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String topology in three flavors

Florian Naef, Manuel Rivera, and Nathalie Wahl

Abstract. We describe two major string topology operations, the Chas—Sullivan product and the
Goresky—Hingston coproduct, from geometric and algebraic perspectives. The geometric construc-
tion uses Thom—Pontrjagin intersection theory while the algebraic construction is phrased in terms
of Hochschild homology. We give computations of products and coproducts on lens spaces via
geometric intersection, and deduce that the coproduct distinguishes 3-dimensional lens spaces.
Algebraically, we describe the structure these operations define together on the Tate—Hochschild
complex. We use rational homotopy theory methods to sketch the equivalence between the geomet-
ric and algebraic definitions for simply-connected manifolds and real coefficients, emphasizing the
role of configuration spaces. Finally, we study invariance properties of the operations, both alge-
braically and geometrically.

Dedicated to Dennis Sullivan on the occasion of his 80th birthday
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1. Introduction

String topology is concerned with algebraic structures defined by intersecting, concate-
nating, and cutting families of paths and loops in a manifold M. It began with Chas
and Sullivan’s construction of an intersection type product on H.(LM), the homology
of the space LM = Map(S', M) of all loops in M, also known as the free loop space
of M [13]. The loop product induces a Lie bracket on HJ ' (LM), the S!'-equivariant
homology of LM, generalizing an earlier construction of Goldman for loops on sur-
faces [37].
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Over the last twenty years, string topology has branched out to many corners of
mathematics:

* It has an algebraic counterpart in Hochschild homology through the Jones [48] and
Goodwillie [38] isomorphisms

H*(LM;F) =~ HH.(C*(M;F),C*(M;TF))
and
H.(LM) = HH,(C«(Q2M), CL(2M))

for IF a field, 2 M the based loop space of M, and where M is assumed to be simply
connected for the first isomorphism, see, e.g., [25,31,63,68,71];

* It has a symplectic interpretation through the Viterbo [84] isomorphism (with appro-
priate coefficients)

Ho(LM) =~ FH.(T*M)

with target the Floer homology of the cotangent bundle of M, see, e.g., [3,4,22,78];

* Rich families of string operations have been defined, in particular, using algebraic
models for string topology, including, for instance, BV structures, Lie bialgebras,
2-dimensional field theories of various flavors, and more, see, e.g., [28, 36, 50, 51,
82,86];

» String topology has been used to study closed geodesics on Riemannian manifolds
through Morse theory on the energy functional, see, e.g., [39,43];

» String operations can be defined instead on the loop space L BG for G a Lie group,
or more generally on the loop space of stacks, see [8, 14,42] and see, e.g., [40, 58] for
applications to group homology.

We will not be able to cover all aspects of string topology in this note and will instead
focus on a few highlights that, we hope, illustrate the richness of the subject. We will
restrict our attention to the original loop product of Chas and Sullivan and its “dual,”
the Goresky—Hingston coproduct. We will describe these two operations geometrically
as well as algebraically, and use methods from rational homotopy theory to compare
the two descriptions, where the role of configuration spaces will be emphasized. The
geometric aspect of string topology will be illustrated through computations of loop
products and coproducts via intersections of geometric cycles in examples from lens
spaces. Algebraically, we will see that the two operations together define a single product
on the Tate—Hochschild complex, defined in Section 3.4, and are encoded by the data of a
Manin triple. Finally, we will address the question of homotopy invariance for the product
and coproduct.

‘We describe now in more detail the content of this text. Throughout, M will be a closed
oriented manifold of dimension n, and homology is with Z-coefficients unless otherwise
stated.
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Figure 1. The loop product of two families of loops concatenates the loops that share the same
basepoints.

Intersection products

Recall that the classical intersection product
*Hy(M) ® Hy(M) - Hpiq—n(M)

can be computed by geometric intersection for transverse cycles: if A, B € H.(M) are
homology classes represented by smooth transversally embedded submanifolds, then their
product A « B is given by the geometric intersection A N B of the cycles. The original
idea behind the Chas—Sullivan product is to define a product on H«(LM) by likewise
transversally intersecting two families of loops in M at their basepoints, which is an
intersection in M, and concatenating loops at the locus of intersection. This results in
a graded commutative and associative product

A Hy(LM) ® Hy(LM) — Hpygn(LM),

that is, by construction, compatible with the intersection product under the evaluation
map evo: LM — M. We will refer to the Chas—Sullivan product as the loop product (see
Figure 1).

Following ideas going back to Cohen—Jones [25], we give in Section 2.2 a formal
definition of this product by lifting the definition of the classical intersection product
phrased in terms of a Thom—Pontrjagin construction for the diagonal embedding A: M —
M x M.

The Goresky—Hingston coproduct [39], also considered by Sullivan [80] and referred
to as the loop coproduct here, has the form

ViH, (LM, M) — Hp 41 (LM x LM, LM x M UM x LM).

The idea of the coproduct is, given a family of loops, to look for all the self-intersections
in the family of the form y(0) = y(¢), for y aloop and ¢ € I is a time coordinate, and then
cut. Following Hingston—Wahl [44], we show that it can be defined using a simple variant
of the definition of the loop product. The operation is most naturally a relative operation
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because the interval I has non-trivial boundary; see Remark 2.3 for non-relative versions
of the coproduct.
The loop product and coproduct can be diagrammatically described as

LM x LM «— Fig(8) <% 1 M IMxT—2F S IMxLM
evg X evol levo evpg X evy l levo
M x M(L M M x M<L M

where the middle spaces Fig(8) =~ LM xp LM and ¥ C LM x I are the subspaces
where the desired intersection holds, and where the dashed arrows are “intersection
products” that are only defined on homology (or on chains). In Sections 4.1 and 4.2, we
will formulate the data used from M to define these intersection products in terms of an
intersection context (see Definition 4.7). Our preferred intersection context associated to
a manifold M will be

UTM — FM,

|,

M—2 s MxM,

where F'M, is the configuration space of two points in M and UTM the unit tangent
bundle of M.

Geometric computations

Just like the intersection product ¢ can be computed by geometric intersection for nice
enough cycles, the loop product and coproduct can be computed by a direct intersec-
tion for cycles that are appropriately transverse. This is made precise in Proposition 2.4,
following [44], and illustrated through the computation of the loop product and coprod-
uct of a family of classes generating H3(L&, ), for £, , a 3-dimensional lens space;
see Propositions 2.5 and 2.8. As an application of the computation, we prove the
following:

Theorem A (Theorem 2.11). The loop coproduct distinguishes non-homeomorphic
3-dimensional lens spaces.

This result is an extension of a computation of the first author in [70], used in
that paper to show that the loop coproduct is not homotopy invariant; see below
for more details about the invariance properties of the loop product and coprod-
uct.

String topology algebraically

Assume now that M is a simply-connected closed manifold. The isomorphism
HH.(C*(M;F),C*(M;F)) =~ H*(LM;F) mentioned above, actually holds indepen-
dently of the fact that M is a manifold. However, the algebraic structure of the Hochschild
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complex becomes much richer once one inputs that H*(M) satisfies Poincaré duality,
or in other words that it is a Frobenius algebra (see Definition 3.2). In the above iso-
morphism, we can replace C*(M;F) by any algebra A quasi-isomorphic to it in the
category of dg-algebras. By a theorem of Lambrechts—Stanley, it is possible to find a
model A for the rational cochains C*(M; Q) that has the structure of a (strict) commu-
tative dg-Frobenius algebra compatible with the Frobenius structure on H*(M; Q) (see
Theorem 3.5 and Example 3.6). The relevant consequence for us is that:

The algebraic structure of the Hochschild chains or cochains of dg-Frobenius
algebras reflects rational string topology.

For Frobenius algebras, we indeed have an isomorphism between the linear dual of
the Hochschild chain complex C« (A4, A) and the Hochschild cochain complex C* (4, A),
so both complexes are relevant (see Remark 3.11).

There is a wealth of literature on the algebraic structure of the Hochschild chains and
cochains of Frobenius algebras, including algebraic versions of the product and coproduct
just described, see, e.g., [2, 25, 32, 68] for the loop product and [2, 55] for the loop
coproduct, or e.g., [50-52,82,86] for larger structures encompassing both, or [55, 85] for
a prop of universal operations on the Hochschild complex of symmetric or commutative
Frobenius algebras. (See also [9] in the present volume.)

It turns out that the loop product identifies with the classical cup product on
Hochschild cochains [31], while the loop coproduct becomes the following product on
relative Hochschild chains (see Definition 4.1):

Theorem B ([71]). Let A be a dg-Frobenius algebra model for C*(M;R). Under a
relative version of the Jones isomorphism H*(LM ;R) = HH,(C*(M;R),C*(M;R)) =~
HH. (A, A), the linear dual of the loop coproduct is given on cochains by the formula

@ ® - ®ap ®apt1) * (b1 ® -+ ® by ® by11)
=) b ® ®by116; @A @ ®p ® apy1 fi.

1
where A(1) =) ", e; @ fi € A® A represents the Thom class of the diagonal in M x M.
(See Example 3.4 and Definition 3.16).

This result is stated as Theorem 4.2 in the present paper, and we give a sketch proof
of the result in Section 4.4.

In Section 3.6, we will focus on the following aspect of the algebraic structure defined
by the algebraic product and coproduct:

Theorem C ([76]). The algebraic product and coproduct extend to define together a
single Aco-structure on the Tate—Hochschild complex
D**(A, A)

0 0, $ )
= B RO (A, A) D 51K Co (A, A) D COF (A, 4) D (A, A) D
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that is compatible with the natural pairing between Hochschild chains and cochains and
with an extension of Connes’ operator B to the Tate—Hochschild complex. On cohomol-
0gy, the product is graded commutative, and H*(D* (A, A)) identifies, as an algebra,
with the endomorphism algebra of A in the singularity category of A-A-bimodules (see
Remark 3.14).

Here the Tate—Hochschild complex “glues together” the Hochschild chains and
cochains along the map y that can be thought of as an Euler characteristic, constructed
using the Frobenius structure of A, see Section 3.4 for a complete definition of this com-
plex. In Section 3.5, we give a description of this structure in terms of Manin triples, and
this implies a form of infinitesimal bialgebra compatibility between the Goresky—Hingston
coproduct and the Chas—Sullivan loop product. Note that Cieliebak—Hingston—Oancea
have given a geometric version of the above Tate construction, including its algebra struc-
ture, using Rabinowitz—Floer homology, a theory that combines symplectic homology and
cohomology via a “V-shaped” Hamiltonian [18,20,21,23]. Theorem C is stated as Theo-
rem 3.18 in the text.

The Tate—Hochschild complex satisfies the following strong invariance property, that
is a consequence of the interpretation in terms of the singularity category:

Theorem D ([76]). If two simply-connected symmetric dg-Frobenius algebras are quasi-
isomorphic as dg associative algebras, then their Tate—Hochschild cohomologies are
isomorphic as algebras.

This result is stated as Theorem 3.20 in the text. A direct consequence of the result
is that the algebraic version of the loop coproduct is a homotopy invariant in the simply-
connected setting over the rationals (see Corollary 3.21).

Naturality and invariance

One of the original motivations of Chas and Sullivan in studying free loop spaces was
to understand what characterizes the algebraic topology of manifolds and to construct
algebraic invariants that could detect beyond the homotopy type; in Sullivan’s own words
to us

“...it is the question that has fascinated me since grad school: What is the
algebraic chain level meaning of a space being a combinatorial or smooth
manifold?”

The particular instance of this question we will address here is the following: a homotopy
equivalence M = N induces an isomorphism Hy(LM) = H,.(LN), and likewise on
homology relative to constant loops, and one can ask whether this induced map respects
the loop product or coproduct. We summarize in the following result what is known about
the question:
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Theorem E. The loop product and coproduct satisfy the following:

(1) [26] The loop product on H«(LM) is invariant under homotopy equivalences of
manifolds M = N.

(2) ([76] and [71]) The loop coproduct on Hy (LM, M ; R) is invariant under homo-
topy equivalences of simply-connected manifolds M = N.

(3) [70] The loop coproduct on H,(LM, M) is not homotopy invariant in general.

Alternative proofs of part (1) of the theorem were given by [27,31,41]. We give here
a sketch proof of this result, in Theorem 4.11, stated in terms of homotopy invariance of
general intersection products. Part (2) of the theorem is a direct consequence of combining
Theorems B and D, while part (3) is a consequence of Theorem A.

The essential difference between the loop product and coproduct is that the loop
coproduct uses a relative intersection product, and the proof of homotopy invariance of
intersection product does not extend to proving the relative result. The article [70] suggests
that the failure of invariance of the loop coproduct is related to Reidemeister torsion, which
is compatible with Theorem A. See also [45] for a different description of the obstruction
to homotopy invariance.

A non-invariance result was earlier obtained by Basu for a modified version of the
coproduct [7]. Naef used the lens spaces £1,7 and &£, 7 in [70] to show non-homotopy
invariance of the coproduct on homology. The very same lens spaces were used by
Longoni—Salvatore in [62] to show that the configuration space of two points in a manifold
is likewise not a homotopy invariant of the manifold. Although we do not directly relate
these two computations of non-homotopy invariance, we have already seen above that the
configuration space of two points is an important ingredient in the definition of the loop
coproduct, being part of the data needed to define the corresponding (relative) intersection
product, see Sections 4.1 and 4.2.

The Lie bialgebra structure at the level of S!-equivariant homology is a homotopy
invariant for simply-connected manifolds by [70]. The recent paper [17] proves that
homotopy invariance over the reals is also satisfied for a chain level version of the Lie
bialgebra structure (also known as I B L ,-algebra) in the case of 2-connected manifolds.
It is so far unknown whether the chain level Lie bialgebra structure on S'-equivariant
chains (or a chain level version of the coalgebra structure in the non-equivariant case) is a
homotopy invariant for simply-connected manifolds.

Organisation of the paper. In Section 2, after recalling the Thom—Pontrjagin definition
of the intersection product, we give a chain level definition of the loop product and
coproduct. Section 2.3 gives the computations of the loop products and coproducts on
H3(L£, 4) for 3-dimensional lens spaces £, ,. The coproduct computation is used in
Section 2.4 to show that the loop coproduct is not homotopy invariant. Then Section 2.5
gives an alternative definition of the loop coproduct as a relative version of the so-
called “trivial coproduct,” the coproduct on the loop space that only looks for basepoint
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self-intersections at time ¢ = % This definition will be used in Section 4 to show the
equivalence between the algebraic and geometric descriptions of the coproduct.

Section 3 is concerned with the algebraic version of string topology. It starts with
recalling and setting in context the concepts of Frobenius algebras, Hochschild chains and
cochains. Section 3.4 then gives the definition of the Tate—Hochschild complex of a dg-
Frobenius algebra. The loop product and coproduct are defined algebraically in Section 3.5
as products on the Hochschild cochains and chains respectively. These two products are
assembled to a single product on the Tate—Hochschild complex in Section 3.6, where it
is also interpreted in the language of Manin triples. The invariance of the product on the
Tate—Hochschild complex is stated at the end of the section.

Section 4 takes a closer look at the “intersection products” that appear in the definition
of the loop product and coproduct. After revisiting the definitions of the loop product and
coproduct in Section 4.1, the notion of intersection context is defined in Section 4.2, a data
one can construct intersection and relative intersection products from. The naturality and
invariance properties of such intersection products are discussed in Section 4.3. Finally,
Section 4.4 gives a sketch proof of the equivalence between the algebraic and geometric
coproduct (Theorem 4.2) using an intersection context featuring the configuration space
of two points in M and its real model [11,46].

2. String topology via geometric intersection

Let M be a closed oriented manifold of dimension 7, and pick a Riemannian metric on M.
The loop space LM = Map(S', M) is homotopy equivalent to the space AM of H !-loops
on which the energy functional is defined:

LM ~ AM Z5 R, where E(y) = / ly/(t)|2dt.
Sl

The critical points of the energy are precisely the closed geodesics. Given that the energy
is nice enough to do Morse theory, it follows that the homology H«(LM) = H.(AM)
“knows,” or even “is built out of” closed geodesics. (See, e.g., [73] for a survey of Morse
theory on the free loop space.)

