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Abstract—This paper presents a generative data augmentation
approach for human activity recognition (HAR) to close the
distribution gap between laboratory training and real-world
deployment. Despite the recent success of deep learning methods
in wearable sensor-based HAR tasks, performance degrada-
tion occurs during real-world deployment due to training data
scarcity and the vast variability in human activities. In light
of this, we aim to enhance the diversity of training datasets
by generating new data points within the vicinity of existing
samples, as informed by domain expertise. Unlike the commonly
utilized methods that augment data by interpolating in data space
or feature space, we innovate by applying interpolation in the
condition space of a conditional generative model to augment
HAR datasets. We use domain-specific knowledge to extract
statistical metrics from sensor data, which serve as conditions to
direct the generation process. We demonstrate how a conditional
generative diffusion model, steered by interpolated conditions,
can synthesize realistic new data with various high-level features
that benefit the robustness of the downstream HAR models.
Our methodology advances the use of interpolation in data
augmentation by exploring the capability of a state-of-the-art
generative model, offering novel perspectives for bolstering the
robustness and generalizability of HAR systems. Experimental re-
sults demonstrate that condition space interpolation outperforms
the conventional interpolation-based and generative model-based
augmentation methods across various datasets and downstream
classifier combinations.

Index Terms—human activity recognition, data augmentation,
generative model, diffusion model

I. INTRODUCTION

Wearable sensor-based Human Activity Recognition (HAR)
has emerged as a critical area of research, driven by its
significant potential applications in health monitoring, physical
performance analytics, and virtual reality. Wearable sensor
signals capture distinct patterns as records of the physical
movements of a human body, enabling end-to-end activity
recognition by state-of-the-art deep learning methods. How-
ever, their effectiveness is often compromised due to variations
in the deployment scenario not represented in the training data.
This limitation poses a significant challenge for the practical
application of HAR technologies.

A considerable amount of research has been dedicated
to enhancing the robustness of HAR models against vari-
ability in deployment conditions. Among various strategies,
data augmentation stands out as a key technique. It involves
defining a legitimate vicinity around data samples and gen-
erating synthetic samples within this distribution. Such an
approach introduces plausible real-world variations to the
original (training) dataset, thereby improving the robustness
of the downstream HAR models in practical scenarios, when
trained on the augmented data.

Extensive research has underscored the efficacy of interpo-
lation between samples within the same class as an important
data augmentation technique [1]–[4]. Successful interpolation
is predicated on the assumption that data samples within
the same class lie in a “neighborhood” where interpolating
between samples can generate new samples that are still
representative of that class. The intuition is that if the model
can correctly classify not only the original samples but also
these in-between points, it is likely to perform better on unseen
data that fall within the same general manifold.

Previous research has explored interpolation within the
data space [1]. Illustrated in Figure 1a, this process occurs
before the original data sample x is fed into the downstream
neural network, which consists of both a feature extraction
encoder and a classifier. Another approach, feature space
interpolation [1]–[4], is applied after x has been processed
by an encoder that projects it into the latent feature space,
as depicted in Figure 1b. The underlying rationale is that
interpolating (training data) at a higher level of abstraction
effectively enlarges the volume of feasible data points in
the feature space that the downstream model is trained with,
thereby reducing the proportion of space that the model has
not seen [2], [5].

In this work, we explore this concept further by applying
interpolation in the condition space that steers the generation
process of a conditional generative model. Generative neural
networks excel in capturing and replicating the complexity of
the training data, offering the prospect of creating realistic
synthetic data indistinguishable from the real data. Given
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Fig. 1: Concepts of interpolation in different spaces.

specified conditions, the conditional generative model further
provides control over the characteristics of the synthesized
samples. This controlled approach avoids random sampling
from the dataset, ensuring that new samples adhere closely to
the desired feature distributions.

We illustrate our concept of condition space interpolation
in Figure 1c. Rather than performing interpolation directly on
the data sample x or its latent features, our approach applies
interpolation to the condition c. This interpolated condition
serves as the input for the conditional generator G, which in
turn produces the interpolated data x′ utilized in training the
downstream model.

