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We study the simplicial coalgebra of chains on a simplicial set with respect to three notions of weak
equivalence. To this end, we construct three model structures on the category of reduced simplicial
sets for any commutative ring R. The weak equivalences are given by: (1) an R-linearized version of cat-
egorical equivalences, (2) maps inducing an isomorphism on fundamental groups and an R-homology
equivalence between universal covers, and (3) R-homology equivalences. Analogously, for any field [,
we construct three model structures on the category of connected simplicial cocommutative
F-coalgebras. The weak equivalences in this context are (1') maps inducing a quasi-isomorphism
of dg algebras after applying the cobar functor, (2') maps inducing a quasi-isomorphism of dg algebras
after applying a localized version of the cobar functor, and (3') quasi-isomorphisms. Building on a
previous work of Goerss in the context of (3)-(3'), we prove that, when [ is algebraically closed, the
simplicial F-coalgebra of chains defines a homotopically full and faithful left Quillen functor for each
one of these pairs of model categories. More generally, when [ is a perfect field, we compare the three
pairs of model categories in terms of suitable notions of homotopy fixed points with respect to the
absolute Galois group of [.

1 Introduction
1.1 Overview

A central problem in algebraic topology is to understand how much information about a category of
topological spaces, considered up to a specified notion of weak equivalence, is preserved by a particular
functorial invariant. Quillen proved that a suitable version of the rational chains functor defines
an equivalence of homotopy theories between simply-connected spaces, considered up to rational
homotopy equivalence, and simply-connected cocommutative differential graded (dg) Q-coalgebras,
considered up to quasi-isomorphism [43]. In the context of spaces of finite type, Sullivan developed
an effective version of this theory, suitable for geometric applications, in terms of simply-connected
commutative dg Q-algebras and their minimal models [52].

For a field F of arbitrary characteristic, Goerss [13] considered spaces (simplicial sets) up to F-
homology equivalence and the comparison with simplicial cocommutative F-coalgebras, considered
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up to quasi-isomorphism, via the simplicial F-chains functor:
F[—]: sSet - sCoCoalg;, X — F[X].

For any simplicial set X, the simplicial cocommutative F-coalgebra of chains F[X] is given degreewise
by the free F-vector space on X together with the coproduct induced by the diagonal map X — X x X.
One of the main results of [13] shows that the functor F[—] is homotopically full and faithful when F is
algebraically closed. This implies that any space may be recovered, up to F-localization in the sense of
Bousfield [5], from its simplicial cocommutative F-coalgebra of chains through the derived functor of
the right adjoint of F[—]. More explicitly, the right adjoint of F[—], also known as the functor of F-points,
is given by

P: sCoCoalg; — sSet, C +— sCoCoalg(F, C),

where F denotes the constant simplicial object at F. This result is of particular importance over [, the
algebraic closure of the field F, of p elements. Both Quillen and Goerss used the framework of model
categories to describe the necessary homotopical constructions. Furthermore, Mandell [31] proved a
similar statement for finite type nilpotent spaces and the E.,-dg-algebra of singular cochains, and also
obtained an intrinsic description of the essential image of this functor (see also [32] for the integral
case). In another direction, Yuan [57] recently described a full and faithful integral model for finite type
nilpotent spaces up to weak homotopy equivalence using the E-ring spectrum of spherical cochains.

All these models fail to capture the information of the fundamental group in complete generality.
In fact, for any commutative ring R, the R-localization of a space drastically changes the fundamental
group in general. In order to retain the information of the fundamental group, we will consider instead
spaces up to m1-R-equivalence. A w1 -R-equivalence is a map of (based, connected) spaces inducing an iso-
morphism on fundamental groups and an R-homology equivalence between the universal covers [8, 50].
For instance, a m;-Z-equivalence is the same as a weak homotopy equivalence.

A key result for the present work is that a map of (based, connected) topological spaces is a m1-
R-equivalence if and only if the induced map of coaugmented dg coalgebras of normalized singular
chains becomes a quasi-isomorphism of dg algebras upon applying the cobar functor. Based on this result,
we introduce in the present article a new notion of weak equivalence between connected simplicial
cocommutative R-coalgebras, called N-quasi-isomorphism, that turns out to be precisely the analogue of
a m1-R-equivalence between arbitrary (not necessarily fibrant) reduced simplicial sets. The class of O-
quasi-isomorphisms is detected by a functor from connected simplicial cocommutative coalgebras to dg
algebras,

n: sCoCoalgg — dgAlgg,

that is constructed by appropriately localizing the cobar construction of the normalized chains dg
coalgebra of a connected simplicial cocommutative coalgebra at a suitable set of 0-cycles. Then the
functor of simplicial R-chains restricted to the category of reduced simplicial sets,

R[-]: sSety — SCOCOEﬂgg,

preserves and detects weak equivalences: a map f: S — S of reduced simplicial sets is a m1-R-
equivalence if and only if R[f] is an N-quasi-isomorphism (Theorem 5.3.4).

It turns out that there are good homotopy theories for these notions: we construct model category
structures for reduced simplicial sets up to m;-R-equivalence and, when R = F is a field, for con-
nected simplicial cocommutative F-coalgebras up to N-quasi-isomorphism. Moreover, the correspond-
ing adjunction of categories

F[—]: sSet, = sCoGCoalg?: P (1.1)

defines a Quillen adjunction between these model categories. Furthermore, we prove that the left
Quillen functor F[—] is homotopically full and faithful when F is an algebraically closed field. We also
study the Quillen adjunction (1.1) in the more general case where F is a perfect field with absolute Galois
group G. In this case, we prove that the derived unit transformation of the Quillen adjunction (1.1) may
be identified with the canonical map into the homotopy G-fixed points, interpreted appropriately in the
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homotopy theory of simplicial discrete G-sets up to =1-F-equivalence. This is a significant improvement
of the main result of [50], where a detection result was shown, namely, that for any field F, two (fibrant)
spaces X and Y are m;-F-equivalent if and only if the simplicial cocommutative coalgebras F[X] and F[Y]
are N-quasi-isomorphic. The present article may be read independently of [13] and [S0].

The homotopy theory of connected simplicial cocommutative F-coalgebras up to f-quasi-
isomorphism fits strictly between two other homotopy theories: (1) connected simplicial cocommuta-
tive coalgebras up to N-quasi-isomorphism, and (2) connected simplicial cocommutative coalgebras up
to quasi-isomorphism. In the present article, we also construct a model category for (1) and explain its
relation to a linearized version of the Joyal model category for reduced simplicial sets [9, 25, 29]. On
the other hand, the homotopy theory for (2) is the connected version of the model category studied by
Goerss [13] and is related to the Bousfield model category of reduced simplicial sets up to homology
equivalence. The main results of the present article are phrased in such a way that the parallelism
between three corresponding Quillen adjunctions is emphasized.

The main motivation for this work is to understand the strength of a particular invariant for
homotopy types (in this case the simplicial cocommutative coalgebra of chains) with respect to different
notions of weak equivalence. We are particularly interested in notions of weak equivalence arising from
the homotopy theory of algebraic structures governed by a dg operad, since these usually yield flexible
and explicit theories. One of our eventual goals is to develop a similar analysis for the invariant of the
simplicial cocommutative coalgebra of integral chains considered up to f-quasi-isomorphism (cf. [32]
for the case of the E,, dg algebra of integral cochains up to quasi-isomorphism). It was conjectured in
[50] that this invariant faithfully detects whether two homotopy types are equivalent. A refined form
of this conjecture will be addressed in subsequent work.

1.2 Summary of results

We now summarize our main results. For any commutative ring R, we consider the following three
notions of weak equivalence on the category sSety of reduced simplicial sets (simplicial sets with a
single vertex).

(1) Let A(—;R) : sSety — dgAlg; be the restriction to sSet, of the left adjoint of the dg nerve functor
Ny, : dgCat, — sSet from dg categories to simplicial sets (see Section 2.7). Amap f: X — Y in sSetg
is called a categorical R-equivalence if it induces a quasi-isomorphism of dg R-algebras

A(f;R): AX;R) > A(Y;R).

This is a linearized version of the notion of categorical equivalence (or Joyal equivalence) between
reduced simplicial sets. We denote by W) the class of categorical R-equivalences.

(2) Amap f: X — Y in sSety is called a m1-R-equivalence if it induces an isomorphism between the
fundamental groups

() : m (XD = 7 (YD)
and an R-homology isomorphism between the universal covers
H.(fl;R) : H(X;R) S HL(YTR).

We denote by W,, r the class of 71-R-equivalences.
(3) Amap f: X — Y in sSety is called an R-equivalence if it induces an isomorphism in R-homology

H.(f;R) : H.X;R) = Ho (Y3 R).
We denote by Wk the class of R-equivalences.

The category of reduced simplicial sets is a convenient framework to make certain pointed construc-
tions functorial (such as the fundamental group and the universal cover). Moreover, the reduced setting
will be convenient in order to establish key connections between (1)-(2) and the cobar construction.
Note that the class of 71-R-equivalences is strictly contained in the class of R-equivalences that induce
a m1-isomorphism (see [16, Example 4.35]).

We construct three model category structures on sSety, one for each of the above notions of weak
equivalence.
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Theorem 1 (see Theorem 7.1.1). Let R be a commutative ring. The category sSet, admits three left
proper combinatorial model category structures, denoted by (sSeto, R-cat-eq.), (sSeto, r1-R-eq.),
and (sSeto, R-eq.), which have the monomorphisms as cofibrations and W g, Wy, -k, and Wk as
weak equivalences, respectively. Furthermore, we have strict inclusions Wig C Wy, . C Wh.

The model category (sSeto, m1-Z-eq.) is the classical Kan—Quillen model structure on reduced simpli-
cial sets. Moreover, as part of our discussion of the model category (sSeto, 71-R-eq.), we prove a result
similar to the classical fracture theorem [6, 33, 53], but now fully taking into account the fundamental
group (Theorem 7.2). More specifically, this result describes the weak homotopy type of a reduced
simplicial set as a homotopy pullback in terms of its fibrant replacements in (sSety, 71-Q-eq.) and
(sSeto, m1-Fy-eq.) for all prime numbers p.

The main goal of the present article is to model each of the three homotopy theories of Theorem 1
using connected simplicial cocommutative coalgebras via the functor of simplicial chains. For each of
the three notions of weak equivalence in sSeto, we define an analogous notion in the category sCoCoalg)
of connected simplicial cocommutative coalgebras.

(1) Amapf : C — C'insCoCoalg) is called an N-quasi-isomorphism if it becomes a quasi-isomorphism of
dg algebras after applying 0: sCoCoalgg — dgAlgg, that s, the normalized chains functor followed
by the cobar functor Cobar: dgCoalg; — dgAlg, (see Section 2.6). We denote by Wj, the class of
N-quasi-isomorphisms.

(2) Amap f : C - C' in sCoCoalg; is called an N-quasi-isomorphism if it becomes a quasi-isomorphism
of dg algebras after first localizing (in an appropriate way) )(C) and 0(C’) at suitable sets of O-cycles
(see Section 4). We denote by Wy the class of N-quasi-isomorphisms.

(3) Amap f : C - C'in sCoCoalg) is called a quasi-isomorphism if the induced map of normalized
chains induces an isomorphism on homology. We denote by Wy ;. the class of quasi-isomorphisms.

When R = F is a field, we construct three corresponding model category structures on sCoCoalg?.

Theorem 2 (see Theorem 7.3.1). Let F be a field. The category sCoCoalg? admits three left proper
combinatorial model category structures, denoted by

(sCoCoalgﬁF), N-q.i.), (SCoCoalgg, Fﬁ—q.i‘), and (sCoCoalg?, q.i),

which have the injective maps as cofibrations and Wy, Wy, and Wg; as weak equivalences,
respectively. Furthermore, we have strict inclusions

Wa 9 Wa 9 qu.'

The proofs of Theorems 1 and 2 rely on a useful method for constructing combinatorial model
category structures, which is based on J. Smith’s recognition theorem and may be of independent
interest. This general method is discussed in Section 6 and can be read independently of the rest of
the article.

We then compare the model categories of Theorems 1 and 2. For this comparison, a key result is that
71-R-equivalences can be completely described in terms of N-quasi-isomorphisms; see Theorem 5.3.4.
We show that we have three Quillen adjunctions (Proposition 7.3.3):

F[-]: (sSeto, F-cat.eq.) =* (sCoCoalg’, N-q.i): P (1.2)
F[-]: (sSety, m-F-eq.) = (sCoCoalg?, N-q.i): P (1.3)
F[-]: (sSety,F-eq.) = (sCoCoalg?, q.i): P. (1.4)

When F is an algebraically closed field, or more generally a perfect field, we prove the following
statements about these Quillen adjunctions.
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Theorem 3 (see Theorem 8.2.1 and Corollary 8.3.6). If F is algebraically closed, then F[—] is
homotopically full and faithful with respect to each one of the three Quillen adjunctions (1.2)-
(1.4).

More generally, suppose F is a perfect field with absolute Galois group G, and let X be a reduced
simplicial set. Then the derived unit transformation

X — RP(F[X])
of each one of the three Quillen adjunctions can be identified with the canonical map
X— ()"

from X to the homotopy G-fixed points of §(X), where §(X) denotes X equipped with the trivial
G-action and the homotopy G-fixed points functor (—)"¢ is interpreted appropriately in each
case in the respective homotopy theory.

In particular, Theorem 3 says that when [ is an algebraically closed field, one may functorially recover
any reduced simplicial set X, up to 71 -F-equivalence, from any simplicial cocommutative coalgebra that
is N-quasi-isomorphic to the simplicial coalgebra of chains F[X]. The proof of Theorem 3 makes use of
the structure theory of coalgebras over a field and also relies on the construction of three corresponding
model structures on the category of simplicial discrete G-sets (Theorem 8.3.2). The statement about the
Quillen adjunction (1.4) (for sSet) was shown by Goerss [13]; this result was extended to the context
of simplicial presheaves of coalgebras (with respect to the local model structures) by the first-named
author [45] and it has also been shown for motivic homotopy theory in [15].

1.3 Organization of the paper

In Section 2, we review some categorical and algebraic preliminaries and fix the notation and terminol-
ogy. Section 3 is a recollection of several known model category structures used throughout the article.

In Section 4, we discuss suitable notions of homotopical localization for (reduced) simplicial sets at
a set of 1-simplices and for dg algebras at a set of 0-cycles. These notions are then used to define the
localized cobar construction ). In Section 5, we define and study the three notions of weak equivalence
for connected simplicial cocommutative coalgebras (N-quasi-isomorphisms, N-quasi-isomorphisms,
and quasi-isomorphisms) and the three corresponding notions for reduced simplicial sets (categorical
R-equivalences, 1-R-equivalences, and R-equivalences).

In Section 6, we describe a general method for constructing combinatorial model category structures,
based on ideas of J. Smith, which will be used later in Sections 7 and 8. In Section 7, we establish the
existence of three model structures on the category of reduced simplicial sets (Theorem 1), three model
structures on the category of connected simplicial cocommutative coalgebras (Theorem 2), and obtain
the three corresponding Quillen adjunctions (1.2)-(1.4). In addition, in Section 7, we prove a fiberwise
version of the fracture theorem for arbitrary pointed connected weak homotopy types that fits nicely
in the context of the model categories (sSeto, 71-R-eq.) for R = Q, F (p prime).

Finally, in Section 8, we review some key facts about the structure theory of coalgebras and prove our
main comparison results (Theorem 3) about the three Quillen adjunctions (1.2)-(1.4) in the case where
[ is an algebraically closed field (Theorem 8.2.1) or a perfect field (Theorem 8.3.4 and Corollary 8.3.6).