As a graded abelian group, H«(L M) depends only on the homotopy type of M,
whereas the closed geodesics depend on M as a Riemannian manifold. This naturally
leads to the question whether there is some additional structure on H, (L M) that depends
on a more refined structure than just the homotopy type of M. When M is a closed
manifold, its homology satisfies Poincaré duality, and this duality takes the cup product of
H* (M) to the intersection product:

Hy(M) ® Hy(M) —> Hpiq—n(M).
The lifts of the intersection product given by the Chas—Sullivan product

Hy,(LM) ® Hy(LM) 25 Hpiyn(LM)
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and Goresky—Hingston coproduct
Hy(LM, M) 5 Hpy1—n(LM x LM, M x LM U LM x M)

briefly described in the introduction, give a potential answer to the above question.
Following ideas of Cohen—Jones [25] as implemented in [44], we explain here how
both operations can be defined on chains as direct lifts of the intersection product, by
using a chain-level definition of the intersection product in terms of a Thom—Pontrjagin
construction, lifting along appropriate evaluation maps. Section 2.3 will give example
computations, obtained from intersecting geometric cycles, from which we will be able to
deduce in Section 2.4 that the coproduct does detect more than the homotopy type. Finally,
Section 2.5 will give an alternative definition of the coproduct.

Note that homology in this section will always mean homology with integral coeffi-
cients: Hy(_) := H«(_;Z), and the same for cohomology.

2.1. The intersection product as a Thom—Pontrjagin construction

The normal bundle of the diagonal embedding A: M <— M x M is isomorphic to
the tangent bundle TM . Identifying TM = TM, with its subbundle of small vectors,
i.e., vectors of length at most ¢ < p for p the injectivity radius of M, the map

vm:TM — M x M defined by vy (x,V) = (x,exp, V)
is an explicit tubular neighborhood for A, with image the e-neighborhood of the diagonal
v TM S Uy ={(x,y) e M x M | |x — y| < &).

Under this identification, the bundle projection map 7TM — M becomes the retraction
r: Uy — M defined by r(x, y) = x. We let

i € C"(M x M,M x M\ M) < C"(TM,TM \ M)

denote the image of a cochain representative for the Thom class for TM, where
M C M x M is the diagonal, and the arrow is the map vy, which is a quasi-isomorphism
by excision.

Out of this data, we can give the following chain level description of the intersection
product on H,(M):

[ea ]
< Cp(M) ® Cyg(M) 2> Cprg(M x M) 25 Cpygn(Unt) = Cpygn(M), (2.1)

where the middle map is the following composition:
[t N]:Co(M x M) — Coc(M x M, M x M \ M)

(22)
= Co(Upg Uy \ M) 225 € (Ung),
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with the middle map being a homotopy inverse to excision, as can be obtained, for exam-
ple, by subdividing simplices. (To be precise, this definition differs by a sign from the
intersection product defined as the Poincaré dual of the cup product, see, e.g., [44, Propo-
sition B.1].)

An important property of the intersection product, for computational purposes, is that
it can indeed be computed by geometric intersection for homology classes that can be
represented by transverse embedded submanifolds: if A, B C M are embedded transverse
submanifolds of M, with [A] € H,(M) and [B] € H,; (M) the corresponding homology
classes, then

[A][B] = [A 1 B] € Hpigon(M).

See, e.g., [10, Chapter VI, Theorem 11.9].

2.2. Definition of the product and coproduct as lifts of the intersection product

Let evg: LM — M denote the evaluation at 0. The Chas—Sullivan product A being a lift
of the intersection product » means that both products should fit in a commutative diagram
of the form

Hy(LM) ® Hy(LM) —2— Hp, 44— n(LM)

evo @ evg evo (23)
Hp(M) ® Hq(M) — Hpiq—n(M).

We explain now how this can be achieved simply by “pulling back” all the ingredients of
the above definition of the intersection product to the loop space along the evaluation map
evo X evy.

Recall from above the e-neighborhood Uy of the diagonal in M x M and define

Ucs = (evo x evg) 'Uy = {(7/ A)e LM x LM | |y(0)—A0)] < s}.
The retraction r: Uy — M lifts to a retraction

Res: Ues —> Fig(8) = {(y.4) € LM x LM | y(0) = A(0)}
= (evo xevo) H(AM C M x M)

by concatenating with a geodesic stick to connect the loops so that they form a “figure 8
Res(y.4) = (y.A) with 2" = y(0)A(0) » A » 1(0)y(0)

where, for x, y € M with |x — y| < p, Xy denotes the unique minimal geodesic path
[0,1] = M from x to y, which is possible by our choice of ¢, and * is the concatenation
of paths.' See also Figure 2 (a).

ISee, e. g., [44, Section 1.2] for a definition of an associative concatenation.
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A0
y0) ) A y(0)
y Y
(@ (b

y(s)

Figure 2. The retraction maps Rcs and Rgy.

Pulling back our representative of the Thom class tps along the evaluation map gives
a cochain

7cs = (evo x evg) Ty € C*(LM x LM, Fig(8)°).
Together, Ucs, Rcs and tcg are all the ingredients we need to define the desired product:

Definition 2.1. The following sequence of chain maps is a chain model for the Chas—
Sullivan product:
n
A Cp(LM) ® Cy(LM) 25 Cprg (LM x LM) Z5™% ¢ (Ues)
Rcs concat

2 Cpign(Fig(8)) =5 Cpign(LM), (24)

where, just as in (2.1), the middle map is the composition of a homotopy inverse to
excision followed by the capping map.

Naturality of the maps gives that the resulting homology product on the homology
H.(LM) makes diagram (2.3) commute. And it is shown in [44, Proposition 2.4] that
this simple-minded chain description of the Chas—Sullivan product agrees in homology
with the definition of Cohen—Jones [25] given in terms of a tubular neighborhood of the
figure 8 space Fig(8) inside LM x LM.

The coproduct can be defined completely analogously, replacing the evaluation map
evg xevg: LM x LM — M x M by the evaluation map

ef: LM x I — M x M defined by ez (y,s) = (y(0), y(s)).
Indeed, setting
Uan = e; ' Uy = {(r,5) € LM x I | [y(0) —y(s)| < &},
we again have a retraction map

Uoi ——8 5 = {(y.5) € LM x I | y(0) = y(s)}—— LM x I

Uu 4 AMC M xM
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by concatenating with a geodesic stick to force a self-intersection:

Rgu(y.s) = (y'.s) with y" = y[0,5] % y(5)y(0) x5 y(0)y(s) * y[s,0]

where we choose the parametrization of the concatenated loop so that it exactly passes
through y(0) at time s; this is possible even if s = 0 or 1 as in that case y(0) = y(s) to
begin with, and the geodesic sticks are thus length 0. See also Figure 2 (b). Note that the
above diagram commutes as ey o Rgu(y,s) = (¥'(0),y'(s)) = (y(0), y(0)).

We can consider the sequence of maps

x I [T.'GHﬂ]
Cp(LM) — Cpp1(LM x 1) —— Cp11-n(Ucn)

cut

R
—= Cpt1-n(F) = Cpagn(LM x LM)

totally analogous to the maps (2.4) defining the product above. The only new feature of
the coproduct, compared to the product, is the first map in the sequence, crossing with
an interval, which is not a chain map because the interval has non-trivial boundary. This
corresponds to the fact that the operation is now parametrized by an interval /. To obtain
an induced operation on homology, we need to appropriately kill the resulting “boundary
operation” at the endpoints of the interval. The simplest way to do this is to consider the
operation as a relative operation, noting that, when s = 0 or 1, the above sequence of maps
creates a left or right constant loop.

Definition 2.2. The following sequence of chain maps is a chain model for the Goresky—
Hingston—Sullivan coproduct:

1
ViCp(LM, M) =5 Cpyy (LM x I, LM x I UM x I)

R
e it (U, LM % 01 UM x I) =% oy (7 LM x 31 UM x I)

cut

= Cpagn(LM X LM, M x LM ULM x M)

This sequence of maps now indeed induces a well-defined degree 1 — n coproduct
on H.(LM, M):

ViH, (LM, M) — Hpy1—n(LM X LM, M x LM U LM x M);

if we work with field coefficients, the target is isomorphic to H(LM, M)®2. It is shown
in [44, Proposition 2.12] that this chain level description of the Goresky—Hingston—
Sullivan coproduct agrees with the definition given in [39] using a tubular neighborhood
of ¥ inside LM x I away from the boundary LM x 91, together with a limit argument
reach to the boundary.

Applying the evaluation map ey after crossing with the interval, and before applying
the cut map, gives a diagram of the same form as diagram (2.3), but now with intersection
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product relative to M on the bottom row:

Hy(LM. M) X5 Hy (LM x I, LM x0I UM xI) 2> Hy (. LM x39I UM x I)

Hyot(MxM,AM) ———— S H, (M. M)=0

As the bottom row is now a trivial operation, there is no formal way in which the
homology loop coproduct is a lift of the homology intersection product. We will however
see in Section 2.3 that the coproduct still can be computed by an appropriate geometric
intersection, for nice enough geometric cycles, away from the “trivial self-intersections”
coming from constant loops or from the intersection times s = 0 and s = 1.

Remark 2.3 (Lifting the coproduct to a non-relative operation). There exists several ways
to lift the coproduct V to a non-relative operation.

(1) One such lift is the extension by zero of [44, Section 4], that uses the splitting
H.(LM) =~ H.(LM, M) & H.(M) coming from the inclusion of the constant
loops and the evaluation cst: M = LM :evy, declaring the coproduct to be zero
on constant loops.

(2) If the Euler characteristic of the manifold is zero, one can instead use a nowhere

vanishing vector field v to define such an extension, by replacing the diagonal
AM C M x M in the above definition of the coproduct, with the homotopy
equivalent subspace Az M = {(m, exp,, Vvm) € M x M | m € M}. Indeed, if the
vector field has no zeros, the coproduct will then automatically be trivial at the
special points with s = 0 or s = 1. See also [71, Section 3.4] for an analogous
definition of a lifted coproduct in the y(M) = 0 case, using instead a lift of the
Thom class.
If the Euler characteristic is not zero, one can instead pick a vector field vanishing
only in the neighborhood of a single point, which will yield a coproduct in reduced
homology of the loop space instead, corresponding to what we will see in the
algebraic version of the coproduct, see Definition 3.16.

(3) The following variant of the previous idea has been described for the case of
surfaces in [83, Section 18] and [54]. Instead of attaching the non-vanishing vector
field to the manifold M one can attach it to the loop. That is one considers loops in
the unit tangent bundle of M. In the case of surfaces, such loops can be identified
with regular homotopy classes of immersed curves. Moreover, in case the surface
has a non-vanishing vector field, the above construction is recovered by using that
every homotopy class of a loop in a surface has a unique representative as an
immersed loop with rotation number 0 with respect to the vector field. This is the
point of view taken in [6].

(4) As we will see in Section 3.6 in the algebraic context, following the paper [76]
(see [18,23] for a geometric version), the loop product and coproduct together
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define a single (non-relative) product on the Tate—Hochschild complex, a complex
that combines both the chains and cochains of the loop space, attached together
using the Euler class (see Section 3.4). When the Euler characteristic of the mani-
fold vanishes, the Tate complex splits and this recovers a non-relative cohomology
product, dual to the homology coproduct.

2.3. Computation via geometric intersections

Recall that two smooth maps f: X — M and g: Y — M are transverse if for every x, y
such that f(x) =m = g(y), we have fTxX + g«T,Y = T,, M. Because the product and
coproduct are defined as lifts of the intersection product along evaluation maps, they can
both be computed by geometric intersection, under appropriate transversality assumptions
on the cycles representing the homology classes:

Proposition 2.4 ([44, Propositions 3.1 and 3.7]). The loop product and coproduct can be
computed as follows:

) IfZ1:31 — LM and Z5: ¥y — LM are smooth cycles with the property that
the maps evgoZ1: 31 — M and evygoZ,: Xy — M are transverse, then the loop
product

ZINZy = (Zl * Zz)|z;1xev0):2 € H*(LM)

is the concatenation of the loops of Z1 and Z, along the locus of basepoint-
intersections X1 Xey, 22 C 21 X X, oriented as stated in [44].

Q) If Z: (£, o) — (LM, M) is a smooth relative cycle with the property that the
restriction of ey o (Z x I[): X x I — M x M to (2 \ X¢) x (0, 1) is transverse
to the diagonal, then

VZ =cuto(Z x I)|g; € Ho(LM x LM, M x LM U LM x M)

for A the closure in X x I of the locus of basepoint self-intersecting loops
YA C (2\ Xp) x (0, 1), oriented as stated in [44].

We illustrate this proposition here through a loop product and coproduct computation
for 3-dimensional lens spaces M = &£, 4, on 3-dimensional cycles

Zmp:X=Lpg—> LLpy

parametrized by the lens spaces themselves. For the product computation, the cycles will
turn out to already be transverse, so the computation will be straightforward, while for the
coproduct we will need to first deform the cycles to make them appropriately transverse
to the diagonal. The coproduct computation will be used in Section 2.4 to show that the
coproduct is not homotopy invariant, following [70].

We start by recalling the definition of 3-dimensional lens spaces.

Let S3 be the 3-sphere, considered as the unit sphere in C2. We will write elements
of S3 in spherical coordinates as tuples (., 8) = ((r1, 61). (r2, 62)) with ; € R/Z and
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r; > 0, satisfying rl2 + r22 = 1. The lens space &£, 4, for p, g coprime, is the quotient of
S3 by the relation

((r1.61).(r2.62)) ~ (<V1,91 + %), <F2,92 + %))

This relation comes from the action of the torus S' x S' on S3 C C? rotating each
coordinate, where we have picked a particular subgroup Z/ p inside S' x S!. Note that
there is a residual torus action on the lens space:

a: (S'x SN x Lpg = Lpg.
s s
(5.0, @ 0) = ((re. 60+ 2), (202 + 2L +1)).
p p
We can use this residual torus action to define cycles Z; ,, for a pair of integers (£, m)

as follows: Let
Sem: ST — St x S1

be the loop ¢ > (£t, mt) of slope % We can combine this loop with the action o of the
torus on &£, 4 to get a family

Zg’mi :Cp,q —> L;ﬁp,q
(r.0) = [y,5':1 = a@Brm (), (. )]

associating to each point (r, ) in the lens space, the loop yf’g’ based at that point and

following the image of 8, ,, along the torus action. Explicitly, the loop yf’g)" Sl & .
is defined by o

veg @ = ((r.00 + %) (72,00 + q—ﬁt +mt)).

As above, we denote also by
Zom € H3(LELp4)

the associated homology class. Note that each class Zy ,, is non-trivial as it maps to the
fundamental class of £, ; under the evaluation map

evo: H3(LEL, 4) — H3(£Lpq)
Zim = [£pg]

as the basepoints of the loops yf 5" precisely trace the lens space.
We will here compute the loop products and coproducts of the classes Z ¢,m> starting
with their product under the map:

N H3(LEp,g) ® H3(LELpg) —> Hay3—3(LLpg) = H3(LLpq)

defined by the loop product.
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Strategy for computing the loop product of the classes Zy ,,: Because the classes Zy ,, all
evaluate at the fundamental class, taking Z; = Zy, ,,, and Z, = Zy, ,,,, the transversality
condition of Proposition 2.4 (1) will be automatically satisfied as evg oZ; and evg 0oZ) is
simply the identity on M = &£, ,. Moreover, the intersection locus is immediately com-
puted to be again the lens space itself, and the resulting product is thus the concatenation
of loops from each family at each basepoint (r, ). In the following proposition, we iden-
tify this family of concatenated loops as a known class, and we give after the statement a
detailed proof that the outlined strategy works.

Proposition 2.5. The Chas—Sullivan loop product of the classes Zg,, € H3(LEp )
defined above, is given by summing the indices:

Ztym N Zitymy = Zty+y,my+ms -

Proof. The cycles Zy ,u: £, 4 — L&Lp, are smooth cycles parametrized &£, 4. To apply
Proposition 2.4, we need to check that the maps

Ze;m; evo

‘fPsl] L‘f}’,q

‘fpsq

are transverse. But for each ({;, m;), this composition is the identity on the lens space, so
the maps are certainly transverse, and the locus of basepoint-intersections is the diagonal
AEpq C ELp g x L£pg. The product is thus explicitly given by

Zel;ml A Zﬁz,mz = (Zfl,ml * Zfz,mz)|AIp,q:‘:€P,q = A‘:Kp,q Lil’aq

for » the concatenation of the loops in the image at their common basepoint. At each
Ly,my
r,0

* Y2 which
is exactly the image under the torus action of the concatenation of the loops (1, my)

point (r, 8) in £, 4, we are thus left to compute the concatenation y
and ({,, my) in the torus. This concatenation in the torus is homotopic to the loop
(£1 + €5, my 4+ m3) (corresponding to the fact that 7;(S! x §') = Z x Z) and hence
the above product is homotopic the loop yf19+62’m1+m2. As this homotopy originates in
the torus, it defines a continuous homotopy over the lens space. It follows that the Chas—

Sullivan product of such classes is as claimed. |

The coproduct of homology classes of degree 3 in L&, 4 is a map
ViH3(LEp g, £pg) — Hi(LLpg X LEp g, Lpg X LEp g ULEp g X L£pg).

