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Abstract
We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and
the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal
!∞-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’
map preserves monoidal coalgebra structures.
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1. Introduction
For any topological space !, its complex of simplicial or cubical singular chains S(!) – regarded as
a differential graded (dg) abelian group – encodes the homology of ! in its quasi-isomorphism type.
More homotopical information can be stored in the quasi-isomorphism type of this chain complex if
considered as a (coassociative) coalgebra, which we will denote SAs (!), where the coproduct comes
from a natural choice of chain approximation to the diagonal ! → !×!. For instance, the cohomology
ring of ! is retained, but the action of the Steenrod algebra on its mod p cohomology is not.

In Mandell’s seminal work [23], it is shown that, when ! is nilpotent and finite type, the entire
homotopy type of ! can be encoded in the quasi-isomorphism type of this complex if considered
as an !∞-coalgebra, a structure providing SAs (!) with coherent homotopies witnessing the derived
cocommutativity of the coproduct coming from the strict symmetry of the diagonal map.

The first contribution of this paper is to explicitly endow the cubical singular chains of the based
loop space Ω!!, with the structure of a monoidal !∞-coalgebra extending the Serre diagonal. More
specifically, we verify that the monoid structure induced on S! (Ω!!) by the concatenation of loops is
compatible with a natural !∞-coalgebra structure on cubical singular chains, similar to the one defined
in [21].

Applying Adams’ cobar construction to the coalgebra of simplicial singular chains of (!, "), one
obtains another monoidal algebraic model !S$

As (!, ") of Ω!! [1]. More precisely, Adams constructed
a natural monoidal chain map # from!S$

As (!, ") to S! (Ω!!) and proved it to be a quasi-isomorphism if
! is simply connected, a statement that also holds true for path-connected spaces after [31]. The model
! S$

As(!, ") is smaller than S!(Ω!!) and unlocks effective analysis of quantitative and qualitative
properties of Ω!!, as illustrated for instance in [2] and [10].

The second main contribution of this paper is to make Adams model into a monoidal !∞-coalgebra
and to prove that

# : !S$
As (!, ") → S! (Ω!!)

respects this higher structure. Although not pursued in the present article, we remark that the explicit
nature of our !∞-extension invites the study of primary and secondary operations for loops spaces using
Adams’ model and the tools developed in [20], [26], [8] and [28].

Our starting point is groundbreaking work by Baues, which imply statements similar to those in this
work but in the category of (coassociative) coalgebras. Baues reinterpreted Adams’ algebraic construc-
tion at a deeper geometric level [4], which allowed him to endow !S$

As (!, ") with the structure of a
monoidal coalgebra and to show that # preserves this structure. To prove our statement we interpret
Adams’ construction at an even deeper categorical level. We interpret Baues’ geometric cobar construc-
tion, originally defined for 1-reduced simplicial sets, as a functor

Ω : sSet0 → MoncSet,

from the category of 0-reduced simplicial sets to that of monoidal cubical sets. The key difference
with Baues’ original work is the use of connections to obtain a natural construction before geometric
realization.

Additionally, we need a suitable model of the !∞-operad endowing cubical chains with a natural
!∞-coalgebra extending the Serre diagonal. For this we take the operad U(M) introduced in [27].
After proving that its coalgebras form a monoidal category, we show that the functor N!U(M) : cSet →
coAlgU(M) – defined in [21] with a different sign convention – is monoidal. This allows us to construct
the following extension of Adams and Baues’ structures.
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Theorem. The following diagram commutes up to natural isomorphisms:

MoncoAlgU(M)

MoncSet MoncoAlg

sSet0 MonCh,

N!U(M)

N!As

!N$
As

Ω

where the unlabeled arrows are forgetful functors.

In the diagram of the above theorem, the arrow from sSet0 to MonCh is Adams’ cobar construction,
the one from sSet0 to MoncoAlg is Baues’ enhancement and the one from sSet0 to MoncoAlgU(M) is our
lift. Additionally, we prove the following statement about Adams’s map.

Theorem. For any pointed space (!, "),

# : ! S$
As(!, ") → S! (Ω!!)

is a quasi-isomorphism of monoidal U(M)-coalgebras.

The fact that # respects the monoid structure in Ch was proven by Adams, whereas the compatibility
of the monoid structure with the Serre coalgebra structure was established by Baues. Our contribution
is the compatibility of the monoid structure with a full !∞-coalgebra extension of Serre’s coalgebra.
We also remark that, whereas both Adams and Baues worked in the setting where the underlying space
is simply connected, the above theorem does not require any connectivity or finiteness hypotheses.

Related work
Kadeishvili [17, 18] explicitly described monoidal cup-i coproducts on !N$

As ($) extending Baues
coalgebra. Kadeishvili, as Baues, used cubical methods to define these coproducts and to compare
them, in the 1-connected setting, to cup-i coproducts extending the Serre coalgebra structure on the
cubical singular chains of the based loop space. Additionally, there are several papers [19, 32, 33, 34]
that predict the existence of, but do not construct, an !∞-structure on the cobar construction on the
chains of simply connected simplicial sets.

On the dual side, Fresse [11] provided the bar construction of an algebra over the surjection operad
with the structure of a comonoid in the category of algebras over the Barratt–Eccles operad. Additionally,
in [12] he used a model category structure on reduced operads [7, 16] to iterate the bar construction on
algebras over cofibrant !∞-operads.

The use of coalgebras instead of algebras allows us to relate the cobar construction to the based
loop space directly – via the Adams map – without imposing restrictions on the underlying homotopy
type, as done by Fresse. Furthermore, by grounding our approach on the cubical perspective at the heart
of Adams’ and Baues’ seminal papers, we are able to preserve the natural monoidal structures when
defining our !∞-enhancements.

2. Conventions and preliminaries
2.1. Coalgebras
Throughout this article, k denotes a commutative and unital ring and we work over its associated
symmetric monoidal category of (homologically) graded chain complexes of k-modules (Ch, ⊗, k).