In Appendix A, we give a detailed proof of the fact that for the natural cylinder construction C
Cyl(C) in connected simplicial coalgebras, the canonical projection map Cyl(C) — C is an N-quasi-
isomorphism for any C € sCoCoalg?. This is a key step in the proof of the existence of the model category
structure (sCoCoalg?, N-q.i.) shown in Section 7.

2 Preliminaries

In this section, we recall some categorical and algebraic preliminaries.

2.1 Simplicial objects

Let A be the category whose objects are the non-empty finite ordinals {{n] = {0 < ... < n} |n € N} and
the morphisms are given by order-preserving maps. The morphisms in A are generated by coface maps
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d': [n—1] — [n] and codegeneracy maps s': [n4 1] — [n] for i =0, ..., n and these maps satisfy the usual
cosimplicial identities.

A simplicial object in a category Cis a functor F: A®” — C, where A% denotes the opposite category of A.
These form a category, denoted by sC, with morphisms being the natural transformations. For any object
F in sC we write F, := F([n]). Thus any simplicial object F in sC is determined by the data of objects
Fo,F1,Fs, ... in C together with face maps F(d') = d;: F, — F,_1 and degeneracy maps F(s') = s;: Fy — Fyi1
in C satisfying the usual simplicial identities.

Simplicial objects in Set, the category of sets, are called simplicial sets. We denote by sSet, the full
subcategory of sSet whose objects are all simplicial sets S such that Sy is a singleton. The objects of
sSety are called reduced simplicial sets.

2.2 Simplicial coalgebras

Fix a commutative ring R and write ® := ®z. Let Coalg, be the category of counital coassociative R-
coalgebras. More precisely, the objects in Coalg; are triples (C, A, €) where Cis an R-module, A: C — C®C
is an R-linear map, called the coproduct, satisfying the coassociativity condition

(A®idc)oA=(@1Adc ® A) o A,
and e: C — Ris an R-linear map, called the counit, that satisfies
(ldc®e)o A =1idc = (e ®idc) o A

(we used implicitly the canonical identifications C®R = C = R®C). The morphisms in Coalg, are R-linear
maps of R-modules preserving the coproduct and the counit. We denote by CoCoalg, the category of
cocommutative R-coalgebras, namely, the full subcategory of Coalg, consisting of those coalgebras (C, A, €)
for which the coproduct A is cocommutative, that is, it satisfies A = t o A, where the R-linear map
7: C®C — C®Cis the switch map determined by tx® y) = y ® x.

In this article we will consider simplicial (cocommutative) coalgebras, that is, simplicial objects in Coalg,
(CoCoalgyg), as models for different homotopy theories. We note that a simplicial coalgebra C: A% —
Coalgy is equivalently described as a simplicial R-module C equipped with maps of simplicial R-modules
A:C— C®Cande: C — R, where (C® (), = C, ® C, and R here denotes the corresponding constant
simplicial object, making C into a counital coassociative coalgebra object. We denote by sCoalg? the full
subcategory of sCoalg, consisting of those simplicial objects C: A — Coalg, for which Co = (R, Ag,idg)
where Ar: R 2 R®R is defined by Ar(1) = 1 ® 1. The objects of sCoalgg are called connected simplicial
coalgebras. The category sCoCoalg) is defined similarly.

2.3 Simplicial chains

Any simplicial set X € sSet gives rise to a simplicial cocommutative coalgebra R[X]: A — CoCoalg;.
The underlying R-module R[X], is defined to be R[X,], the free R-module generated by the set X,. The
face and degeneracy maps of R[X] are induced by those of X, by functoriality. The coproduct maps

An: R[X]n = R[X]n ® R[X]n
are induced functorially by the diagonal maps

Xy = X x Xy, X (X,X).
This construction gives rise to the simplicial (R-)chains functor

R[-]: sSet — sCoCoalg;.

The simplicial R-chains functor R[] is clearly given by the corresponding functor R[—]: Set — CoCoalg,
by passing to simplicial objects in the respective categories. We also obtain a restricted functor

R[] sSety — sCoCoalg?.
The functor of simplicial R-chains has a right adjoint

P: sCoCoalgy — sSet,
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called the functor of (R-)points (or the set-like elements functor), which is defined pointwise by
P(C)n = Homeocoalg (R, Cn),
where R is considered as a cocommutative R-coalgebra (as indicated above). More explicitly,
PO ={xelC| Apx) =x®xand e(x) = 1}.
We also obtain a restricted functor
P: sCoCoaIgg — sSety.
When R has no non-trivial idempotents, the unit of the adjunction (R[], P) is a natural isomorphism
X S PRIX])

for any simplicial set X. In particular, the simplicial R-chains functor R[—] is full and faithful. Of course
this also holds for the adjunction R[—]: Set = CoCoalgy: P before passing to simplicial objects.

2.4 Differential graded algebras and coalgebras

A differential graded (dg) R-module, or chain complex for short, is given by a pair (M, d) where M is a Z-
graded R-module and d: M — M is an R-linear map of degree —1 satisfyingdod = 0. If M = (M, du)
and N = (N, dy) are chain complexes, then M ® N is the chain complex with (M ® N), = EBHJ:H M; ® N;
and differential dygn = dy ® idy + idy ® dy. Throughout the article, we use the Koszul sign rule when
applying graded maps to elements.

A dg unital associative R-algebra (A, d, n), or dg algebra for short, consists of a dg R-module (A, d) and
a degree 0 unital associative product u: A ® A — A for which d is a derivation, that is, d satisfies the
following property:

dopu=po(d®ida)+po(dy ®d).

(Writing n(a®b) = ab and using the Koszul sign rule, the above equation says d(ab) = d(a)b+(—1)%ad(b),
where |a| denotes the degree of a.) R is regarded as a dg algebra concentrated in degree 0. We denote
by dgAlg, the category of (Z-graded) dg algebras with morphisms the degree O maps that preserve the
differential and multiplicative structures.

A dg counital coassociative R-coalgebra (N, 3, A), or dg coalgebra for short, consists of a dg R-module (N, 9)
and a degree 0 counital coassociative coproduct A: N — N ® N for which 8 is a coderivation, that is,

Aocd=(0Q®Iidy)o A+ ({dy®3) o A.

We denote by dgCoalg, the category of dg coalgebras with morphisms the degree 0 maps that preserve
all the structure.

A coaugmentation of a dg coalgebra N is a map of dg coalgebras e : R — N, where R is the dg coalgebra
concentrated in degree O with coproduct determined by the isomorphism R 5 R®R. A coaugmented
dg coalgebra is a dg coalgebra equipped with a coaugmentation. For any coaugmented dg coalgebra
(N, d, A, e), we write N := N/e(R) and denote by 3 : N — Nand A : N — N®* the induced differential and
coproduct, respectively. A conilpotent dg coalgebra is a coaugmented dg coalgebra (N, 9, A, e) such that

N= G ker(A"),

n=1

where A" : N — N®""' denotes the n-times iterated coproduct. Let dgCoalg; denote the category
whose objects are the conilpotent dg coalgebras and the morphisms are the maps of dg coalgebras
that preserve the coaugmentations.

2.5 Normalized chains and coalgebra structures

Every simplicial counital coassociative coalgebra C gives rise to a dg counital coassociative coalgebra
N, (C) defined as follows. Given a simplicial coassociative coalgebra C with coproduct A: C - C® C,
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let (NV.(C),d) be the chain complex obtained as the quotient of chain complexes (N,(C),d)/(D«(C), d),
where N, (C) = C,, the differential

8= (=D'di: No(©) > Noa(C)

1

is given by the alternating sum of the face maps of C, and D,(C) € N,(C) is the subcomplex generated
by the images of the degeneracy maps of C. The chain complex (N,(C), 8) becomes a dg coalgebra when
equipped with the coproduct

A NGO XE AL Co0) A AL @ NL(C).

The map AW is the Alexander-Whitney natural transformation, which is defined for any x® y € (C® C), =
Ch® Cy by

n+1
AWE®Y) =D dpr10--0dn(X) @doo--odo(y),
P —

where each d; denotes the respective face map of C. Moreover, the counit e: C — R determines an
associated counit N, (e): N,(C) — N,(R) = R. The construction

(C,A,€) = (NL(C), 8, A, Ni(e))
extends to the normalized chains functor
N : sCoalgy, — dgCoalg;.
We have an induced functor N: sCoalgg — dgCoalgCR, where we equip N.(C) with the natural

coaugmentation map e : R = Ay(C) — N.(C) for any C € sCoalgg. These functors preserve colimits,
since these are computed in the categories of simplicial modules and chain complexes, respectively.

2.6 The cobar construction
We now recall the definition of the cobar construction (or the cobar functor):

Cobar: dgCoalg;, — dgAlg;,.
For any N e dgCoalg;, the underlying graded algebra of Cobar(N) is the tensor algebra
T ™N)=R®s ' N s 'Nes ' N 'Nes 'Nos N @ ...,
where s~! denotes the functor that shifts the grading by (—1), namely, (s"'N); = Ni,1. The differential
D: T(s™'N) - T(s™'N)
is defined by extending the map
—s5 0305+ (5'®@s HoAostt: sTIN - T(s™'N)

as a derivation to all of T(s~'N). The equation Do D = 0 is equivalent to the three properties: 3% = 0, 3 is
a coderivation of A, and A is coassociative. The functor Cobar preserves colimits.

For any N e dgCoalgy, the dg algebra Cobar(N) is equipped with a natural augmentation Cobar(N) —

R given by the canonical projection map. Then the cobar construction may be regarded as a functor

Cobar: dgCoalg;, — dgAlg;,
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where dgAlg; denotes the category of augmented dg algebras. This functor has a right adjoint
Bar: dgAlg; — dgCoalg,

known as the bar construction.

2.7 Loop spaces and the cobar construction
We consider the following composition of functors

A(—;R) := Cobar o NV, o R[—]: sSety — dgAlg;.

This functor can be identified with the restriction of the left adjoint of a well-known adjunction between
simplicial sets and dg categories. We recall that a (small) dg R-category is a (small) category enriched
in (the monoidal category of) chain complexes of R-modules. This is a many-object version of a dg R-
algebra; specifically, a dg algebra is exactly a dg category with a single object. Moreover, the category
dgAlg, of dg algebras is a full subcategory of the category dgCat, of small dg categories. (Analogously,
we may view an object in sSet as a many-object version of an object in sSety.) Lurie [30, Construction
1.3.1.6] constructed a right adjoint functor

Ny, : dgCat, — sSet

called the differential graded nerve functor, and this (adjoint pair) also restricts to Nge: dgAlg, — sSeto.
The following result relates the cobar functor to the differential graded nerve functor.

Theorem 2.7.1. [49, Theorems 6.1 and 7.1] The functor A(—;R): sSety — dgAlg; is left adjoint to
the functor Ngg: dgAlg, — sSeto.

For any X € sSety, we denote by C,(Q|X|;R) the dg R-algebra of (normalized) singular R-chains on the
based Moore loop space of the geometric realization |X|. The following is one of the main results of [49]
and extends a classical theorem of Adams to the non-simply-connected case.

Theorem 2.7.2. [49, Proposition 8.2 and Corollary 9.2] Let X € sSet, be a Kan complex. Then the
dg R-algebras A(X;R) and C,(Q|X[; R) are naturally quasi-isomorphic.

For simplicity (and partly motivated by the last theorem), we denote by
N: sCoCoalgg — dgAlg,

the functor defined as the composition ) = Cobar o N,. The functor ) preserves colimits.

2.8 The fundamental bialgebra

For any C e sCoCoalg?, the dg algebra N(C) may be naturally equipped with additional structure. In fact,
N(C) has a natural coproduct

V: (C) - N(EC) @ N(C)

making it a dg bialgebra. Specifically, since C is a simplicial cocommutative coalgebra, the dg coalgebra of
normalized chains N, (C) has a natural E,-coalgebra structure. Furthermore, N, (C) has an E,-coalgebra
structure that may be described explicitly through a coaction of the surjection operad (see [34]). The
E,-coalgebra part of the structure induces a coassociative coproduct on the cobar construction of the
underlying E;-coalgebra. This is described explicitly in [26] in terms of the corresponding structure maps
of the surjection operad.

In degree 0, which is the only case we need to consider for the present article, the coproduct

V:Q(C)o — N(C)o ® N(C)o

202 4990120 20 UO Jasn Ayisieniun anpand Aq /8G0/.2/99/ | L/9L/¥Z0Z/91o1Me/uiuwl/wod"dno-olwapeoe//:sdjy oy papeojumod



The Simplicial Coalgebra of Chains | 11775

is explicitly determined by the formulas V(1) = 1® 1 and

V= s X @s X +1@5 ' K+57'X® 1, (2.1)
x)

where x € C1, X € N1(C) denotes the class of x in the cokernel of the coaugmentation R — N,(C),
and s~ is the degree shift functor. Here we have used Sweedler’s notation A4 (x) = > X ® X" for the
coproduct of C;. In the above formula, s7!X is considered as a monomial of length 1 and total degree O
in Cobar(N,(C)) = N(C), and V may then be extended as an algebra map V: Q(C)o — N(C)o ® N(C)o. In
particular, if A1 (x) = x ® x, then

VET'R+1D) =6+ QG 'x+1).
The induced coproduct
Ho(V): Ho(1((C)) — Ho(1(C)) ® Ho(N(C))
endows the algebra Ho(N(C)) with a bialgebra structure that is functorial with respect to morphisms

in sCoCoalg®. This bialgebra is called the fundamental bialgebra of C [50, Section 5.1] and determines a
functor

7: sCoCoalg) — Bialg,, C > 7(C) :=Ho(N(C)).
The fundamental bialgebra admits an explicit description in the case where C = R[S],S € sSet,. Recall
that for any S € sSety, the homotopy category =(S) of S is the monoid defined as the quotient of the free
monoid F(S;) on S; by the relations that arise from the elements of S,. Explicitly, there is a relation
0y -00 ~ o1 forany a € S; with di(a) = oy fori = 0,1, 2. For any o € S; we denote by [o] the ~-equivalence
class of o in 7(S). The unit of the monoid (S) corresponds to [so(x)], where {x} = Sp and sp : So — S; is the
degeneracy map. This defines a functor t: sSet; — Mon, which is left adjoint to the (restriction of the)
classical nerve functor N: Mon — sSet, on the category of monoids—this adjunction is the restriction

of the adjunction 7: sSet = Cat: N between simplicial sets and small categories.

Proposition 2.8.1. For any S € sSety, there is a natural isomorphism of bialgebras
(R[S = R[x(S)],

where the bialgebra structure on the left-hand side is induced by (2.1) and on the right-hand
side by the canonical monoid bialgebra structure.

Proof. This follows from the proof of [50, Theorem 26 and Proposition 27]. We outline the proof below
for completeness. We define a map of R-algebras

¢ : NR[S])o — R[z(5)]
by setting ¢ (1g) = 1r[So(*)] and
¢ 57 = ([o] — Lr[s0(¥)])

for any non-degenerate 1-simplex o € S;. On monomials of arbitrary length in N(R[S])o, ¢ is defined by
extending the above formula as an algebra map. A straightforward computation (see the proof of [50,
Theorem 26]) yields that ¢ induces a well-defined map on 0-th homology

Ho(¢) : Ho(A(R[SD) — R[z(S)].
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This map is an isomorphism of algebras with inverse ¢ determined by ¢ (1z[So(*)]) = 1g and

Yo s o4 1y
for any non-degenerate o € S1. The monoid bialgebra coproduct
V :R[1(S)] = R[z(S)] ® R[1(S)] (2.2)

is determined by V(g9) := g ® g for any g € (S). A straightforward computation verifies that Ho(¢)
intertwines the coproducts (2.1) and (2.2), thus defining an isomorphism of bialgebras. |

The following diagram summarizes the categories and functors discussed in this section.