For the classes Zy ,,, it will be given in terms of B-classes in the target, that we describe
now.

Let A: S' — &£,, be the loop defined by A(r) = ((1, %), 0), tracing the points
(r,0) € £p,4 with r, = 0. This is a generator of 71 £, 4 = Z/ p. Note that

oo = [ ((1:5)0)] =
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identifies A with the evaluation of the class Z; at ((1,0),0) € £, ,. In particular, A is
freely homotopic to y(lo’o(l )’ the evaluation of Z; ¢ at (0, (1, 0)) instead, where we note

that
V(lo’?(l,o)) = [Z — (0, (1, q;f)):l = (\)*4

for A': S — £, , defined by A'(¢) = (0, (1, %)), the loop tracing the points (r, 6) with
ry = 0.

We will define 1-cycles By - and B ,’c w In £y 4 using the circle action, reparametrizing
the loops, on the concatenation of copies of A and A’ respectively: Let As: ST — £, ; be
the rotation of A, based at A(s), i.e., defined by

As(t) = A(s + 1)
and likewise for A’. Define

Brp:S' > L&pgxg,, LELpg CLLpg x LEp,,
s > (4™, (A)*F).

We also denote by By y» € Hi(LLp g Xg,, LLpg) or Hi(LLp 4 x LLp 4) the associ-
ated homology class. Note that the evaluation evo: H1(LLp 4 Xg,, LLp.q) — H1(Lpq)
takes By - to A, now considered as a 1-cycle in &£, 4, so the class By xs is “doubly” made
out of A, as each loop in the family is a concatenation of copies of A, but also the family
of basepoints follows A! Define B,’c’  in the same way, replacing A by A".

The coproduct of the classes Z; ,, will be given by applying the cut map to the families
of figure eights By /. Both families By - and B,’c,  Will naturally arise in the computation
of the coproduct, so we start by proving that we can express cycles of the type B’ in terms
of cycles of the type B, coming from the fact already mentioned above that the loop A, the
classes of type B are made of, is freely homotopic to A"*?, with A’ the loop used to define
the classes of type B’.

Lemma 2.6. Let B ;. S — Lpg xg,, LEpg C LEpg X LLp 4 be the family of
figure eights based at the points of ' defined by Bl/c,k/ (s) = (AL)*k, ()L;)*k/). Then

Bk,k’ =q Bt/]k,qk' € Hl(L;Cp’q X;ﬁp,q L:ﬁp,q)

is the sum of q copies of the class B;k,qk"

Proof. An explicit homotopy A 2~ (1/)*?: S! — &£, , is given by picking a “straight line”
in £,,4 from ((1,0),0) to (0, (1,0)) and evaluating Z; o: we let h: S' x I — £, , be
defined by the evaluation of Z; ¢ along the line ((+/'1 — 72, 0), (z, 0)), giving the formula

h(s,7) = ((Vl — 12, %), (r, %)) e Lpg-
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This lifts to a homotopy H:S! x I — LE, 4 Xg,, LLp g of loops based at &, defined by

H(s,7) = [t — ((v1 — 12, o ;kt)’ (T’ a6 -;kt)))]

[ (2 ) ()]

that starts at
0.0 = (550 o (55 )] =0 s,

that identifies precisely with the family By ¢/, and ends at

o= oo 0.1 [ o (.25

that exactly runs g times, as s runs along S, the family B(; k.qk'” In particular, as a
homology cycle, it represents g B;k’qk,. ]

Lemma 2.7. We have that:

(1) Biw = By € Hi(LELp g x LLy ) if and only if k = h mod p and k' = I’
mod p;

(2) the relative classes

{Bi i Yo<k<p € HI(LEp g x LEp g, Lpg x LELp g U LEp g x Lpg)
0<k’<p

are linearly independent over Z,.

Proof. The evaluation at O takes the family of figure eights By ;/ to the generator A of
m1(£p,q) = Z/p. Hence, the map Hi(LELp g X LE,4) = Hi(£p,4) projecting on the
first component and evaluating at 0, takes By x- to the generator of H; (&£ ). In particular,
each class By x» € Hi(L&£p,q X LELp 4) is non-trivial.

Note now that By s has image in the component (k mod p,k’ mod p) of the space
L&y, x LEp 4, as each loop [s — ((1, %), 0)] is a rotated version of A*¥. Given
that the classes are non-zero, By x» = By, thus necessarily requires that k = 2 mod p
and k' = i’ mod p, just to be in the same component. The converse follows from the
fact that any homotopy A*? ~ x extends continuously over such a family of loops By i/,
using the S!-action to push it along its parametrizing family of basepoints A, proving that
By k' = Bk4np k'+mp in homology for any n,m € N, which proves (1).

Finally, by the above, By s is non-zero in relative homology precisely when k and
k' are not equal to 0 mod p, as Bg s and By g are trivial in relative homology. And the
classes are linearly independent as they live in different components. ]

We are now ready to compute the coproduct of p-classes, where we will assume
that £ and m are positive for simplicity. We start by explaining the general idea of the
computation.
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Strategy for computing the loop coproduct of the classes Zg ,,: Recall that Zy ,,,: &£p g —
L&y 4 is a family of loops coming from, at each point of the lens space, applying to that
point the restriction of the torus action to the loop of slope % in the torus. Such families
of loops, specially when £ and m are big, will a priori have many self-intersections, whose
exact pattern depend on the Z / p action defining the lens space. To compute the coproduct,
we though first need to make this family transverse in the sense of Proposition 2.4.
This can be thought of as “pushing the loops in the family to avoid as many of these
self-intersections as possible.” Now for (r, 8) in £, 4, the loop Zy,(r, 8) is based at
(r,8) = ((r1, 61), (r2, 62)) and runs along points of the form ((ry, 61(¢)), (r2, 62(2))),
with only the angle coordinates varying, and with self-intersections coming from the fact
that, sometimes, both 81 () = 6; and 6,(¢) = 6, for some 0 < ¢ < 1. To avoid such self-
intersections, we could simply try to make sure that, at such points of intersection, the
radii do not match. To achieve this, we can deform the family of loops so that it takes the
form ((71(¢), 01(2)), (72(2), 62(¢))) with 71 (¢), 72 (¢) never equal to ry,r, when 0 < ¢ < 1.
(Note that 71 (¢)?> + 72(¢)®> = 1, so we only really have one variable to play with here.)
This simple idea can be used as long as (r1,r2) ¢ {(1,0), (0, 1)}. Indeed, for these special
choice of radii, deforming, e.g., 71 = 1 not to be 1 anymore, forces one to pick r; not 0,
but when r; is zero, there is no angle 6, attached to it, and we cannot, continuously over
the lens space, suddenly choose 6;(¢)’s to associate to newly non-zero 7,(¢)’s. This is
how the subfamilies parametrized by A (the loop of points with 7; = 1) and A (those with
r, = 1) will enter as the parametrizing families for the loci of self-intersections. The actual
intersections will then be given by classes By x with k + k' = £, which is the total length
of loops over the points of A, or k + k' = gf + pm = g mod p, for the points over 1.
Finally, the latter cycles can be rewritten in terms of classes By x (with k + k" = £) using
Lemmas 2.6 and 2.7. We prove below that this strategy works, and yields the following
formula, where the first group of terms counts the intersections along A and the second
groups the intersections along A':

Proposition 2.8. The coproduct of the class Zy ,, € H3(LELp q. £pq) with £,m > 0 is
given by the formula

VZim = E Bru—k + ¢ E Brg' t—kq'
0<k<( 0<k<gl+pm
k,({—k)#0 mod p k,(d—kq’)#0 mod p

where q' is the multiplicative inverse of ¢ mod p.

Using the previous lemma, one deduces that the coproduct of Z-classes is non-trivial
most of the time.

Proof. We make precise the sketch of proof given above before the statement.
To compute the coproduct \VZ; ,, by geometric intersection applying Proposition 2.4,
we need the map

Z[’mxid ey
Lpgx0,1) —— LEp 4 x(0,1) — £, 4 X L£p g,
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where ey evaluates the loops at 0 and s € (0, 1) C I, to be transverse to the diagonal
embedding A: &£, , — £p 4 x £p 4 after removing the locus of constant loops. In the
present case, either (£,m) = (0, 0) in which case all loops are constant, with Zg ) = 0 in
homology relative to the constant loops, or (£, m) # (0, 0) and the cycle has no constant
loop in its image. So we can assume (£, m) # (0,0) and work with the parametrizing pair
(2, 20) = (£p,4,9) for our relative cycle (using the notation of Proposition 2.4).

As explained above, to achieve transversality, we will represent t the homology class of
Z.m by the homotopic family Zg m:Lpg = LEp 4 defined by Z(g m(r,0) = y a ™ for

ffé": S — &£, 4 the loop based at (r, §) given by

7 = (0604 ) (a0, 62+ T,

where (71(¢),72(t)) is a deformation of (ry, rp) with (71(¢),72(¢)) = (r1, r2) only when r;
or r, = 0, or when ¢t = 0 or 1. Such a deformation can be obtained by, e.g., interpolating
back and forth between the identity on r; at times # = 0 and 1 and rl2 at t = % with

R2(t) = V1 -71(1)%

The map ey o (Z ¢,m % id)|g, ,x(0,1) intersects the diagonal whenever a loop ?f;" has

a self-intersection )7f5" 0) = )7f(;" () for some ¢ € (0, 1). Such self-intersections can only
happen when r; = 0 or r, = 0, as otherwise 7;(t) # 7;(0) = r;, making the equality
impossible. When r, = 0, the equality happens exactly if the first angle coordinate at time
t agrees with 6; mod %Z, and when r; = 0, if the second angle coordinate agrees with
6, mod %Z. (Note that in the lens space, we indeed have (0, (1, 62)) ~ (0, (1, 6, + %))
for any k € Z as p and q are assumed to be coprime.) This yields the following condition
on the parameters:

0<t=79%<1 forsomea €N, ifr, =0;
0<t=m<l forsomeb € N, ifr; =0.

That is the locus of self-intersections of Z em X id | £4%(0,1) is

SA=AXx)U@Q x1) C£pgx(0,1)

for Iy ={}..... Z%l} and I, = {qe_:pm R qu_’;"rgl },and A, A’ the loops parametrizing
the points with 7, = 0 and r; = 0, respectively, as above.

We need to check that these self-intersections are transverse to the diagonal. This is to
be expected as we have “pushed away self-intersections as much as we could,” but needs
to be checked, which can only be done by actually computing the maps

elo(ZZm ld)
Lpgx(0,1) ———— L, xLpyg < ALy

at the points of the intersection locus Yo C £,4 % (0, 1). Now XA consists of two
components: the component A x I; of points with coordinate r, = 0 in the lens space,
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and the component A’ x I, of points with coordinate r; = O in the lens space. Note
that the map e; o (Z ¢.m x 1d) takes points with r; coordinate O to points of the same
form in the diagonal. We will do the transversality computation in local coordinates
(r1,601,62,1) = (z,05,1) € C x R?/(Z/ p) around points with r; =0in £, 4 x (0, 1), with
the coordinates ((z, 8), (z’, ")) in the target £, 4 % £, 4, and similarly with coordinates
(61,r2,05,t) = (01, z,t) when r, = 0. In those coordinates, the function e o (Z({,m X id)
has the form

(2.0.1) = ((z.0). (™' (t)z, 6 + Bt))

where r(¢) is a function so that r(¢#) = 1 only for # = 0, 1, while the diagonal is the set of
points A = Uy Ay, for

A (z. 9, e2mikip; 9 4 %q), when r, = 0;
k = . ’
(z, 9, e2mikip; 9 4 %), when r; = 0.

Now transversality holds because the zeros of the functions

. ) ka©
fiez.0.0) = (2™ r(0) — 2k17)z pr — =)
p
are transversal. Indeed, away from ¢ = 0, 1 the factor (e?™ iat) (t)— e2mik/p ) is never zero,
so, up to translation, f; has the form fi(z,60,t) = (a(t)z,Bt) for0 #a(t) e Cand g > 0,
either equal to % or to q”%.
Applying Proposition 2.4, it now follows that the coproduct

vZam = [CUtO(Zg,m x 1))
where X 4 is the closure inside £p,q x I of A, with X A oriented so that the isomorphism
T@,Q’t) (cfp’q X [) = NA\fqu (&%) T(L,Q,t)EA,

coming from transversality, is orientation preserving.” Our computation above shows that
S A = T, s the disjoint union of circles A x I; UA' x I, C £, 4 x (0, 1). Given that the
sign depends on choices and conventions, we only give here the important part of the sign
computation for us, namely that it is independent of t € I U I5, and independent of £, m.

Orient T(y 9, (£pg % I) around r;y = 0 as R*(ry, 61, 65, ¢). Then we have
Toro0(Epg x1) = —R3(r1,61,t) ® TEa(6,) at the intersections with r; = 0. Around
rp, =0, wethenhave T(, g ) (£p,g X [) = R*(ry,0,.01.t) asry = V1 — rl2 is orientation
preserving, and hence likewise Ty 9.1)(£p.q X I) = —R3(r2,05,1) & TEZa(61). And in
local coordinate (z, 8, t), the map considered has the form (z, 6,1) +— ((z,0), (c(¢)z,6 +
B)), independently of the point of X A.

2In our conventions, NAM is oriented so that Ty N [M x M] = [M], for tj the corresponding Thom
class.
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Finally, we have that

{—1 ql+pm—1
74 ’
cuto(Zym X D|axnunxi, = ( E B o—k + E Bk,q€+pm—k)
k=1 k=1

as a family of pairs of loops. The result thus follows from Lemmas 2.6 and 2.7. ]

2.4. Homotopy invariance

A diffeomorphism f: M = N induces an isomorphism Lfy: Hy(LM) = Hy(LN),
and likewise for relative homology, that preserves both the loop product and coproduct,
as all their defining ingredients are identified by diffeomorphisms. It is natural to ask
whether only assuming that f is a homotopy equivalence could be enough for the induced
isomorphism L f to preserve the loop product and coproduct. Note that if f satisfies the
even weaker assumption of being a degree 1 map, then fi: H.(M) — H.(N) already
preserves the intersection product, see, e.g., [10, Chapter VI, Proposition 14.2].

The following two results show that the answer to the above question is yes for the
product, and no for the coproduct.

Theorem 2.9 ([26] (see also [27,31,41])). Let f: M — N be a degree 1 homotopy
equivalence between two closed oriented manifolds. Then Lfy: Hi (LM) — H.(LN)
is an isomorphism of algebras with respect to the Chas—Sullivan product.

The main ingredient of the proof of this theorem is sketched in Section 4.3 (see
Theorem 4.11), where we will revisit the question of invariance of the loop product and
coproduct after going through a deeper analysis of their defining ingredients.

In the meanwhile, as noted by the first author in [70], the computations presented in
Section 2.3 can already be used to show that the loop coproduct is not homotopy invariant:

Theorem 2.10 ([70]). Let f: £71 — L7 be a homotopy equivalence and Z1, €
H3(L&£7,1) be as in Section 2.3. Then

0= (Lfs ® Lfi)(V(Z1,))
#V(Lfu(Z10)) € Hi(L&72 X L&72,£72 X LE72U LE7, X £72).

In particular, the loop coproduct V is not preserved by f.

The manifolds £7,; and £7, are the simplest examples of lens spaces that are
homotopy equivalent, but not simple homotopy equivalent. They were also used in [62] to
prove that the configuration space of two points in a manifold is not a homotopy invariant
of the manifold. In Section 4.2, we will see that the same configuration of two points plays
an important role in the definition of the loop coproduct.