A coalgebra consists of a chain complex C and chain maps Δ : % → % ⊗% and & : % → k satisfying
the usual coassociativity and counitality relations. Denote by coAlg the category of coalgebras with
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morphisms being structure preserving chain maps. The category coAlg is symmetric monoidal, with
braiding induced from Ch and structure maps of a product % ⊗ % ′ given by

% ⊗ % ′ Δ⊗Δ′
−−−−→ (% ⊗ %) ⊗ (% ′ ⊗ % ′) (23)−−−→ (% ⊗ % ′) ⊗ (% ⊗ % ′),

% ⊗ % ′ "⊗"′−−−−→ k ⊗ k
!−→ k.

A coaugmentation on a coalgebra C is a coalgebra map ' : k → %. A coalgebra is said to be coaug-
mented if it is equipped with a coaugmentation. We denote by coAlg∗ the category of coaugmented coal-
gebras with morphisms being coaugmentation preserving coalgebra maps. A coaugmented coalgebra
is a connected coalgebra if it is 0 in negative degrees and the coaugmentation induces an isomorphism
k ! %0 of k-modules. We denote by coAlg0 the full subcategory of coAlg∗ defined by these.

2.2. Monoids
A monoidal object in a monoidal category (C, ⊗, 1) is an object M together with morphisms ( : ) ⊗
) → ) and * : 1 → ) satisfying the usual associativity and unital relations. The category of these
together with structure preserving morphisms, referred to as monoidal morphisms, is denoted MonC.
We remark that a lax monoidal functor C → C′ induces a functor between their categories of monoids
MonC → MonC′ . For example, the forgetful functor from coAlg to Ch is monoidal and so, it induces a
forgetful functor from monoidal coalgebras to monoidal chain complexes, which are more commonly
known as bialgebras and algebras respectively, but this terminology is not well suited for our purposes.

2.3. Simplicial theory
The simplex category is denoted by $ and its objects by [+]. The morphisms in $ are generated by
coface maps, denoted by , #$ : [+ − 1] → [+] for 0 ≤ - ≤ +, and codegeneracy maps, denoted by
. #$ : [+ + 1] → [+] for 0 ≤ - ≤ + + 1. These satisfy the usual cosimplicial identities. For simplicity, we
omit the subscript in the notation when there is no risk of confusion and simply denote these maps by
, # : [+ − 1] → [+] and . # : [+ + 1] → [+].

The category of simplicial sets Fun($op,Set) is denoted by sSet and the standard n-simplex $(−, [+])
by $$. For any simplicial set X we write, as usual, $$ instead of $ [+] and identify the elements of $$%
with increasing tuples [/0, . . . , /%] where /& ∈ {0, . . . , +}.

If X is such that $0 is a singleton set, we say that X is reduced. We denote the full subcategory of
reduced simplicial sets by sSet0.

We consider the topological n-simplex ∆$ embedded in R$+1 as

∆$ = {("0, . . . , "$) ∈ R$+1 |"2
0 + · · · + "2

$ = 1}

so that the i-th vertex is given by the standard basis vector /& = (0, . . . , 1, . . . , 0) ∈ R$+1 with 1 in the i-th
entry and 0 in all other entries. Consider the usual adjunction pair formed by the geometric realization
and singular complex

| | : sSet Top :Sing$,

determined by the spaces ∆$ and usual coface inclusions 0& : ∆$−1 → ∆$ and codegeneracy projections
1 # : ∆$ → ∆$−1.

The functor of (normalized) simplicial chains N$ : sSet → Ch is defined on any simplicial set X by
first considering the chain complex (k[$], ,), given on degree n by the free k-module generated by the
n-simplices of X with differential given by the alternating sum of face maps, and then modding out by
the subchain complex of degenerate elements. We remark that this functor is naturally equivalent to the
composition of the geometric realization functor and that of cellular chains with respect to the standard
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CW structure. When no confusion arises from doing so, we write N instead of N$ and refer to it simply as
the functor of chains. We will denote the functor of (simplicial) singular chains N$ ◦Sing$ : Top → Ch
by S$, where Sing$ : Top → sSet denotes the singular complex functor. We modify this construction
for a pointed topological space (!, ") by only considering maps ∆$ → ! sending all vertices to x. This
produces a reduced simplicial set Sing$ (!, ") whose normalized chains we denote by S$ (!, ").

We now recall a classical chain approximation of the diagonal map on the chains of a simplicial set,
that is, a lift of the functor of chains to coalgebras:

coAlg

sSet Ch.N$

N$
As

It suffices to define this functor N$
As on standard simplices. For any + ∈ N, defineΔ : N($$) → N($$)⊗2

by

Δ
(
[/0, . . . , /']

)
=

'∑
&=0

[/0, . . . , /&] ⊗ [/& , . . . , /']

and 2 : N($$) → k by

2
(
[/0, . . . , /']

)
=

{
1 if 3 = 0,
0 if 3 > 0.

We referred to this lift as the Alexander–Whitney coalgebra structure on simplicial chains.
If X is a reduced simplicial set, then N$

As($) becomes a connected coalgebra with the coaugmentation
' : k → N$ ($) induced by sending 1 to the basis element represented by the unique 0-simplex of X.
Hence, the functor N$

As restricts to a functor

N$
As : sSet0 → coAlg0.

2.4. Cubical theory
We include an abridged presentation of cubical sets parallel to the our treatment of simplicial sets in the
previous section. For more details, we refer the reader to any of [13, 15, 21].

The cube category (with a connection) ! is the subcategory of Set whose objects are 2$ = {0, 1}$
for + ∈ N with 20 = {0}. We will denote 21 by 2 and 20 by 1, which is the unit of the monoidal structure
of ! given by 2$ × 2% = 2$+%. The morphisms of ! are monoidally generated by

1 2 2 × 2

(0

(1

) * (2.1)

defined by

00 (0) = 0, 01(0) = 1, 1(4) = 0, 5(4, 3) = max(4, 3),

for 4, 3 ∈ {0, 1}. We remark that the cube category without connections will not be considered in this
work.

The category of cubical sets Fun(!op,Set) is denoted by cSet and the standard n-cube !(−, 2$) by
!$. For any cubical set Y we write, as usual, 6$ instead of 6 (2$). The monoidal structure on ! induces
one on cSet. More explicitly, for two cubical sets we have

�����
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(6 × 6 ′)$ =
⊔
&+ #=$

6& × 6 ′
# .