R[]
Mon
R[] 0 ™ H
sSetg —— sCoCoalgp Bialgr
0 forget
R[] 0 N. ¢ Cobar Ho
sSetg ——— sCoalgp ——— dgCoalgy, — dgAlgp, —— Algp.

A(=3R)=NoR[-]

3 Review of Some Model Categories

In this section, we recall several known model categories that will be used throughout the article. We
will assume basic knowledge of model category theory; standard references for the subject are [19], [21].
For the theory of combinatorial model categories, see also [4], [10], [29, A.2.6], [46].

3.1 The Joyal model structure on sSet

Following [29, 1.1.5], we recall the definition of the functor
¢: sSet — Catsset,

where Catsser denotes the category of (small) simplicial categories, that is, categories enriched in (the
cartesian monoidal category of) simplicial sets. For the standard n-simplex A" € sSet, we define €(A") €
Catgset by:

(1) Obj €A™y ={0,1,...,7n}.

% ifi>j
(2) If1,j € {0, 1, ...,n}, then (A" (,)) = N(P;{j);(Al)XO*H) ifi<j
n° ifi=j

where N denotes the nerve functor and P is the poset (regarded as category) of subsets
Uc{ii+1,...,j} withi,j € U, ordered by inclusion of subsets.
(3) For 0 <iy <ip <i3 <n, the composition:

(A" (iz, 13) x €(AM)(i1,12) = E€(AM(1, 13)

is induced by Py i, x Pii, = Piy, (U, U)—UulU.

The assignment [n] — €(A") defines a cosimplicial object in Catsser. Then the functor €: sSet —
Catgser is the (essentially) unique colimit-preserving extension of €(A®): A — Catgset, that is, € is given
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for every S € sSet by
ecS) = GQOAI}LnSQ(A”).
We have a functor
7o Catgser — Cat

given by applying the path components functor on each simplicial set of morphisms. For any S € sSet,
o€ (S) recovers the homotopy category of S—this is the category with objects Sy and morphisms generated
by the set of 1-simplices S; with relations given by the 2-simplices of S—which defines the left adjoint
to the usual nerve functor N: Cat — sSet.

We also recall that | — |: sSet — Top denotes the geometric realization functor from simplicial sets
to topological spaces. A map of simplicial sets f: S — S’ is a weak homotopy equivalence if |f]: |S| — |S| is
a weak homotopy equivalence of topological spaces.

Theorem 3.1.1. [25, Section 6], [29, Theorems 2.2.5.1 and 2.4.6.1] There is a left proper combina-
torial model category structure on sSet such that

(1) amorphism f: S — S is a weak equivalence if mo€(f): 7o €(S) — mo€(S) is an essentially surjective
functor and for every pair x,y € S, the induced map

) €O, ) — €OF @, f()

is a weak homotopy equivalence of simplicial sets;

(2) a morphism is a cofibration if it is a monomorphism;

(3) the fibrant objects are the quasi-categories, that is, the simplicial sets Q with the property that any
map f: A} — Q, for 0 < k < n, can be extended tof: A" — Q.

This model category structure is called the Joyal model structure on simplicial sets. We call a weak
equivalence in the Joyal model structure a categorical equivalence. There is also an induced model
structure on sSety, as shown in [9, Lemma 3.2], where the weak equivalences and the cofibrations are
defined in the same way.

3.2 The Kan—-Quillen model structure on sSet
The following is a classical result due to Quillen [42] (see also [21]).

Theorem 3.2.1. There is a proper combinatorial model category structure on sSet such that

(1) the weak equivalences are the weak homotopy equivalences;

(2) a morphism is a cofibration if it is a monomorphism,;

(3) the fibrant objects are the Kan complexes, that is, the simplicial sets K with the property that any
map f: A} — K can be extended tof: A" - Kforevery 0 <k <n.

We call this model category structure the Kan—Quillen model structure on simplicial sets. The Kan-
Quillen model category is a model for the homotopy theory of spaces. There is an induced model
structure on sSeto, which models connected pointed homotopy types, with the same weak equivalences
and cofibrations (see, e.g., [14, Section V.6]).

The Kan—-Quillen model structure is a left Bousfield localization of the Joyal model structure at the
map Al — A°. Thus, every categorical equivalence is a weak homotopy equivalence and every weak
homotopy equivalence between Kan complexes is a categorical equivalence. In fact, something slightly
stronger also holds:

Proposition 3.2.2. Let J: sSet — sSet denote a fibrant replacement functor in the Joyal model
structure.

(1) If the homotopy category of S € sSet is a groupoid, then 7 (S) is a Kan complex.
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(2) If f: S — S is a weak homotopy equivalence in sSet and the homotopy categories of S and S’ are
groupoids, then f is a categorical equivalence.

Proof. (1) follows from [24, Corollary 1.4], which states that a quasi-category is a Kan complex if and
only if its homotopy category is a groupoid. (2) follows from (1) and from the fact that a weak homotopy
equivalence between Kan complexes is a categorical equivalence. ]

We can also describe the weak homotopy equivalences in terms of the functor € as follows. Denote
by Gpd,, the category of simplicial groupoids, that is, simplicial objects in the category of groupoids
G: A” — Gpd with a constant simplicial set of objects. Let

L: Catsset = Gpdgyge;

be the functor from simplicial categories to simplicial groupoids that formally inverts degreewise every
morphism in a simplicial category, that is, the left adjoint of the full and faithful embedding Gpdg., <
Catsset. Then the weak homotopy equivalences may be described by localizing categorical equivalences
as follows.

Proposition 3.2.3. [11] [35, Corollary 4.8] Amap f: S — S in sSet is a weak homotopy equivalence
if and only if noL&(f): moL&(S) — meL€(S') is an essentially surjective functor of groupoids and
for every pair x,y € So, the induced map of simplicial sets

Lef): Le©)(x,y) = LeSH ), fy))

is a weak homotopy equivalence.

3.3 The Bousfield model structure on sSet

The following model category is a special case of a well-known theorem due to Bousfield [5] (see also
[4, 19, 46]).

Theorem 3.3.1. Let R be a commutative ring. There is a left proper combinatorial model category
structure on sSet such that

(1) a morphism f: S — S is a weak equivalence if
NR[D: MuR[S]) = NMR[S'])

is a quasi-isomorphism;
(2) a morphism is a cofibration if it is a monomorphism;
(3) a morphism is a fibration if it has the right lifting property with respect to the trivial cofibrations.

We call the above model structure the Bousfield model structure on simplicial sets and denote it by
(sSet,R-eq). We will call a weak equivalence in the Bousfield model structure an R-equivalence. The
Bousfield model structure is a left Bousfield localization of the Kan—Quillen model structure. A fibrant
replacement in the Bousfield model structure is called an R-localization. The Bousfield model structure
induces also a model structure on sSety, which is a left Bousfield localization of the corresponding
Kan-Quillen model structure on sSety.

3.4 Model structures on sCoCoalg,

Let R be a commutative ring. Let « be a regular cardinal such that CoCoalgy is locally «-presentable.
For example, this is satisfied if « > max{|R|,Ro} [3, 45]—in fact, x = 8, always suffices, see the recent
preprint [41]. Let Z, denote the set of mapsi: A — Bin sCoCoalg, between «-presentable objects whose
underlying map of simplicial R-modules is a monomorphism. The following result is a special case of
the model category shown by the first-named author [45] and generalizes the model category shown
by Goerss [13] in the case of fields.

Theorem 3.4.1. [45, Theorem A] There is a left proper combinatorial model category structure on
sCoCoalg; such that
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(1) a morphism f: C — C’is a weak equivalence if
Ne(): Nu(©) = NL(C)

is a quasi-isomorphism;
(2) the class of cofibrations Cof(Z,) is cofibrantly generated by the set Z,;
(3) a morphism is a fibration if it has the right lifting property with respect to the trivial cofibrations.

This model category will be denoted by (sCoCoalgg,g.i.). Strictly speaking, this model category
depends on the choice of a sufficiently large regular cardinal «. However, for any two such « < «’, the
identity functor is a Quillen equivalence between the respective model categories. Thus, for simplicity,
we have omitted « from the notation, even though some choice of « is implicitly assumed. We also refer
to [51] for a refinement of this model structure that applies to simplicial cocommutative flat coalgebras
over Prifer domains.

It is easy to see that the adjunction R[-]: (sSet,R-eq) = (sCoCoalgg,g.i.): P is a Quillen adjunction
between model categories. As shown in [45], this adjunction can also be used to induce a model structure
on sCoCoalgg, transferred from the Kan-Quillen model structure on sSet, which additionally makes the
adjunction (R[—], P) into a Quillen equivalence.

Theorem 3.4.2. [45, Theorem 5.4] Suppose that R has no non-trivial idempotents. There is a proper
combinatorial model category structure on sCoCoalg, such that

(1) amorphismf: C — C'is a weak equivalenceif P(f): P(C) — P(C’) is a weak homotopy equivalence;

(2) a morphism f: C — C’is a fibration if P(f): P(C) — P(C’) is a Kan fibration;

(3) amorphismis a cofibration if it has the left lifting property with respect to the trivial fibrations; the
class of cofibrations is cofibrantly generated by the set of morphisms {R[in] | in: A" € A", n > 0}.

Moreover, with respect to this model structure on sCoCoalg, and the Kan-Quillen model structure
on sSet, the adjunction

R[-]: sSet = sCoCoalgg: P

is a Quillen equivalence.

3.5 Model structures on dgCat, and dgAlg,
First we recall the model category structure on the category dgCat, of small dg categories over a
commutative ring R as shown by Tabuada [55, 56] (see also [30, 1.3.1]). This model category will not
be used in the present article, but it is closely related to a model category of dg algebras that will be
important for later purposes.

We denote by Hp: dgCat, — Catg the functor that is defined by applying Hy to the morphism
chain complexes, and Caty denotes the category of small categories enriched in R-modules. This is
the homotopy category functor in the enriched context of dg categories.

Theorem 3.5.1. [55] There is a right proper combinatorial model category structure on dgCat,
such that

(1) a morphism F: C — C' is a weak equivalence if the induced functor
Ho(F): Ho(C) — Ho(C)
is essentially surjective, and for every pair of objects x,y € C the induced map
F: C(x,y) = C'FX),F¥))

is a quasi-isomorphism of chain complexes;

(2) a morphism F: C — C’ is a fibration if for every pair of objects x,y € C, the chain map F: C(x,y) —
C('F(x),F(y)) is degreewise surjective; moreover, for every isomorphism F(x) — z in Ho(C'), there is
a lift to an isomorphism x — y in Ho(C).

We refer to [20] for the question of left properness for this model category.
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This model category structure induces a model category structure on the category of dg algebras,
where the latter are considered as dg categories with one object. The existence of this model category
structure was shown (independently of dg categories) by Jardine [23] (under different grading conven-
tions) and it is also a special case of more general results obtained by Hinich [18]. See also [40, Section
9.1] for another detailed account.

Theorem 3.5.2. [18, 23] There is a right proper combinatorial model structure on dgAlg, such
that

(1) amorphism f: (A,d) — (A',d') is a weak equivalence if f is a quasi-isomorphism of the underlying
chain complexes;
(2) a morphism f: (A,d) - (A’,d’) a fibration if f is degreewise surjective.

We will refer to this model category as the projective model structure on dg algebras. It is easy to see
that this model category is finitely combinatorial using the following descriptions of the cofibrations
and trivial cofibrations. Let T,(x) denote the free dg algebra generated by an element x in degree n, and
Sn(x) the free graded R-algebra R(x) generated by an element x in degree n and equipped with the trivial
differential. Then the maps

R—->Ty(x), neZ,
generate the trivial cofibrations, and the maps
R— Th(X), R = Sp(x), Sp_1(dx) — Th(x), n € Z,

generate the cofibrations. We refer to [7, Remark 2.15] and [48, Section 2.4] for the question of left
properness for this model category.

Note that a map of dg algebras is a trivial fibration (resp. weak equivalence) in dgAlg; if and only if it
is soin dgCaty. As a consequence, the cofibrations in dgAlg, are precisely the maps that are cofibrations
in dgCat;. (The situation is analogous to the model category structures on sSet, and sSet.)

Remark 3.5.3 (simplicial sets and dg categories). By [30, Proposition 1.3.1.20] (see also [56]), the
differential graded nerve functor Ngg: dgCat, — sSet is a right Quillen functor between
the model category of Tabuada and the Joyal model category. It follows from the previous
observations that the induced adjunction (Theorem 2.7.1)

A(—;R): sSety = dgAlgg: Ny,

is again a Quillen adjunction where the model structure on sSet, is induced by the Joyal model
structure and the one on dgAlg; is induced by the model structure on dgCat; (as stated in
Theorem 3.5.2). In particular, the map

A(f;R): A(S;R) = A(S';R)

is a quasi-isomorphism of dg algebras for every categorical equivalence f: S — §'.

Lastly, we briefly mention the interaction between the homotopy theory of dg algebras and the cobar
construction (Subsection 2.6).

Theorem 3.5.4. The counit transformation of the adjunction
Cobar: dgCoalg; = dgAlg; : Bar
is an objectwise quasi-isomorphism.

Proof. See [22,11.4], [36, Corollary 2.15]. |

We note that the functor Cobar does not preserve quasi-isomorphisms in general. (We will see an
important manifestation of this point in Section 5.) On the other hand, this adjunction becomes a
derived equivalence if we localize the category dgCoalg; at the class of weak equivalences determined
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by Cobar (derived Koszul duality). Indeed, it follows formally that the components of the unit transfor-
mation of the adjunction are sent to quasi-isomorphisms of dg algebras after applying Cobar.

Remark 3.5.5 (derived Koszul duality via model categories). For a suitable model category
structure on dgCoal; (where R is a field), the adjunction

Cobar: dgCoalg; = dgAlgy: Bar

becomes a Quillen equivalence (see [40]). The model category structure on dgAlg; is induced
from the one of Theorem 3.5.2. The cofibrations in dgCoalg are the injective maps; in
particular, every object in dgCoalgy is cofibrant. We emphasize that the notion of weak
equivalence in dgCoalg; used for this Quillen equivalence is detected by the cobar functor and
is strictly contained in the class of quasi-isomorphisms of conilpotent dg coalgebras. It follows
that the (derived) unit transformation of the adjunction is an objectwise quasi-isomorphism.

4 Homotopical Localization

In this section we describe explicit and functorial models for certain localizations in the contexts of
reduced simplicial sets and of differential graded algebras.

4.1 Simplicial localization

Denote by S! := A/aA! e sSet, the reduced simplicial set with exactly two non-degenerate simplices,
one in each of the dimensions 0 and 1. The homotopy category of S consists of a single object and a
single non-identity endomorphism generates freely its endomorphisms.

Definition 4.1.1. A localization (or weak group completion) of S is a map of reduced simplicial sets
St es %,

which is a trivial cofibration in the Kan-Quillen model structure and the homotopy category
of X is a groupoid (with one object).

Example 4.1.2. The following are examples of localizations of S'.

1) Any fibrant replacement of S! in the Kan-Quillen model structure for sSet,.

2) Let] = (e =2 o) denote the connected groupoid with two objects and no non-trivial automorphisms
and let (o: A - N()) be a non-degenerate 1-simplex. For (AT - SY) the non-degenerate 1-simplex
of S*, we consider the pushout X = S* U,: N(J). Then the canonical map ¢: S* < X is a localization
of S!. Note that X is not a quasi-category in this case (e.g., there is no composition “[o] o [¢]” in X).

Let sSet{ denote the category of marked reduced simplicial sets. The objects of sSet{ are pairs (S, W)
where S € sSetp and W C S; is a subset of the 1-simplices in S. A morphism f: (S, W) — (S', W’) is a map
of simplicial sets f: S — S such that f(W) € W'. Given (S, W) € sSet{, we will often identify the subset
W C S; with the associated map \/S' — S.