Proof. The class Z1,0 € H3(L&£7,1) has trivial coproduct by Proposition 2.8 as £ =g =1
and m = 0. (This also follows, using [44, Theorem 3.10], from the fact that Z ¢ is a family
of simple loops whenever ¢ = 1.).
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We need to compute the coproduct of the image fi(Z1,0). The free loop space
L&;, has 7 components, and each component Ly&£7, has H3(L¢L74) = Z & Z]7
(see [70, Section 2.1]). From Lemma 2.7 and Proposition 2.8, one can deduce that,
e.g., the classes Zy o and Z; ; generate H3(L;£74) since both results together show
that their images under the coproduct are linearly independent, which implies that they
are themselves linearly independent and hence must generate H3(L;&£74). Now [69,
Lemma 6.9] tells us that, because f is a homotopy equivalence, Z o has image in Ly &7,
for £ = 2 or 5, depending on whether f has degree 1 or —1. If f has degree 1, then
f(Zoy)=aZyo+ (1 —a)Z,; forsomea € {0,...,6}, with{ =2, wherea € Z/7 and
the coefficients sum to 1 because all the classes Zy ,, evaluate to the fundamental class
of the lens space, differing only in their Z /7 component, and the property of evaluating
to the fundamental class is preserved by f. Now Proposition 2.8 for £ = 2 shows that
VZ30=5B1,1 +4(Bss+ Bsa)while VZy 1 =2By 1 + Bas+ Bs 4 +4(Bse + Be,3).
And one checks readily that there is no a such that V(aZy o + (1 —a)Z; 1) = 0. A similar
computation rules out the possibility in the case £ = 5 with f of degree —1. ]

Combining the invariance of the corresponding (co)product in algebra (see Theo-
rem 3.20), with the fact that the algebraic model indeed models the loop coproduct
(see Theorem 4.2), it follows that, when working over real coefficients and with simply-
connected manifolds, the coproduct is homotopy invariant, as stated in Theorem E. By
contrast, in the non-simply-connected case and with integer coefficients, the above com-
putation can be extended to show the following:

Theorem 2.11. A degree 1 homotopy equivalence f:Ep 4 — Lpq, between two 3-
dimensional spaces such that Lfy: He(LEp q,. £p,q,) = Hx(LLp g, Lp.q,) Preserves
the loop coproduct of degree 3 classes is homotopic to a homeomorphism.

The idea of the proof is the same as that of the previous theorem: we take the class
with the simplest coproduct in the source, namely Z; o, and show that the equality
VLf(Z1,o) = (Lfx ® Lfy)(VZ1,) is only possible under some number theoretic con-
ditions that, in all cases, force known conditions for the lens spaces to be homeomorphic.
We only do the computation in the case of degree 1 maps because it is involved enough,
and because it is the most interesting case.

Proof. Suppose f is such a homotopy equivalence. Let Z; o € H3(L£,, 4,) be as above.
We will compare (Lfx @ Lfx)(V(Z1,0)) with V(Lfx(Z1,0)).

The class Lfx(Z1,0) lies in H3(L;£p.4,) for some ¢ satisfying g1 = £2g, mod p,
because f is a degree 1 homotopy equivalence, with f inducing multiplication by £
on my, see, e.g., [69, Theorem 6.11], where 0 < ¢1, g2, £ < p. We want to show that
f is homotopic to a homeomorphism. By [69, Lemma 6.8], it is enough to check that the
two lens spaces are homeomorphic, which happens precisely if either ;g = =1 mod p
or g = g, mod p, see, e.g., [24, Section 31] or [69, Theorem 1.3]. We may assume
without loss of generality that g, # 1.
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To avoid confusion, denote by V4 2,0 V4 ¢,1 € H3(L&Ep 4,) the classes in the second lens
space, and likewise for the B-classes. As argued above for &£7,,, we have that Z(’O, Z 01
generate H3(L¢&£p 4,), so we know that (L fx @ Lfy)(Z1,0) = aZLO +(1-— a)zm for
some a € {0, ..., p — 1}, with the coefficients summing to 1 again since f has degree 1
and the classes Zy ,, evaluate to the fundamental class.

The coproducts (Lfix ® Lfx)(V(Z1,0)) and V(Lfx(Z1,0)) will be given in terms of
the classes By ¢ € Hi(L£Lp4, X LE,,,) (or the corresponding relative homology
group). As these classes only depends on the parameter k, we will denote them by [k]
below, for better readability. Note also that (L fx ® Lfx)(Bri1-k) = Eggk,g_[k as f is
multiplication by £ on 7.

From our computation above, we have that

VZio= 4, Y Brgike = a1 Y lkqi]
0<k<qi 0<k<q

so in the above notation,

(Lfs® LE(VZ10) = Ly Y [ktgil= €'q5 Y [kl'q,

0<k<qi 0<k<qi

using that £} = £’q, for the second equality. On the other hand,

V(M—a)Zeo+aZey)= > Ikl +qy Y. Tkahl +agh > [kgj]

O<k<{ 0<k<gol g2l<k<qgl+p
k,(t—kq})#0 mod p k,(—kq5)#0 mod p
= YW+ (a5 Y Tkasl +cay Y. kazl)
0<k<t 0<k<d d<k<d+p

k,(£—kq5)7#0 mod p

+agy Y [kg)]
d<k<d+p
k,(d—kq5)#0 mod p

=Y Ikl +qp Y [kahl + (@+ogy Y [k,

0<k<( O<k<d 0<k<p

where 0 < d < p is such that g2 = ¢p + d, used to split the second summation term in
the first line and simplify the third, and where, for the last equality, we note that summing
[kq5] from letting k vary between d and d + p runs precisely once through all the possible
values of [kg,] and hence can be more directly written as a sum over [k] from k running
between 0 and p instead.

The equality V(L fx(Z1,0)) — (Lfx @ Lfx)(V(Z1,0)) = 0 holds precisely if all pos-
sible terms [s] appear with coefficient a multiple of p. A necessary condition for this to
hold is that the terms [s] all appear in

YK+ g5 Y kah) — gy Y [kl

0<k<t O0<k<d 0<k<qi
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with the same total coefficient. Consider the sets

A={k|0<k <0,
B ={kqy |0 <k <d},
C = {kl'gy|0<k <qi).

Case 1: A = 9, or equivalently { = 1. Then ¢; = £?>¢» = g» mod p and f is homotopic
to a homeomorphism.

Case 2: B = 0. Then £g; =1 mod p (as d = 1), so that g; = £?>q, = {. But then
q192 = 1 mod p, which also gives that f is homotopic to a homeomorphism.

Case 3: C = Q@ with A, B # 0. Soq; = 1,and either A = Bor A = B°.If A = B, then
{=d =1{g, mod p,giving g, = 1.If A = B¢, we would need ¢, = 1 for the coefficients
to agree. In both cases, this contradicts our assumption that g, # 1.

Case 4: A, B, C # 0. If the sets are disjoint, we need the three coefficients to be equal,
giving in particular g5, = 1 which contradicting again ¢, # 1. The case A = B is ruled
out above. If A = C, then £ = ¢q; = £?>¢, mod p, giving £g» =1 mod p,ie.,d =1
contradicting that B is non-empty. And if B = C, ¢2f = q; = {*>q> mod p, giving
£ =1, contradicting that A # . We are now left with the case when all three sets
intersect, but none are equal. In that case, we need all sums of coefficients to agree:
14+ ¢, =1-4{g, = q, —{'q, modulo p, implying in particular ¢5 =1 mod p, again a
contradiction. |

2.5. The good and the bad coproduct

The coproduct we have described looks for self-intersections of the form y(z) = y(0)
in families of loops y where ¢ € I is any time along the interval. One could instead
define a coproduct Vv 1 that only looks for self-intersections at time ¢t = %, i.e., defined just
like v but without crossing with / and replacing the evaluation ey by the map ev,, 1=
(evo,ev%): LM — M x M. Denoting Fig(8) = evg’%(AM) C LM the space of “figure
eights,” i.e., loops y with a self-intersection y(0) = y(%), and U, (Fig(8)) = eV(;’I% (Upm)
its e-neighborhood, we have

(evo,1/2)* T N

R cu
vy Hp(LM) —""—— H, (U, (Fig(8))) B Hy,_p(Fig(8)) > Hy_ny(LM x LM),

for R 1a retraction map defined just like the retraction map Rgy used for V.

This leads to a rather trivial coproduct though, as first noted by Tamanoi in [81].
Indeed, the coproduct Vv 1 is homotopic to the coproduct V¢ that looks for (“left-trivial”)
self-intersections at ¢ = 0, i.e., of the form y(0) = y(0), or likewise to the coproduct v
looking for (“right-trivial”) self-intersection at t = 1 only. Whether we set t = %, Oorl,
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we again have a commutative diagram:

Ro(evg, tMN)

Vi Hy(LM) ———— H,_,(Fig(8)) —=> H,_,(LM x LM)
evo,tJ/ levo
Hy(M x M) ————— Hpn(M)

Setting ¢+ = 0 or 1, the left vertical map has image inside the diagonal. Note that the
intersection product takes the diagonal [AM] € H,(M x M) to (—1)"x(M)[{x}] €
Hy(M), the Euler characteristic y(M) being an obstruction to moving the diagonal
away from itself. Combining this with the equality Vv 1= Vo = Vi can be used to
show that the coproduct Vv 1 is only non-trivial in homology on the fundamental class
of [M], considered as a family of constant loops, and only when y(M) # 0, with
v%[M] = (=D y(M)[{*} x {*}] € Ho(LM x LM) (see, e.g., [44, Lemma 4.5]). In fact,
the “good” coproduct Vv that we have worked with here can be thought of as a secondary
operation, coming from these two reasons that v 1 is trivial, homotoping it to its # = O or
t = 1 versions.

One way to formulate this relationship between the two coproduct is as follows: the
coproduct Vv can be defined as a relative version of the coproduct Vv 1, as we explain
now. This form of definition first appeared in [39, Section 9], in the definition of the dual
cohomology product.

Let J: LM x I — LM be the reparametrizing map defined by J(y,s) =y o 9%_)3

where 60 1o [0, 1] — [0, 1] is the piecewise linear map that fixes 0 and 1 and takes % to s.
Note that J restricts on the boundary to a map J: LM x 0 — R for

R = {y € LM | ylp,1j0r yljy 1) is constant}

1
3
the subspace of LM of half-constant loops.

Proposition 2.12. The loop coproduct v can equivalently be defined as the composition
of the following sequence of maps:

Ho(LM, M) 25 Hoyo (LM x I, LM x 91 UM x 31) <> Ho\1 (LM, R)

(evo,1/2) TN
—_

R
Hoy1-n (Us (Fig(8)). R) —> Hayy_n(Fig(8). R)

cut

S Hyp1on(LM x LM, M x LM U LM x M). (2.5)

See [44, Theorem 2.13] for a proof that this new definition is equivalent to the one of
Section 2.2. Note that the last three maps in the statement indeed compose to a relative
version of the coproduct Vv 1
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3. String topology via Hochschild complexes

In this section we define a product on the Tate—Hochschild complex of any connected dg-
Frobenius algebra A. The Tate—Hochschild complex is an amalgam of the Hochschild
chains and cochains, two chain complexes that model, by results of Jones and Chen,
the cohomology and homology of the free loop space of simply-connected manifolds,
respectively. We will see below and in Section 4 that the product on the Tate—Hochschild
complex relates to both the Chas—Sullivan product, when restricted to the Hochschild
cochains, and the Goresky—Hingston coproduct, when restricted to the Hochschild chains.

3.1. Differential graded algebras

Let K be a commutative ring with unit. Recall that a dg K-module, or chain complex,
is a graded K-module V = @ ez V/ equipped with a differential dy: V — V; in this
section, all differentials will have degree +1. The dual of (V, dy) is the dg K-module
(VV,dyv) with (VV)™/ = Homg (V/,K) and the differential defined by dyv (a)(x) =
—(—D®la(dy (x)) on homogeneous elements « € V'V, where || denotes the degree of a.

A dg K-algebra A = (A, d, ), or dg-algebra for short, is a dg K-module (A4, d)
equipped with an associative product ;: A ® A — A of degree zero satisfying the Leibniz
rule

pno(d®id+id®d) =d o pu.

We write j(a ® b) = ab. The multiplication is (graded) commutative if ab = (—1)1411pq,
and unital if there is a map u: K — A such that the image of 1 € K is a unit for the
multiplication of A.

The cohomology H*(A) of a dg-algebra A = (A, d, ) becomes a graded K-algebra
with product H*(A) ® H*(A) — H.(A) induced by u: A ® A — A. A morphism of
dg-algebras f: A — A’ is a quasi-isomorphism if it induces an isomorphism of graded
algebras H*(f): H*(A) = H*(A").

Example 3.1. The following examples are particularly relevant to our discussion:

(1) The singular cochains on a topological space X equipped with the simplicial
differential and cup product define a dg-algebra (C*(X;K), d, —). The cup
product is unital associative and homotopy commutative.

(2) When K = Q the dg-algebra (C*(X;Q), d, —) is quasi-isomorphic to a commu-
tative dg-algebra (s (X), d, A) of Q-polynomial differential forms, as shown by
Sullivan.

One of the main theorems discussed in this note, Theorem 3.18, involves the weaker
notion of an A,-algebra. Recall that an Ayo-algebra is a graded K-module A equipped
with linear maps {m,: A®" — A},ez_,, where each m,, is of degree 2 — n, satisfying the
following relations:

* myom; = 0, in other words, (A4, m1) is a dg K-module;
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* mjpomy =myo (m Qidg 4+ idg ® my), in other words, the product m, satisfies
Leibniz rule with respect to my;

* more generally, for each positive integer n we have
D =DPH 0 (dY? @ mg ®1dS7) = 0.
where the sum runs over all triples of positive integers (p, ¢, r) such that n =
p+q+r.
In particular, the last equation implies that m3: A®3 — A is a chain homotopy for the

associativity of m,. Hence, for any Ax.-algebra A, the cohomology H*(A, m) has an
induced graded associative algebra structure.

3.2. Differential graded Frobenius algebras

The notion of a symmetric dg-Frobenius algebra consists of a dg-algebra equipped with
a non-degenerate symmetric bilinear pairing compatible with the product structure. Our
interest in symmetric dg-Frobenius algebras is motivated by Poincaré duality.

Definition 3.2. A dg-Frobenius K-algebra of dimension n is a non-negatively graded
unital dg K-algebra (4, d, ;) equipped with a pairing (—, —): A ® A — K such that

(1) (—,—) is of degree —n, i.e., non-zero only on A’ @ A"~ fori =0,...,n;

(2) (—,—) is non-degenerate, namely, the induced map

p:A— AV, aw— (b~ {a,b))
is an isomorphism of degree —n;

(3) {(ab,c) = (a,bc) forany a,b,c € A,

4) (d(a),b) = —(=1)1*/{a, d (b)) forany a, b € A.

Conditions (3) and (4) imply that p: A — AV is a map of dg A-A-bimodules of
degree —n, where the A-A-bimodule structure on A" is given by

(a ®b) - B(c) = (=1)Bllal+bh+lalibl+leD g(peq),  forany B € AY and a,b,c € A.

A dg-Frobenius algebra A is said to be symmetric if (a, b) = (—=1)14!121(h, a) for any
a,beA.
Note that the isomorphism p: A — AV gives rise to a degree n product on AY:

Igp!

A oA 2 aeath 4l 4V

When A is a finitely generated free K-module, e.g., when K is a field, the linear dual of
that product becomes a coproduct on A:

l®p—l

AAL A B Aoy =av0a” 2 404 3.1)

This coproduct is a map of A-A-bimodules.
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Remark 3.3 (2-dimensional field theories). Assume that K is a field. While commutative
Frobenius algebras classify 2-dimensional (closed) topological field theories, symmet-
ric Frobenius algebras classify open topological field theories, and non-commutative
Frobenius algebras classify planar open topological field theories, see [56] and [61, Corol-
laries 4.5—4.7]. We do not require commutativity for our algebras.

Example 3.4 (Poincaré duality and relationship to the intersection product). Let M be
a closed manifold of dimension n. The graded cohomology ring (H*(M; K), —) with
coefficients in the commutative ring K is an example of a symmetric dg-Frobenius algebra
of dimension n with trivial differential d = 0 and pairing given by Poincaré duality.

When K is a field, the corresponding coproduct A: H*(M; K) - H*(M;K) ®
H*(M;K), as given by (3.1), is the composition

HM:K)— — ——— -4 _ > @ H"'(M:K)® H' (M:K)
i+j=n—k
M]n | = ;l[M]ﬂ@[M]m
Hok (M K) S H o (M x MK —=— @ Hi(M:K) @ Hy(M:K)
i+j=n—k

where the bottom composition is the linear dual of the cup product, induced by the
diagonal Apr: M — M x M. This coproduct is actually also the linear dual of the
intersection product on homology; see, e.g., [44, Appendix B] for the relationship between
that definition of the intersection product and the one given in Section 2.1.

Applying the above composition of maps to 1 € H'(M;K) = K we get a class
A1) € EBH__/=H H" ' (M:;K) ® H"/(M;K). Writing also A(1) for its image in
H"(M x M;K) =~ @i+j=n H" 7 (M;K)® H"7(M;K), we see that it is characterized
as the unique class such that [M x M] N A(1) = (Apr)«[M]. Hence, A(1) maps to the
Thom class 7y € H*(M x M, M x M \ M) of Section 2.1 in relative cohomology, as
the Thom class is determined by this very same relation.