Consider the monoidal functor !→ Top defined by assigning 2 to the usual interval I1 and Equation
(2.1) to the continuous maps

I0 I1 I2,

(0

(1

) *

where 0& and 1 are the canonical cubical coface and codegeneracy maps, respectively, and 5(7, 8) =
max(7, 8).

From this functor, we obtain the usual adjunction pair formed by the geometric realization and
singular complex

| | : cSet Top :Sing! .

Notice that Sing! is lax monoidal

(I$ → !) × (I% → !′) ↦→ (I$+% → ! × !′).

The functor of (normalized) cubical chains N! : cSet → Ch is the unique monoidal functor defined
by assigning to !1 the usual cellular chains of the interval I1. Explicitly, it is defined on any cubical set
Y by first considering the chain complex (k[6 ], 0), given on degree n by the free k-module generated
by the n-cubes of Y with differential 0 given on any n-cube 9 ∈ 6$ by

0(9) =
$∑
&=1

(−1)&
(
6 (id&−1

2 × 01 × id$−&2 ) (9) − 6 (id&−1
2 × 00 × id$−&2 ) (9)

)

and then modding out by the subcomplex of degenerate cubes. When no confusion arises from doing so,
we write N instead of N! and refer to it simply as the functor of chains. We remark that N! is naturally
equivalent to the composition of the geometric realization and cellular chains functors with respect to the
canonical CW structure. We will denote the functor of (cubical) singular chains N! ◦Sing! : Top → Ch
by S!.

Since N(!1) is a coalgebra and the category of coalgebras is monoidal, there is a unique monoidal
functor N!As lifting the functor of chains

coAlg

cSet Ch.N!

N!As

We refer to this lift as the Serre coalgebra structure on cubical chains and to the coproduct Δ as the
Serre diagonal.

3. Adams’s model of the based loop space
In this section, we revisit Adams’s classical cobar construction as a model for the based loop space.
A deeper exploration of Adams’s comparison map from the cobar construction of the simplicial singular
chains on a space to the cubical chains on the based loop space naturally leads us to the framework
of necklical sets, a notion related to both simplicial sets and cubical sets. We use this framework to
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construct a functorial cubical model for the based loop space. Similar constructions and results may be
found in [3], [5], [4], [9], [14] and [30, 31].

3.1. The based loop space
The path space functor

: : Top → Top

assigns to ! the space

:(!) =
{
; : [0, <] → ! | ; continuous and < ∈ [0,∞)

}
equipped with the compact-open topology. For any ", "′ ∈ !, the subspace :(!; ", " ′) consists of those
paths starting and ending at x and " ′, respectively. The points of :(!) are often referred to as Moore
paths on !. We will think of this construction as a functor on bipointed spaces in the obvious way. There
is a composition structure

:(!; ", " ′) × :(!; " ′, " ′′) → :(!; ", "′′)
(;, =) ↦→ ; · = (3.1)

given by concatenation of paths with addition of parameters, whose identities are constant paths with
< = 0. We may assemble these data into a topologically enriched category P (!) that has the points of
! as objects, the spaces :(!; ", "′) as morphisms from x to " ′, concatenation of paths as composition
and constant paths with < = 0 as identity morphisms.

Denote by Top∗ the category of pointed topological spaces, which we think of as a full subcategory
of that of bipointed spaces in the obvious way. The based loop space functor

Ω : Top∗ → MonTop

associates to a pointed space (!, ") the space

Ω!! = :(!; ", ")

of loops in ! based at x with the monoid structure induced from the composition structure (3.1).
Since Sing! is lax monoidal, Sing! (Ω!!) is a monoid in cSet, and, since N! is monoidal, S! (!, ")

is a monoid in Ch.

3.2. The cobar construction
We now describe an algebraic analogue of the based loop space introduced by Adams [1]. The cobar
construction is the functor

! : coAlg∗ → MonCh

defined on objects as follows. Let (%,Δ , &, ') be a coaugmented coalgebra. Denote by % the cokernel
of the coaugmentation ' : k → %, and recall that 7 is the suspension functor. The cobar construction
!% of this coaugmented coalgebra is the graded module

> (7-1%) = k ⊕ 7-1% ⊕ (7-1%)⊗2 ⊕ (7-1%)⊗3 ⊕ . . .

regarded as a monoid in Ch with free associative product ( : > (7-1%)⊗2 → > (7-1%) given by concatena-
tion, unit map * : k → > (7-1%) by the obvious inclusion, and differential constructed by extending the
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linear map

− 7-1 ◦ , ◦ 7+1 + (7-1 ⊗ 7-1) ◦ Δ ◦ 7+1 : 7-1% → 7-1% ⊕ (7-1% ⊗ 7-1%) ↩→ > (7-1%)

as a derivation using the freeness of the underlying graded monoid. On morphisms, the functor ! is
defined using the functoriality of the free graded monoid construction. For any "1, . . . , "+ ∈ %, we
denote

["1 | · · · |"+ ] = 7-1"1 ⊗ · · · ⊗ 7-1"+ ∈ (7-1%)⊗+ .

3.3. Adams’s map
Adams made precise the sense in which the cobar functor may be understood as an algebraic analogue
of the based loop space functor. This was achieved by constructing a natural monoidal chain map

#! : ! S$
As(!, ") → S! (Ω!!), (3.2)

for any pointed topological space (!, ") and showing it to be a quasi-isomorphism for simply connected
spaces in [1], a hypothesis removed in [31] and, using a different argument, in [30]. Here, S$

As (!, ")
denotes the coalgebra N$

As(Sing$ (!, ")) (using the notation introduced in 2.3) of (pointed) normalized
singular chains.