To construct the condition c, we extract statistical metrics
from each data sample, based our expertise in HAR sensor
signals. These metrics, such as maximum, minimum, devia-
tion, entropy, and centroid, capture the high-level features of
the data. Within a given activity type, such features cover the
variance in sensor signals shaped by physical aspects like in-
tensity, speed, and frequency, akin to distinct “styles” [6]. Our
novel approach involves linearly interpolating these (condi-
tion) metrics between pairs of samples from the same activity
class, enabling us to guide the generation of new samples in a
specific, interpolated style. We choose a conditional diffusion
model as the generative model due to its training stability and
superior generation quality. We summarize our method with
three key advantages:

1) Domain-Specific Insights: By grounding our conditions
in the statistical metrics of HAR data, we achieve strong
control over the style variance of the generated data.

2) Vicinity Exploration: Through the interpolation of the
statistical properties, we leverage the inherent notion
of vicinity defined within each activity type to create
plausible high-level features (not present in the original

training data).
3) Realistic Synthesis: the power of the diffusion model

ensures that the newly created samples closely align with
the conditions specified while demonstrating realism in
the semantics of spectrograms.

In the rest of the paper, we first review the related work in
Section II. Next, we introduce our proposed methodology in
detail in Section III. In Section IV, the evaluation results are
presented. Finally, the paper concludes in Section V.

II. RELATED WORK

A. Human Activity Recognition

Wearable sensor-based human activity recognition (HAR)
has been a popular research topic since the late ’90s, when
feature extraction (FE) methodologies were initially adopted
[7]. These approaches involve manually selecting statistical
features from the raw data, building a standard profile from
the training set, and classifying the testing samples by quan-
titatively comparing the features with the standard profile.
Even though the well-designed statistical features can be
representative of a limited dataset, they are less generalizable
to a more diverse population and set of activities. Machine
learning models were widely introduced to solve HAR tasks
in recent decades [8], where classic models such as decision
trees, Support Vector Machines (SVM), Bayesian models,
and ensemble models were adopted. With advances in neural
networks, deep learning-based models have dominated the
HAR domain in the last decade [9], [10]. Deep learning
models can effectively extract features from vast amounts
of data, thus achieving superior performance compared to
conventional machine learning models. Due to the vast vari-
ability in human activities and the high cost of data collection,
HAR datasets might under-represent the real-world variance
[11], [12]. In such situations, prior research has demonstrated
that deep learning models can potentially overfit the training
datasets [13], leading to poor generalizability to deployment
conditions. To avoid overfitting, much recent work considered
different techniques for (training) data augmentation [14],
[15]. In this paper, we further improve model robustness (in
various deployment environments) by introducing a better data
augmentation algorithm.

B. Data Augmentation

Data augmentation is an effective approach to improve
model robustness in HAR tasks. Traditional techniques involve
manually crafted transformations to generate variants from
existing samples. These include operations like cropping,
flipping, and jittering, applicable across time, frequency, and
time-frequency domains [16], [17]. However, their reliance on
an empirically determined vicinity may not generalize well
across diverse scenarios and can introduce synthetic artifacts
that compromise the realism of generated data. With the
evolution of generative artificial intelligence, generative neural
networks have been extensively utilized for data augmentation,
such as Generative Adversarial Networks (GANs) [14], Vari-
ational Autoencoders (VAEs) [18], and diffusion models [15],
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[19]. They learn the data distribution of the training dataset
conditioned by the corresponding activity labels. During the
generation stage, the trained generative models are adopted to
introduce new variations in the generated samples by taking
the target activity labels as inputs. While these generative
models are adept at producing outputs that closely resemble
real data, the generation process primarily depends on random
sampling within the designated activity category, resulting
in a lack of precise control over the desired attributes of
the generated samples. Our approach mitigates this challenge
by interpolating in the condition space of the conditional
generative model.