A dg-algebra A is simply connected if it is non-negatively graded, A° = K, and
A' = 0. The following result of Lambrechts and Stanley shows that, when K is a field
and A is commutative and simply connected, a Frobenius structure on H*(A) can be
“lifted” to A.

Theorem 3.5 ([59, Theorem 1.1]). Let K be any field and A be a simply-connected
commutative dg K-algebra equipped with a pairing (—, —) 4: A ® A — K which induces
a graded Frobenius algebra structure of dimension k on its cohomology H*(A). Then
there exists a simply-connected commutative symmetric dg-Frobenius K-algebra A and a
zigzag of quasi-isomorphisms of commutative dg-algebras between A and A inducing an
isomorphism H*(A) == H*(A) of graded Frobenius algebras.
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Example 3.6 (Frobenius models of manifolds). Let M be a simply-connected oriented
closed manifold and assume K = Q. Then the polynomial forms Ay (M) ~ C*(M,Q)
are a strictly commutative, simply-connected model of the cochains. The above theorem
then yields a commutative dg-Frobenius algebra Ay >~ C*(M, Q), that “lifts” the graded
Frobenius structure of H* (M ; Q) to the cochain level.

3.3. Hochschild chains and cochains

We recall here the definition of the Hochschild chain and cochain complexes and their
relevance in homological algebra and topology. We will work with the normalized version
of the Hochschild complex, assuming that the algebra is unital. Let A denote the cokernel
of the unit map K — 4.

For any dg K-module (V, d) we denote by (s*V, s’ d) the i-th shifted module given by
(s'V)/ =Vitiands'd(v) = (—=1)!d(s'v) forany v € V. The definition of the Hochschild
complex will use the suspension sA. For simplicity, we write @ for the element sa € sA
where a € A.

Definition 3.7. Let A be a unital dg-algebra. The Hochschild chain complex of A is the
complex (C«(A4, A),d = 0, + 0;,) where

Cu(A. A) = PAH®" ® 4

m>0

and where 9, the vertical differential, is given by

(@1 Q@ ®am ® Am+1)

m
=Y (DT ® - ®aG— ®d(a;) ® Tig1 ® @ dmi1

i=1

+ (D)"a ® -+ ® m @ d(am+1)
and 0y, the horizontal differential, is given by

0@ Q@ ®am ® am+1)
m—1
=Y (DT R @ T @ TET1 ® 52 ® ® Amg
i=1
- (—1)8’"_10_1 Q- Qam—1® AmAm+1

+ (_1)(|a2\+~~-+\am+1|—m+1)|al|a—2 R QR ® Umi1di.

Here we denote &¢; = |ay| 4+ --- + |a;| —i and gg = 0.
We will denote by C_,, 4 (4, A) = ((sA)®™ ® A)¥ the elements in (s 4)®™ @ A of
total degree k. In particular, Cy (A, A) = P C_m (A, A)

mGZZ()
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The Hochschild homology of A is defined to be the homology of (C«(4, A), d =
dy + d3), and it is denoted by HH, (A, A). Hochschild homology is functorial with respect
to maps of unital dg-algebras. Furthermore, a quasi-isomorphism f: A — A’ between
unital dg-algebras that are flat as K-modules induces an isomorphism

HH.(f): HH4 (A, A) — HH,(4', 4).

Remark 3.8 (The Hochschild complex in algebra and topology). The Hochschild chain
complex originates in the context of homological algebra. When A is a dg-algebra which is
projective as a K-module, C« (A4, A) is a model for A ®%® 4op A, the derived tensor product
of A with itself in the category of A-A-bimodules. Hence, HH, (4, A) = Tor4®4” (4, A4).

In topology, when K = FF is a field, and 4 ~ C*(X; ) is a dg-algebra cochain
model for the singular cochains of a simply-connected space X, then there is a quasi-
isomorphism Cy(A, A) >~ C*(LX;F) between the Hochschild chains of A and the
singular cochains of the free loop space of X. This relationship may be deduced over
the reals using Chen iterated integrals (as introduced by Chen in [15], see also [34,68]), or
over any field using a cosimplicial model for the free loop space (as done by Jones in [48]).
A dual version of the result, in terms of the coHochschild complex of the singular chains
coalgebra, that works for coefficients in an arbitrary ring K may be found in [75].

Goodwillie gave in [38] the following “Koszul dual” version of this model of the free
loop space that does not assume simple connectivity. Let K be any commutative ring and
assume X is a path-connected space and set instead A = C,(2X; K), the singular chains
on the space of (Moore) loops in X, equipped with the concatenation product. Then there
is a quasi-isomorphism Cy (A4, A) >~ C«(LX;K).

Definition 3.9. Let A be a unital dg-algebra. The Hochschild cochain complex of A is the
complex (C*(A, A),8 = 8¥ + §") where

C*(A, A) = || Homk ((s4)®™, A)

m=>0

and where §V is given by
§°(f)a1 ® -+ ®am)

=d(f(a1 ® - -Qam)) + Z(_])|f|+8i—1f(a_l ®"'®‘T‘i) ® Q@ am),
i=1
and 8" by
§(f)(@ & @ @nt1) =~ gy (@ © - & )
m
Y )@ R ®aT @ @i @@ ® - ® A1)
i=1

+ (D)o f@ @ - ® Gm)amn,
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with &; = |a1| + -+ + |a;| — i and &9 = 0 as before.
Denoting by C™* (4, A) = Homﬁ‘K((sz)@’m, A) the submodule of K-linear maps of
degree k € Z, we have C* (4, A) = [Lnso cmk(4, A).

The Hochschild cohomology HH* (A, A) of A is defined to be the cohomology of
(C*(A, A),8 = by + 81). The Hochschild cochain complex is not as such natural in maps
of dg-algebras, but if f: 4 — A’ is a quasi-isomorphism of unital dg-algebras that are
flat as K-modules, then there is an isomorphism HH* (A4, A) = HH*(A’, A”). We will see
in the next section that the product structure of Hochschild cohomology is also invariant
under quasi-isomorphisms.

Remark 3.10 (Gerstenhaber algebra). When A is projective as a K-module, the complex
C*(A, A) is a model for R Homygg 400 (A4, A), the derived hom from A to itself in the
category of A-A-bimodules. Hence, HH* (4, A) = Ext}g 4o, (4, A). The Yoneda product
on Ext}g 40 (A, A) can be modeled via the chain level cup product U on C*(4, A) of
Definition 3.15. The graded algebra (HH*(A4, A), U) may also be equipped with a Lie
bracket of degree —1 which is compatible with the cup product. The resulting algebraic
structure is known as a Gerstenhaber algebra and was described in [33]. The Gerstenhaber
algebra structure on HH* (A, A) may be lifted to an E-algebra structure at the cochain
level on C*(A, A). This statement is known as the Deligne conjecture and was solved
in [67].

Remark 3.11 (Duality). For any dg-algebra A the graded hom-tensor adjunction provides
an isomorphism
Comx(A, A)Y = C™* (A, AY).

If A is a symmetric dg-Frobenius algebra which is a finitely generated free K-module
then the isomorphism of A-A-bimodules A =~ A" induces an isomorphism of graded K-
modules

Com(A,A)Y = C™*(A, A7) = C™*(4, A).

In particular, if A is a symmetric dg-Frobenius algebra model over a field F for a
simply-connected closed manifold M, e.g., as provided by Theorem 3.5, combining this
duality with Remark 3.8 gives an isomorphism HH* (A4, A) =~ H.(LMT). In Section 4
we discuss how the Gerstenhaber algebra structure of HH*(A, A) corresponds to the
Chas—Sullivan product of Section 2 and a loop bracket that in addition uses the circle
action, see also [32].

3.4. Tate—Hochschild complex

In the presence of a Frobenius structure on an algebra A we may combine Hochschild
chains and cochains of A into a single unbounded complex through a construction
reminiscent of the Tate cohomology of a finite group.

Definition 3.12 ([76]). Let A a symmetric dg-Frobenius K-algebra of dimension n > 0.
Write A(1) = ), e; ® fi € A® A. The Tate—Hochschild complex (D* (A, A),5) of A is
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the totalization of the double complex

D**(A, A)

d 0, ) §
= IO (A A) D s Co (A, A) D €O (A, A) D ChF(A, A) D -

where y: 517" Co (A4, A) = s'™" A — A = C%*(A, A) is given by

)/(Sl_na) _ Z(_1)|fi\|a|eiafi, forany a € A.
i

The fact that 3, oy = 0 = y o §" follows from (4) Definition 3.2. Here totalization
means the direct sum totalization in the Hochschild chains direction and the direct product
totalization in the Hochschild cochains direction:

D*(A, 4) = [ [ Homg (sA)®7. A & P (sA)®? @ A)F !

p=0 pe=0

=CF(4,4) ® Cony1(A, A).

One can equivalently define the Tate—Hochschild complex £D* (A4, A) as the mapping
cone of the chain map
V:sT"Cx(A, A) —> C*(A, A) (3.2)

defined by () = 0 if @ € C_p, «(4, A) for m # 0 and y () = Zi(—l)m"“'eiafi if
a € A= Cox(A, A).

Definition 3.13. Let A be a dg-Frobenius algebra with pairing (—, —)4: 4 ® A — K.
Define a pairing
(——)9:D*(4,4)  D*(4,4) > K

by
(fa)p = (f@ ® ®&m).amp)a  and (o flo:= D (fa)p
foranyo =a; ® -+ ® am ® am+1 € C—mx(A, A) and f € C™*(A, A), and 0 otherwise.
The above pairing is compatible with the Tate—Hochschild differential, i.e., it satisfies
(6x.7)0 = (=D)™(x.8y) 0.
Consequently, we obtain an induced pairing H*(D*(A4, A)) ® H*(D*(A, A)) — K.

Remark 3.14 (The Tate complex in algebra and topology). Let K be a field and 4 a
symmetric dg-Frobenius K-algebra A. Then H*(D* (A, A)) is isomorphic to the graded
K-vector space of morphisms from A to itself in the singularity category

Dee(A ® A%®) = DP(A ® AP)/Perf(A ® AP),



F. Naef, M. Rivera, and N. Wahl 276

i.e., the Verdier quotient of the bounded derived category of finitely generated dg A-
A-bimodules by the full subcategory of perfect dg A-A-bimodules. This statement was
originally proven in [87, Proposition 6.9] when A is a (non-graded) symmetric Frobenius
algebra and extended in [76, Proposition 3.11] to the case when A is a symmetric dg-
Frobenius algebra.

The singularity category was used in [74] to study singularities of algebraic varieties.

In topology, when A is a commutative symmetric dg-Frobenius model for C*(M, K)
for a simply-connected manifold M, using Remarks 3.8 and 3.11, we can think of
D*(A, A) as a way of connecting the singular chains and cochains on LM into a single
unbounded complex via the Euler characteristic of M. Indeed, the map y: A — A in that
case takes the product with the element ), ¢; f;, that identifies with the Euler class of
M . In other words, the map y is determined by taking a representative of the Poincaré
dual of the fundamental class [M] to the Euler characteristic y(M) thought of as a top-
dimensional cochain on M by using a representative of the volume form. On cohomology
this is just multiplication by y(M) thought of as a map K =~ H°(A) — H"(A) =
K. A symplectic version of the Tate—Hochschild construction has been described and
studied in [18,23] by combining symplectic homology and cohomology via a “V-shaped”
Hamiltonian.

3.5. Two operations on Hochschild complexes

We recall the classical cup product on the Hochschild cochains of a dg-algebra, and define
afterwards a form of dual operation on the Hochschild chains.

Definition 3.15. Let A be a dg K-algebra. The cup product
U:C™* (A4, 4) ® C™*(A, A) — C™1"* (4, A)
is defined on any f € C™*(A, A), g € C™*(A, A) by the formula
U@ @ ®amin) = (DI f(@1 ® -+ ® Tn) g (@1 @ -+ ® Tmn):

where &, = > 1o |ai| — m.

The cup product gives rise to an associative product of degree 0 on C*(4, A) that
satisfies the graded Leibniz identity with respect to the Hochschild cochains differential
8. Therefore (C*(A, A), §, U) is a dg-algebra and, consequently, the induced product on
HH*(A, A) defines a graded associative algebra structure. This computes the endomor-
phism graded algebra Ext) g 40, (A4, A) with the categorical Yoneda product.

We now describe a product on the Hochschild chains of a symmetric dg-Frobenius
algebra that behaves as a “dual” to this cup product, following [76, Section 2.3]. This
product has also appeared in a slight variation in, e.g., [1, Section 6] and [55, Exam-
ple 2.12].

A dg-algebra A is connected if it is non-negatively graded and A° = K. When 4 is
a Frobenius of dimension r, finitely generated free as a K-module, this implies that also
A" = K.
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Definition 3.16. Suppose A is a connected symmetric dg-Frobenius K algebra of dimen-
sion n > 0. The algebraic Goresky—Hingston product

#:Cx(A, A) @ Cx(A, A) = Cy(A, A)
is defined onany @ =@ ® -+~ ® @ ® ap41 and f = by ® --- ® by ® by+1 by the formula

axf=3 (=D)"h @ ®bgrie; @ & @y @ apr1 fi,
i

where n; = ||| fi| + |bg+1] + (lee| +n —1)(|B| + n — 1). The product * induces a degree
zero product on the (1 — n)-shifted graded K-module s'™"Cy(4, A).

Note that * does not satisfy the Leibniz rule with respect to the Hochschild chains
differential . In fact, the product * may be understood as a secondary operation, or a
chain homotopy, between two operations. If p > 0 and ¢ > 0 we do have

Ao x ) — () x f— (=)l +r=15 % 5(B) = 0.

However, if p = 0, sothat e = a1 € Co,«(4, A) = A, we may compute

I * B) — (@) * B — (DT 1q 5 3(B)
— Z(_l)’]i+\ﬂ|—1_|bq+l|b_l ® - ® l;] ® bq+leia1fi-

4

The case ¢ = 0 is analogous.

Note that, for degree reasons, e; a1 f; is only non-zeroifa; € A® ~ K and, in such case,
ejay fi € A" =~ K. It follows that * induces a well-defined chain map on the complement
of Co (A4, A) = A® = K C Cx(4, A), which we call the reduced Hochschild complex.

Definition 3.17. The reduced Hochschild chain complex Cx(A, A) of a connected dg-
algebra A is the subcomplex E*,*(A, A) C Cyx(A, A) given by éo,O(A, A) = 0 and
5,-’]- (A, A) = C;,; (A, A) for all pairs of integers (i, j) # (0,0). We denote by HH. (A4, A)
its homology.

The algebraic Goresky—Hingston product * gives rise to an associative product of

degree 0
#1517 Ch(A, A) @ s17"Cu(A, A) — s17"Ci (A4, A)

that satisfies the graded Leibniz identity with respect to the reduced Hochschild chains
differential. The elements that lead to obstructions for the Leibniz rule on C.(4, A) to
be satisfied are now removed in the sub-complex C (A4, A). Consequently, the induced
product on s'"HH, (4, A) defines a graded associative algebra structure.

3.6. Cyclic A ,-algebra on the Tate—-Hochschild complex

The following natural questions now arise:
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(Q1) In what sense are the products U and * dual to each other?

(Q2) What is the compatibility between U and * and what is the general algebraic
structure they are part of?

(Q3) Do U and x satisfy a form of homotopy invariance?

(Q4) Is there a homological interpretation for the product * similar to the inter-

pretation of U as the endomorphism algebra in the derived category of A-A-
bimodules?

(Qs) What is the precise relationship between the geometrically defined Chas—

Sullivan and Goresky—Hingston operations and U and *?

Question (Qs) will be discussed in Section 4, following [71]. The following two state-
ments address the remaining questions (Q;)—(Q4), saying in particular that U and x*
naturally combine to a single product on the Tate—Hochschild complex.

Theorem 3.18 ([76, Theorem 6.3, Proposition 6.5]). Let K be a field and A be a con-
nected symmetric dg-Frobenius K-algebra of dimension n. There exists a (strictly unital)
Aco-algebra structure {my,mp,ms, ...} on D*(A, A) = sITCL(A, A)® C*(A, A) such
that
(1) my = § is the Tate—Hochschild complex differential, m, extends both * and U
(i.e., malg1i-nc,(4,4) = * M2|c*a,4) = U), and m; =0 fori > 3.

(2) The Axo-algebra is cyclically compatible with the pairing (—, —) p:
(mp(ao ® - @ ap—1),p)p = (—1)|ao\(|a1|+.,.+‘ozp|)(mp(a1 ® -+ ®ap), o).