We now describe the construction of Adams’ map, whose combinatorial essence is the observation
that the set of ascending chains in 0 < · · · < + containing 0 and n, with the inclusion order, is isomorphic
to the (+ − 1)th cubical lattice. To define Adams’ map one uses a collection of continuous maps

{#$ : I$−1 → :(∆$; /0, /$)}$∈N,

satisfying for each j the following conditions:

1. #1 (0) : [0,
√

2] → ∆1 is the path #1 (0) (7) = /0 + ,√
2
(/1 − /0),

2. #$ ◦ 0 #0 = :(0 # ) ◦ #$−1 and
3. #$ ◦ 0 #1 =

(
:(0 - !" ) ◦ # #

)
·
(
:(0ℓ!!− " ) ◦ #$− #

)
,

where, for 2 ∈ {0, 1},

0 #/ = idI "−1 × 0/ × idI!− "−2 : I$−2 → I$−1,

and

0 -
!
" = 0$ ◦ · · · ◦ 0$− #+1 : ∆ # → ∆$,

0ℓ
!
!− " = 0$− #−1 ◦ · · · ◦ 00 : ∆$− # → ∆$,

are, respectively, the inclusions into the first and last faces of ∆$.
Adams showed the existence of a (nonunique) collection of such maps by induction, using the

contractibility of :(∆$; /0, /$). He then defined #! as follows. For any singular 1-simplex1 ∈ S$
As (!, "),

let

#! [1] = :(1) ◦ #1 − @! ,

where (@! : I0 → Ω!!) ∈ S! (Ω!!) is the singular 0-cube determined by the constant loop (with < = 0)
at " ∈ !. For any singular n-simplex 1 ∈ S$ (!, ") with + > 1, let

#! [1] = :(1) ◦ #$.
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Since the underlying graded monoid structure of ! S$
As(!, ") is free, we may extend the above to a

monoidal chain map #! : !S$
As (!, ") → S! (Ω!!). Conditions (1), (2) and (3) then imply that #! is a

chain map.

Remark 3.1. Adams originally worked with the subcoalgebra S$
As (!, ")1 of S$

As (!, ") generated by
singular simplices 1 : ∆$ → ! collapsing the 1-skeleton of ∆$ to " ∈ !. If ! is simply connected, the
inclusion map S$

As (!, ")1 ↩→ S$
As (!, ") induces a quasi-isomorphism on homology. In this case, the

degree 1 module in S$
As (!, ")1 is trivial so that !S$

As (!, ")1 is connected, that is, isomorphic to
the underlying ring k in degree 0. The cobar construction does not preserve quasi-isomorphisms in gen-
eral. It does preserve quasi-isomorphisms between coaugmented coalgebras that are trivial in degree 1.

3.4. An explicit choice
We now construct an explicit collection of maps

{#$ : I$−1 → :(∆$; /0, /$)}$∈N

satisfying the conditions in §3.3.
Given /,A ∈ R$+1 denote by

5(/,A) :
[
0, |A − / |

]
→ R$+1

the straight line path from v to w parameterized by arc length, that is,

5(/,A) (7) = / + 7

|A − / | (A − /).

For any t = (81, . . . , 8$−1) ∈ I$−1, we define 41 (t), . . . , 4$−1 (t) in ∆$ inductively by

41(t) = /0 + 81(/1 − /0),
4 # (t) = 4 #−1 (t) + 8 # (/ # − 4 #−1 (t)).

We may now define

#$ (t) : [0, <t] → ∆$,

where

<t = |41 (t) − /0 | + |42 (t) − 41 (t) | + · · · + |/$ − 4$−1 (t) |,

as the piecewise linear path given by concatenating the straight line segments connecting the ordered
sequence of points /0, 41 (t), . . . , 4$ (t), /$, that is,

#$ (t) = 5(/0, 41 (t)) · 5(41 (t), 42 (t)) · · · · · 5(4$−1 (t), /$).

Please consult Figure 1 for an example illustrating this construction.
A straightforward computation proves that the conditions in §3.3 are satisfied by this collection. A

diagrammatical verification in low dimensions is provided in Figure 2. We can extend this collection
{#$ : I$−1 → :(∆$; /0, /$)} to one of the form

{# ($1 ,...,$# ) : I$1+···+$#−+ → :(∆$1 ∨ · · · ∨ ∆$# )},
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Figure 1. In red, the path #3(t) ∈ :(∆3, /0, /3) associated to a t ∈ I2.

Figure 2. The faces of the 2-cube in blue, labeled by a red element in their corresponding family of
paths.

Figure 3. In red, the path # (2,1,3,2) (t) in :(∆2 ∨ ∆1 ∨ ∆3 ∨ ∆2) associated to an element t in I4.

where the topological necklace ∆$1 ∨ · · ·∨ ∆$# is obtained by identifying the last vertex of ∆$$ with the
first vertex of ∆$$+1 for each B = 1, . . . , C − 1 assuming each +& > 0. We do so by setting

# ($1 ,...,$# ) (81, . . . , 8$1+···+$#−+ )
= #$1 (81, . . . , 8$1−1) · . . . · #$# (8$1+···$#−1−+ , . . . , 8$1+···+$#−+ ).

Thus, we can think of the topological necklace ∆$1∨· · ·∨∆$# as a space parameterizing a (+1+· · ·+++−C)-
dimensional family of paths between the first and last vertices. Please consult Figure 3 for an example
illustrating this construction.
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3.5. Necklaces
We now present a categorical viewpoint on the necklaces encountered in the previous subsection and
their intimate relationship with Adams’ cobar construction. For any pointed space (!, "), the underlying
graded k-module of !S$

As (!, ") can be described as the graded k-module freely generated by finite
ordered sequences

> = (11, . . . ,1+ )

of simplices1& ∈ Sing$ (!, "), with degree |> | = |11 |+· · ·+|1+ |−C , modulo the sub k-module generated
by those sequences with at least one degenerate simplex. The differential of ! S$

As(!, ") on a generator
T of degree n can be expressed as a signed signed sum of all generators > ′ of degree +−1. The simplices
in the ordered sequence corresponding to each of these > ′ are all faces of simplices in the ordered
sequence corresponding to T. Note that two types of generators > ′ appear in this differential: Those that
have the same length as T and those that have exactly one more simplex. The first type corresponds to
terms in the differential of S$

As (!, ") and the second type to terms in the Alexander–Whitney coproduct.
Furthermore, the monoid structure of !S$

As (!, ") is induced by simply concatenating these ordered
sequences of simplices. This perspective suggests that !S$

As (!, ") may be obtained by applying a
normalized chains functor to certain cellular monoid, naturally associated to (!, "), with cells labeled
by finite ordered sequences of simplices in Sing$ (!, "). A geometric construction reflecting this idea
was described in [3]. We instead take a categorical approach and make this discussion precise through
the framework of necklaces and necklical sets as we now discuss.

