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In 2017 Tao proposed a variant Sarnak’s Möbius disjointness conjecture with loga-

rithmic averaging: For any zero entropy dynamical system (X, T ), 1
log N

N
∑

n=1

f(T nx)µ(n)

n

= o(1) for every f ∈ C(X) and every x ∈ X. We construct examples showing that 
this o(1) can go to zero arbitrarily slowly. Nonetheless, all of our examples satisfy 
the conjecture.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

A topological dynamical system is a pair (X, T ) where X is compact metric space and T ∈ C(X, X). 

If the system (X, T ) has zero topological entropy, then Sarnak’s Möbius disjointness conjecture [16, Main 

Conjecture] asserts that

1

N

N
∑

n=1

μ(n)f(T nx) = o(1), for every f ∈ C(X) and every x ∈ X. (1)

Here μ : N → {−1, 0, 1} denotes the Möbius function. We refer to the recent comprehensive surveys [6,13,3]

for references and reports on progress on the conjecture and related topics.

One strong piece of evidence towards the validity of Conjecture (1) is that it is implied by the Chowla 

conjecture [18, Conjecture 1.1], see [17]. In 2017, Tao [18] introduced logarithmically averaged versions of 

both Sarnak’s and Chowla’s conjectures, that were shown to be logically equivalent. Pertinent to this paper, 

if (X, T ) has zero entropy, then the logarithmically averaged Möbius disjointness conjecture [18, Conjecture 

1.5] predicts that
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1

log N

N
∑

n=1

μ(n)f(T nx)

n
= o(1), for every f ∈ C(X) and every x ∈ X. (2)

The surveys [6,13,3] contain information on progress on this conjecture as well. We also mention the work 

of Frantzikinakis and Host [7] on it.

Recently, we studied the rate of decay in Sarnak’s conjecture, showing that there are systems satisfying 

Sarnak’s conjecture for which the o(1) as in (1) decays to zero arbitrarily slowly [1]. The purpose of this 

paper is to study this problem for the logarithmically averaged Möbius disjointness conjecture (2). Here is 

our main result:

Theorem 1.1. For every decreasing and strictly positive sequence τ(n) → 0 there is a zero entropy dynamical 

system (X, T ) that satisfies:

1. There exist x ∈ X and f ∈ C(X) such that |f(x)| ≡ 1 and

lim inf
N→∞

1

log (N) · τ(N)

N
∑

n=1

μ(n)f(T nx)

n
> 0.

2. The system (X, T ) satisfies conjecture (2).

A few remarks are in order:

1. Using the summation by parts identity,

N
∑

n=1

μ(n)f(T nx)

n
≤

N−1
∑

M=1

1

M + 1

(

1

M

M
∑

n=1

μ(n)f(T nx)

)

+
1

N

N
∑

n=1

μ(n)f(T nx),

for any x ∈ X and f ∈ C(X, R+) in a given dynamical system. So, a decay rate in conjecture (1) would 

imply a decay rate in conjecture (2). Thus, as a corollary of Theorem 1.1 we see that there can be no 

decay rate in conjecture (1). Hence, Theorem 1.1 generalizes our previous result [1, Theorem 1.1] about 

the (lack of a) decay rate in conjecture (1).

2. Theorem 1.1 part (1) is also formally stronger than [1, Theorem 1.1 part (1)] since it is an assertion 

about the corresponding lim inf rather than lim sup.

3. By [4, Corollary 10], if Conjecture (1) holds true then for every zero entropy system (X, T ) and f ∈

C(X), (1) holds uniformly in x ∈ X. We remark that we expect a similar result to hold also for the 

logarithmically averaged version (2), following e.g. the arguments of Gomilko-Lemańczyk-de la Rue [9]. 

We do not know, however, if this has appeared in print.

Our results and methods are also related to [6,12,8,14,2]. We refer to [1, Section 1] for more discussion about 

this.

We end this introduction with an outline of our construction. Morally, we take advantage of the logarith-

mic averaging to run a version of our argument from [1] in short intervals, thus obtaining stronger results. 

More precisely, we consider subshifts of

(

{−1, 0, 1}N × {−1, 1}Z, T
)

, where T (y, z) = (σy, σy1z) and σ is the left shift.

Given a rate function τ we first construct two slowly growing sequences q
(i)
k → ∞, i = 0, 1. We then 

construct two subshifts such that their base comes from concatenating words of length (k + 1)3 − k3, that 
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have non-zero entries at distance at least q
(i)
k from each other. Our space X is a product of these two spaces 

and a “switch” system: A subshift of {0, 1}N generated by elements x satisfying that x(i) = x(i + 1) for 

k3 ≤ i < (k + 1)3 − 1. The function f is taken to be

f
(

(y(0), z(0)), (y(1), z(1)), s
)

= z
(s1)
0 .