(3) The induced homology product is (graded) commutative, and there is an isomor-
phism of graded algebras

H*(D*(4, A)) = HH, (4, 4),

where the latter is the endomorphism algebra from A to itself in the singularity
category of A-A-bimodules.
(4) Connes’ operator B: C«(A, A) — Cw—1(A, A) extends to an operator

Bp: D*(A, A) > D* (A, A)

satisfying Bp o8+ 80 Bp =0, Bp o Bp =0, and making H*(D* (A, A)) into
a BV-algebra.

Statement (3) in Theorem 3.18 provides a homological algebra interpretation for the
graded associative algebra structure on H*(D* (A, A)), thus giving an answer to (Q4). We
now give answers to questions (Q;) and (Q,) by further discussing the kind of algebraic
structure on H*(D*(A, A)) we obtain from statements (1) and (2) in Theorem 3.18.

The product mj,: D*(A, A) @ D*(A, A) - D*(A, A) is associative up to a
chain homotopy given by m3, so it induces an associative product of degree 0 on
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H*(D*(A, A)), which we denote by
*x H*(D*(A4,A)) @ H*(D*(A, A)) > H*(D*(A, A)).

Furthermore, this product (at the cohomology level) is graded commutative; this is part of
statement (4) in Theorem 3.18. Observe that there is an isomorphism

H*(D*(A, A)) = H*(ker(¥)) & H*(coker(¥)),

where y: 517" Cy (A, A) — C*(A, A) is the degree +1 map defined by y = y o 571,
where s71: 517" Cy (A, A) — s"C«(A, A) is the shift map and ¥ is as defined in (3.2).
In this language, the above result implies the existence of a commutative product x on the
direct sum H *(ker(y)) & H *(coker(¥y)), together with a pairing (—, —) p, satisfying the
following properties:

Proposition 3.19. Let A be a connected symmetric dg-Frobenius algebra of dimension n
and (H*(D* (A, A)), x) the Tate—Hochschild cohomology algebra as described above.

(i)  The pairing {(—, —) 9 of Definition 3.13 is non-degenerate with respect to the
“monomial length” chain level filtration on D** (A, A) = s'™"Cy +(A, A) ®
C**(A, A). More precisely, it induces an isomorphism of graded vector spaces

Coms(A,4) S C™* (A, A)Y.

(i) For any x,y,z € H*(ker(y)) @ H™*(coker(y)) we have (x x y, z)p =
(x,y *2) .
(iii) Both (H*(coker(y)), U) and (H* (ker(¥y)), *) are isotropic sub-algebras of

(H*(ker()7)) @ H*(coker(¥)), *)
with respect to the pairing (—, —) 9.

Statement (i) above follows directly from the fact that the pairing of A is non-
degenerate, (ii) follows directly from part (2) of Theorem 3.18, and (iii) from part (1)
of Theorem 3.18 together with the way we have defined the pairing (—, —) p.

The algebraic structure described in Proposition 3.19 is reminiscent of a Manin triple,
a notion originally introduced in the context of quantum groups. A Manin triple was
originally defined by Drinfeld as a triple of Lie algebras (g, g+, g—) over a field K
such that ¢ = g+ @ g— as vector spaces and g is equipped with a symmetric bilinear
pairing (—, —)4: g ® g — K satistying ([x, y], z)q = (x, [y, z]) ¢, inducing an isomorphism
g+ = gV, and for which g4 and g_ are isotropic Lie sub-algebras. If § is a finite-
dimensional Lie algebra then there is a 1-1 correspondence between Manin triples with
g+ = b and Lie bialgebra structures on ). In particular, if g is a Lie bialgebra then one
can describe a canonical Lie bialgebra structure on g @ g" called the Drinfeld double of
g. Drinfeld showed this construction yields a quasi-triangular Lie bialgebra. A complete
reference for these notions and results is [12].
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We may interpret the structure of H*(D*(A, A)) as a graded commutative version of
a Manin triple. More precisely, we may define analogously a graded commutative Manin
triple to be a triple of graded commutative K-algebras (V, V4, V_) over a field K such that

(i) V = V4 & V_ as a vector space and V' is equipped with a symmetric bilinear
pairing (—, —)y:V ® V — K inducing an isomorphism V; =~ VY,

(i) foranya,b,c € V, we have {(ab,c)y = (a,bc)y, and
(iii)) both V4 and V_ are isotropic sub-algebras of V.

As in the Lie case, one can use the duality given by the pairing to reformulate the defining
equations of this structure in terms of a type of bialgebra structure on V. More precisely,
if W is a finite-dimensional graded commutative algebra, there is a 1-1 correspondence
between graded commutative Manin triples with V, = W and graded commutative
cocommutative infinitesimal bialgebra structures on W, as introduced by Joni and Rota
in [49]. The data of a graded infinitesimal bialgebra structure on W consists of a product
W ® W — W of degree 0 and coproduct A: W — W ® W of degree k such that A is
a derivation of the product, namely

Aa-b) = Aa)-b + (=D)4*g . AD),

where we define (¢’ ® a”’)-b:=a’ ® (@’ -b) and a - (b' ® b") := (a-b") @ b".
See [5] for more about infinitesimal bialgebras. See [72] for (a non-graded version of)
the correspondence between commutative cocommutative infinitesimal bialgebras with
Manin triples of commutative algebras and, more generally, between Poisson bialgebras
and Manin triples of Poisson algebras.

The following result provides an answer to question (Q3).

Theorem 3.20 ([77, Theorem 1.1]). Let K be a field and (A, (—, —)4) and (B, {—, —)B)
be two simply-connected symmetric dg-Frobenius K-algebras of dimension n. Suppose
that there is a zigzag of quasi-isomorphisms of dg-algebras

AE e S ... & e S B,
Then there is an isomorphism of algebras
(H*(D*(A, A)), ») = (H*(D"(B, B)). »)
restricting to an isomorphism of subalgebras
(s'™"HH4 (A, A), %) = (s'7"HH, (B, B), *).

The proof the above theorem relies on the homological interpretation of the Tate—
Hochschild cohomology algebra as the endomorphism algebra in the singularity category
of A-A-bimodules (see Remark 3.14). The isomorphism class of the latter, just like
for the Hochschild cohomology algebra with cup product, is an invariant of the quasi-
isomorphism type of the underlying dg-algebra. A careful analysis of the relationship
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between Tate—Hochschild cohomology and singular Hochschild cohomology allows con-
cluding that the isomorphism (H*(D*(A4, A)), x) == (H*(D*(B, B)), %) restricts to an
isomorphism (s!™"HH, (4, A), ¥) = (s'™"HH, (B, B), *) in the simply-connected case.
We refer to [77] for further details.

A direct consequence of Theorem 3.20 is the following:

Corollary 3.21 ([77, Corollary 1.2]). (1) Let M be a simply-connected oriented closed
manifold of dimension n and A a Poincaré duality model for the cdga of
rational polynomial forms Ay(M, Q), as provided by Theorem 3.5. The iso-
morphism class of the graded algebra structure on s'~"H*(LM; Q) induced by
the product *: s'""HH, (A, A)®? — s'™"HH, (A, A) through the isomorphism
H*(LM;Q) = HH. (A, A) is independent of the choice of Poincaré duality model
A~ An(M, Q).

2) If M and M' are homotopy equivalent simply-connected oriented closed man-
ifolds of dimension n, then the algebra structures on s\ "H*(LM; Q) and
sI7PH*(LM'; Q) are isomorphic.

3.7. Final remarks

One would like to understand the complete algebraic chain level structure of the Tate—
Hochschild complex of a symmetric dg-Frobenius algebra. The type of cyclic Aoo-algebra
described in Theorem 3.18 is a finite type version of a notion discussed in [47] and [57]
under the name of pre-Calabi—Yau algebra. In particular, Theorem 3.18 says that for any
symmetric dg-Frobenius algebra there is a pre-Calabi—Yau algebra structure on C*(A4, A)
extending the cup product of Hochschild cochains and the algebraic Goresky—Hingston
on Hochschild chains. It is explained in [47] how the associator m3 gives rise to a double
Poisson bracket. A precise formula for the map m3 on the Tate—Hochschild complex may
be found in [76, Remark 6.4].

This is only the tip of the iceberg of a very rich algebraic structure on the Tate—
Hochschild complex. Part (4) of Theorem 3.18 tells us that Bg and the product * define a
BV -algebra structure on H*(D*(A, A)) = H*(coker(y)) & H *(ker(y)). By definition,
a BV-algebra consists of a triple (V, x, B) where (V, %) is a graded commutative algebra,
B:V — V is a degree —1 operator satisfying B o B = 0, and the operation

{(x.y} == B(x x y) = B(x) » y — (=D)"x » B(y)

is a Lie bracket of degree —1 which is a derivation of * on each variable, i.e., {—, —} is
Poisson compatible with «.

The BV -algebra structure on Tate—Hochschild cohomology extends the BV -algebra
structure of the Hochschild cohomology of a symmetric dg-Frobenius algebra. Further-
more, in [53] a lift of the BV -algebra structure of Tate—Hochschild cohomology to the
chain level is constructed, building upon the framework of [50, 51], solving a cyclic
Deligne conjecture for the Tate—Hochschild complex. The Lie bracket associated to the
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BV -algebra structure on Tate—Hochschild cohomology gives rise to a compatible (Lie)
graded Manin triple structure on (H*(D* (A, A)), H*(coker(y)), H* (ker(y))) extending
the classical Gerstenhaber algebra structure on Hochschild cohomology. This Lie algebra
structure on H*(D* (A, A)) was also lifted to a cyclic Lo-algebra structure on D* (A4, A)
in [76]. After dualizing and completing the tensor product appropriately, we obtain on
H*(D*(A, A)) a graded commutative cocommutative infinitesimal bialgebra equipped
with a Gerstenhaber bracket and a Gerstenhaber cobracket that are Lie bialgebra compat-
ible. Furthermore, the Gerstenhaber bracket and the cocommutative coproduct, as well as
the Gerstenhaber cobracket and the commutative product, satisfy additional second order
compatibility equations. This algebraic structure, which may be called a Gerstenhaber
bialgebra, is a graded version of a Poisson bialgebra, defined and studied in [72].

Gerstenhaber bialgebras are reminiscent of similar structures appearing in the theory
of quantum groups, where associated to a Lie bialgebra g, such as the structure induced on
the tangent Lie algebra of a Poisson—Lie group, one may consider the commutative cocom-
mutative Hopf algebra S(g), the symmetric algebra on the vector space g, with the Poisson
bracket and Poisson cobracket induced by the Lie bialgebra structure on g. Then one
proceeds to deform the product to obtain the non-commutative cocommutative universal
enveloping algebra U(g) and then deforms the coproduct in the Poisson cobracket direc-
tion to obtain a non-commutative non-cocommutative Hopf algebra Uy, (g). Motivated by
the above discussion and by the question of constructing examples of non-commutative
non-cocommutative infinitesimal bialgebras one can replace the notion of Hopf algebra
by infinitesimal bialgebra. More precisely, one could ask if given a Poisson bialgebra A
there exists a deformation to a (possibly non-commutative non-cocommutative) infinites-
imal bialgebra A[[A]] in the direction of the Poisson bracket and cobracket. One may also
study analogous questions in the graded setting for Gerstenhaber bialgebras.

Lie bialgebras also appear in S !-equivariant string topology. In fact, the Chas—Sullivan
loop product and the Goresky—Hingston loop coproduct induce a Lie bialgebra structure
once we pass to the reduced S !-equivariant homology of the free loop space of a manifold.
This structure generalizes previous constructions of Goldman and Turaev from surfaces
to manifolds of arbitrary dimension [37, 80, 83]. In the algebraic context, this construction
is modeled by a dg-Lie bialgebra structure on the reduced cyclic chain complex of a
dg-Frobenius algebra [16, 19,71], a construction foreshadowed by Ginzburg’s necklace
Lie bialgebra [35]. Turaev described the quantization of the Lie bialgebra structure on
the zeroth S'-equivariant homology of the free loop space of a surface in terms of
skein invariants of links in 3-manifolds. This quantization has also been studied from
an algebraic perspective: in [79] a quantization of Ginzburg’s necklace Lie bialgebra of
a quiver is constructed and this is generalized in [16] where a quantization of the Lie
bialgebra on the cyclic homology of a Frobenius algebra is constructed. We expect that
the functorial theory of quantization of Lie bialgebras described by Etingof and Kazhdan
in [29] may be adapted to quantize infinitesimal bialgebras in the direction of a compatible
bracket and cobracket. This theory should give rise to explicit and interesting examples of
non-commutative non-cocommutative infinitesimal bialgebras associated to dg-Frobenius
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algebras by quantizing the infinitesimal bialgebra structure of H*(D*(A, A)) in the
direction of the Gerstenhaber bracket and cobracket.

4. String topology and configuration spaces

In this section we compare the geometrically defined string topology operations of Sec-
tion 2 with the ones defined algebraically using a dg-Frobenius model as in Section 3,
under the assumption that the coefficients K = R are the real numbers. The main ingre-
dient is an algebraic model for the Fulton—-McPherson compactification of M x M \ M,
the configuration space of two points in M .

Let M be a simply-connected oriented closed manifold. By a theorem of Lambrechts
and Stanley (stated here as Theorem 3.5), applied to the case K = R, there exists
a commutative symmetric dg-Frobenius algebra A quasi-isomorphic to real cochains
C*(M,R). As discussed in Remark 3.8, we have isomorphisms

HH. (A, A) =~ HH, (C*(M; R),C*(M:R)) = H*(LM;R). 4.1
Definition 4.1. Define the relative Hochschild complex by

C.(A,A) = @(s%f)g"” ® A.

m>1
Because A is commutative, C, (A, A) is a sub-chain complex of Cx (4, A).

The chain complex C, (A, A) may also be regarded as the kernel of the natural chain
map C«(A, A) — A, which models the map cst: M — LM (see Example 4.15). The
isomorphism (4.1) restricts to an isomorphism

HH, (A, A) =~ H*(LM, M;R). 4.2)

The algebraic Goresky—Hingston product given in Definition 3.16 induces a product on
this relative version of the Hochschild chain complex (see also, e.g., [, Section 6]).
The purpose of this section is to sketch a proof of the following result:

Theorem 4.2 ([71, Theorem 1.3]). Let M be a simply-connected oriented closed
manifold with commutative dg-Frobenius algebra model A ~ C*(M;R). Then the iso-
morphism (4.2)

HH, (4, 4) = H*(LM. M:R),
intertwines the algebraic with the topological Goresky—Hingston product of Defini-
tions 2.2 (dualized) and 3.16.

We will sketch a proof of this theorem following the line of argument of [71]. A similar
argument to the one presented here gives the equivalence between the algebraic and
topological Chas—Sullivan products of Definitions 2.1 and 3.15 (dualized), giving an
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alternative proof of [31, Theorem 11]. Here we focus on the Goresky—Hingston product,
the dual of the loop coproduct.

We will use the definition of the coproduct given in Section 2.5. Before embarking
into the proof of the theorem in Section 4.4, we will take a closer look at the crucial step
in the definition of the coproduct, namely the intersection map, defining a general notion
of intersection products (see Sections 4.1 and 4.2). Section 4.3 then analyses invariance
properties of such intersection products.

Remark 4.3 (Dependence on the manifold M). Note that we can take A any commu-
tative dg-Frobenius model of C*(M; R) in the statement. As the right-hand side in the
theorem is model-independent, it follows that the algebraic Goresky—Hingston product
on H,(A, A) does not depend on the particular model A. This partially recovers Corol-
lary 3.21.

We saw in Section 2.3 through a lens space example that the coproduct on H.(LM)
is in general not a homotopy invariant of M, at least with integral coefficients, see
Theorem 2.10. In the proof of Theorem 4.2, the topology of M will enter through the
homotopy type of the complement of the diagonal M x M \ M. This last space identifies
with the configuration space of 2 points, a space known to depend in general on more than
the homotopy type from the same lens space example, see [62]. We will use a recent result
by Campos—Willwacher and Idrissi [11,46] to obtain an algebraic model for this space
over the reals in the case of simply-connected manifolds (together with some compatibility
datum).

To simplify presentation and notation, we will show the corresponding statement for
the operation

Hyyn1(LM:R) — Hyin_1(LM,M:R) 5> H (LM, M:R)®?,
that is the pre-composition with the canonical map Hy«(LM;R) — H.(LM, M;R).