Consider the subcategory $∗,∗ of the simplex category $ with the same objects and morphisms given
by functors D : [+] → [E] satisfying D (0) = 0 and D (+) = E. It is a strict monoidal category when
equipped with the monoidal structure [+] ⊗ [E] = [+ + E], thought of as identifying the elements
+ ∈ [+] and 0 ∈ [E], and unit given by [0]. Heuristically, we may think of $∗,∗ as a category of models
for cells parameterizing families of paths with fixed endpoints inside a simplex.

The necklace category Nec is obtained from $∗,∗ as follows. Thinking of $∗,∗ as a monoid in Cat, we
first apply the bar construction to it and produce a simplicial object in MonCat which, after realization,
defines the strict monoidal category Nec. We denote the monoidal structure by

∨ : Nec × Nec → Nec.

We describe (Nec,∨) in more explicit terms. The objects of Nec, called necklaces, are freely generated
by the objects of $∗,∗ through the monoidal structure ∨. Namely, the set of objects of Nec is the set of
monomials

{
[+1] ∨ · · · ∨ [++ ] | +& , C ∈ N>0

}
together with [0] serving as the monoidal unit.

The morphisms of Nec are generated through the monoidal structure by the following four types of
morphisms for all + ∈ N>0

1. , # : [+ − 1] → [+] for - = 1, . . . , + − 1,
2. Δ [ # ], [$− # ] : [ -] ∨ [+ − -] → [+] for - = 1, . . . , + − 1,
3. . # : [+ + 1] → [+] for - = 0, . . . , + and + > 0 and
4. .0 : [1] → [0].

We may identify Nec with a full subcategory of the category of double pointed simplicial sets sSet∗,∗
as follows. Consider the functor

S : Nec → sSet∗,∗
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induced by sending any necklace > = [+1] ∨ · · · ∨ [++ ] to the simplicial set

S (>) = $$1 ∨ · · · ∨ $$# ,

where the wedge symbol now means we identify the last vertex of $$$ with the first vertex of $$$+1 for
B = 1, . . . , C − 1 and the two base points are given by the first vertex of $$1 and the last vertex of $$# .
Then S is a fully faithful functor, so Nec may be identified with the full subcategory of sSet∗,∗ having
as objects those double pointed simplicial sets of the form $$1 ∨ · · ·∨$$# . The dimension of a necklace
> = [+1]∨ · · ·∨ [++ ] is defined by dim(>) = +1+· · ·+++ − C . Note there is a canonical homeomorphism

∆$1 ∨ · · · ∨ ∆$# ! |$$1 ∨ · · · ∨ $$# |.

The category of necklical sets Fun(Necop,Set) becomes a (nonsymmetric) monoidal category with
monoidal structure induced from (Nec,∨). We denote the monoidal category of necklical sets by nSet.

Remark. The category of necklaces was introduced in [9] to give an explicit description of the homotopy
coherent nerve functor and its left adjoint.

3.6. From necklaces to cubes
In §3.4, we described an explicit way of decomposing a topological necklace ∆$1 ∨ · · · ∨ ∆$# into a
family of paths connecting the first and last vertices parameterized by an (+1 + · · · +++ − C)-dimensional
cube. This construction satisfies conditions (1), (2) and (3) in §3.3. In particular, conditions (2) and (3)
may be interpreted as saying that each face in the codimension 1 boundary of such a cube of paths is
in one-to-one correspondence with codimension 1 ‘subnecklaces’ inside ∆$1 ∨ · · ·∨∆$# connecting the
first and last vertices. Furthermore, subnecklaces in ∆$1 ∨ · · · ∨ ∆$# are in one-to-one correspondence
with the poset

{F ⊆ {0, . . . , +1 + · · · + ++ − C} | 0, +1 + · · · + ++ − C ∈ F}

ordered by inclusion, which has a canonical cubical structure. We build upon this observation to describe
a functorial relation between necklaces and cubes. This will be used to explain how Adams’ map is
induced by a deeper categorical construction.

We begin by defining a monoidal functor

P : Nec → !

as follows. First, define P [0] = 20. On any other necklace > ∈ Nec, define P (>) = 2dim(0 ) . In order to
define P on morphisms, it is sufficient to consider the following cases.

1. For any coface map , # : [+] → [+ + 1] such that 0 < - < + + 1, define P (, # ) : 2$−1 → 2$ to be the
cubical coface functor P ( D ) = 0 #0.

2. For any Δ [ # ], [$+1− # ] : [ -] ∨ [+ + 1 − -] → [+ + 1] such that 0 < - < + + 1, define

P (Δ [ # ], [$+1− # ] ) : 2$−1 → 2$

to be the cubical coface functor P ( D ) = 0 #1.
3. We now consider codegeneracy maps of the form . # : [+ + 1] → [+] for + > 0. If - = 0 or - = +,

define P ( D ) : 2$ → 2$−1 to be the cubical codegeneracy functor P (7 # ) = & # . If 0 < - < +, define
P (7 # ) : 2$ → 2$−1 to be the cubical coconnection functor 5 # .

4. For .0 : [1] → [0] define P (.0) : 20 → 20 to be the identity functor.

Remark. The functor P is neither faithful or full. However, for any necklace > ′ ∈ Nec with dim(> ′) =
+ + 1 and any cubical coface functor 0 #/ : 2$ → 2$+1 for 0 ≤ - ≤ + + 1, there exists an map D : > ↩→ > ′,
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where > ∈ Nec with dim(>) = + such that S ( D ) : S (>) ↩→ S (> ′) is an injective morphism in Nec and
P ( D ) = 0 #/ .