C. Diffusion Model

A diffusion model is a probabilistic generative model that
simulates the process of information or signal propagation
through a medium by iteratively refining random noise into
coherent structures resembling the target data distribution [20].
In the previous literature, diffusion models have been em-
ployed to generate images [21], [22], human speech [23],
[24] and music [25]. It has been shown that diffusion models
are versatile in handling various data types and more stable
during training compared to Generative Adversarial Networks
(GANs) while generating comparable (or even better) quality
results. Moreover, their exceptional flexibility and control in
conditional generation are particularly advantageous for our
proposed interpolation in the condition space, which relies on
various statistical metrics for conditioning.

Diffusion models are based on the concept of adding noise
step by step and learning to gradually denoise the data.
To formally define diffusion, we first describe the forward
process, which is a Markov process that adds noise to the
data over a series of time steps:

xt =
√
αtxt−1 +

√
1− αtϵ (1)

where xt is the data at time step t, αt is the predefined
variance schedule that defines how much noise to be added,
and ϵ represents the noise sampled from a standard Gaussian
distribution. The forward process gradually transforms the data
into a Gaussian distribution.

In the backward process, a neural network learns the reverse
of the forward process, gradually denoising the data to recover
the original data distribution from the noise. The reverse
process can be parameterized as:

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where µθ(xt, t) and Σθ(xt, t) are the mean and covariance
of the distribution, predicted by the model at time t, param-
eterized by neural networks with parameters θ. The training
process involves learning to predict the noise that was added
at each step of the forward process, so that it can be reversed.

And the loss function is defined as:

Ldenoise = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, c)∥2

]
(3)

where c is the condition embedding for guiding the generation
process. This loss function encourages to train a neural net-
work that can accurately predict the noise that was added to the
data at each step of the diffusion forward process, allowing it
to generate samples from the data distribution by starting from
noise and progressively denoising it.

To generate a new sample, the diffusion process begins
with a sample ϵ drawn from the a standard Gaussian noise
distribution. The additional condition c′ is provided to the
model at each step of the reverse process, guiding the model
to generate data that aligns with c′.

III. DATA AUGMENTATION FRAMEWORK

In this section, we present our data augmentation frame-
work. We begin with an overview of the framework, followed
by an in-depth introduction to its three major components.

A. Framework Overview

Let x denote a data sample collected by wearable sensors
for HAR, m ∈ Rn represent the metric vector, consisting of
n statistical metric extracted from sensor data x. Let y be the
activity type label, encoded as a one-hot embedding vector in
Rk, where k is the number of distinct activity types. We define
two neural network layers as embedding functions:

• fm : Rn → Rdm is the embedding function for the metric
vector m, mapping it to a dm-dimensional embedding
space.

• fy : Rk → Rdy is the embedding function for the activity
type label y, mapping it to a dy-dimensional embedding
space.

Both fm and fy are trained concurrently with the main condi-
tional diffusion network to optimize their ability to represent
the inputs in a manner to generating realistic synthetic data.

The condition vector c is then constructed by concatenating
the embeddings of m and y, resulting in:

c = [fm(m); fy(y)] (4)

where [; ] denotes the concatenation operation, and c ∈
Rdm+dy serves as the condition input to the diffusion model
during both the training and generation processes.

Let G be a diffusion model parameterized by θ that outputs
the generated sample x′ given a noise vector ϵ and condition
vector c. The statistical metric of x′ is denoted as m′.

We illustrate the training and generation stage of G in
Figure 2. During the training stage of G, the optimization
goal can then be written as:

θ∗ = argmin
θ

(
E(x,c)∼pdata(x,c),ϵ∼p(ϵ) [Ldenoise(G(ϵ, c; θ), x)]

+ λE(x,x′)∼pmodel(x,x′) [Lmetric(m,m′)]

)
(5)

where pdata is the empirical distribution of the real data and
its conditions, and pmodel is the model distribution of the data,
implicitly defined by G and the process of generating x′ from ϵ
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and c. Ldenoise is the denoising loss from the diffusion model
as defined in Equation 3. Ldenoise is the mean squared error
loss for calculating the distance between the metric values of
the original and generated data.