4.1. Intersection products

Recall from Section 2.5 that the loop coproduct can be defined as a relative version of the
trivial coproduct Vv 1 intersecting with the figure eights space Fig(8) C LM . The crucial
step in this definition of the coproduct is the composition

Ry o ((eVO’%)*TM N): He(LM, R) — Hap(Fig(8), R), (4.3)

see (2.5). Here R is the subspace of half-constant loops, evo,1 = (evo, ev%): LM —

M x M is the evaluation at 0 and %, the cochain 7y € C*"(M x M, M x M \ M) is
a representative of the Thom class of the normal bundle of the diagonal M — M x M,
and R% is a retraction map. In Sections 4.1-4.3, homology can be taken with integral
coefficients.
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Note that Fig(8) is the pullback of ev,, 1 along the diagonal

Fig(8) —— LM

eVol levo,l/z
A

M——Mx M,

and one can show that, just like the evaluation map evo, the map ev,, 1 is a fibration. The
map (4.3) is the lift along ev 1 of the intersection product Hy(M x M) > H._, (M),
taken relative to JR. We will think of it as a “relative intersection product” and will now
abstract what is needed to define it.

4.1.1. Relative intersection products. The definition of the relative intersection prod-
uct (4.3) immediately generalizes to the following situation. Suppose pg: & — M x M is
a fibration, and R is a space equipped with maps pg: R — M and f: R — & such that
the diagram

S

R——€

ml lp@ (4.4)
M- sMxM

commutes. From this data, we can define the following zigzag of chain maps:

- OpeT, ~
Ci(8) — Cu(€, E|lmxm\m) < Cx(Eluy Eluy\m) i>MC*—n(8|UM) <« Ci—n(€|Mm).

where TM =~ Upy C M x M is a tubular neighborhood of the diagonal as in Section 2.1.
Both wrong-way maps are quasi-isomorphisms: the first one by excision and the second
one since we are pulling back a fibration along the homotopy equivalence M = Uy,.
Thus we get a map in homology

Ho(8) ™ Hy (El). @4.5)

which we call the (absolute) intersection product associated to the fibration pg. To refine
this operation to a relative version, we note that the following diagram commutes.

Npit
Ci(8) — Cu (6, 8|M><M\M) << C*(8|UM, E:|UM\M) i C*—n(glUM) << C*—n(glM)

v 1 Ve & v

Cu(R) Co(R) ——— O (R) LT ComnlP) == Cocn()

Taking vertical mapping cones, this again defines a zigzag of complexes such that the
wrong-way maps are quasi-isomorphisms, and thus we obtain a map in homology

intps

Hy (&, R) —> Hyxn(E|m. R) 4.7)

which we call the relative intersection product associated to the diagram (4.4).
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Proposition 4.4. For § = LM with pg = evo,1 = (evo, ev%): LM — M x M and
R — LM the space of half-constant loops, the operation

intpr: Ho (LM, R) — H.—, (Fig(8), R)

coincides with the corresponding map in the definition (2.5) of the loop coproduct.

Proof. The first three commuting squares in (4.6) are simply spelling out the details
in (2.5) (as in (2.2)), with the only difference that a homotopy inverse to excision
was chosen in (2.5). The last step follows from the fact that the retraction map R 1
in (2.5) is a homotopy inverse to the inclusion Fig(8) < LM |y,, (this is essentially [44,
Lemma 2.11]), thus inducing an inverse to the map H(Fig(8), R) — H«(LM |y,,. R) in
relative homology. ]

Similarly, we obtain the loop product as an example of the (non-relative) intersection
product:

Proposition 4.5. For & = LM x LM with pg = (evg,evo): LM x LM — M x M and
R = @, the operation

intag: Ho(LM x LM) — Hy_p (Fig(8))

coincides with the corresponding map in the definition (2.4) of the loop product.

The following properties of the relative intersection product follow directly from the
definitions.

Proposition 4.6. The relative intersection product (4.7) is natural in diagrams (4.4) over
a fixed manifold M and refines the absolute intersection product (4.5) in the sense that

Ho (&, R) ™ He n(Ely, R)

I [

Ho(8) —  H, ,(E|n)

commutes. The absolute intersection product is natural in fibrations pg over a fixed
manifold M, and identifies with the classical intersection product of Section 2.1 in the
case & = M x M with pg = id:

Ho(M x M) 2= b, (M),



String topology in three flavors 287

4.2. Intersection contexts

The definition of the relative intersection product uses the following data from the
manifold: the diagram

Uy \ M——M xM\M

T

Un© M x M

andtheclass 1y € H* (M x M, M x M \ M) = H"(Up,Up \ M). This is also the data
used to define the classical intersection product. We note that the spaces Ups, Ups \ M and
M x M \ M only appear in the intermediate steps of the definition.

We now describe a slight generalization of a relative intersection product

Ho(8,R) = Hyn(Elpt, R).

Such a construction may be defined from the data of a diagram (4.4) as before together
with the “manifold data” recorded by any homotopy pushout diagram of the shape

A—— B

l l 4.9)

M——5C — MxM

playing the role of (4.8), equipped with a class t € H"(C, A). Indeed, if we denote
&la, €|B., €|c the pullback of & along the maps A, B,C — M x M, to construct the
relative intersection using the corresponding zigzag (4.6), all we need is that the maps

Ci(6.€[p) «— Cx(Elc.€la)

and
C«(8|c) <— Cu(8|Mm)

are quasi-isomorphisms. For the second one, this follows as before from our assumption
that M — C is a homotopy equivalence, given that pg is a fibration. For the first, it
follows from the assumption that (4.9) is a homotopy pushout, using Mather’s second
cube theorem [64, Theorem 25] applied to the pullback of the square along the fibration
Ps, as areplacement of excision.

Note that the construction goes through for any diagram of topological spaces (not
necessarily manifolds) of shape (4.9) satisfying the homotopy pushout condition.

Definition 4.7. We call a homotopy pushout diagram of the shape (4.9) an intersection
context, and a cohomology class t € H"(C, A) an n-orientation.

Let us define a map between oriented intersection contexts to be a map between the
corresponding diagrams (4.9) that is compatible with the orientations. We say that such a
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map is an equivalence, if it induces a weak equivalence for each of the spaces A, B and C.
Finally, we say that two oriented intersection contexts are equivalent if they can be related
by a zigzag of equivalences. A diagram chase gives the following.

Proposition 4.8. Tiwo equivalent oriented intersection contexts associate the same rela-
tive intersection map
intpr: Hy (€, R) > Hsn(E|m, R)

to a tuple (&8, R, pg, px, [) as in diagram (4.4).

The intersection context we will be using in our proof of Theorem 4.2 is the following.
Let FM, denote the Fulton—-McPherson compactification of the configurations space of
two points. It is obtained as the real oriented blowup of M x M along the diagonal. That
is F'M; is a manifold with boundary whose interior is M x M \ M and with boundary the
unit tangent bundle UTM of M. In particular, it fits into the following commuting square

UTM —— FM,

l l (4.10)

M——M —— MxM.

Proposition 4.9. Together with the class tyy € H"(M,UTM) = H"(Up, Uy \ M),
diagram (4.10) defines an oriented intersection context equivalent to (4.8).

Proof. There is a zigzag of equivalences between the two diagrams coming from the pair
of zigzag UTM — Upy \ M <~ Uy \ M and FMy = FMy < M x M\ M ,forUy \ M
an g-neighborhood of UTM in FM,;. |

4.3. Invariance of intersection products

Suppose f: M — N is a smooth map, and that M comes equipped with an intersection
context, for example, one of the form (4.10). Composing with f, we obtain an intersection
context for N from that of M. We denote the corresponding relative intersection product
by f.intys. By construction, we have the following naturality property:

Lemma 4.10. For
R — 8

! !

N —— NxN

as in (4.4), the square

Ho(f*6. f*R) 25 H, o(f*€ly. f*R)

! !

H.(E,R) % Hypn(€|n,R)
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commutes, where f*& and f*R are the homotopy pullback of & and R along
fxf:MxM— N xNand f: M — N. Note that the vertical maps are isomorphisms
if f is a homotopy equivalence.

We are interested in the case & = LN — N x N with Ry — N the space of half-
constant loops, as defined in Section 2.5. In that case, f also induces compatible natural
maps LM — LN and Ry — Ry giving a commuting diagram

Ho(LM, Ray) —2— H,_, (Fig(8)ys. Rar)

| !

Ho(f*LN, f*RN) - Ho o(f*LN|y, £*RN)

! !

Ho(LN, Ry) —2 H, , (Fig8)y. Rn),

where again the vertical arrows are all isomorphisms if f is a homotopy equivalence.
Hence, comparing the loop coproduct for two manifolds M and N is equivalent to
comparing the relative intersection products f intps and inty on the pair (LN, Ry).
In general, these are not equal. Otherwise, since the loop coproduct may be described in
terms of the above intersection products (as in Proposition 2.12), this would yield a proof
for homotopy invariance of the loop coproduct, contradicting Theorem 2.10.

In contrast, the loop product is known to satisfy homotopy invariance (see Theo-
rem 2.9), and the (failed) line of argument suggested above for the coproduct does go
through for the product. The essential difference is that the loop product only uses the
non-relative intersection product (see Proposition 4.5). Its homotopy invariance follows
from the following result.

Theorem 4.11. Let f: M — N be an orientation-preserving homotopy equivalence of
manifolds, each equipped with its intersection context of the form (4.10). Then for any
fibration & — N X N the intersection product

inty: H«(8) — Hu—y(E|N)
coincides with the transferred intersection product fy intyy.

Sketch proof. The above theorem is proved in the papers [26,27,31,41] in the context of
string topology, i.e., in the special case when & = LN x LN — N x N, as the crucial
ingredient in the homotopy invariance of the loop product, and the proofs generalize to our
context. The proof of Gruher—Salvatore in [41] is closest to our language, so we follow that
paper. Translating to our notation, Theorem 8 in that paper defines a product preserving
map ¢ in homology from (&, inty) to (f*&,intar). This map can be composed by the
product-preserving map (f*&,intyr) — (&, fx intys) given by the non-relative version
of Lemma 4.10. As both maps preserve the product, it is enough to show that they
compose to the identity on &. This statement corresponds to [41, last display in the proof
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of Proposition 23]. This last computation is only stated in the case of the loop space in
that paper, but it comes from an analysis of the maps using Thom isomorphisms that only
use what the maps do on the underlying manifolds. ]

An alternative approach to the above statement is to use parametrized homotopy theory
as in [65], identifying the intersection product considered here with the evaluation map of
the Costenoble—Waner duality for M .

Remark 4.12. As the example of lens spaces shows (Theorem 2.10), the above theorem
does not generalize to the relative intersection product. The above argument fails in that
the composition ¢ o 0y may fail to be equal to the identity in relative homology. This
is equivalent to the lack of a Thom isomorphism type map in the computation to be an
isomorphism in relative homology, relating to the issue discussed in [45, Section 4.10].

4.4. Equivalence between algebraic and geometric models for the loop coproduct

We will now give a sketch of the proof of Theorem 4.2. We first describe real models
(in the sense of rational homotopy theory) for each of the steps in the definition of the
loop coproduct and compare the final result with the description in Definition 3.16. More
precisely, up to crossing with an interval, we can write the geometric coproduct (2.5) as
the composition of the following three maps:

Cogn(LM x I, LM x 0dI) A Cign(LM, R) = C.(Fig(8), R) = Ci(LM, M)®2,
4.11)
where the middle map is the intersection product discussed in Sections 4.1 and 4.2. We will
give models for each of these three maps. Most of what we do in this section can be
done with rational coefficients; real coefficients will only be needed at the very end of the
section, when picking a particular model of the configuration space F'M,. For simplicity,
we will ignore sign issues in this section.
A major ingredient will be the Eilenberg—Moore theorem, that we will use to give
rational models of homotopy pullbacks. We will apply it to the functorial rational model
of polynomial forms A, with g (X) ~ C*(X;Q):

Theorem 4.13 (Eilenberg—Moore; see, for instance, [66, Theorem 7.14]). Suppose that

w1,
al
Y

is a homotopy pullback of spaces, such that Z is simply connected and either X or Y are

N «— ¥

—_

connected. Then the natural map

tA’pl(X) ®ipl(z) fA’pl(Y) — rA’pl(X) ®Ap](z) prl(Y) — fA’pl(W)
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induced by [*: Ap(X) = Au(W) and g*: Ay (Y) — An(W) is a quasi-isomorphism.
Here Ay (X) ®ﬁ (2) Ap(Y') denotes the derived tensor product.
P

In the following we use the bar construction model for the derived tensor product:

Ap(X) ®% (z) An(Y) = €D Ap(X) ® sAu(Z)®7 @ Ap(Y),
p=0

with differential analogous to that of the Hochschild complex of Definition 3.7 (see,
for example, [1, (2.5)]). Note that with this definition Ay (X) ®ipl ) Ap(Y) is a quasi-
free (i.e., free after forgetting the differential) Ay (X) ® Ap (Y )-module. Moreover, there
is an Ay (X) ® Ap(Y)-module map

Ap(X) ® Au(Y) —> Ap(X) ®% 7y An(Y)

given by inclusion of the (p = 0)-summand.
The map
Ap(X) ®% 7y Ap(Y) —> Au(W)

in the theorem is then given by projecting onto the Ay (X) ® 4,(z) #pi(Y) summand on
which the map is f* U g*. We obtain the following commutative diagram

Ap(X) ®F | 7 Ap(Y) ——> Ap(W)
T / (4.12)
tA’pl(X) X e74’p1(Y)

of Ay (X) ® Ap(Y)-modules. Note that oAy (X) ® Api(Y) is the free Ap (X) & Ay (Y)-
module on one generator, and hence a module map out of it is given by a single element in
the target. With that in mind (4.12) is saying that both A (X) ®ip] ) Ap(Y) and Ay (W)
come with a distinguished element, which we will call the pointing and the equivalence
respects that distinguished element. That is, we have the following

Corollary 4.14. The map Ay (X) ®ipl(2) A (Y) = (W) of Theorem 4.13 is a quasi-
isomorphism of pointed #p(X) ® sp (Y )-modules.

Example 4.15 (The Hochschild complex as a model for LM ). The loop space LM can
be defined as a pullback

IM— . m

| |

PM M x M.
We then obtain the following zigzag of pointed Ay (M) & Ay (M )-modules

evg Xevy

EA’pl(M) ®ip1(M)®AP1(M) eA’pl(ﬁ/[) <~ *A’pl(PM) ®ip1(M)®.Ap|(M) rA’pl(M) = fA’pl(LM)»
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where the first arrow is the quasi-isomorphism induced by oAp(PM) =~ Ay(M)
and the second one comes from Theorem 4.13. The above zigzag thus exhibits
Ap (M) ®ipl( M@ (M) Api(M) as a model for C*(LM; Q). Additionally, we obtain
a model for the map evy: LM — M as follows:

‘Apl(M) ®ipl(M)®tAipl(M) e7%[)1(M) << e}4’[)1([)]‘4) ®JL4:p1(M)®=Aap1(M) *A’pl(M) = e7£gpl(l’1‘4)
1®id} 1®id} evs !

Finally, let
BAn(M) = @D An(M) ® sAu(M)®? ® Ay(M)
p=0

denote the two-sided bar construction computing (M) ®0L4,,,1 (M) Ap(M). There is a
quasi-isomorphism of pointed Ay (M) ® p (M )-modules

BoAn(M) = Ay(M).

Since B Ay (M) is a quasi-free Ay (M) @ Ay (M )-module we obtain quasi-isomorphisms

BA#M) @y (M) (1) Apt (M) ——— BAnM) % aryoaary (M)

1®idT y) l~
1Qid

e74’}71(1‘4) fA’pl(M) ®ip](M)®!Apl(M) eA’pl(ju)'

The left-hand side is now exactly the definition of the Hochschild complex:
Cy (fA’pl(M)v ‘A’pl(M)) = BAPl(M) ®Ap1(M)®Ap1(M) 'A’pl(M)'

This shows that the Hochschild complex, as a pointed + (M )-module, is a model for
evo: LM — M, giving a proof of the isomorphism (4.1) in the rational case. (See also
[30, Proposition 1].)

Note that the above computations also shows that the map Ay (M) ® Ap(M) —
B g (M) is a model for the fibration PM — M x M.

Remark 4.16. Given a pair of spaces (X, A) we will use the formula
C*(X,A:Q) :=cone(C*(X;Q) - C*(4:Q)),

as the definition of relative cochains in the following. Here, as we are working with
cochain complexes, by “cone” we mean the following construction:

cone(A i) B)=(A®sB,d4s+dp + f).
By naturality of +;(—) we obtain an equivalence

C*(X, A: Q) = cone(sAy(X) — Ap(A)).
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Example 4.17. Let p: & — Z be a fibration and suppose we are given amap f:Y — Z
and aclass T € H¥(Z,Y). From this we obtain the homology operation

— N p*(T): H(E,Ely) = Hui(6),
or dually

—U p*(T): H*(8) - H*T*(&,8|y).
More precisely, let p*(T) = (u,v) € cone(A;l (&) —> A;‘l(8|y)), then one obtains the
chain map

AR(E) — ANTR(E . Ey).
x+— (x Uu, f&(x)Uv),

where fg: E|y — & is the pullback of the map f. Note that in the above case the pair
(u,v) is pulled back from cone(,/’e;‘l (Z2)— A;l( Y)) and thus the formula only uses ,A;l (&)
and A5 (€y) as C*(Z) and C*(Y)-modules, respectively. We thus obtain that under the

equivalence
Apl(g) ®ip](z) Apl(Y) = =A’pl(8|Y)a

the above operation is given by
—-u p*(T) cA’pl(g) — Cone(fA’pl(g) - Apl(g) ®ipl(z) Apl(Y)),
XH— (xUu,x ®v).