W

Definition 4.1.3. Let :: S' — X be a localization of S'. The simplicial localization functor (or weak
group completion functor) with respect to ¢: S* < X%,
K, : sSet{ — sSety,

is defined for every (S, W) € sSet{ by the following pushout diagram of reduced simplicial sets

\/S! «—w—>3'S

q ]

VX —— K,(S, W).
w
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Note that IC,(S, W) is a homotopy pushout in the Joyal model structure. The following proposition
shows that the functor K, is essentially independent of the choice of the localization «.

Proposition 4.1.4. Let ¢: S' — X and ¢/: S! — X’ be two localizations of S'. Then, for any (S, W)
sSetf, the reduced simplicial sets K,(S, W) and K, (S, W) are connected by a natural zigzag of
categorical equivalences under S.

In particular, the reduced simplicial sets X and X’ are connected by a natural zigzag of categorical
equivalences under S'. The homotopy category of X is isomorphic to Z (as groups).

Proof. We consider the pushout

Every map in the diagram is a weak homotopy equivalence (and a monomorphism). The homotopy
categories of the simplicial sets X, X" and XUs: X’ are groups. In particular, the composite map S* — XUg X’
is again a localization of S*. By Proposition 3.2.2(2), it follows that the natural zigzag of maps

K — AUg X <X

consists of categorical equivalences under S!. The identification of their homotopy category follows
from Example 4.1.2(2). Moreover, it follows that K,(S, W) and K, (S, W) are connected by a natural zigzag
of categorical equivalences under S, since they are defined by homotopy pushouts in the Joyal model
structure. |

4.2 Localization of dg algebras

For a commutative ring R, we define the category dgAlg; of marked dg algebras as follows. The objects
are pairs (A, P), where A is a dg algebra and P € Ay is a set of 0-cycles. The morphisms f: (A,P) - (A", P)
are given by morphisms of dg algebras f: A — A’ such that f(P) C P".

A simplicial localization of S! gives rise to a notion of localization for marked dg algebras as follows.
Note that for an indexing set P the dg algebra

AS'v...vSLR)
Tt
P
is the free associative R-algebra R(P) generated by the set P and equipped with the trivial differential.
Definition 4.2.1. Let «: S' — X be a localization of S'. The localization functor with respect to
11 St X,
L,: dgAlg) — dgAlg,,
is defined for any (A, P) € dgAlg} by the pushout diagram of dg algebras
A(VSYLR) ——— A
P

[

ANKR) — L(A,P),
P

where the top horizontal map R(P) — A is induced by the inclusion P < A and the left vertical
map is induced by ¢: S? — X. We also write
LAP)=AXV...VXR) ® A,
— R(P)
P

where A ® C denotes the pushout of a diagram of dg algebras (A < B — C).
B
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Remark 4.2.2. Whenever A is left proper as a dg algebra, for instance, when A is cofibrant as a
dg algebra or flat as an R-module (see [7, Definition 2.5 and Theorem 2.14]), the dg algebra
L,(A,P) is a model for the derived localization of A at P as defined in [7, Section 3]. This means
that £,(A, P) is a model for the homotopy pushout

A ®gp R(P,PT),

where dgAlg; is equipped with the projective model structure. Here R(P,P~!) denotes the
algebra generated by the symbols {p,p~? : p € P} modulo the ideal generated by the relations
pp~t =1 =p~'p. In fact, the dg algebra map

RPP)=AES*V...VvSLR) > AXV...VXR)
—_— ~———
P P

is a cofibrant replacement of R(P) — R(P,P~!) in the induced model structure on the category
R(P) | dgAlg;. Thus, assuming that A is a left proper dg algebra, it is enough to make this
replacement to compute the desired homotopy pushout, see [7, Remark 3.11]. We also refer
to [9] for interesting connections between the derived localization of dg algebras and the
homotopy theory of monoids.

As in the case of reduced simplicial sets, the functor £, is independent of the choice of localization ¢
in the following sense.

Proposition 4.2.3. Let «: S* < X and //: S? < X’ be two simplicial localizations of S and let
(A,P) € dgAlgR+, where A is a left proper dg algebra. Then the dg algebras £,(A,P) and L, (A, P)
are connected by a natural zigzag of quasi-isomorphisms under A.

Proof. By Proposition 4.1.4, we know that X and X’ are naturally categorically equivalent under S*, so

VX and \/X are also connected by a natural zigzag of categorical equivalences under \/S'. This induces
P P P
a natural zigzag of quasi-isomorphisms of dg algebras upon applying A(—;R) = o R[—] (Remark 3.5.3).

Then the result follows from the fact that, assuming A is left proper, the square of Definition 4.2.1
defines a homotopy pushout of dg algebras (see also Remark 4.2.2). |

Given a set of 0-cycles P in A, we denote by [P] = {[p] € Ho(A) : p € P} the set of the homology classes
of its elements. As the next proposition shows, the localization at the set P of 0-cycles only depends on
[P] € Ho(A).

Proposition 4.2.4. Let ¢: S — X be a simplicial localization of S', A a left proper dg algebra, and
let P,P’ € Ap be two sets of 0-cycles. If [P] = [P'], then the dg algebras £,(A,P) and L,(A,P') are
canonically quasi-isomorphic.

Proof. This follows from [7, Theorem 3.10 and Remark 3.11]. |

Given a set W C S, of 1-simplices in a simplicial set S, we consider an associated set of O-cycles:
W={so+1€A(S;R)0:0 €W}, (4.1)

where & denotes the class of o in the cokernel of the coaugmentation R — N, (C) and s~* the degree
shift by —1 used in the definition of the cobar functor. The functors £, and K, are compatible in the
following way.

Proposition 4.2.5. For any (S,W) e sSet], there is a natural isomorphism of dg algebras
L,(AS;R), W) = AK,(S, W); R).

Proof. Since A(—;R) preserves pushouts (Theorem 2.7.1), it sends the pushout square of Definition 4.1.3

Vst —— S

T

VX —— K(S, W)
w
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to a pushout square of dg algebras
A(\/SL;R) ———— A(S;R)
w

I |

AVX;R) —— A(K,(S, W); R).
w

Using Proposition 2.8.1, the top horizontal map of dg algebras
R(W) = A(S*v...vS5R) = A(S;R)
——
w

is induced by the map (of underlying sets) W — A(S;R), o + s~& + 1z. Thus, the last pushout square
is identified with the pushout square for the localization £,(A(S;R), W) (Definition 4.2.1) and the claim
follows. .

4.3 The localized cobar construction

We define a functor X: sCoCoalg) — dgAlg’ that “marks” the cobar construction of a simplicial
cocommutative coalgebra by a functorially defined set of 0-cycles. Given C € sCoCoalg?, we define

Pc = {a € N(C)o : Ho(V)([a]) = [a] ® [a], €([a]) =1},

where [a] € Ho(1)(C)) denotes the homology class of the 0-cycle a € N)(C)o and ¢ is the counit of the
fundamental bialgebra of C. In other words, P¢ consists of all O-cycles representing monoid-like elements
of the fundamental bialgebra Ho(Q)(C)) of C. Since the fundamental bialgebra construction is functorial,
C +— Pc defines a functor as well. Therefore, we obtain a functor

X: sCoCoalg} — dgAlg!, X(C) = (N(C),Pc).

The next proposition describes the localization of X¥(C) in the case where C = R[S]. We denote by
(—)*: sSety — sSet? the functor given by the “maximal” marking, that is, S* = (S, Sy).

Proposition 4.3.1. Let:: S — X be a simplicial localization, S a reduced simplicial set in sSeto, and

assume that R has nonon-trivial idempotents. Then the dg algebras A (K,(S%); R) and £,(X(R[S]))
are connected by a natural zigzag of quasi-isomorphisms.

Proof. By Proposition 4.2.5, there is a natural isomorphism of dg algebras
A(K,(S,51);R) = L(A(S;R), Sy), 4.2)
where S; is the set of 1-simplices in S and S; is defined as in (4.1) above. For any set P, let F(P) denote
the free monoid generated by the set P. The monoid F(S;) can be considered as a subset (monomials) of
A(S;R)o. We now argue that there is a natural quasi-isomorphism of dg algebras
L,(A(S;R),F(S1)) ~ L,(AS;R),51). 4.3)
In fact, for any set P there is a natural projection map
R(E(P)) — R(P) (4.4)
that is induced by the map (of underlying monoids) F(P) — R(P) and R(F(P)) is the free associative R-
algebra generated by (the underlying set) F(P). This map makes R(P) into an R(F(P))-algebra. It follows
from [7, Lemma 3.7] that there is a canonical quasi-isomorphism of homotopy pushouts (cf. Remark

4.2.2)

R(P) ®" R(F(P),F(P)"!) > R(P) ® R(P,P~1) = R(P,P1).
R(F(P)) R(P)
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This quasi-isomorphism may be realized by the canonical map of dg algebras (induced by (4.4))

RP) ® AMXV...X;R)S> AMXV...%R)
R(F(P)) — —
F(P) p

that model the respective homotopy pushouts. As a consequence, for any set P of O-cycles in a cofibrant
dg algebra A, the map (4.4) induces a canonical quasi-isomorphism of dg algebras

A ® AXV..VXR S A® AXV...VXR).
REFP) Ry T
F(P) p
For A = A(S;R) and P = S;, we obtain the desired quasi-isomorphism (4.3). Finally, we describe a natural
quasi-isomorphism

L(AS;R),F(S1)) S LAXR[S]) = Li(A(S;R), Ps), (4.5)

which together with (4.2) and (4.3) yield the desired conclusion. By Proposition 2.8.1, the fundamental
bialgebra Ho(A(S;R)) of R[S] is isomorphic to R[z(S)]. The set Pgyj5) consists of all 0-cycles in A(S;R)o
representing the monoid-like elements of the bialgebra Ho(A(S; R)) = R[z(S)]. Since R has no non-trivial
idempotents, the monoid of monoid-like elements in the bialgebra R[z(S)] is identified with (the monoid)
7(S). A canonical set of representatives for the elements in 7(S) € R[z(S)] = Ho(A(S;R)) is given by
F(S1) S Pgjsj. Then it follows from Proposition 4.2.4 that the natural map (4.5) is a quasi-isomorphism
and this completes the proof. |

Definition 4.3.2. We fix a simplicial localization and denoteitby:: S* — S*. We define the localized
cobar construction to be the composition of functors

N=LoX: sCoCoalgg — dgAlg;,.

Unraveling the definition, we have for any C € sCoCoalg}

NEC) =0C) ® NR[S'V...vS)). (4.6)
R(Pc) —_—

Pc

Remark 4.3.3. A similar construction was proposed in [17, Section 1.2] under the name of extended
cobar construction in the context of dg coalgebras. However, the extended cobar construction
is not functorial as defined, since it depends on a basis for the degree 1 summand of the
underlying graded R-module. On the other hand, for any simplicial cocommutative coalgebra
C, we may obtain the desired set Pc of degree 0 elements in the cobar construction functorially
through the monoid-like elements of the fundamental bialgebra 7 (C).

5 Three Notions of Weak Equivalence

In this section, we study the properties of the following three different notions of weak equivalence in
sCoCoalg’.

(1) The standard class Wy of quasi-isomorphisms in sCoCoalg} (or sCoCoalgy). The homotopy theory
of simplicial R-coalgebras relative to Wy ; and its connection with the R-local homotopy theory of
spaces have been studied in [13] (for fields) and in [45] (for general presheaves of commutative
rings)—see Subsection 3.4.

(2) The class Wj, of N-quasi-isomorphisms (or cobar quasi-isomorphisms) in sCoCoalgg. This is a smaller
class of weak equivalences than W, ; and its properties have also been studied in [50].

(3) The class W5 of f-quasi-isomorphisms in sCoCoalg? (or localized cobar quasi-isomorphisms). This
class of weak equivalences lies strictly between Wy and Wy .. This class determines a homotopy
theory in sCoCoalg}, which is suitable for the comparison with the homotopy theory of reduced
simplicial sets.

We also relate each of the above notions to their corresponding counterparts for sSety.
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5.1 Quasi-isomorphisms
The following definitions are well known.

Definition 5.1.1. A map f: C — C’ in sCoCoalg; is a quasi-isomorphism if the induced map of
dg coalgebras N (f): N.(C) — N,.(C) is a quasi-isomorphism. We denote the class of quasi-
isomorphisms in sCoCoalg; (or sCoCoalg?) by Wai.-

Definition 5.1.2. A map f: X — X’ in sSet is an R-equivalence if it induces an isomorphism
H.(f;R): H.(X;R) 3 H.(X’;R) on homology with R-coefficients. We denote the class of R-
equivalences in sSet (or sSety) by Wk.

We record the following obvious statement in order to emphasize the parallelism with analogous
statements in the next sections.

Proposition 5.1.3. Amap f: X — X' in sSet is an R-equivalence if and only if R[f]: R[X] — R[X'] is
a quasi-isomorphism in sCoCoalgy.

5.2 Q-quasi-isomorphisms
Recall the notation ) = Cobar o N,.

Definition 5.2.1. Amap f: C — C'in sCoCoalgg is an N-quasi-isomorphism if the map of dg
algebras O(f): N(C) — N(C) is a quasi-isomorphism. We denote by W, the class of N-quasi-
isomorphisms of connected simplicial cocommutative R-coalgebras.

This notion of weak equivalence is well studied in the context of dg coalgebras [27] and has been
used extensively in (derived) Koszul duality [40], [28] (see also Subsection 3.5). A first observation is that
this notion is strictly stronger than quasi-isomorphism (see also Proposition 5.3.5 below).

Proposition 5.2.2. Let C and C’' be connected simplicial cocommutative flat R-coalgebras. If f: C —
C'is an N-quasi-isomorphism, then f: C — C’ is a quasi-isomorphism, but the converse fails in
general.

Proof. This is shown for fields in [28, Proposition 2.4.2]. The same proof applies here, too. ]

The notion of N-quasi-isomorphism is related to the following linearized version of categorical
equivalences between reduced simplicial sets.

Definition 5.2.3. Amap f: S — S in sSety is a categorical R-equivalence if the induced map of dg
algebras A(f;R): A(S;R) — A(S’;R) is a quasi-isomorphism. We denote the class of categorical
R-equivalences in sSety by Wiz (the subscript “J” stands for “Joyal”).

By Remark 3.5.3, every categorical equivalence in sSety is also a categorical R-equivalence. The
following is obvious from the definitions of the respective classes of weak equivalences.

Proposition 5.2.4. Amapf: S — S insSet, is a categorical R-equivalence if and only if R[f]: R[S] —
R[S'] is an N-quasi-isomorphism of connected simplicial cocommutative R-coalgebras. In
particular, if f: S — S is a categorical equivalence then R[f]: R[S] — R[S] is an N-quasi-
isomorphism.

Remark 5.2.5. Given S € sSety, we denote by C.(QIS|;R) the dg algebra of normalized singular

chains on the topological monoid of based (Moore) loops in |S|. For any simplicial localization
S — K,(S%), we have a natural quasi-isomorphism of dg algebras

A(K(S);R) = Cu(QIS|; R).
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In particular, there is a natural isomorphism of algebras Ho(A (K, (S%)) = R[m1(|S|)]. These follow
easily by using the fact that K,(S%) is categorically equivalent to a Kan complex together with
Proposition 5.2.4, and then applying Theorem 2.7.2. See also [9, Corollary 4.2].

5.3 N-quasi-isomorphisms
Let: S' — S! be a fixed localization. We will make use of the localized cobar construction as defined
in Definition 4.3.2.