The functor P : Nec → ! induces an adjunction between cSet and nSet with right and left adjoint
functors given, respectively, by

P∗ : cSet → nSet, and P! : nSet → cSet.

Explicitly, for a cubical set 6 : !op → Set,

P∗(6 ) = 6 ◦ Pop,

and for a necklical set G : Necop → Set,

P!(G) = colim
Y (0 )→1

P (>) ! colim
Y (0 )→1

!dim(0 ) ,

where Y : Nec → nSet is the Yoneda embedding. Since P is a monoidal functor, P! : nSet → cSet is
monoidal as well.

3.7. Cubical cobar construction
Using the framework of necklical sets, we may reinterpret Baues’ geometric cobar construction [3] as a
functor

Ωnec : sSet0 → MonnSet,

which we now define.
For any reduced simplicial set X, we define a necklical set Ωnec($) : Necop → Set having as necklical

cells all necklaces inside X; namely,

Ωnec($) = colim
S (0 )→2

Y (>).

The monoidal structure ∨ : Nec × Nec → Nec given by concatenation of necklaces induces a natural
product

Ωnec($) ⊗ Ωnec($) → Ωnec($)

making Ωnec($) into a monoid in nSet.
We may now define the cubical cobar construction

Ω : sSet0 → MoncSet

as the composition

Ω = P! ◦ Ωnec.

Since P! is monoidal, Ω($) is a monoid in cSet.

Remark 3.2. This reinterpretation of Baues’ construction in terms of cubical sets was also studied in
[31]. In this reference, it is also proven that the composition of functor T ◦ Ω, where T : MoncSet →
MonsSet is the triangulation functor, coincides with the left adjoint of the homotopy coherent nerve
functor restricted to sSet0.
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3.8. Relation to the cobar construction
We now relate the cubical cobar functor Ω : sSet0 → MoncSet to the cobar construction ! : coAlg∗ →
MonCh (§3.2).

Theorem 3.3. There is a natural isomorphisms of functors

N! Ω ! !N$
As : sSet0 → MonCh.

Proof. Denote by H$ ∈ (!$)$ the top dimensional nondegenerate element of the standard n-cube!$. Note
that for a reduced simplicial set X, we may represent any nondegenerate n-cube ; ∈ (P!(Ωnec ($)))$ as a
pair ; = [1 : Y (>) → $ , H$] for some > = [+1]∨ · · ·∨ [++ ] ∈ Nec with dim(>) = +1 + · · · +++ − C = +.

To define a monoidal chain map

I2 : N!(P! (Ωnec($))) !−→ !N$
As($),

it suffices to define it on any generator of the form ; = [1 : $$+1 → $ , H$], that is, when T is of the
form > = [+ + 1], for some + ≥ 0. If + = 0, let I2 (;) = [1] + 1k, where [1] ∈ 7-1N$ ($) ⊂ !N$

As ($)
denotes the (length 1) generator in the cobar construction of N$ ($) determined by 1 ∈ $$+1 and 1k

denotes the unit of the underlying ring k. If + > 0, we let I2 (;) = [1]. A straightforward computation
yields that this gives rise to a well-defined isomorphism of algebras, which is compatible with the
differentials, and natural with respect to maps of simplicial sets. !

A similar result to Theorem 3.3 was observed in the case of 1-reduced simplicial sets in [5, Section
3.5].

3.9. Factorization of Adams’s map
Adams’s comparison map can be factored as a composition

#! : !S$
As (!, ")

!−→ N! Ω(Sing$ (!, ")) N! (Θ)−−−−−→ S! (Ω!!). (3.3)

The first map is the monoidal isomorphism induced by Theorem 3.3. The second map is given by
applying chains N! : MoncSet → MonCh to the map of monoidal cubical sets

Θ : Ω(Sing$ (!, ")) → Sing! (Ω!!)

determined through the monoid structure by sending an n-simplex (1 : ∆$ → !) to the singular (+−1)-
cube

:(1) ◦ #$ : I$−1 → Ω!!,

where the maps #$ : I$−1 → :(∆$; 0, +) are discussed in §3.3.

3.10. A monoidal coalgebra structure on the cobar construction
We follow [4] to construct a coalgebra structure on !S$

As (!, "), compatible with both the differential
and monoid structure, such that Adams’s map becomes a map of monoids in the category of coalgebras.

Recall the Serre coalgebra lift N!As : cSet → coAlg of N! : cSet → Ch, the unique monoidal functor
defined by the coalgebra structure on N(!1). Since N!As is monoidal and Ω(Sing$ (!, ")) is a monoid,
N!As (Ω(Sing$ (!, "))) is a monoid in coAlg. Similarly, the lift N!As equips Sing! (Ω!!) with a natural
monoidal coalgebra structure as well. Consequently, the isomorphism in (3.3) endows !S$

As (!, ") with
a natural monoidal coalgebra structure making #! into natural map of monoidal coalgebras.
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4. Monoidal !∞-structures
In this section, we recall the model U(M) of the !∞-operad, whose category of coalgebras we show to be
monoidal. We use this structure to construct a monoidal functor N!U(M) : cSet → coAlgU(M) extending
the Serre coalgebra structure. This endows for any pointed topological space both !S$

As (!, ") and
S!As (Ω!!) with the structure of a monoidal !∞-coalgebra which is preserved by Adams’ map.

4.1. !∞-operads
Recall that operads control algebraic structures with either one input and multiple outputs or vice versa.
In this article, we work with dg operads, that is, operads in the monoidal category (Ch, ⊗, 1); we refer
to [22] for more details.

For example, coalgebras, as defined in §2.1, are controlled by the operad As generated by two
elements in degree 0

, ,

modulo the relations

, , .

Let 1 ∈ S2 be the nonidentity transposition. The operad CJE controlling cocommutative coalgebras is
obtained by adding the relation

1

to this presentation. We are interested in compatibly resolving the (trivial) symmetric group actions on
CJE associated to the permutation of factors. An !∞-operad is an operad O quasi-isomorphic to CJE
for which the action of S3 on O(<) is free for each < ∈ N. An !∞-coalgebra structure on a chain complex
C is an operad morphism

O → coEnd(%) = {Hom(%,%⊗3 )}3 ∈N.