Upon training completion, the diffusion model G generates
new samples by taking a random noise vector ϵ sampled
from a noise distribution p(ϵ) (a standard normal distribution
in our implementation), and an interpolated condition vector
c′. The interpolated metric vector m′ is obtained through a
linear interpolation between two metric vectors m1 and m2,
associated with the same activity class y′:

m′ = λm1 + (1− λ)m2 (6)

where λ is a weight parameter randomly sampled between 0
and 1 for each interpolation.

The corresponding condition vector c′ is defined as:

c′ = [fm(m′); fy(y
′)] (7)

The diffusion model G then synthesizes the new data sample
x′ by:

x′ = G(ϵ, c′; θ∗) (8)

Let X ′ denote the set of new samples created from the
generation process. The augmented dataset Xaug is then de-
fined as the union of the original dataset X and the generated
samples:

Xaug = X ∪X ′ (9)

This augmented dataset Xaug is used to train downstream
HAR model, H , parameterized by ϕ, with the goal of mini-
mizing the activity type classification loss function Lclass on
a separate validation dataset V :

ϕ∗ = argmin
ϕ

Lclass(H(Xaug;ϕ), V ) (10)

The goal is that training H on Xaug will lead to improved
performance on V compared to training solely on the original
dataset X , due to the increased diversity and coverage of hu-
man activity space within Xaug, enhancing the generalization
and robustness of H to unseen data.

𝒚 𝒄

Training Stage

Loss = Denoising Score Loss + Metric Error Loss

𝒙$

𝒙 𝒎

Condition 
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Diffusion Model
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Extract
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Fig. 2: Framework Overview.

In Section III-B, III-C, and III-D, we will explain the three
essential components of the framework in depth.

B. Statistical Metric Extraction

Statistical metrics have been widely used as features for
activity classification in numerous early HAR studies. While
these features provide an overview of statistical data distribu-
tions, they may lack the granularity required for constructing
a high-performance activity type classifier. However, high-
level features can capture the variability in how each activity
is performed, reflecting differences in speed, intensity, and
frequency among individuals. This performance variability is
the major discrepancy between training datasets and real-world
deployment scenarios. Consequently, the statistical metrics can
serve as effective proxies for the “styles” in which the same
activity is performed, supporting a control space for feature
interpolation.

To identify statistical metrics that effectively reflect the
variance, we focus on metrics within the frequency and time-
frequency domain. This emphasis is due to the periodic nature
of human activities, which exhibit regular, identifiable patterns
in the frequency and time-frequency domain. For each raw
time series data, we use short-time Fourier transform (STFT)
to convert it to 2D spectrograms.

We then empirically propose a set of statistical metrics
that characterize features in these domains. To assess their
effectiveness, we construct a random forest classifier for
distinguishing between human subjects based on these metrics
and evaluate the impurity-based importance score of each
metric. The underlying hypothesis is that metrics capable of
differentiating the stylistic variations associated with individ-
ual human subjects can serve as potent indicators of high-
level features. Employing the importance score evaluation on
RealWorld HAR dataset, we select the top nine metrics as our
final statistical metrics for conditioning, as shown in Table I.

TABLE I: Selected Statistical Metrics through Impurity-based
Importance Score Evaluation

Group Metrics
Time-frequency domain Mean, max, min, standard deviation
Frequency domain Centroid, kurtosis, entropy, contrast

Define the STFT spectrogram as S(f, t) where f represents
the frequency bin and t represents the time frame. For a given
time-frequency domain metric function gtime freq, we simply
calculate the metric value vtime freq by

vtime freq = gtime freq(S(f, t)) (11)

For the frequency domain metrics, we average across the
time axis of the STFT spectrogram, and then calculate the
metric over the entire spectrum.

