, together with twined parameters registered by

the application, are stored in a database on the controller,

which is available for the anomaly detection algorithms.

The default controller implements a simple model-based

anomaly detection algorithm [12, 13]. The controller interprets

an execution plan supplied by the application, which details

system models that delineate both healthy and failure states.

The controller periodically evaluates the current system states

by comparing them with the predefined models in the execu-

tion plan. If it detects any deviations that indicate a failure,

the controller will try to initiate failover procedures, ensuring

continuous system operation and minimizing downtime. The

controller is designed with flexibility in mind and can be

extended with more complex algorithms (e.g., knowledge-

based and data-driven approaches). We broadly categorized

commonly encountered failures into service failures and node

failures, described below in detail.

D. Service Failures and Failover

We distinguish in our terminology between service failures

and node failures. Service failures are defined as failures of

certain components on a node that can be partially recovered

by reconfiguring the system without resorting to backup nodes.

This is as opposed to node failures, where some backup

node(s) must be called upon. If a service failure is detected,

the controller initiates a failover procedure as follows:

1) The controller first identifies the components in the

processing pipeline that remain functional and healthy

(row 3.1, Table I).

2) It then explores the configuration space, adjusting the

parameters of the involved digital twins (row 2, Table I)

to identify a configuration that achieves a system state

recognized as healthy by the models defined in the

execution plan.

3) Upon identifying a suitable configuration, the controller

implements the necessary adjustments to the physical

twins, including changing physical twin parameters,

activating backups and heterogeneous replicas [3] (row

1.3, Table I), to facilitate recovery.

If no viable failover can be found, the controller will warn of

the failure and report the incident. In Section IV-D, an exper-

iment study with multiple failures is presented to demonstrate

the effectiveness of the service failover procedure.

E. Node Failures and Failover

A node failure is defined as the failure of an entire node

that can not be recovered solely within the existing system

and must be addressed by activating a backup node. If a node

failure is detected, the controller initiates a node failover as

follows:

1) The controller will first locate any available backup

nodes in the system.

2) Then, the controller will apply the last-known config-

uration of the digital twins from the failed node to
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the digital twins of the backup nodes, testing whether

this setup can achieve a system state deemed healthy

according to the models defined in the execution plan.

3) If the backup nodes cannot accommodate a full replica

of the failed node, the controller will seek a node capable

of running a heterogeneous backup to restore a healthy

system state [3, 14].

4) Upon identifying a suitable configuration, the controller

implements the necessary adjustments and activates the

backup node.

If no viable failover can be found, the controller will report

the failure. The effectiveness of node failure failover is demon-

strated in Section IV-D.

These control plane functionalities apply to other applica-

tions that adhere to the same namespace structure. Addition-

ally, other types of controllers can be developed as plug-and-

play solutions for applications following the same convention.

IV. EVALUATION

The above has been a description of how certain useful

services can be implemented where changes in load, envi-

ronmental conditions, or health status trigger the twin to

consider the space of possible reconfigurations, ultimately

producing a new system configuration that is optimized for

the new condition. Below, we evaluate the efficacy of these

mechanisms.

For the sake of the experiments below, we implemented a

multi-node, multi-modality vehicle classification application as

a case study to evaluate the effectiveness of our design from

various perspectives.

A. Experiment Setup

Extending the experimental setup in [15, 16, 17, 18], we

build our vehicle classification system with multiple Raspberry

Pi nodes, each of which is equipped with a microphone,

a geophone and a GPS sensor to record acoustic signals,

seismic signals and GPS locations simultaneously. Raspberry

Pis are connected to portable batteries as power supply. We

place the nodes on the sides of an experimental field. The

nodes are connected with each other and to an edge server

using a standard 802.11 router. Our experiments include four

commonly available civilian vehicles with different weights,

powers, and torques. The detailed specifications of the vehicles

are described in Table II.

Model Type
Weight Engine Power Torque

(lbs) (all 4cyl) (hp) (lb-ft)

2018 Mustang Sports Car 3858 2.3L T 310 350

2022 MX-5 Roadster 2745 2.0L NA 181 151

2023 CX-30 Compact SUV 4345 2.5L NA 186 186

2017 GLE-350 Mid-size SUV 6217 2.0L T 255 273

TABLE II: The specifications of the four target vehicles used

in our experiment. The vehicles span a variety of types,

weights, powers, and torques to ensure

We choose neural networks [16, 17, 18] as vehicle classifiers

in our experiments for their state-of-the-art performance. They

take in sensor signals as input and output a categorical

probability distribution as the prediction.

We conducted comprehensive experiments with the same

vehicle classification system and procedures in two different

locations (denoted as A and B, respectively). The spatial layout

of our system in location A and an example vehicle trace are

shown in Figure 3a and Figure 3b, respectively. The system

layout and vehicle trace in location B are determined similarly.