4.2. A finitely presented !∞-prop
A prop is an object controlling algebraic structures with multiple inputs and outputs. We refer to [24]
for a detailed exposition. We recall the following construction from [27]. The prop M is generated by
adding to the presentation of As a generator and a relation. More specifically, a generator in degree 1
with boundary

4↦−→

and the relation

.

The importance of this construction is that the operad U(M) = {M(1, <)}3 ∈N obtained by restriction
of structure is an !∞-operad.

4.3. M-bialgebras
An M-bialgebra structure on C is a prop morphism

M → biEnd(%) = {Hom(%⊗, ,%⊗3 )}3 ,,∈N.
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More explicitly, is a coalgebra (%,Δ , &) together with a degree 1 product satisfying for any K, L ∈ % that:

&(K ∗ L) = 0, (4.1)
, (K ∗ L) = , K ∗ L − (−1)5K ∗ , L + &(K)L − (−1)5K &(L). (4.2)

The signs appearing in identity (4.2) are a result of the Koszul sign convention.
Any M-bialgebra structure induces an !∞-coalgebra structure. More explicitly, let (%,Δ , &, ∗) be

an M-bialgebra. The collection of all maps {% → %⊗3 }3 ∈N generated by Δ , & and ∗ makes C into an
!∞-coalgebra, specifically into an U(M)-coalgebra.

4.4. !∞-structure on simplicial chains
We recall the construction of an !∞-extension of the Alexander–Whitney coalgebra structure on simpli-
cial chains introduced in [27]. Let us start by considering the representable simplicial sets. The coalgebra
N($$) can be made into a natural M-bialgebra considering an algebraic version of the join product
defined by

[
/0, . . . , /6

]
∗
[
/6+1, . . . , /'

]
=

{
(−1) 6 sign(M)

[
/7 (0) , . . . , /7 (')

]
if /& ≠ / # for B ≠ - ,

0 if not,

where M is the permutation that orders the vertices. A Kan extension of the induced U(M)-coalgebra
structure on N($$) defines a lift N$

U(M) of the Alexander–Whitney coalgebra to the category of !∞-
coalgebras defined by U(M). That is to say, these functors fit in a commutative diagram

coAlgU(M)

sSet coAlg,

N$
U(M)

N$
As

where the vertical arrow is the obvious forgetful functor.
We remark that this !∞-structure generalizes those previously introduced in [6,25] in the sense that

any cooperation N → N⊗3 arising from the action of the Barratt-Eccles or surjection operad can be
expressed as a cooperation arising from the action of U(M).

4.5. !∞-structure on cubical chains
We recall the construction of an !∞-extension of the Serre coalgebra structure on cubical chains
introduced in [21]. Let us first consider representable cubical sets. The coalgebra structure on N(!$)
can be made into a natural M-bialgebra considering a product defined using the following notation. For
a basis element " = "1 ⊗ · · · ⊗ "$ of N(!$) and an integer ℓ ∈ {1, . . . , +}, we write

"<ℓ = "1 ⊗ · · · ⊗ "ℓ−1,

">ℓ = "ℓ+1 ⊗ · · · ⊗ "$,

with the convention "<1 = ">$ = 1 ∈ Z. Then, for two such basis elements x and y we set

("1 ⊗ · · · ⊗ "$) ∗ (91 ⊗ · · · ⊗ 9$) =
$∑
&=1

"<& 2 (9<&) ⊗ ("& ∗ 9&) ⊗ 2 (">&) 9>& , (4.3)

where the only nonzero values of "& ∗ 9& are

[0] ∗ [1] = [0, 1], [1] ∗ [0] = −[0, 1] .

A Kan extension of the induced U(M)-coalgebra structure on N(!$) defines a lift N!U(M) of the Serre
coalgebra structure to the category of !∞-coalgebras defined by U(M). That is, a commutative diagram
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coAlgU(M)

cSet coAlg.

N!U(M)

N!As

(4.4)

Remark. The product defined above in Equation (4.3) differs from the one defined in [21] by the sign
(−1)! . The convention used here is more natural as we will see in §4.7.

4.6. Monoidal structure
In this subsection, we describe an extension of the tensor product of coalgebras to M-bialgebras and
U(M)-coalgebras.
Lemma 4.1. Let C and % ′ be M-bialgebras. The coalgebra % ⊗ % ′ is a natural M-bialgebra with

(K ⊗ L) ∗ (@ ⊗ O) = K &(@) ⊗ (L ∗ O) + (K ∗ @) ⊗ &(L)O, (4.5)

for any K, @ ∈ % and L, O ∈ % ′.
Proof. We verify identity (4.1) using that &(L ∗ O) = &(K ∗ @) = 0,

&
(
(K ⊗ L) ∗ (@ ⊗ O)

)
= &

(
K &(@) ⊗ (L ∗ O)

)
+ &

(
(K ∗ @) ⊗ &(L)O

)
= &(K) &(@) ⊗ &(L ∗ O) + &(K ∗ @) ⊗ &(L) &(O)
= 0.

To verify identity (4.2), we need to show that

,
(
(K ⊗ L) ∗ (@ ⊗ O)

)
= , (K ⊗ L) ∗ (@ ⊗ O) − (−1)5+8 (K ⊗ L) ∗ , (@ ⊗ O)
+ &(K ⊗ L) (@ ⊗ L) − (−1)5+8 (K ⊗ L) &(@ ⊗ O). (4.6)

Let us start computing the left-hand side of the above expression.

,
(
(K ⊗ L) ∗ (@ ⊗ O)

)
= ,

(
K &(@) ⊗ (L ∗ O) + (K ∗ @) ⊗ &(L)O

)
= , K &(@) ⊗ (L ∗ O) + (−1)5K &(@) ⊗ , (L ∗ O)
+ , (K ∗ @) ⊗ &(L)O + (−1)5+9+1(K ∗ @) ⊗ &(L) , O.