Let S(f) define the averaged spectrogram across the time
axis:

S(f) =
1

T

T∑
t=1

S(f, t) (12)
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Given the frequency domain metric function gfreq, the value of
a frequency domain metric vfreq is calculated by:

vfreq = gfreq(S(f)) (13)

The metric vector m includes all the time-frequency and
frequency domain metric values:

m =[v1time frequency, v
2
time frequency, . . . , v

M
time frequency,

v1frequency, v
2
frequency, . . . , v

N
frequency] (14)

where M is the number of time-frequency domain metrics,
and N is the number of frequency domain metrics.

C. Conditional Diffusion Model

The conditional diffusion model takes data sample x, metric
vector m, and activity type label a as inputs.

It first embeds m and a into a condition vector through
the condition embedder, which has a linear layer followed
by a GELU activation function. The condition embedder
concatenates all the metric values and the one-hot embedding
of a into one vector, and pass it through the neural network.
The output dimension equals the length of the time dimension
F . Then it repeats for T times and turns into the same shape
as the STFT spectrogram of x. The condition vector c and x
are added up, feeding into the diffusion model.

We employ U-Net as the backbone of our diffusion model,
leveraging its established utility in 2D data (image) generation
tasks [26]. U-Net is characterized by a symmetric encoder-
decoder structure, augmented with skip connections that fa-
cilitate the flow of information between corresponding layers
of the downsampling and upsampling paths. The encoder,
or contracting path, employs a series of convolutional layers
for feature extraction, which reduce spatial dimensions while
deepening feature representation. In our implementation, we
use 2D convolutional layers with stride equal two for halving
the height and width of the 2D data, while doubling the output
feature dimension. At the core of U-Net, the bottleneck bridges
the encoder and decoder, concentrating high-level features for
subsequent reconstruction.

The decoder mirrors the encoder architecture in reverse.
It utilizes transposed convolutional layers to progressively
restore the 2D spatial dimensions. Skip connections from the
encoder reintroduce localized spatial information lost during
downsampling, aiding in the precise reconstruction of the
output 2D data.

Each skip connection directly concatenates feature maps
from the encoder to the decoder, ensuring that both high-
level semantic information and detailed spatial information
are preserved and utilized. This mechanism is critical for the
model’s performance, particularly in generating or enhancing
2D data where detail fidelity is paramount. The U-Net back-
bone outputs data in the same shape as the inputs, enabling the
direct denoising score loss calculation in the diffusion process.

To optimize the diffusion model, we consider two losses.
One is the regular diffusion denoising loss, as defined in
Equation 3. The other is metric error loss, which is the mean

squared error between the normalized m and m′ regarding
each single metric:

Lmetric = MSE(mnorm,m
′
norm) (15)

The final loss is the sum of the denoising loss and the metric
error loss:

L = Ldenoise + Lmetric (16)

D. Interpolation in Condition Space

In the generation stage, we interpolate on the condition
vectors of the training data to create new conditions for data
augmentation. Specifically, under the same activity type, we
randomly select two samples xi and xj under the same activity
type, and extract their statistical metrics mi and mj . We apply
linear interpolation on the two metric vectors and create the
interpolated metric vector m′ as defined in Equation 6. In
our implementation, λ is sampled from a uniform distribution
between zero to one. The interpolated metric vector m′ and the
activity type label y, alongside a random noise ϵ sampled from
a standard normal distribution, are fed into the conditional
diffusion model to generate the interpolated sample x′.

The number of the interpolated data samples is a tunable
hyperparameter. By default, for each activity type, we create
interpolated samples in the same number of the real samples
under that activity type. More in depth investigation on the
influence of the number of interpolated data samples will be
discussed in Section IV-E.

The generated samples will be appended to the original
dataset to train the downstream HAR classifier.

IV. EVALUATION

In this section, we present the evaluation on our pro-
posed augmentation method for HAR. First, we introduce
the datasets, baseline methods, and downstream classifiers
used in our study. Following this, we showcase the overall
performance of our approach. Subsequently, we explore how
the augmentation ratio of condition space interpolation affects
the performance of the downstream classifier. Lastly, we
demonstrate the efficacy of our conditional diffusion model
in precisely controlling the statistical metrics of the generated
samples.