B. Evaluation of Dynamic Model Selection

We first experiment with the model selection algorithm

using our vehicle classification system on location B. In this

experiment, we adopt one acoustic signal based model and one

seismic signal based model to make predictions. The ground

truth label for each data point is revealed to the twin after

the prediction is made for this data point. In this experiment,

we reveal ground truth to the twin manually. In a real de-

ployment, ground truth might come from a calibration service

(e.g., reliable camera-based classifier) that is available (for

calibration purposes) to the twin but not otherwise available

for the deployed system. As described in Section III-A, the

digital twin dynamically selects which one of the models to

trust based on the latest available ground truth label and the

models’ corresponding predictions. The calibration service is

deployed for nearly 600 seconds in total. To further examine

the effectiveness of our model selection algorithm under severe

environmental conditions, we introduced additional simulated

wind noise from 150 seconds to 370 seconds.

The experiment results are shown in Figure 4, we can see

that the dynamically selected trusted model achieves steadily

high accuracy and outperforms both of the individual models

most of the time. In contrast, the accuracy of the seismic model

is unstable throughout the experiment, while the accuracy of

the acoustic model is steadily high in the quiet environment

but drastically decreases in the presence of wind noise. The

results show that our model selection algorithm can stably

identify the more trustworthy model dynamically, even in

severe environmental conditions, and consequently improve

the overall prediction accuracy of the system.

C. Evaluation on Inference Latency Profiling

In the following experiment, we explore the latency-

accuracy trade-off across various models within our vehicle

classification system, employing the identical experimental

setup, location, and the two neural network models outlined

in Section IV-B. Throughout the experiment, simulated wind

noise was introduced to assess our system under severe en-

vironmental conditions. For comprehensiveness, we profiled

the two neural network models and the selected trusted model

described in Section IV-B. All models originally operated on

a latency of 1000 ms. Models with latencies larger than 1000

ms are created by performing temporally ensemble on original

model predictions of recent seconds.
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(a) Experimental setup and spatial layout of our vehicle classification system.
8 Raspberry Pi nodes with sensors and batteries are deployed uniformly on
the sides of the field and are connected by an 802.11 router.

(b) Exemplar vehicle trace. The vehicle is passing by
Node 3 (marked as red), which can be seen from both
target point of view and external view.

Fig. 3: Experimental setup of the vehicle classification system and an exemplar vehicle trace.

Fig. 4: Comparison of the classification accuracy of different methods. Classification accuracy at each time point is calculated

over the past 30 seconds. We introduced simulated wind noise from 150 seconds to 370 seconds.

The results, displayed in Figure 5, reveal that models with

higher latency tend to achieve higher accuracy for all three

model families, which is an expected outcome given the

broader temporal information base for the models with larger

latency. Notably, the selected model consistently outperforms

the individual models at all latency levels, validating the effi-

cacy of our model selection algorithm. However, the accuracy

of the selected model plateaus at higher latencies, underscoring

the possibility and importance of selecting a model with

an optimal latency level. For instance, one may choose the

selected model with a latency of around 2000 ms for a real-

time vehicle classification application to deliver satisfactorily

accurate predictions at the cost of a tolerable time delay.

D. Evaluation on Failure Detection and Failover

In the following experiments, we implemented our failure

detection and failover mechanisms described in Section III-C

within our vehicle classification system in location A. These

experiments involved three neural network models serving

as classifiers: 1) classifier-geo, which requires only seismic

signals; 2) classifier-mic, which requires only acoustic signals;

and 3) classifier-both, which utilizes both acoustic and seismic

signals and yields higher accuracy than the former two models.

In healthy states, each node operates one of these classifiers

Fig. 5: The trade-off between classification accuracy and

inference latency for different methods.

based on the available sensor data. classifier-both should be

selected if both sensors are operational; otherwise, either

classifier-geo or classifier-mic should be selected depending

on which sensor remains operational.

In this particular application, we abstract the most common

issues encountered during vehicle classification system oper-

ations into two categories: service failure and node failure.

Service failure is defined as any discrepancy between available

sensor signals and the running classifier, which may be caused

by a change in sensor availability or a failure of the classifier

process. An example of service failure is shown in Figure 6.
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Based on Section III, we specifically designed two failover

mechanisms for service failure: 1) for service failure caused

by the change of sensor availability, we replace the current

classifier on the corresponding node with the appropriate

classifier, as illustrated in Figure 7; 2) for service failure

caused by the failure of the classifier process, we identify a

node with extra computational power to run a backup classifier.

The node failure in our application is defined as the failure

of the entire Raspberry Pi or all equipped sensors, which

may be caused by a power outage. The corresponding failover

mechanism is to activate a standby node to replace the failed

one. The failure and failover process is depicted in detail in

Figure 8.

We conducted two experiments to evaluate the empirical

performance of our failover system. In the first experiment,

we inject four service failures on different nodes at different

time points, as detailed in Table III. The result is shown in

Figure 9 (left). We can observe that, after the first injected

failure, the number of correct classifications of the system

with failover is consistently higher than the system without

failover. Besides, the number of correct classifications of the

system with failover grows linearly throughout the experiment,

showing that our failure detection and failover mechanism

successfully addressed all injected failures and consistently

brought the system back to a healthy state.