By writing #p(€) >~ Au(E) ®aL%p1(Z) Api(Z) we can understand this map as being

. L
ida,(8) ®4,z) (U T)
where

—UT:An(Z) —> cone(Ay(Z) = Au(Y)),
X +— (xUu, f*(x)Uv).
More succinctly,
— U p™(T) = iday(e) ®%,(z)(— U T (4.13)

Let A >~ A, (M) be any commutative dg-algebra model of M. We can now replace
Ap(M) by A in the models for LM and PM that we have obtained. As above, let

BA=Pags4H®’®4
p=0

be the two-sided bar-resolution, considered as a pointed A ® A-module. We then have
models
A® A—> BA and A —> C«(A, A)
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for the fibrations evg xevi: PM — M x M and evy: LM — M. The latter map admits a
section cst: M — LM, which, under the identification LM = PM Xprxp M, is given by
the diagonal embedding. Analysing the zigzags in Example 4.15 we find that it is modeled
by

Ci(A,A) = BA®ge2 A —> A @qe2 A —> A

where m: A ® A — A is the multiplication map of A.

4.4.1. Reparametrization map J. In this section, we will give a model of the reparam-
etrization map

JisCo(LM) = Co(LM x I, LM x 3I) —s C+(LM, R).

We have so far seen that the Hochschild complex C« (A, A) can be used to model the loop
space together with the evaluation and inclusion maps LM = M. This model however
does not come with a convenient description of the map ev, 1= (evo, ev 1 ) LM —
M x M. We start the section by giving a model of LM that is more convenient to describe
that map.

Lemma 4.18. The fibration evy,1: LM — M x M admits the following pointed A ® A-
module model:
A® A — A%®? @404 (BA)®?

where A®? is an A®* module via the map (x,y,z,w) — (xz, yw). As a vector space

A®? Q00 (BA)®?> = P D" @ AQ (sA)®1 ® A
Pr,4=0

and the map is the inclusion into the summand with p,q = 0.

Proof. The map evo,1 = (evo, ev%): LM — M x M is the product over M x M of two
copies of the path fibration, i.e., we have a homotopy pullback square

LM PM x PM

(6V0,€V1/2)l (evo,evi)x(evo,evy)
ApxAp

MxM—— (M xM)x (M xM),

where the unlabeled map LM — PM x PM is given by restricting a loop in LM to the
two intervals [0, %] and [% 1]. As in the Example 4.15 we use A ® A — BA as a model
for PM — M x M. Applying Theorem 4.13, we get a model for evy,1: LM —- M xM
as

Ap(LM) < (A® A) ®%s4 (BA® BA) ~ A®? @ 404 (BA)®?

where one checks thata ® b € A ® A is mapped to the right-hand side as claimed in the
statement. |
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Lemma 4.19. The fibration Fig(8) — M admits the following pointed A-module model
A—>Ci(A,A) ®4 Cix(A,A) =2 A Q04 (BA R BA)

with the cut map and inclusions LM x LM Vil Fig(8) < LM given by the quotient
maps

Ci(A, A) ® Cy(A, A) = Ci(A, A) ®4 Cx(A, A) =~ A ® 404 (BA® BA) < BA ® 402 BA.

Proof. The space Fig(8) can be seen to be the pullback of PM x PM — M? x M? = M*
along the diagonal M — M*, which gives us a model for Fig(8) — M as A ® ye4 (BA)®2.
Consider the two factorizations of the diagonal as M — M? — M*, where the second
map M? — M* is either (x, y) — (x,x,y,y)or (x,y) — (x,y,x,y). The first version
exhibits Fig(8) as the pullback of LM x LM — M x M along the diagonal and gives
the description of the cut map. The second version exhibits Fig(8) as the pullback of
evy,1: LM — M x M giving the description of the inclusion Fig(8) — L M. ]

The above description of the figure eight space, allows us now to give a model for the
map R — LM. Let

Ci(A,A) B4 Cx(A4, A) = cone(C*(A, A) B Ci(A, A) — A)

where the map is the composition C«x(A4, A) ® C«(A4, A) > A & A — A, with the second
map being the difference.

Lemma 4.20. The map R — Fig(8) is modeled by the map

Cx(A, A) @4 Cx(A, A) —> Cy(A, A) ®4 Cx(A, A),
a®b®cr— e@bec) d eb)@c),

where e(a1 ® ---® adp) =0if p>1landlif p =0.
Proof. Consider the commuting diagram

IM X IM «~— LM xM

I I

M<xIM «— MxM

of spaces over M x M . By pulling back along the diagonal we obtain

Fig(8) «— LM

I T

IM «——— M

and R is the pushout of the lower-right triangle; the diagram thus encodes the inclusion
map R — Fig(8). Hence, we can get a model for that commuting square in algebra,
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by pulling back in the same way the previous square and using the natural part of
Theorem 4.13. This becomes

Ci(A, A) ®4 Ci(A, A) 225 €. (4, A)

Joi l

Ci(AA) —————— A,
from which one can read off the map given in the statement. ]

We now assemble the models of LM, Fig(8) and R just obtained to give a model of
the reparametrization map:

Proposition 4.21. In our models, the reparametrization map J*: Ay(LM, R) —
sAg(LM)

cone(A®? @ o4 (BA)®? — Ci(A, A) @4 Cu(A, A)) L5 5Cu(4, A)

takes ¢ = (a1 @ - Q@ dp) ® ¢ ® b1 ® b_q) ® d of the subcomplex A®? ® 4o4
(BA)®? of the source to

B =+(@1® Qa5 Qc®bh ® Qb)) ®d
in the target and maps f ®y € C«(A, A) &4 C«(A,A) to B —y.

One can give a proof of the above proposition using Chen’s iterated integrals, see [71,
Section 4.2]. We give here an alternative proof.

Proof. We split the reparametrization into two maps
(LM x I,LM x3I) = (LM,LM U LM) — (LM, R)

where LM U LM — LM maps the two copies of LM to the left (resp. right) half-
constant loops. Now there is an equivalence of pairs (an equivalence of the corresponding
cones, to be precise)

(LM x I,LM x 3I) = (pt, LM L pt)

via the map that sends one of the L M factors to {pt}. We can thus think of the reparam-
etrization map as the zigzag

~

(pt, LM Upt) & (LM, LM U LM) — (LM, R).

In our rational model, this becomes a map

A®2 R 04 (BA)®2 A®2 R g4 (BA)®2
sCy(A, A) =5 cone l <— cone l

Ci(A,A) @ Cu(A, A) Cu(A,A) @4 Cu(A, A)



String topology in three flavors 297

where the first map is the inclusion Cx(A, A) — Cx« (A4, A) & C«(A, A) in the first
summand, and the second map is the natural projection. It remains to give a left-inverse
to the first map. One can check that sending («, 8 & y) — B(«) + B — y defines such a
chain model for such a homotopy inverse. The result follows. ]

Remark 4.22. Note that the map B: A®? ®4e4 (BA)®? — 5C4(A, A) is not by itself
a chain map. Instead, it is a homotopy between the two maps A%®? ® 4e4 (BA)®? —
C+«(A, A) given by

a®Rc®R®b®d— +e(b)(@® bc),
and

a®c®b®d > +e(@) (b be),
respectively, that model the inclusions LM — LM of left and right half-constant loops.
4.4.2. Cut map. We give now a model for the cut map used in the definition of the
coproduct. Its target is C*(LM x LM, M x LM U LM x M) ~ C*(LM, M)®?. Recall

that the relative Hochschild chain complex C , (A4, A) is the kernel of the (surjective) map
C«(A, A) — A and hence a model for C*(LM, M).

Proposition 4.23. The cut map (Fig(8), R) - (LM X LM, M x LM U LM x M) can
be modeled as the map

Ci(A, A) ®4 Ci(A, A) Ci(A, A)
cone l &L cone l & CL(A AP

defined by
cut((@1 ® -+ ®ap ®apr1) ® (b1 ® - ® by ® byt1))
=@ ® - ®&p) ® (b1 ® - ®by) ® api1bgi
sitting in the subcomplex Cx(A, A) ®4 Cx«(A, A) of the target.

Proof. We have already seen in Lemma 4.19 that the cut map Fig(8) — LM x LM can
be described as the quotient map

Ci(A, A) @4 Co(A, A) <— Cu(A, A) ® Ci(A, A).

To see that this map descends to a relative map, we use the same diagrams of spaces as in
the proof of Lemma 4.20. More precisely, we note that the second diagram in the proof of
Lemma 4.20 maps into the first one. This gives us a map between the pairs consisting of
upper-left corner and pushout of lower-right triangle, which models the cut map

(Fig(8), R) — (LM x LM, M x LM U LM x M).

The result now follows from naturality of the proof of Lemma 4.20 in the diagram. ]
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4.4.3. Model for the relative intersection. We are left to find a model for the relative
intersection step of (4.11). We will use the decomposition of this map given by the relative
intersection product using the oriented intersection context (4.10):

Ci(LM) — Cu(LM, LM |Fpr,) <= Co(LM |y, LMlUTM)niZ;rC*—n (LM |n)
1 & A A
Cy(R) C«(R) C«(R) Cin(R).
(4.14)

Nf*pgr

The middle map is the “excision” map
Cx«(Fig(8), LM |ytm) = C(LM |y, LM |yTM) = Co(LM, LM |Fp,)

induced by the pullback diagram (4.10), and we need a cochain model for a homotopy
inverse of that map. We start by giving a model of the spaces involved, starting from
appropriate models of UTM and FM,.

Suppose now that A = Ay is a Poincare duality model for M, as given by Theo-
rem 3.5. Then A has a coproduct map A:s™" A — A ® A (dual to the intersection product
of M, see Example 3.4). Lambrechts—Stanley conjectured in [60] explicit commutative
dg-algebra models for configuration spaces. This conjecture was shown to hold over the
reals by Idrissi and Campos—Willwacher, see [46], [11, Appendix A].

For FM>, this model is the quotient of the truncated polynomial algebra

A® Alw 2]
(a’iz =0,(a® w1z =(1Qa)w,)

7= dorp = A(),
where w; » is a degree n — 1 class. The spherical fibration U T'M more classically admits

a model 6]
Us = (r o df =),
4= o7 =0) ‘
where 6 has degree n — 1, representing the fiber, and e = (m o A)(1) € A is the Euler
class of M.

These algebras fit into the commutative diagram

Uy «— Fu

T T (4.15)

where the vertical maps are the natural inclusions and the top map takes 0 to w; ».

Theorem 4.24. Let A be a Poincare duality model for a simply-connected manifold M.
Then the following hold:

(1) The diagram (4.15) is a real model for (4.10), i.e., there exists a zigzag of quasi-
isomorphisms of squares of commutative dg R-algebras connecting (4.15) to the
diagram obtained from (4.10) by applying Ay (—).
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(2) The map ¢:cone(A — U4) — cone(A ® A — F4) taking (x,y +z0) € AD sUy
to (A(z),(z @ Dw12) € A ® A ® sFy, is a model for the homotopy inverse of the
map of pairs 1: (M, UTM) = (M x M, FM>), and is a map of A ® A-modules.

(3) A representative of the Thom class Tt € cone(A — Uy) is given by
T = (e,0),
where e = m o A(1) € A is the Euler class as above.

Proof sketch. Part (1) follows from the works [11] and [46]: the model of F M, given here
is that of Lambrechts—Stanley, and it is a commutative dg-algebra model of F'M, over the
reals by these two papers. Analysing the models, we see that the maps in diagram (4.10)
are modeled as stated, as the multiplication of 4 models the diagonal, and the class w; »
corresponds to the class of the sphere in UTM . Going through the proof in [11] or [46]
that ¥4 is quasi-isomorphic to 4y (FM>, R), one can strengthen the statements to obtain a
zigzag of squares of commutative dg-algebras, as claimed. See also [71, Proposition 8.3].

For part (2), note that part (1) implies that the map ¢: (M, UTM) — (M x M, FM,) is
modeled by the map 7: cone(4 — Uy) — cone(4 ® A — F4) obtained by taking vertical
cones of the diagram (4.15). Since diagram (4.15) is a model for diagram (4.10) which in
turn is a homotopy pushout, it follows that 722 is a homotopy equivalence. So it is enough to
check that ¢ is a one-sided homotopy inverse to /7i. The composite 7 o ¢ takes (x,y + z6)
to (ze, z0) in cone(A — Uy). To see that this is homotopic to the identity note that the
quotient map ¢:cone(A — Uy) — (sU4)/A = As6 given by g(x,y + z6) = zs6 is an
equivalence and that ¢ o 771 o ¢ = q. One checks that ¢ is a map of 4 ® A-modules.

Part (3) follows from the analysis of the models in (1). Alternatively, using the above
equivalence cone(4 — Uy) ~ AsO = s™ A and thus there is only one candidate up to a
scalar for the Thom class. The scalar is determined by the condition that the image of
the Thom class under the isomorphism H*(M,UTM) = H"(M x M,M x M \ M) —
H"*(M x M) is the diagonal class. By (2) this image is A(1) € A x A, which is the
diagonal class. ]

4.4.4. Proof of Theorem 4.2. We now assemble the results of the previous sections to
give a sketch proof of Theorem 4.2. Let

A ® ®ay@dps1, b1 ® @by @bygr1 € C, (A, A)

be two Hochschild chains. By Proposition 4.23, applying the cut map to their tensor
product we get

@ ® - ®ay) ® (b1 ® -+ ® bg) ® dpt1bg+1 € Cx(A, A) ®4 Cx(A, A).

Next we apply the relative intersection product as given by our algebraic model of
diagram (4.14): Let us write £4 := A%? ® 4o (BA)®? and Ry := Cx(A, A) P4 C«(A, A)
for our models of LM (as a fibration over M x M) and R of Section 4.4.1. We then
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apply Eilenberg—Moore theorem (Theorem 4.13) to the homotopy pullbacks LM |py =
LM XMxM M, LM|FM2 =ILM XMxM FM2 and LM|UTM = LM XMxM UTM to
obtain that

La®ye2 Us <—— L4 ®g02 Fau

iA ®A®2 A A S iA ®A®2 A®2

is a model for
LM|yrmy — LM |Fp,

| !

LMy ——> LM.

With this we obtain a model for the diagram (4.14) defining the relative intersection
product is equivalent to the diagram

£y < L4 Qqe2 cone(A®? — Fy) = £4 @402 cone(A — Uy) M L4 Qqe2 A

! ! ! !

RA :RA ﬂA # RA»

where the first map has degree n, with source
£4 Qo2 A = (A®2 & 44 (BA)®2) Rqe2 A = Cx(A, A) ®4 Cx(A, A).

Note that the right most commuting square is given by the presentation (4.13) of the
relative cup product. Recall from Theorem 4.24 (3) that the Thom class is given by
Ty = (e, 0) in our model, so applying the first map to our element gives

:t(a_l R ® @) ® (b_l K- b_q) ® (ap+1bq+1e,ap+1bq+19)

inCyx(A,A) ®4 Cx(A, A) ®4 cone(A — Uy) = £4 ®4e2 cone(A — Uy4). Now we apply
the explicit inverse of cone(4 ® A — F4) — cone(A — Uy4) given in Theorem 4.24
which yields

@ ® Q) ® (b1 ® -+ ® by) ® (Alapt1bg+1). (@pt1bg+1 ® D )
in £4 ®4@2 cone(4 ® A — F4). Next applying cone(4®? — F4) — A®2, we obtain
@ ® - ®dp) ® (b1 ® -+ ®byg) ® Alap+1bg+1)

in £4 ®4e2 A®? = A®? ® 404 (BA)®2. Finally, the reparametrization map J is given
by Proposition 4.21 after applying the last identification and yields the formula for the
coproduct as

Y @ ® - ®a ®apriei ®b; ® - @ by) ® byy1 fi € sCx(A. A)
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matching the formula for the algebraic Goresky—Hingston product of Definition 3.16 (up
to switching the factors, which does not make a difference on cohomology by the graded
commutativity of the product, see Theorem 3.18).
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