A. Datasets

1) RealWorld HAR [27] The RealWorld HAR dataset in-
cludes data collected from 15 participants engaged in
five dynamic activities, including walking, running, as-
cending stairs, descending stairs, and jumping. This
dataset encompasses readings from 6 types of sensors
located at seven different positions on the body. For
our analysis, we specifically utilize data from the ac-
celerometer and gyroscope sensors attached to the upper
arm, both of which offer a sampling rate of 50 Hz.
Data for each activity spans approximately 10 minutes,
with the exception of jumping, which is represented
by 1.5 minutes of data. We process the time-series
data by segmenting it into 2.5-second intervals for both
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generation and classification tasks. We randomly select 8
participants as the training set, and the rest 7 participants
as the testing set.

2) PAMAP2 [28] The PAMAP2 dataset contains data from
9 participants performing 18 distinct physical activities.
In our study, we exclude static activities such as stand-
ing, sitting, and lying down, as well as activities with
insufficient data. The selected activities for our analysis
include biking, walking, stair climbing, running, rope
jumping, and vacuum cleaning. We utilize the data from
accelerometer and gyroscope taken at the wrist, with
both sensors recording at a sampling rate of 100 Hz.
Similar to the RealWorld HAR dataset, we segment
the time-series data into 2.5-second intervals for the
generation and classification processes. We randomly
select 6 participants as the training set, and 3 participants
as the testing set.

B. Baselines

We compare our method with 5 data augmentation base-
lines.

1) No augmentation (no-aug): Training the downstream
HAR classifier without any data augmentation. This
naive approach simply ignores the discrepancy between
the data distribution between the training set and

2) Conventional augmentation (convn-aug): Conventional
time-series augmentation methods proposed in [16],
including jittering, scaling, rotation, permutation,
magnitude-warping, and time-warping. We randomly
apply 2 transformations on each real data sample to
generate a synthetic sample.

3) Data space interpolation (data-interp): We linearly in-
terpolate between two random data samples under the
same activity type as proposed in [1]. For each inter-
polation, the weight used to balance the two samples
is randomly drawn from a uniform distribution ranging
between 0 and 1.

4) Feature space interpolation (feat-interp): As [2] pro-
posed, we first train an autoencoder in a unsupervised
manner, and then linearly interpolate the intermediate
feature maps from two random samples under the same
activity to create synthetic feature maps. The real and
synthetic feature maps are then altogether used for
training the downstream HAR classifier.

5) Conditional diffusion model with activity type as con-
dition only (act-only): We ablate the component of
interpolation in the condition space to assess its benefit
to the downstream HAR classifier. Specifically, we only
use activity type as the condition to train the conditional
diffusion model, and generate the number of synthetic
samples equal to the real samples under that activity
type. This is the typical usage of a conditional genera-
tive model for data augmentation in HAR applications.
Compared with our method, this baseline approach pro-
vides no explicit control over the high-level features,

blindly relying on the variation creation capability of
the diffusion model.

Our approach is annotated as cond-interp in the following
analysis.

C. Downstream Classifiers

1) Random forest: An ensemble-based machine learning
technique which employs a collection of decision tree
classifiers to gain an improved predicative accuracy. The
individual predictions from every tree are aggregated to
reduce the risk of overfitting. In our implementation,
we take the statistical metrics as the inputs for the
random forest. The random forest contains 100 trees.
The number of features to consider when looking for
the best equals to the square root of the total number of
features.

2) DeepSense [29]: A deep neural network designed specif-
ically for processing Internet of Things time series data.
It learns in the time-frequency domain by converting
data by short-time Fourier transform. It first applies mul-
tiple 2D convolutional layers on the data to extract spa-
tial features, and then uses Gated Recurrent Unit (GRU)
layers to capture temporal dependencies. Subsequently,
two linear layers are appended, serving the purpose
of refining the feature dimensions and producing the
final classification logits. To handle data from multiple
sensors, we apply two convolutional layers for each
sensor respectively, then concatenate the intermediate
feature maps from the two sensors.