Definition 5.3.1. A map f: C — C in sCoCoalg) is an N-quasi-isomorphism if the induced map
N : NC) — N(C) is a quasi-isomorphism of dg algebras. We denote by Wj the class of
N-quasi-isomorphisms in sCoCoalg?.

The motivation for the above definition comes from the fact that a map of simplicial sets f : S - &'
is a weak homotopy equivalence if and only if the induced map

K. : Ki(SF) — K8,

obtained by inverting all 1-simplices, is a categorical equivalence. Given the compatibility between
simplicial localization and derived localization (Propositions 4.2.5 and 4.3.1), we obtain immediately
the following relationship between N-quasi-isomorphisms and fi-quasi-isomorphisms for the simplicial
chains of reduced simplicial sets.

Proposition 5.3.2. Let f: S — S’ be a map of reduced simplicial sets. Then R[f]: R[S] — R[S'] is an
N-quasi-isomorphism if and only if

RIK.(fH)]: RIK(S)] — RIK.(S%)]

is an N-quasi-isomorphism.

Based on Theorem 2.7.2, we may give a concrete description of the N-quasi-isomorphisms arising
from maps of reduced simplicial sets. This description is one of the key results for the comparison
between the respective homotopy theories of reduced simplicial sets and connected simplicial cocom-
mutative coalgebras.

Definition 5.3.3. A map f: S — S in sSety is a m1-R-equivalence if it induces an isomorphism
between fundamental groups

7 (fD): (IS = 71(IS'D

and the induced map between the universal covers

f:181 =197

is an R-equivalence. We denote the class of 71-R-equivalences in sSety by W, x.

Theorem 5.3.4. A map of reduced simplicial sets f: S — S is a m1-R-equivalence if and only if
R[f]: R[S] — R[S'] is an N-quasi-isomorphism.

Proof. We recall that for any X € sSet, there is a natural isomorphism of graded algebras
Ox: H.(QIX[;R) ® R[m1(X)] S H.(QIX];R).

Furthermore, @y restricts to an isomorphism of bialgebras R[m1(|X|)] = Ho(2|X|; R) in degree 0.
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We write 71 = #1(|S]) and =] = 71(|S'|) in order to simplify the notation. We consider the following
commutative diagram

HL(QIK,(SF)]; B) @ Rlm] —Z— Ho(QK(SH)]: R) 5 o Ho(ACKL(S)): B)

J H.(QIK(f*);R) H (MK (f*);R)

H(QK,(SP)]: R) @ Rlni] —2— H.(QK.(S%)]; B) ¢ H(ACK(S): R)

where every horizontal map is an isomorphism and the vertical maps are induced by the map f. Note
that the vertical maps are isomorphisms in degree 0 if and only if f induces an isomorphism of group
rings R[m1(|f)] : R[71] — R[z;], which holds if and only if f induces an isomorphism =1 (|f|) : 71 — 7} of
fundamental groups.

Since the canonical maps S — K,(S%) and S — K,(S¥) are weak homotopy equivalences, the left
vertical map is an isomorphism if and only if f is a m;-isomorphism and |f] is an R-equivalence.
Moreover, |f] is a map of simply-connected spaces, so applying the Zeeman comparison theorem [58] to
the map of Serre spectral sequences of the respective path fibrations shows that Q[f| is an R-equivalence
if and only if |f] is an R-equivalence. Thus, the left vertical map is an isomorphism if and only if f is a
w1-R-equivalence.

On the other hand, by Proposition 5.3.2, the right vertical map is an isomorphism if and only if R[f]
is an N-quasi-isomorphism. The result follows. |

By Proposition 4.2.3, when R = F is a field, the quasi-isomorphism type of the dg algebra N(C) is
independent of the choice of the localization ¢: S — S'. This is the context in which we will work in later
in Subsection 7.3. Moreover, the notion of N-quasi-isomorphism is stronger than f-quasi-isomorphism.
In fact, we have the following strict inclusions of classes of weak equivalences.

Proposition 5.3.5. Let R = F be a field. The classes of morphisms Wh, W5, and W; in sCoCoalg?
satisfy the following strict inclusions

Wah C W5 C Wi
Proof. The dg algebra N(C) is flat as a module over [, consequently, it is left proper in the sense of [7]
(see [7, Theorem 2.14)). It follows that the dg algebra f)(C) is a model for the derived localization of Q(C)
at the set of O-cycles given by P¢ (Remark 4.2.2). Suppose now that f: C — C’ is a morphism in W, that
is, the induced map
N : NG - ()
is a quasi-isomorphism. Then the induced map

Ho(N(f)): Ho(N(C)) S Ho(N(C'))

is an isomorphism of fundamental bialgebras and consequently induces an isomorphism between the
respective monoids of monoid-like elements. Hence, the induced map Pc — P yields a bijection

[Pc] > [Pc]

between the corresponding sets of homology classes. By the invariance of derived localization under
quasi-isomorphisms of dg algebras (see [7, Proposition 3.5], cf. Proposition 4.2.4), it follows that
0(f): N(C) — N(C) is a quasi-isomorphism. This shows Wy € Ws. The inclusion is clearly strict, since
F[]: F[S'] > F[S!] is an f-quasi-isomorphism, but not an N-quasi-isomorphism.

Now let f: C — C’ be a map in sCoCoalg?, which induces a quasi-isomorphism

0(f): NEC) — N(C).
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The bar construction sends quasi-isomorphisms of augmented algebras to quasi-isomorphisms of dg
conilpotent coalgebras (Theorem 3.5.4 and Remark 3.5.5), so the induced map

Bar(0)(f)): Bar(N(C)) — Bar(f(C")) (5.1)
is a quasi-isomorphism. We claim that for any C € sGoGoalg?, the canonical map
Bar(N)(C)) — Bar(N(C)) (5.2)

is a quasi-isomorphism. To see this, we first recall that the bar construction Bar preserves homotopy
pushouts (Remark 3.5.5). Thus, since N)(C) is defined by the homotopy pushout of dg algebras in (4.6), it
suffices to observe that the map

Bar(N(R[])): Bar(N(R[S?])) — Bar(N(R[S)))
is a quasi-isomorphism. This holds because the map Bar(N(R[:])) fits in a commutative square

Bar(N (RIS'])) —— Bar(N (RIS']))

=] 1=

N,(RIS)) ——— N, (RISY)

and the vertical maps, given by the unit transformation of the (Cobar, Bar) adjunction, are quasi-
isomorphisms by derived Koszul duality (Theorem 3.5.4 and Remark 3.5.5). The bottom horizontal map
is a quasi-isomorphism since ¢: S* — S' is a weak homotopy equivalence. This shows the claim that (5.2)
is a quasi-isomorphism. Combining (5.1) and (5.2) and Remark 3.5.5, we observe that in the commutative
diagram

Bar(0(C)) —— Bar((C"))

:T T=

Bar(N(C)) —— Bar(N(C))

:T T=

N, (C) W N,L(C),

all the maps labeled by ~ are quasi-isomorphisms of dg coalgebras. Thus, N.(f) is a quasi-isomorphism
as well, so it follows that W5 € Wy, .. The inclusion is strict, since there are F-equivalences f: S — S’ in
sSet, that are not 7;-isomorphisms, so R[f] is not an f-quasi-isomorphism by Theorem 5.3.4. |

The analogous result for the respective classes of weak equivalences in sSet, also holds for general
commutative rings R.

Proposition 5.3.6. The classes of morphisms W g, Wy, .r, Wk in sSet, satisfy the following strict
inclusions

Wirg G War & Wh.

Proof. Suppose f € Wjr. By Proposition 5.2.4, we have R[f] € Wy. The underlying graded R-module of
the normalized chains on a simplicial set is flat over R, so N(R[f]) is a map between R-flat dg algebras.
The same proof as for the first inclusion in Proposition 5.3.5 implies that R[f] € Wy. By Theorem 5.3.4,
this means that f € W;,.z. This inclusion is clearly strict, since ¢: St — S! is a n1-R-equivalence that is
not a categorical R-equivalence. The second strict inclusion is well known. |

6 A Method for Constructing Model Structures

In this section we will discuss a useful and general method for constructing model structures on a
locally presentable category ¢ that are (left-)induced by a combinatorial model category M along an
accessible functor F: € — M. This method follows the proof in [45, Section 4] and is based on Smith’s
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recognition theorem for combinatorial model category structures. We will review this method in a
general abstract setting, as this will allow us to give a uniform treatment of the construction of the
model structures in the next section.

6.1 Using Smith’s recognition theorem

Let ¥ be a locally presentable category, let M be a combinatorial model category, and let F: € — M be
an accessible functor. Let « be a fixed regular cardinal such that:

(a) € is locally «-presentable;

(b) M is k-combinatorial, that is, the category M is locally «-presentable and there are generating
sets of cofibrations and trivial cofibrations that are given by morphisms between «-presentable
objects;

(c) Fis k-accessible.

Then we consider the following classes of morphisms in €.

o Weak equivalences: Wr = F~1(W ). In other words, the class of weak equivalences Wr is the inverse
image of the weak equivalences W o, in M under the functor F. The class of weak equivalences W,
is accessible and accessibly embedded in M~ (see, e.g., [4, 44, 47]). Since F is accessible, it follows
that Wr is also accessible and accessibly embedded in ¢~ . Moreover, Wr satisfies the 2-out-of-3
property.

e Cofibrations: Consider a set of morphismsin %,

IC{i: A— B|A,Barex — presentable, F(i) is a cofibration in Mj}.
The class of cofibrations Cof(l) in ¢ is the cofibrant closure of I, that is, the smallest class
of morphisms in ¥, which contains I and is closed under pushouts, retracts, and transfinite
compositions.
For most applications, it will suffice to let I be exactly the set of morphisms between «-
presentable objects (one from each isomorphism class), which become cofibrations in M after

applying F.

By Smith’s recognition theorem (see [4, Theorem 1.7], [45, Theorem 4.1]), we have the following
immediate conclusion.

Theorem 6.1.1. Let ¥, M, and F: ¥ — M be as above. Then the classes of morphisms in ¢,
Weak equivalences: = Wy and Cofibrations: = Cof(l),

determine a combinatorial model category structure on % if and only if the following condi-
tions are satisfied:

(1) I—inj € Wr.
(2) The class of trivial cofibrations Cof(I) N W is closed under pushouts and transfinite compositions.

6.2 Techniques

For the applications of Theorem 6.1.1, it is helpful to identify specific properties that ensure conditions
(1) and (2) and are easy to verify in practice. First, we observe that the following conditions on F ensure
that condition (2) of Theorem 6.1.1 is satisfied.

Proposition 6.2.1. Let ¥, M, and F: ¥ — M be as in Theorem 6.1.1. Condition (2) holds
if F preserves small colimits. More generally, condition (2) holds if the following weaker
assumptions are satisfied:

(i) F sends every pushout square in ¢

A—— C

I

B —— D

where i: A — Bis in Cof(l) N W, to a homotopy pushout square in M.
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(ii) F sends every transfinite composition in %,
Ag—> Al — -+ — Ay — --- — colim,A,,
where each morphism A; — Aj,, is in Cof(I) N W, to @ homotopy colimit diagram in M.

Condition (1) of Theorem 6.1.1 is generally more difficult to verify in practice and some ad hoc
argument that uses the particularities of the context might be necessary. The following proposition
states some general properties that ensure that condition (1) is satisfied (cf. [45, Lemma 4.4]).

Proposition 6.2.2. Let ¢, M,and F: ¥ — M be as in Theorem 6.1.1. Suppose that every morphism
f: X — Y between «-presentable objects in ¢ admits a factorization f = pi such that:

(a) i € Cof(D);
(b) F(p) is a trivial fibration in M.

Then condition (1) of Theorem 6.1.1 is satisfied.

Proof. The proof uses the same arguments as in [45, Proposition 4.5]. |

Remark 6.2.3. The technical assumptions of Proposition 6.2.2 are often satisfied simply by using
an appropriate mapping cylinder factorization. (This was the case in [45, Lemma 4.4].) Property
(b) is often the most tricky property to verify in practice. For that reason, it is desirable to choose
M appropriately. (For example, this was chosen to be the projective model category of simplicial
R-modules in [45].) Let us mention that in the case where I is the maximal choice, that is, the
set of all morphisms between «-presentable objects in ¢, which become cofibrations in M,
then (a) clearly holds as long as:

(a1) F()) is a cofibration in M;
(a2) the codomain of i is k-presentable in ¢ (whenever X and Y are «-presentable).

Proposition 6.2.4. Let ¢, M, and F: ¥ — M be as in Theorem 6.1.1 and suppose that conditions
(1) and (2) of Theorem 6.1.1 are satisfied. Then

F: 4 —> M

is a left Quillen functor (with respect to the model category structure of Theorem 6.1.1) if and
only if F preserves small colimits.

Proof. First, note that F preserves weak equivalences by definition. By the (left) special adjoint functor
theorem for locally presentable categories (see [1, 29, 38]), Fis a left adjoint if and only if F preserves
small colimits. In this case, it is immediate that F also preserves cofibrations. |

On the other hand, condition (1) of Theorem 6.1.1 is certainly satisfied when (for some set I) the
class I — inj is already known to be contained in a class of weak equivalences W in %, which is
preserved by F. In particular, Smith’s recognition theorem ([4, Theorem 1.7], [45, Theorem 4.1]) has
the following immediate consequence for the existence of left Bousfield localizations of combinatorial
model categories.

Theorem 6.2.5. Let (¢, Cofy, Wy, Fiby) and (M, Cof o, Wy, Fib () be combinatorial model cat-
egories and let F: ¥ — M be an accessible functor that preserves the weak equivalences.

Then the left Bousfield localization of ¢ with weak equivalences Wr := F~1(W,,) exists, and it is
again a combinatorial model category, if and only if Cofy, N We is closed under pushouts and
transfinite compositions.

In particular, this holds if F is additionally a left Quillen functor.
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6.3 Homotopically full and faithful Quillen functors

For our main comparison results about spaces and simplicial coalgebras in Section 8, we will be
interested in the following property of a Quillen adjunction.

Proposition 6.3.1. Let F: M = N: G be a Quillen adjunction of model categories. The following
are equivalent:

(1) For every pair of cofibrant objects X, Y € M, the induced map of (derived) mapping spaces
map” (X, Y) — maph, (F(X), F(Y))

is a weak homotopy equivalence.
(2) The derived unit map

X — GEXY)

is a weak equivalence for every cofibrant object X € M. (Here the morphism F(X) — F(X) is a
functorial fibrant replacement in NV.)
(3) The unit transformation Id = RG o LF of the derived adjunction

LF: Ho(M) = Ho(NV): RG

is a natural isomorphism.
(4) The left derived functor

LF: Ho(M) — Ho(\N)

is full and faithful.

Proof. The equivalence of (2), (3), and (4) is well known and clearly (1) implies (4). For the remaining
implication recall that, since F and G define a Quillen adjunction, there is an induced weak homotopy
equivalence of (derived) mapping spaces

maph (F(X), Z) ~ map" (X, G(Z))

for a cofibrant object X in M and a fibrant object Z in N (see, for instance, [19, Proposition 17.4.16],
where mapping spaces, also known as homotopy function complexes, are constructed via (co)simplicial
resolutions). Setting Z = F(Y), we may deduce that (2) implies (1).

Definition 6.3.2. Let F: M = N : G be a Quillen adjunction. We say that F is homotopically full and
faithful if the equivalent conditions of Proposition 6.3.1 are satisfied.

The following simple criterion will suffice for our applications in Section 8.

Proposition 6.3.3. Let F: M = A : G be a Quillen adjunction. Suppose that F is full and faithful
and G preserves all weak equivalences. Then F is homotopically full and faithful.