Using that C and % ′ satisfy identity (4.2), we have that

,
(
(K ⊗ L) ∗ (@ ⊗ O)

)
= , K &(@) ⊗ (L ∗ O)
+ (−1)5K &(@) ⊗

(
, L ∗ O + (−1)8+1L ∗ , O + &(L)O + (−1)8+1L &(O)

)
+
(
, K ∗ @ + (−1)5+1K ∗ , @ + &(K)@ + (−1)5+1K &(@)

)
⊗ &(L)O

+ (−1)5+9+1(K ∗ @) ⊗ &(L) , O.

Inspecting this expression, we label terms which sum to ,
(
(K ⊗ L) ∗ (@ ⊗ O)

)
:

(−1)0 , K &(@) ⊗ (L ∗ O) (4.7)
(−1)5K &(@) ⊗ (, L ∗ O) (4.8)
(−1)5+8+1K &(@) ⊗ (L ∗ , O) (4.9)
(−1)5K &(@) ⊗ &(L)O (4.10)
(−1)5+8+1K &(@) ⊗ L &(O) (4.11)

(−1)0(, K ∗ @) ⊗ &(L)O (4.12)
(−1)5+1(K ∗ , @) ⊗ &(L)O (4.13)
(−1)0 &(K)@ ⊗ &(L)O (4.14)
(−1)5+1K &(@) ⊗ &(L)O (4.15)
(−1)5+9+1(K ∗ @) ⊗ &(L) , O. (4.16)
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Additionally, since

, (K ⊗ L) ∗ (@ ⊗ O) = (, K ⊗ L) ∗ (@ ⊗ O) + (−1)5 (K ⊗ , L) ∗ (@ ⊗ O),

the following labeled terms sum to , (K ⊗ L) ∗ (@ ⊗ O):

(−1)0 , K &(@) ⊗ (L ∗ O) (4.17)

(−1)0(, K ∗ @) ⊗ &(L)O (4.18)

(−1)5K &(@) ⊗ (, L ∗ O). (4.19)

Similarly, since

(K ⊗ L) ∗ , (@ ⊗ O) = (K ⊗ L) ∗ (, @ ⊗ O) + (−1)9 (K ⊗ L) ∗ (@ ⊗ , O),

the following labeled terms sum to (−1)5+8+1(K ⊗ L) ∗ , (@ ⊗ O):

(−1)5+1(K ∗ , @) ⊗ &(L)O (4.20)

(−1)5+8+1K &(@) ⊗ (L ∗ , O) (4.21)

(−1)5+9+1(K ∗ @) ⊗ &(L) , O. (4.22)

We have the following matching pairs of labeled summands.

(4.7)-(4.17) : (4.8)-(4.19) : (4.9)-(4.21) : (4.10)-(4.15) : (4.12)-(4.18) : (4.13)-(4.20) : (4.16)-(4.22).

Additionally, the sum of the unmatched terms (4.14) and (4.11) correspond to

&(K ⊗ L) (@ ⊗ L) − (−1)5+8 (K ⊗ L) &(@ ⊗ O),

which concludes the verification of both identity (4.6) and the lemma. !

We now give a more conceptual description of the monoidal structure on biAlgM, which generalizes
to coAlgU(M) . The prop M is obtained by applying the functor of cellular chains to a CW prop [29].
These cells are in fact cubical, generated through compositions by the generators

I0, I0, I1.

The Serre diagonal defines a diagonal ΔM on M compatible with its prop structure. More specifically,
for any basis element ( in M we have a chain map P: : N(!$) → M with P: (2$) = (, and ΔM (() is
set to be P⊗2

; ◦ Δ (2$). Crucially, ΔM acts on the generators by

↦→ ⊗ ,

↦→ ⊗ ,

↦→ ⊗ + ⊗ ,

which recovers the statement of Lemma 4.1. The structure preserving diagonal on the prop M induces
one on the operad U(M) and defines, as usual for so-called Hopf operads, a monoidal structure on
coAlgU(M) .
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4.7. Revisiting the !∞-coalgebra structure on cubical chains
We show that the monoidal structure on U(M)-coalgebras recover the !∞-structure on cubical chains
defined in §4.5. In fact, we have the following stronger statement at the level of M-bialgebras.

Theorem 4.2. For any + ∈ N, the M-bialgebra structure on N(!$) agrees with the monoidal extension
of the M-bialgebra structure on N(!1).

Proof. Since the coalgebra part agrees by definition, we focus on the product. We will proceed by
induction with the base case holding trivially. Let " = "1 ⊗ · · · ⊗ "$ and 9 = 91 ⊗ · · · ⊗ 9$ be two
elements in N(!$). The following straightforward computation verifies that " ∗ 9 in N(!$) corresponds
to ("<$ ⊗ "$) ∗ (9<$ ⊗ 9$) in N(!$−1) ⊗ N(!1):

" ∗ 9 =
$∑
&=1

"<& 2 (9<&) ⊗ "& ∗ 9& ⊗ 2 (">&) 9>&

=
$−1∑
&=1

"<& 2 (9<&) ⊗ "& ∗ 9& ⊗ 2 (">&) 9>& + "<$ 2 (9<$) ⊗ "$ ∗ 9$

= "<$ ∗ 9<$ ⊗ &("$) 9$ + "<$ 2 (9<$) ⊗ "$ ∗ 9$
= ("<$ ⊗ "$) ∗ (9<$ ⊗ 9$),

which concludes the proof. !

4.8. A monoidal !∞-coalgebra structure on the cobar construction
Using Theorem 4.2 and the natural equivalence of functors N! Ω ! !N$

As proven in Theorem 3.3,
we can transfer a monoidal !∞-structure to the Adams’ cobar construction of any reduced simplicial
set, extending the monoidal coalgebra structure defined by Baues. This is summarized by the following
diagram commuting up to isomorphisms:

MoncoAlgU(M)

MoncSet MoncoAlg

sSet0 MonCh.

N!U(M)

N!As

!N$
As

Ω

Furthermore, using the factorization of Adams’ map described in §3.9 and the naturality of our monoidal
!∞-structure, we conclude that for any pointed topological space !,

#! : !S$
As (!, ") → S!U(M) (Ω!!)

is a monoidal quasi-isomorphism of !∞-coalgebras, as announced in the introduction. x
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