3) Transformer: A neural network built by stacking multi-
ple Transformer encoder layers, where each incorporates
a self-attention layer followed by two linear feedforward
layers. In our implementation, given the input data in
the shape of (channel, frequency, time), we apply the
self-attention along the time dimension. We apply two
Transformer encoder layers for data from each sensor.
Then the multi-sensor features are fused via concatena-
tion and linear layer processing. A linear layer followed
by a softmax acts as the classification head.

D. Overall Performance

In this section, we present a comparative analysis of our
proposed data augmentation method, interpolation in the con-
dition space, against the other baselines.

Overall, our proposed interpolation in the condition space
outperforms the other baselines in all the test cases. Our
primary findings, illustrated in Figure 3, reveal that condition
space interpolation consistently beats the baseline methods
across all test cases. Our method particularly enhances the
performance of complex deep learning models including
DeepSense and Transformer. We attribute this result to the
stronger learning capability of the deep learning models,
which allows them more effectively consume the extra data
variations introduced from the augmented data. Conversely,
as the random forest only takes the statistical metrics as input
features, it gains less from the realism present in the synthetic
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Fig. 3: General performance evaluation. Each subfigure illustrates the performance comparison of the data augmentation methods
under a dataset-classifier combination.

spectrograms generated from our method. This phenomenon
is further illustrated by the marginal superiority of condition
space interpolation over data space interpolation in scenarios
involving random forest classifiers, as depicted in Figure 3a
and 3d. Additionally, we observe that other data augmentation
methods all introduce adversely affect the performance of
random forest classifiers. The negative impact likely stems
from the failure of these methods to interpolate within a valid
range of the statistical metrics, introducing unrealistic values
that confuses the downstream classifier.

Our analysis indicates that while the conventional augmen-
tation method generally improves the performance of deep
learning-based models, the enhancement is modest. The trans-
formation techniques such as jittering and rescaling, though
useful, fail to capture the complex variances inherent in real-
world data, resulting in limited effectiveness and potentially
introducing anomalous artificial effects. Our method, by rely-
ing on the realistic generation of the diffusion model, avoids
these pitfalls, preserving the integrity of data semantics and
offering more substantial improvements.

Interpolation in the data space and feature space can distort
the semantic content of spectrograms, leading to inconsistent
effects on classifier performance. Specifically, the perfor-
mance of feature space interpolation fluctuates significantly
on different dataset-classifier combinations. We speculate that
feature space interpolation depends on more deliberate neural
network architecture design for both the autoencoder and the
downstream classifier by considering their compatibility. In
other words, feature space interpolation is not downstream-
agnostic, underscoring the extra necessity for fine-tuning the
augmentation approach.

To further illustrate the advantages of our approach over
other interpolation-based augmentation methods, we visu-

ally compare the interpolation in different spaces in Fig-
ure 4. Specifically, we present the interpolated short-time
Fourier transform spectrograms from two data samples in
the RealWorld-HAR dataset [27]. Figure 4a and 4b are the
source samples for interpolation, both representing the “jump-
ing” activity. These two real samples all exhibit clear bright
bands at certain frequencies, serving as distinctive patterns for
the downstream HAR model to identify. Interpolating these
samples with equal weight in either data (Figures 4c) or
feature space (Figure 4d) results in the blurring of these bright
bands. This occurs as the distinct bands from the original
spectrograms merge, blurring their boundaries and diminishing
their separability. Such an effect demonstrates the potential
for data/feature space interpolation to disrupt the semantic
content of spectrograms. In contrast, our approach, visualized
in Figure 4e, generates results that not only preserve the
clarity of these bright bands but also introduce patterns that
are distinct from the source samples in a meaningful manner,
demonstrating the superiority in maintaining and enhancing
the realism of interpolated spectrograms.