Proof. Fis full and faithful if and only if the unit transformation Id = G o F is a natural isomorphism.
Since G preserves the weak equivalences, it is immediate that the Quillen adjunction (F, G) satisfies
condition (2) of Proposition 6.3.1. |

7 Model Structures on sSet; and sCoCoalg’

In this section we will apply the method of Section 6 to establish the existence of three model
category structures on reduced simplicial sets and their corresponding counterparts for the category
of connected simplicial cocommutative coalgebras over a field. These model structures are associated
with the classes of weak equivalences discussed in Section 5.
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Let ¢: S — S! be a fixed localization of S'. We will make use of the associated localized cobar
construction N = £, o X: sCoCoalg) — dgAlg, (see Definition 4.3.2 and Subsection 5.3).

7.1 Three model structures on sSet,

The following result proves the existence of three model category structures on reduced simplicial sets:
the first one is a linearized version of the Joyal model category (restricted to reduced simplicial sets);
the second one is a left Bousfield localization of the first, which involves considering the fundamental
group as in the Kan-Quillen model category; finally, the third one corresponds to the Bousfield model
category for R-homology equivalences restricted to reduced simplicial sets.

Theorem 7.1.1. Let sSety denote the category of reduced simplicial sets and let R be a commuta-
tive ring.

(1) There is a left proper combinatorial model category structure on sSet, with the monomorphisms
as cofibrations and the categorical R-equivalences W, r as weak equivalences. This model category
is a left Bousfield localization of the Joyal model category structure on sSetp.

We denote this model category by (sSeto, R-cat.eq.).

(2) There is a left proper combinatorial model category structure on sSet, with the monomorphisms
as cofibrations and the w1-R-equivalences W,, r as weak equivalences. This model categoryis a left
Bousfield localization of the model category in (1) and of the Kan—Quillen model category structure
on sSety.

We denote this model category by (sSeto, 71-R-eq.).

(3) There is a left proper combinatorial model category structure on sSet, with the monomorphisms
as cofibrations and the R-equivalences Wy as weak equivalences. This model category is a left
Bousfield localization of the model category in (2) and is induced by the Bousfield model category
structure on sSet restricted to sSetg.

We denote this model category by (sSeto, R-€q.).

Proof. We recall that A(—;R): sSety — dgAlg; is a left Quillen functor when sSet, is equipped with
model structure induced by the Joyal model category and dgAlg; has the model structure of Theorem
3.5.2 (see Remark 3.5.3). Note that A(—;R) preserves all weak equivalences, since every object in sSety
is cofibrant. Then, (1) follows directly by applying Theorem 6.2.5 to the model categories ¢ = sSety and
M = dgAlg;, and the functor F = A(—;R).

We will now prove (2). By Theorem 5.3.4, we have

Wi,z = @ o R[] Wagaig,),

where Wygag, denotes the class of quasi-isomorphisms of dg algebras. To prove (2), we will apply
Theorem 6.2.5 in the case of the model categories

¢ = (sSety, R-cat.eq.) (as in (1))

M = dgAlg; (Theorem 3.5.2)

and the functor F = fl o R[—]: sSety — dgAlg,. The class of 71-R-equivalences consists precisely of the
maps that are sent to quasi-isomorphisms by F (Theorem 5.3.4). F is a composition of functors that
preserve filtered colimits, therefore F also preserves filtered colimits. Moreover, F preserves the weak
equivalences by Proposition 5.3.6.

Even though F does not preserve pushouts in general, the required property that Cofy; N Wy, & is
closed under pushouts still holds, since given a pushout in sSety

S— X

[ b

S —— X,
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where iis a monomorphism and a m1-R-equivalence, then we observe thatj is again a monomorphism
and a m;-R-equivalence. Indeed, j is a m;-isomorphism by the van Kampen theorem and the map of
universal covers is a (homotopy) pushout of an R-equivalence covering i. (Alternatively, in view of
Theorem 5.3.4, Proposition 5.3.2, and Proposition 3.2.2, we could also pass to the simplicial localizations
and apply the left Quillen functor A(—;R).) We see similarly (directly) that Cof¢ N W, r is closed under
transfinite compositions. This completes the proof of (2).

Finally, (3) follows similarly by applying Theorem 6.2.5 to the case where ¢ = (sSeto, 71-R-eq.) (as in
(2)), M = Chg is the category of (non-negatively graded) chain complexes of R-modules equipped with
the projective model structure, and F: sSety — Chg is the normalized chains functor.

We summarize the relationships between the various model category structures on sSetp in the
following diagram of left Quillen functors. Every arrow indicates the identity functor on sSeto.

(sSety, Joyal) ——— (sSety, Kan—Quillen)

| |

(sSety, R-cat.eq.) —— (sSety, 7;-R-eq.) —— (sSety, R-eq.).

7.2 A fiberwise fracture theorem

Homotopy types may be studied in terms of their localizations (or completions) over Q and over F, at

each prime p. The fracture theorem expresses a (nilpotent) homotopy type as a homotopy pullback of its Q-

localization, F,-localizations, and Q-localization of its Fp-localizations [6, 33, 53]. We will show a version

of the fracture theorem over =; for all homotopy types using the homotopy theories of Theorem 7.1.1(2).
We denote by X — Xgr, a functorial fibrant replacement of X e sSety in the model category

(sSeto, r1-R-eq.) of Theorem 7.1.1. Let P denote the set of prime numbers.

Theorem 7.2.1. For every X € sSety, the canonical square in sSety
X —————1lper Xo,/m
| | 0
XQ/"'I — ( HpEP XFP/”I)Q/Wl
is a homotopy pullback (with respect to the Kan-Quillen model structure). Moreover, suppose
we are given a homotopy pullback in sSety
X —— ]_[pep X,

J g |7 h

Xog ——— Y

where the following hold:
@

(i

(iii
@iv

X, is fibrant in (sSeto, 71-F-eq.);

Xo and Y are fibrant in (sSeto, 71-Q-eq.);

f is a m1-Q-equivalence in (sSety, 71-Q-€q.);
for each p € P, the composition

S =22

o) 71(f)
mXo) =5 (V) = m([[X) = mXp)
peP
is an isomorphism.

Then the square can be identified up to weak homotopy equivalence with the square (*) above.
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For the proof of Theorem 7.2.1, we will make use of the following lemma about fibrant objects in
(sSeto, 71-R-eq.). Note that every fibrant object in (sSeto, R-eq.) is also fibrant in (sSeto, 71-R-€q.).

Lemma 7.2.2. Let R be [ (for some prime p) or Q. Let Z be a reduced Kan complex and letp;: Z —
P1(Z) be the map to the first Postnikov truncation of Z. If Z is fibrant in (sSeto, 71-R-eq.), then
the homotopy fiber of p; (with respect to the Kan-Quillen model structure) is also fibrant in
(sSety, R-eq.).

Proof. We may assume that p;: Z — P1(2) is a fibration between fibrant objects in (sSety, Kan—Quillen)
(see [14, Section V.6; esp. 6.6-6.8]). It is easy to see directly that P;(Z) is fibrant/local in (sSeto, 71-R-eq.).
By general results on left Bousfield localizations [19, Proposition 3.3.16], it follows that Z is fibrant in
(sSetg, m1-R-eq.) if and only if p; is a (local) fibration in (sSeto, 71-R-eq.). In this case, the (homotopy)
fiber Z of p;, which is simply a model for the universal cover of Z, is also fibrant in (sSetp, 71-R-eq.).
Thus it suffices to prove the following special case of the lemma: a simply-connected Z € sSeto
is fibrant in (sSety, 71-R-eq.) if and only if Z is fibrant in (sSety, R-eq.). A fibrant replacement Z — Zy
in (sSetp, R-eq.) is also a m;-R-equivalence, because Zg is again simply-connected. Since (sSety, R-eq.)
is a left Bousfield localization of (sSety, m1-R-eq.), it follows that Zy is also fibrant in (sSeto, 71-R-€q.);
then the map Z — Zz is a weak homotopy equivalence. Therefore, Z is fibrant in (sSeto, R-eq.), as
required. |

Proof. (Theorem 7.2.1) We consider the canonical map from the square (*) of Theorem 7.2.1 to the square
(*) below obtained after applying the first Postnikov truncation pointwise; explicitly, this Postnikov
truncation of (*) can be identified with the following square (denoting by BG a model for the reduced
simplicial set with fundamental group G and trivial higher homotopy groups):

A
Bmi X — [lpepBmX

|l

B X —— [[pep BmX.

The square (") is obviously a homotopy pullback (with respect to the Kan-Quillen model structure).
Then consider the induced square that consists of the homotopy fibers of the canonical map of squares
from (¥) to (*); the resulting square is, up to weak homotopy equivalence, the square of the universal
covers of (*). Using Lemma 7.2.2, this square agrees with the classical fracture homotopy pullback of
the universal covering X of X (see [33, Theorem 13.1.4], [6], [53]). Then the first claim of Theorem 7.2.1
follows from looking at the long exact sequences of homotopy groups.

For the second claim, we consider again the map of squares from (1) to the (homotopy commutative)
square:

Bm Xy —— HpeP Bm X,

mo | > ()
71(9)

Bm Xy, —— BmY,

which, using the assumptions (iii)—(iv), can be identified up to homotopy equivalence with the homotopy
pullback

A
Bm Xy —— ]_[pep Bm X,

-| S ()

BmiXg — [lper Bm1Xo-
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Passing to the homotopy fibers of the maps from (f) to (1), we obtain a homotopy pullback:

X' ? HpeP‘)?p

| 2

Xy — Y.

Then it follows from Lemma 7.2.2 and the corresponding uniqueness property of the classical fracture
square (see [33, Theorem 13.1.5]) that (~) is the classical fracture homotopy pullback of the space X'. In
particular, it follows that X’ is simply-connected, so the map X — BmXp is 2-connected, X’ is (a model
for) the universal cover of X, and X — Xy is a m1-isomorphism. Therefore, we conclude that the maps
X — Xo and X — X, are fibrant replacements in the respective model categories. |

7.3 Three model structures on sCoCoalg’
The following result proves the existence of three model category structures on sCoCoalg? where F
is a field. These model structures correspond to the classes of weak equivalences Wh, Wy, and Wy,
respectively, as discussed in Section 5.

We say that that a morphism f: C — C’ in sGoCoalg) is injective if the underlying map of simplicial
[F-vector spaces is injective degreewise. It turns out that—in the cocommutative case over a field—the
injective maps in sCoCoalg? (or just CoCoalg) are exactly the monomorphisms (2, 37].

Theorem 7.3.1. Let F be a field and let sCoCoalg? denote the category of connected simplicial
cocommutative F-coalgebras.

(1) There is a left proper combinatorial model category structure on sCoCoalg’? with the injective

maps as cofibrations and the N-quasi-isomorphisms Wy as weak equivalences.
We denote this model category by (sCoCoalg?, N-qi.).

(2) Thereis aleft proper combinatorial model category structure on sCoCoalg? with the injective maps
as cofibrations and the N-quasi-isomorphisms Wy as weak equivalences. This model category is a
left Bousfield localization of the model category in (1).

We denote this model category by (sCoCoalng), N-q.i).

(3) Thereis a left proper combinatorial model category structure on sCoCoalg? with the injective maps
as cofibrations and the quasi-isomorphisms Wy, as weak equivalences. This model category is a
left Bousfield localization of the model categoryin (2). Moreover, it is induced by the model category
of Theorem 3.4.1 restricted to sCoCoalg? (for k = Ro).

We denote this model category by (sCoCoalg?, q1i.).

Proof. We will prove (1) using Theorem 6.1.1. Since every F-coalgebra is a filtered colimit of its finite-
dimensional subcoalgebras [54], it follows easily that the categories CoCoalg; and sCoCoalg? are locally
finitely presentable. Let I denote the set of injective maps i: A — B in sCoCoalg between finitely
presentable objects. We claim that Cof(I) consists of the class of injective maps in sCoCoalgE. Clearly
every map in Cof(l) is injective. Conversely, given an injective map i: C — D in sCoCoalg?, we apply the
small object argument to obtain a factorization:

C—;E—>D

such thatj € Cof() and q € I — inj. Then we consider the following lifting problem:
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and the poset Z whose elements are pairs (Z, h) given by an “intermediate” simplicial coalgebra (C <
Z < D) and an “intermediate” solution to the lifting problem h: Z — E. We define (Z1,h1) < (Z2,hy) if
Z1 € Zy and h, extends hy. Clearly Z # @ and every chain in Z has an upper bound. By Zorn’s lemma,
Z has a maximal element (C’, h). If C’" # D, then there is a simplicial finite-dimensional subcoalgebra
D’ € D such that the injective map C'ND’ € D’isinIand C'N D’ # D'; the existence of D" uses the fact
that every (simplicial) F-coalgebra is the filtered colimit of its finite-dimensional subcoalgebras. Since
q € I —inj, we can then extend h to the simplicial “intermediate” subcoalgebra C' C C' @cnp D' € D,
contradicting the maximality of (C’, h). Therefore, C' = D and the lift h exhibits i is a retract of j, so
1 € Cof(l), as claimed.

Let dgAlg; be the finitely combinatorial model category of Theorem 3.5.2. We will apply the method
of Theorem 6.1.1 to the functor 0: sCoCoalg? — dgAlg, . We recall that ) preserves colimits; therefore,
it is finitely accessible. In addition, using the explicit description of the cofibrations in dgAlg;, we see
directly that for any injective mapi: A — Bin sCoCoalg?, the map N() : N(A) — N(B) is a cofibration in
the model category dgAlg; (Remark 3.5.5, cf. [40, Section 9]).

Condition (2) of Theorem 6.1.1 is satisfied using Proposition 6.2.1 and the fact that ) preserves
colimits. Condition (1) of Theorem 6.1.1 will be shown using the criterion in Proposition 6.2.2 for the
standard mapping cylinder factorization. Namely, the cylinder object is given by the functor

Cyl: sCoCoalg? — sCoCoalgg, C— Cyl(O),

defined by the pushout

FeFa] —29, oo Flal]

L

F®F[AY] = F ——: Cyl(C)

where F is considered as a constant simplicial F-coalgebra and e: F — C denotes the (implicit)
coaugmentation map. In other words, as simplicial F-vector space, we have:

Cyl(C) = F @ coker(e ® idra1y: F @ F[A'] - C® F[AY]).

The n-simplices of A' may be labeled by sequences [0...01...1] consisting of r consecutive 0’s and
s consecutive 1's for some non-negative integers r and s satisfying r + s = n + 1. We denote any such
simplex by [071°] € (A1),. Using this notation, we have natural inclusion maps i, : C — Cyl(C), fore =0, 1,
by i.(x) = x ® [¢"+?] for any x € C,. We also have a natural projection map q: Cyl(C) — C determined by
qx ® [0"1°]) = x.

For every map f: C — C’ in sCoGoalg?, we define the mapping cylinder of f by the pushout

(o i RN - o BN ¥ I(6)

R

¢ ————— s Caor ¢ ——— M(f).

Then there is a canonical factorization of f,

i:=holgy

c = M B e

where p is induced by f, the identity map on C’, and Cyl(C) Lctle

We claim that the conditions (a)-(b) of Proposition 6.2.2 are satisfied for this factorization. First, we
see from the construction that the map i is injective (because s is). Moreover, assuming that C and C’
are finitely presentable in sCoCoalg?, then so is M(f); so Proposition 6.2.2(a) is satisfied.
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For Proposition 6.2.2(b), we will show that the map p: M(f) — C’ becomes a trivial fibration in dgAlg,
after applying 0. First, since p admits a section

§':C > Car C' S M),

it follows that N)(p) is surjective (a fibration in dgAlg;). Then it suffices to show that the section s’ is an
N-quasi-isomorphism. To see this, it suffices to prove that

N(in): NEC) — N(CYLC))

is a trivial cofibration of dg algebras, since )(s’) is a pushout of this map. Moreover, since q o 11 = idc, it
suffices to verify that the map q: Cyl(C) — C is an N-quasi-isomorphism. We prove this in Proposition
A.0.1 of Appendix A.