In the other experiment, we injected 2 node failures on dif-

ferent nodes, which are also listed in Table IV. We can observe

from the result shown in Figure 9 (right) that the system with

failover also achieves a consistently higher number of correct

classifications than the system without failover. Similarly, the

number of correct classifications for the system with failover

also grows linearly a period after the injection of the failures,

which also indicates the effectiveness of our failure detection

and failover mechanism.

When Service Failure Causes Failover

342s node7/mic disabled node7/classifier-both → node7/classifier-geo

458s node3/geo disabled node3/classifier-both → node3/classifier-mic

462s node6/classifier-both failed node6/classifier-both → node4/backup/node6/classifier-both

522s node5/mic disabled node5/classifier-both → node5/classifier-geo

TABLE III: Service failures injected during the experiment.

The experiment lasts for 1800 seconds.

When Failed Node Failover

152s node5/* node5/* → node6/*

212s node7/* node7/* → node4/*

TABLE IV: Node failures injected during the experiment. The

experiment lasts for 1800 seconds.

V. RELATED WORK

The concept of the digital twin originated from NASA’s

early simulations of spacecraft systems, where mirroring phys-

ical systems in a digital framework allowed for effective man-

agement of complex operations [1]. Digital twin technology

Fig. 6: Illustration of an example of service failure in our

vehicle classification system. The microphone attached to node

7 is unplugged, making the acoustic signals inaccessible. The

currently running classifier-both can no longer process the

data, arriving at a service failure.

Fig. 7: Illustration of a service failure and corresponding

failover mechanism. The microphone is disabled, rendering

the current classifier classifier-both unusable and consequently

causing a service failure. The service failure is then addressed

by switching the classifier-both to classifier-geo.

bridges the physical and digital worlds by collecting real-time

data from embedded sensors and other sources, which are

then used to simulate the physical counterpart in a virtual

environment. Examples include OpenTwins [8], a versatile

framework that supports real-time data streams and machine

learning predictions via its Kafka-ML integration; Mobility

Digital Twin (MDT) [19] for transportation and mobility

services; uDiT [10], a digital twin architecture designed to

enhance the dependability of Cyber-Physical Systems (CPS)

through distributed cooperation and data-centric communica-

tion middleware; a digital twin middleware [20] based on

the YANG data model, designed to enhance communication
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Fig. 8: Illustration of a node failure and its corresponding failover process. The battery is unplugged from node 7, which

deactivates the entire node, causing a node failure. Standby node four is then activated to replace node 7.

Fig. 9: Number of correct classifications over time in the

presence of service failures (left) and node failure (right) with

and without digital twin controller.

efficiency between IoT devices and their digital twins in smart

farming; Eclipse Ditto [9] an open-source framework that

facilitates the digital representation of physical objects on

the Internet of Things (IoT), and others. These frameworks

primarily emphasize efficient communication and modeling,

with some incorporating data-centric pub/sub systems [8, 10]

or hierarchical namespace support [8, 9]. In contrast, we focus

on the integration of twin control and management functions

with a microservices-based system abstraction, allowing flex-

ible twin-based orchestration of system behavior.

Existing work explores the use of digital twins for op-

timizing deep neural network workloads and for anomaly

detection, but not within a general and integrated control plane

setting. For example, prior work [21] investigates the use of

digital twins to offload deep neural network (DNN) inference

workload to servers in the Industrial Internet of Things (IIoT).

Another framework [13] leverages the Digital Twin concept

to enable real-time health monitoring and anomaly prediction

by merging historical and real-time data processing at the

network edge. Some efforts [22] propose a flexible framework

that leverages both digital twins and data-driven techniques

to detect and classify anomalous behaviors, which can occur

due to modeling errors or faults in the physical system. In

contrast to these specialized functions, our approach centers

on a general design for system control and optimization. The

optimization examples in the paper entail model selection

and latency optimization rather than offloading. Additionally,

the paper illustrates a failover example that showcases the

flexibility and extensibility of the proposed control plane

design.

VI. CONCLUSION

In conclusion, this paper introduces a novel content-centric

control plane design tailored for digital twin systems in edge

AI applications. By meticulously crafting the namespace, our

approach tackles key challenges in control plane development,

including interoperability, robustness, and coordination. The

proposed digital twin system boasts a structured namespace

alongside a lightweight client library equipped with versatile

pub/sub-based communication middleware. Our control plane

implementation excels in monitoring system states and exe-

cuting a variety of value-added analyses and optimizations.

To demonstrate the practicality and effectiveness of our pro-

posed system, we implemented a multi-node multi-modality

vehicle classification application. Through field deployment,

we showcase how our digital twin system enhances inference

latency, classification accuracy, and robustness in the face of

environmental dynamics and system failures, particularly in

noisy and challenging conditions. This study underscores the

potential of content-centric control plane designs in advancing

edge AI applications and highlights the tangible benefits they

offer in real-world scenarios.
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