Lastly, we found that the conditional diffusion model solely
conditioned by activity types behaves inconsistently under
different scenarios. This demonstrates that blindly relying on
the variations created by the generative model lacks robust-
ness. This finding also highlights the merit in our design of
using interpolated statistical metrics as conditions to direct the
generation of samples with unseen while realistic variance.

E. Influence of Augmentation Ratio

As the data variability that can be offered by our generative
model is not infinite, it remains unclear how many generated
samples optimally benefit a downstream model. This address
this question, we adjust the augmentation ratio, defined as the
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Fig. 4: Spectrograms visualization from different interpolation methods. Interpolating input samples in either data space (4c)
or feature space (4d) results in blurring of the bright spectral bands. Condition space interpolation (4e) preserves clear yet
distinct spectral band patterns.

ratio of generated samples to real samples, to investigate how
varying the number of samples generated via condition space
interpolation affects the downstream classifier’s performance.

In our analysis, we utilize Transformer as the downstream
classifier. As shown in Figure 5, the optimal augmentation
ratio differs across datasets. For RealWorld-HAR dataset, the
augmentation ratio peaks at 100%, whereas for the PAMAP2
dataset, a 200% ratio is optimal. Generally, when the aug-
mentation ratio falls below the optimal point, the benefit of the
data augmentation is constrained, indicating that the generative
model could still producing samples with meaningful unseen
variance. After the augmentation ratio reaches the optimal
point, additional generated samples cease to enhance the
downstream classifier. This plateau indicates that the gen-
erative model’s capacity for meaningful variance has been
fully utilized. Exceeding this threshold leads to redundant
variations, which can disrupt the original balance of the data
distribution and slightly impair the downstream classification.

Fig. 5: The influence of augmentation ratio on the perfor-
mance.

F. Condition Influence on Generated Samples

We speculate that the downstream classifiers will benefit
from the dataset augmented by interpolation in the condition
space because of the tractable high-level feature augmentation

and the realism of the synthetic samples. This is based on the
presumption that the conditions have strong control over the
generation process of the diffusion model, so that it produces
synthetic samples with statistical metrics aligned with the input
conditions. In this section, we empirically evaluate the extent
to which the conditions influence the statistical metrics of the
generated samples.

The conditional diffusion model was trained with a batch
size of 100 and an initial learning rate of 10−4, employing the
Adam optimizer and a cosine annealing scheduler for dynamic
learning rate adjustment throughout the training period. In
this analysis, we profile the normalized statistical metric error
on the generated samples across various training epochs. At
each profiled epoch, we generate the number of interpolated
samples equivalent to the size of the training set. Then we
calculate the Mean Squared Error (MSE) on the normalized
values of the statistical metrics of generated samples and the
metric values in their input condition. As shown in Table II,
the error decreases and stabilizes as training progresses, un-
derscoring that the generated samples increasingly align with
the input conditions over time. The results demonstrate that
the statistical metrics as conditions successfully gain stronger
control over the generated sample as the training proceeds

TABLE II: Normalized Statistical Metric Error on Testing Set
at Different Epochs (Values of errors are scaled by 10−3)

Epoch

100 200 400 600 800 1000

RealWorld-HAR 6.348 5.264 4.172 3.787 3.857 3.984
PAMAP2 7.421 5.101 4.219 3.650 3.120 3.297

V. CONCLUSION

In this paper, we introduced a novel data augmentation
method to enhancing HAR through condition space interpola-
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tion in a conditional diffusion model. One key innovation lies
in utilizing statistical metrics as conditions for controlling the
generation process within the diffusion model. To augment the
original dataset, we interpolate the metric values of samples
within the same class, and use the interpolated metrics to
steer the diffusion model to produce samples that exhibit
both realism and varied variance. Our experiments highlight
the effectiveness of our method over traditional time-series
augmentations, other interpolation-based strategies, and the
conventional conditional generative model-based augmenta-
tion. This research offers a new data augmentation strategy that
can advance the robustness of HAR in practical application
scenarios.
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