To prove (2), we will apply Theorem 6.2.5 to the functor

N: sCoCoAlg? — dgAlg,

with respect to the model category structures of (1) and Theorem 3.5.2. First, it is easy to see that ) =
L, 0 X is the composition of finitely accessible functors; therefore,  is finitely accessible. By Proposition
5.3.5, we have Wy, € W, so 1) preserves weak equivalences. Thus, the assumptions of Theorem 6.2.5
are satisfied.

It remains to show that the class Cof(I) N Wj is closed under transfinite compositions and pushouts
using Proposition 6.2.1. The case of transfinite compositions is immediate from the fact that i) preserves
filtered colimits, and the observation that a transfinite composition of quasi-isomorphisms in dgAlg,
is again a quasi-isomorphism. We now argue for the case of pushouts. For every cofibration i: A < Bin
sCoCoalg?, the induced map

N@): N(A) — N(B)

is a cofibration in dgAlg; (see Subsection 3.5) and also the map P, < Pg is injective. As a consequence,
the map (£,X)(i) can be written as the composition of cofibrations

L(X(A) = L,(B,1(Pa) — LAX(BY),
therefore, it is again a cofibration in dgAlg,. Suppose now thati: A < Bisin Cof(l)NWgzandletf: A —» C
be an arbitrary map in sCoCoAlg?. We need to show that the top left horizontal map in the diagram

below, induced by the map C — D :=C®a B,

L(X(C) ———— L(X(COB)) ¢—5—— L.(N(0) oty 0(B), Pp)

loc

®
N(A)

is a quasi-isomorphism of dg algebras. The left vertical map is given by localization at P¢ and the right
vertical map is given by the respective localization for the pushout of dg algebras N(D) at the set Pp. The
top diagonal map is a quasi-isomorphism since (£,X)(i) is a trivial cofibration. The bottom diagonal
map is a localization at the set of monoid-like elements that arise from B and C. Since every monoid-
like element in the bialgebra Ho(£,(X(C))) is invertible, the same holds also for the bialgebra structure
of the zeroth homology in the middle of the diagram. So every monoid-like element, in particular those
from [Pp], becomes invertible in the bialgebra structure of the zeroth homology in the middle. Hence
the middle vertical map must also be a quasi-isomorphism between derived localizations of (D) at [Pp]
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(see [7, Section 3]). This shows that the top left horizontal map is a quasi-isomorphism, as claimed, and
completes the proof of (2).

The proof of (3) is obtained similarly (and more easily) by applying Theorem 6.2.5 to the normalized
chains functor,

0 N ¢ forgetful
(sCoCoalgg, N-q.i.) = dgCoalgy ——— Chy,

where Chy denotes the category of chain complexes of F-vector spaces, equipped with the usual
combinatorial model structure thatis determined by the monomorphisms and the quasi-isomorphisms.
Note that the normalized chains functor preserves weak equivalences, since Wy € Wy, by Proposition
5.3.5.

Remark 7.3.2. The proof of Theorem 7.3.1(3) is based on the existence of the model category
(sCoCoalgﬁF’, N-q.i) and differs from the proof of Theorem 3.4.1 given in [45]. On the other hand,
following directly the proof of Theorem 3.4.1 (based on Theorem 6.1.1 and Propositions 6.2.1-
6.2.2) and using the mapping cylinder factorization from the proof of Theorem 7.3.1(1), one can
show that the model category of Theorem 7.3.1(3) exists for arbitrary commutative rings R.

We note that the proof of Theorem 7.3.1(1) used special properties about simplicial coalgebras
and dg algebras over fields; for instance, that an injective map A — B induces a cofibration of
dg algebras N(A) — N(B).

The three pairs of model categories established in Theorems 7.1.1 and 7.3.1 fit into Quillen adjunc-
tions as follows.

Proposition 7.3.3. Let [ be a field. The adjunctions

F[—]: (sSeto, F-cat.eq.) = (sCoCoalg?, N-q.i): P (7.1)
F[—]: (sSety, m1-F-eq.) = (sCoCoalg?,@qi): P (7.2)
F[-]: (sSeto, F-eq.) = (sCoCoalg?, q.i): P (7.3)

are Quillen adjunctions.

Proof. The left adjoint functor F[—]: sSety — sCoCoalgﬁF) sends monomorphisms to injective maps, that
is, F[—] preserves cofibrations. Moreover, using Propositions 5.2.4 and 5.1.3 (for (7.1) and (7.3)) and
Theorem 5.3.4 (for (7.2)), it follows that F[—] preserves the weak equivalences.

Remark 7.3.4. The left adjoint N): sCoCoalg? — dgAlg; is a left Quillen functor with respect to
the model category structures of Theorem 7.3.1(1) and Theorem 3.5.2.

8 Comparison Between sSet; and sCoCoalg[FO

8.1 Coalgebraic preliminaries

We recall some fundamental results about the structure theory of coalgebras over a perfect field. We
refer the reader to [13, 54] for more details.

Let F be a field. A cocommutative F-coalgebra A is simple if it has no non-trivial subcoalgebras; simple
[F-coalgebras are necessarily finite-dimensional. The étale subcoalgebra Et(A) of a cocommutative [F-
coalgebra A is the (direct) sum of all simple subcoalgebras of A.

If F is algebraically closed, then F itself is the only simple F-coalgebra up to isomorphism. In this
case, the étale subcoalgebra of a cocommutative F-coalgebra A can be identified with the canonical
counit map

F[PA)] C A, (8.)

which is associated with the adjunction F[—]: Set = CoCoalg; : P.
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More generally, if F is a perfect field, the étale subcoalgebra of a cocommutative F-coalgebra A can
be identified as follows. Let I C T be the algebraic closure of [ and let G denote the (profinite) absolute
Galois group. Then the étale subcoalgebra of A = A®¢T is canonically identified with the F-subcoalgebra
F[P(A)] generated by the F-points of A. Moreover, this set of F-points

P(A) = CoCoalgy(F, A ®F )

admits a natural G-action, which extends to a G-action on the F-coalgebra F[P(A)]; this G-action is
compatible with the G-action on A. The G-fixed points of F[P(A)] define an F-subcoalgebra of A and
there is a natural isomorphism of F-coalgebras:

Et(A) = F[PA))C. (8.2)

The inclusion of the étale subcoalgebra can be expressed also in this case in terms of the counit of an
adjunction. Let Set(G) denote the category of G-sets (= discrete topological spaces with a continuous
G-action). We recall that a G-action on a set X is continuous if and only if the stabilizer of each element
x € X is an open subgroup of G. This is equivalent to requiring that

X = colim X%, (8.3)

op
HeO

where X" denotes the H-fixed points of X and OF denotes the opposite of the category of open subgroups
H of G with inclusions as morphisms. Note that the poset OF is filtered. We recall that every open
subgroup of a profinite group has finite index.

For any G-set S, the G-fixed points of the F-coalgebra F[S] form an F-coalgebra (cf. (8.4) below), so we
obtain a functor

F[-]°: Set(G) — CoCoalg;,
which admits a right adjoint, given by a functor of F-points, defined by
Pg: CoCoalg; — Set(G), A > CoCoalg~(T,A &f ).

Then the inclusion of the étale subcoalgebra Et(A) € A can be identified with the counit of this
adjunction. For any G-set S, there is a canonical isomorphism of F-coalgebras (cf. the proof of [13, Lemma
4.3]):

FISI° @ F =F[S] (8.4)
and it follows that the unit transformation of the adjunction (F[-]¢, Pg),
S — P (F[S]9),

is a natural isomorphism. In particular, the left adjoint F[~]C is full and faithful.
We will need the following fundamental property of the étale subcoalgebra. For the proof, we refer
the reader to [13, Section 2], [39, Section 4], [15, Section 2].

Theorem 8.1.1. Let A be a cocommutative F-coalgebra over a perfect field . The inclusion Et(A) €
A admits a natural retraction of coalgebras.

8.2 Algebraically closed fields

Based on Theorem 8.1.1, we can now apply the criterion of Proposition 6.3.3 to the Quillen adjunctions
of Proposition 7.3.3.
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Theorem 8.2.1. Let [ be an algebraically closed field. The left Quillen functors

F[—]: (sSeto, F-cat.eq.) — (sCoCoalg?,ﬂq‘i.) (1)
F[-]: (sSety, m1-F-eq.) — (sCoCoalg?, N-q.i.) @)
F[-]: (sSeto, F-eq.) — (sCoCoalg?, q.i.) (3)

are homotopically full and faithful.

Proof. The proof is similar to the proof in [13], which essentially treated case (3). For any field F, the
functor F[—] is (1-categorically) full and faithful. Thus, by Proposition 6.3.3, it suffices to show that
P : sCoCoalg? — sSet, preserves all weak equivalences in each one of the cases. Given amap f : C — C’
in sCoCoalg? and assuming that F is algebraically closed, it follows from Theorem 8.1.1 and (8.1) that
the map F[P(f)] is a retract of f. Therefore, if f is a weak equivalence (in any of the three cases), then
F[P(f)] is again a weak equivalence. Hence P(f) is a weak equivalence (in any of the three cases) as
required, using Proposition 5.2.4 (for (1)), Theorem 5.3.4 (for (2)), and Proposition 5.1.3 (for (3)). |

Remark 8.2.2. An analogue of Theorem 8.2.1(3) for simplicial presheaves with respect to the local
model category structures was shown in [45] and for the motivic homotopy theory in [15].
Corollary 8.2.3. Let F be an algebraically closed field and let X and Y be reduced simplicial sets.

(1) Suppose F[X] = F[Y]in Ho(sCoCoalg?, N-g.i.). Then

X =Y in Ho(sSety, F-cat.eq.).

(2) Suppose F[X] = F[Y]in Ho(sCoCoalgﬂQ,ﬁ-q.i.) Then

X =Y in Ho(sSety, m1-F-eq.).

(3) Suppose F[X] = F[Y]in Ho(sCoCoalg?, q.i.). Then
X =Y in Ho(sSeto, F-eq.).

Remark 8.2.4. A version of Corollary 8.2.3(2) was shown in [50] assuming that X and Y are Kan
complexes and using the standard (non-localized) cobar construction.

8.3 Perfect fields

Let [ be a perfect field, let F < T be its algebraic closure, and let G denote the (profinite) absolute
Galois group of F. The analogue of Theorem 8.2.1 for perfect fields will make use of the adjunction (see
Subsection 8.1):

F[-]°: sSet(G)o = sCoCoalg): Pc.

Here sSet(G)o denotes the category of reduced simplicial G-sets. We recall that the left adjoint F[—]¢ is
full and faithful.

We denote by §: sSety = sSet(G)o: (—)¢ the adjunction induced by the trivial G-action functor § and
the G-fixed points functor (—)¢. Our analysis of the Quillen adjunction (in all three cases) F[—]: sSety =
sCoCoalg?: P is based on its factorization as the composition of adjunctions

s F[-)¢

F[—]: sSety = sSet(G)y = sCoCoalgﬁ: P.
=)¢ Pc

We will construct three auxiliary model structures on sSet(G), in order to set the adjunctions above

into a homotopical setting. We say that a map f: S — S’ in sSet(G)o is a categorical F-equivalence (resp.
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7&-F-equivalence, F-equivalence) if the functor F[—]¢ sends f to an N-quasi-isomorphism (resp. fi-quasi-
isomorphism, quasi-isomorphism) in sCoCoalg% The terminology is justified by the following lemma.
We denote by

U: sSet(G)y; — sSety

the forgetful functor that forgets the G-action.

Lemma 8.3.1. Let f: S — S’ be a map in sSet(G)o. Then the following hold:

(1) f is a categorical F-equivalence if and only if U(f) is a categorical F-equivalence.
(2) if f is a #¥-F-equivalence, then U(f) is a m;-F-equivalence.
(3) f is an F-equivalence if and only if U(f) is an F-equivalence.

Proof. Note that the functor (—) ® F: sCoCoalg! — sCoCoalg% preserves and detects quasi-
isomorphisms. It also preserves and detects N-quasi-isomorphisms because we have an isomorphism
NC®F) =nNC) T forany C € sCoCoalng). On the other hand, for C € sCoCoalg?, the associated
fundamental F-bialgebra Ho(N(C ® F)) = Ho(N(C)) ® F could possibly have new monoid-like elements
that do not arise from monoid-like elements of the fundamental F-bialgebra Ho(1)(C)) of C—this does not
occur for C of the form [[S]. Still, since localization preserves quasi-isomorphismes, it follows that (=) ®F
preserves N-quasi-isomorphisms. Then the claims (1)—(3) follow easily from the natural isomorphism
(8.4) and the characterizations of the three classes of weak equivalences in sSety shown in Section 5l

The next theorem establishes three corresponding model category structures on sSet(G), together
with three pairs of associated Quillen adjunctions.

Theorem 8.3.2. Let F be a perfect field, let F € F be its algebraic closure, and let G denote the
(profinite) absolute Galois group of F.

(1) There is a left proper combinatorial model category structure on sSet(G)o with the monomor-
phisms as cofibrations and the categorical F-equivalences, denoted by W(G);r, as weak equiva-
lences.

We denote this model category by (sSet(G)o, F-cat.eq.).

(2) There is a left proper combinatorial model category structure on sSet(G)o with the monomor-
phisms as cofibrations and the =£-F-equivalences, denoted by W(G),s 5, as weak equivalences.
This model category is a left Bousfield localization of the model category in (1).

We denote this model category by (sSet(G)o, nlc—[F—eq.).

(3) There is a left proper combinatorial model category structure on sSet(G)o with the monomor-
phisms as cofibrations and the F-equivalences, denoted by W(G)r, as weak equivalences. This
model category is a left Bousfield localization of the model category in (2).

We denote this model category by (sSet(G)o, F-eq.).

Moreover, the adjunctions

8: (sSety, F-cat.eq.) = (sSet(G)o, F-cat.eq.): (—)° (1)
8: (sSety, m1-F-eq.) = (sSet(G)o, nP-F-eq.): (—)° (2)
8: (sSeto, F-eq.) = (sSet(G)o, F-eq.): ()¢ 3)
and
F[-]°: (sSet(G)o, F-cat.eq.) = (sCoCoalg?, N-q.i): Pg 1)
F[-]°: (sSet(G)o, n¢-F-eq.) = (sCoCoalg?, N-qi.): Pg )
F[-]°: (sSet(G)o, F-eq.) = (sCoCoalg?,q.i): Ps 3)

are Quillen adjunctions.
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Proof. We will apply Theorem 6.1.1 to the left adjoint functor F[-]%: sSet(G)o — sCoCoalg? and the
model categories of Theorem 7.3.1. First note that F[—|° preserves colimits; in particular, it is accessible.

We recall that the larger category sSet(G) is a (category of simplicial objects in a) Grothendieck topos;
either directly or by using this fact, it is easy to conclude that sSet(G), is also locally presentable.
Moreover, the class of monomorphisms in sSet(G), as in any topos, is cofibrantly generated by a set
of monomorphisms Z. For every 1A — Bin 7, leti: A/JAy — B/Bo be the induced monomorphism
in sSet(G)o, where (—)o denotes the O-simplices as a constant simplicial object. Let Z denote the set
of monomorphisms obtained from the morphisms in Z in this way. We observe that a map in sSet(G)
between reduced simplicial G-sets has the right lifting property with respect to Z if and only if it is has
the right lifting property with respect to Z. Therefore, by the retract argument or otherwise, the set of
monomorphisms Z is a generating set for the monomorphisms in sSet(G)o. In more detail, for every
monomorphism f in sSet(G)o, there is a factorization f = pi where i € Cof(Z) and p € Z — inj using the
small object argument; then, as observed above, p has the right lifting property with respect to f, hence
fisaretractof i.

Then it suffices to prove the stronger claim that Z — inj consists of maps that are categorical
equivalences of underlying reduced simplicial sets (after forgetting the G-actions). Then the result will
follow from Theorem 6.1.1 for all three cases simultaneously, since each one of the three classes of weak
equivalences contains the class of categorical equivalences between underlying reduced simplicial sets
(see also Lemma 8.3.1).

Let p: X — Y be a morphism in sSet(G)o, which has the right lifting property with respect to the
monomorphisms. Using similar arguments as above, it follows that p has the right lifting property in
sSet(G) with respect to the monomorphisms in sSet(G). For every open subgroup H of G and any n > 0,
themapixid: dA" x G/H — A" x G/H is a monomorphism in sSet(G). Thus the right lifting property of
p implies that the map

pH:XHﬁYH

is a trivial fibration of simplicial sets for any such H. Using the continuity of the G-action on X and
Y, it follows that U(p) is the filtered colimit of the maps p where H ranges over the open subgroups
of G (with finite index). Since filtered colimits of trivial fibrations of simplicial sets are again trivial
fibrations, we conclude that U(p) is a trivial fibration between (reduced) simplicial sets; therefore, it is
also a categorical equivalence, as required.

It now follows immediately from the definition of cofibrations and weak equivalences that the
adjunctions

8: sSety = sSet(G)o: (—)° and F[—]°: sSet(G)o = sCoCoalg?: P

are Quillen adjunctions in all three contexts. |

Remark 8.3.3. The model category structure on sSet(G) analogous to Theorem 8.3.2(3) was also
constructed by Goerss [12]. Note that the above proof works for any class of weak equivalences
W in sSet(G)o (or in sSet(G)) such that:

(i) W is detected by the class of weak equivalences W, in a combinatorial model category M via a
functor F: sSet(G)g — M;
(ii) F preserves small colimits and sends monomorphisms to cofibrations;
(if) W contains the maps that define categorical equivalences between the underlying simplicial sets.

For example, this applies to the forgetful functor U: sSet(G)o — sSet, and the model categories of
Theorem 7.1.1 for any commutative ring R and profinite group G. Specialized to a perfect field
[ as above, the resulting model category agrees in the cases (1) and (3) with the corresponding
one from Theorem 8.3.2 (cf. Lemma 8.3.1). In the case (2), the model category resulting from
U defines a left Bousfield localization of the corresponding model category from Theorem
8.3.2(2). In this case, the functor F[—]%: sSet(G); — sCoCoalg? becomes a left Quillen functor
if the target category is equipped with the left Bousfield localization of (sCoCoalg?, 0-q.i.) with
weak equivalences those maps that become f-quasi-isomorphisms after tensoring first with
F (cf. (8.4) and the proof of Lemma 8.3.1).
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We can now state the analogue of Theorem 8.2.1 for perfect fields.

Theorem 8.3.4. Let F be a perfect field and let F € F be its algebraic closure with (profinite)
absolute Galois group G. Then the left Quillen functors

F[-]°: (sSet(G)o, F-cat.eq.) — (sCoCoalg?, N-q.i.) (1)
F[-]°: (sSet(G)o, nC-F-eq.) — (sCGoCoalg?, N-q.i) (2)
F[-]°: (sSet(G)o, F-eq.) — (sCoCoalg?, q.i.) ()

are homotopically full and faithful.
Proof. The proof is similar to the proof of Theorem 8.2.1. We recall that the functor F[-]¢ is (1-
categorically) full and faithful (see Subsection 8.1). Then, by Proposition 6.3.3, it suffices to show that

P : sCoCoalg? — sSet(G), preserves all weak equivalences. Let f : C — C’ in sCoCoalg? be a weak
equivalence (in any of the three cases). By Theorem 8.1.1 and (8.2), the induced map

F[Pc(N]®: F[Pc(C)]° — F[Pc(CH]¢

is a retract of f. So F[Ps(N)]¢ is again a weak equivalence. This means that the map Ps(f) is a weak
equivalence in sSet(G), (in any of the three cases) and finishes the proof. |

Remark 8.3.5. An analogue of Theorem 8.3.4(3) for simplicial presheaves with respect to the local
model structures was shown in [45] and for the motivic homotopy theory in [15].

The Quillen adjunction F[—]: sSet, = sCoCoalg?: P (in any of three cases—Proposition 7.3.3) factors
as the composition of two adjunctions:

5: sSety = sSet(G)o: (—)¢
F[-]°: sSet(G)o = sCoCoalg?: Ps

and these are Quillen adjunctions in each one of the three cases (Theorem 8.3.2). Since the derived
unit transformation of the last Quillen adjunction is a natural isomorphism by Theorem 8.3.4 (in each
one of the three cases), we obtain the following identification of the derived unit transformation of the
composite Quillen adjunction.

Corollary 8.3.6. Let I be a perfect field with algebraic closure F C F and (profinite) absolute Galois
group G.

(1) The derived unit transformation of the Quillen adjunction
F[-]: (sSeto, F-cat.eq.) = (sCoCoalgg, N-q.i): P
is canonically identified with the derived unit transformation of the Quillen adjunction
8: (sSety, F-cat.eq.) = (sSet(G)o, F-cat.eq.): (—)°.
(2) The derived unit transformation of the Quillen adjunction
F[—]: (sSety, m1-F-eq.) = (sCoCoalg?,ﬁ»q.i.): P
is canonically identified with the derived unit transformation of the Quillen adjunction

§: (sSety, m1-F-eq.) = (sSet(G)o, n5-F-eq.): (—)C.
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(3) The derived unit transformation of the Quillen adjunction
F[-]: (sSety,F-eq.) = (sCoCoalg?, qi): P
is canonically identified with the derived unit transformation of the Quillen adjunction

8: (sSety, F-eq.) = (sSet(G)o, F-eq.): (—)°.

In other words, the derived unit transformation is identified in each case with the canonical map
into the homotopy G-fixed points X — (8(X))"¢ (where (—)"C is interpreted in the appropriate
way in each model category).

Remark 8.3.7. In [13, Proposition 1.5] the space of homotopy fixed points §(X)" corresponding to
Corollary 8.3.6(3) is described in certain special cases. For instance, if G is a finite group and X
is fibrant in (sSety, F-eq.), then §(X)C is the usual homotopy fixed point space of X.

When [ = [, and X is simply-connected, then §(X)"° is the free loop space of the p-completion of
X.If F has characteristic zero and X is simply-connected, then §(X)" is the rational localization
of X. Analogous results hold also in the context of Corollary 8.3.6(2) using Lemma 7.2.2.

A Cylinder Objects for Simplicial Coalgebras

Let R be a commutative ring, For any C € sCoCoalg?, we define Cyl(C) as in the pushout diagram (Cyl)
in the proof of Theorem 7.4. In this appendix, we prove the following result that was used in the proof
of Theorem 7.4(1).

Proposition A.1. For any C € sCoCoalgg, the natural projection map
q: Cyl(C) —» C
is an N-quasi-isomorphism.

For simplicity, denote by q = N.(q): N.(Cyl(C)) - N.(C) the map on normalized chains induced by
the projection q: Cyl(C) — C and by i1 = N, (i1): N.(C) - N.(Cyl(C)) the map induced by the inclusion
i1: C — Cyl(C). To prove the above proposition, we will:

e construct a chain homotopy
H: N(Cyl(©) = Niy1 (CYL(O))

between the composition i; o q and the identity map id, cyic)), and then
e extend H to a chain homotopy

Hp: D(CyL(C)) — N(CyL(C))

between the identity map idgcyi(c) and the composition N(i1) o 0)(q). This involves verifying that H
is a (i1 o q,1d)-coderivation, that is, that the equation

H®(10q)+id®H)oA=AoH
is satisfied.

Using the notation introduced in the proof of Theorem 7.4, we may represent any element in Cyl(C),
by a linear combination of elements of the form x® [0*+11"*], where k € {—1,0, ..., n}. For simplicity, we
will write x ® [0¥*11"F] = (x, [0*+11"%]). Note that, when 0 <k <n —1,

[0F11" %] =s,_1...5...50[01],

where the s;’s denote simplicial degeneracy maps, [01] € (A1), is the unique non-degenerate 1-simplex,
and S, means we omit this map from the composition.
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Define a degree +1 map
H: N, (Cyl(C)) - N,11(Cyl(C))

given on any representative (x, [0F*11"¥]) € Cyl(C), by the formula

k
Hx, [0F1177F]) i= > (= 1Y (spyx, [0F 104 = (A.1.1)
j=0

k
Z(—l)j(sk,jx, Sn-..Sk_j---So0[01]).

j=0

Remark A.2. Since we are working with normalized chains we have H(x, [1"*!]) = O for any x € Cy,,
n > 0. Also note H(x, [0]) = H(x, [1]) = 0. Moreover, if n > 0, we have

H(, [0™]) = Wi (p) 0 EZ)(x ® [01]),
where
EZ: N,(C) ® NL(R[A']) = N.(CQR[A))

is the Eilenberg-Zilber map and p: C ® R[A'] — Cyl(C) the map in the pushout defining Cyl(C).
In other words, on simplices at the 0-th end of the cylinder, H is given by “crossing a simplex
with the simplicial interval” and subdividing appropriately.

An easy computation yields that H satisfies the chain homotopy equation
Hod+0doH=1i0q-1id,
where 3: N, (C) = N,_1(C) is the normalized chains differential. Then we define
Hp: N(CyL(C)) - N(CyL(C))
by

Hp = Z(S_1 o(iroq) osth® o (st oHost!) o (d)¥.
ij=0

We will show that
DHq + HpD = id — N(i1) o N(q),

where D: N(Cyl(C)) — N(Cyl(C)) is the differential of the dg algebra N(Cyl(C)), but we first make a general
observation.
The following notion was introduced in (36, Section 1.11].

Definition A.3. LetN = (N, dy, Ay) and N’ = (', 9, Anr) be two dg coalgebrasand f,g : N — N’ two

morphisms of dg coalgebras. A degree +1 map F : N — N’ between underlying graded modules
is said to be an (f, g)-coderivation if the equation

(F®f+g®F)OAN=AN/OF

is satisfied.
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LemmaA.4. LetN = (N, dy, Ay) and N’ = (N, v, An) be two conilpotent dg R-coalgebras. Suppose
f,9 : N - N’ are two morphisms of dg coalgebras and let F : N — N’ be a chain homotopy
between f and g (of degree +1). If Fis an (f, g)-coderivation, then the map

Fp : Cobar(N) — Cobar(N")

defined by

Foi=> f oFog?,

1j=0

where f = s lofost!,F=s'oFost!,and g = s~ 0 g ostl, is a chain homotopy between
Cobar(g) = 3,5°" and Cobar(f) = 3, "

Proof. Let Dy and Dy be the differentials of Cobar(N) and Cobar(N'), respectively. After using that f and
g are maps of dg coalgebras to cancel terms, we obtain

DnFn+FnDy =
> e@ohes®+3 [ ¢@vohHeg?

+3 P eFotneg®+3 e (FfeF+FegoAy) eg?.

Since F is a (f, g)-coderivation, the second and fourth terms in the above sum cancel and we obtain

DnFp 4+ FnDy

—®i _ = ‘@] —=®1 - = *®j7

> f ®@@noheg?+Y —f ®@Foieg? =
fo®i+l®§®j+2f®i®§®j+l=

> " > 3" = Cobar(g) — Cobar(f).
[ |

In order to apply Lemma A.4 with f = i; 0 q, g = idx,cyic)), and F = H as defined in A.1.1, we must
verify the following.

Proposition A.5. The map H: N.(Cyl(C)) — MN.41(Cyl(C)) defined in A.1.1 is a (i1 o q,id)-
coderivation.

Proof. We prove that
H® (i10q)+1d®H)oA=AoH, (A.S.l)

where A: N, (Cyl(C)) — N.(CyL(C)) ® N.(Cyl(C)) is the Alexander-Whitney coproduct. On any (x,0) €
Cyl(C)n, where o € Al, the Alexander-Whitney coproduct is given by

n+1
Ax,0) =D (dy...dnX dy...dno) @ (d5 %", d) o), (A5.2)
p=1

where we have used (generalized) Sweedler's notation writing A,(x) = X’ ® x” for the coproduct of the
cocommutative coalgebra Cj.
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Note that on any n-simplex o = [0¥*11"¥] € Al, we can split the Alexander-Whitney coproduct into
two sums

n+1

Z dp o dn[ok+11n—k] ® dgfl[ok-%—l 1n—k] -

p=1
k+1 n+1
Z[Op] ® [Ok+2—p1n—k] + Z [Ok+11p—k—1] ® [1n+2—p]. (A.SG)
p=1 p=k+2

For any (x, [0¥*11"¥]) € Cyl(C)y, the right-hand side of A.5.1 is given by

A(HE, [0*1177F]) =

n+2  k
Z Z(—l)j (dp .. dn+15k7jx/, dp e dn+1[ok7j+1 1n+1—k+j])

p=1 j=0

@5 syx”, dy ORIk

Using A.5.3, we split the above sum into two sums (I) and (II):
sum (I) is given by

k7j+1 k . .
> Dy dusasiX, [0F) ® (A s x”, [OFT PR,

p=1 j=0

and sum (II) by

n+2 k
> Dy dugase X, [0 @ (df s X, (1)),
p=k—j+2 j=0

The simplicial identities, together with the fact that H(y, [1"+!]) = 0 for any y € C;, yield that, up to the
Koszul sign rule, sum (I) equals:

(d ® H)A(x, [0F11"F]) =

k+1
Ad @ B (dy ... dnx, [0P) ® (df~'x", [0 7P1"))) =
p=1
k+1-p k+1 . ) )
Z Z(—l)p’”)(dp X, [P ® (Sk+17p7jdg—1x//’ [Ok+27P*)1Vl*k+J+1]).
j=0 p=1

Finally, we use A.5.2, A.5.3, and the formula

(1o @)y, [0'2°]) = (v, [17°])
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to compute

(H® (i1 0 ) A, [0, 1K) =

n+1
S H(M,...dnX dy. .. dn [0 1) @ (i1 0 q)(df X, b [OFFLMR)) =
p=1

k+1
S THWy ... dnX, [07]) ® (ig 0 q)(dh X", [0F2 P 1R
p=1

n+1
+ Z H(dp S dyX, [Ok+‘l 110—18—1]) ® (i1 0 q)(dgilX”, [1n+2—p]) _
p=k+2
k+1 p-1 . N
D DY pagdy . X, [PIVH @ (X [1TF))
p=1 j=0
el k _ » »
+ 2 2Dy dx, [0 @ (df T, (11 P)).

p=k+2 j=0

If we reindex the above two sums by settingi=j—p+1+kandq=p+1linthefirstsumandgq=p+1
in the second, we obtain

k+2 k
S D (sidgn - deX, [0 ) @ (dPx7, (1)
q=2 i=k+2—q
n+2 k )
+ Z Z(fl))(sk,}-dq,l o dyX, [ORFT 197k @ (dd X, (1)),
q=k+3 j=0
This is exactly sum (II) after using the simplicial identities. |

We may now conclude the main result of this appendix.

Proof of Proposition A.1: Lemma A.4 together with Proposition A.5 imply that Hy : Q(Cyl(C)) —
N(Cyl(Q)) is a chain homotopy between the maps idpcyic) and Cobar(i; o q) = N(i1 o @) = N(i1) o N(Q.
Since N(q) o N(i1) = idp(cyicy. it follows that both maps of dg algebras 0(q) and 0(i1) are chain homotopy
inverses to each other and, consequently, quasi-isomorphisms. |
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