For Theorem 1.1 part (1), our construction of the point x ∈ X relies on the following observation: 

For every k � 1, i = 0, 1 and some polynomially growing sequences M
(i)
k , one may show that for some 

c ∈ [0, q
(0)
k ] or d ∈ [0, q

(1)
k ], either

q
(0)
k −1+c

∑

b=c

M
(0)
k+1

∑

n=M
(0)
k

λ(q
(0)
k (n − M

(0)
k ) + c + k3) · μ(q

(0)
k (n − M

(0)
k ) + b + k3)

or

q
(1)
k −1+d

∑

b=d

M
(1)
k+1

∑

n=M
(1)
k

λ(q
(1)
k (n − M

(1)
k ) + c + k3) · μ(q

(1)
k (n − M

(1)
k ) + b + k3)

are larger than 1

2q
(0)
k

(or respectively 1

2q
(1)
k

) times their statistically expected values, up to a controllable 

error. Here λ : N → {±1} denotes the Liouville function.

We then construct our point x via working in one of the subshifts in our space: For every k we pick the 

i giving the inequality above, specifying some digits of the base point and an arithmetic progression in μ

to put in some digits of the fiber. The value of the s in the switch coordinate between k3 and (k + 1)3 is 

determined by the i giving this inequality. With some work, we show that x satisfies Theorem 1.1 part (1).

Finally, to derive part (2) of Theorem 1.1, we show that the systems we construct have bounded measure 

complexity. This relies on the fact that every ergodic measure ν in the systems we construct is supported 

on a T -fixed point. The theorem then follows by invoking a recent result of Huang, Wang, and Ye [11]. See 

Section 3 for more details.

2. Proof of Theorem 1.1 part (1)

2.1. Some preliminaries

Let σ denote the left shift on {−1, 0, 1}Z as well as on any of the following subspaces: {−1, 0, 1}N , {0, 1}N , 

and {−1, 1}Z. On {−1, 0, 1}Z we define the metric

d(x, y) = 3− min{|n|: xn �=yn}.

Also, for every x ∈ {−1, 0, 1}N and k > l ∈ N let x|kl ∈ {−1, 0, 1}k−l be the word

x|kl := (xl, xl+1, ...., xk),

and we use similar notation in the space {−1, 0, 1}Z as well. Next, for every element x ∈ {−1, 0, 1}N and 

p ∈ N0 we define σ−px ∈ {−1, 0, 1}N as σ−px = x if p = 0, and otherwise

(

σ−px
)

|p1 = (0, ..., 0), and for all n > p, σ−px(n) = x(n − p).
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Now, let

Z := {−1, 0, 1}N × {−1, 1}Z.

This is a metric space using the sup-metric on both coordinates. Also, we denote by Πi, i = 1, 2, the 

coordinate projections on Z. We define the skew-product T : Z → Z via

T (y, z) = (σ (y) , σy1 (z)) .

We say that X ⊆ Z is a subshift if it is closed and T -invariant. The following Lemma follows directly from 

our construction:

Lemma 2.1. The system (Z, T ) satisfies that for every n ∈ N and x = (y, z) ∈ Z

T n(y, z) =
(

σny, σ
∑n

i=1 yiz
)

.

2.2. Construction of some zero entropy systems to be used in the proof

Fix a sequence τ(n) → 0 as in Theorem 1.1. Assuming (as we may) that τ tends to zero sufficiently 

slowly, we construct a sequence q
(0)
k = q

(0)
k (τ) → ∞ that satisfies the following properties:

1. 1

2q
(0)
k

> τ(k3), and

2. q
(0)
k < k

1
8 .

We also define a sequence q
(1)
k via

q
(1)
k := q

(0)
k − 1.

Note that we also have limk→∞ q
(1)
k = ∞.

Next, for every k and i ∈ {0, 1} let

A
(i)
k := {k3 + j · q

(i)
k : j ∈ Z+, k3 ≤ k3 + j · q

(i)
k < (k + 1)3} ⊆ N.

For every k ∈ N and i ∈ {0, 1} we construct elements s(k,i) ∈ {0, 1}N such that:

1. For every k3 + j · q
(i)
k ∈ A

(i)
k ,

s(k,i)(k3 + j · q
(i)
k ) = 1 if j ≤

[

(k + 1)3 − k3

q
(i)
k

]

− 1.

2. s(k,i)(n) = 0 for every integer n /∈ A
(i)
k , or if n ∈ A

(i)
k but n = k3 + j · q

(i)
k with j >

[

(k+1)3−k3

q
(i)
k

]

− 1.

The following Lemma is an immediate consequence of our construction. Recall the definition of σ−px from 

Section 2.1.

Lemma 2.2. For every k ∈ N large enough, i ∈ {0, 1} and p = 0, ..., q
(i)
k we have

∑

j∈[k3, (k+1)3)∩Z

(

σ−ps(k,i)
)

(j) =

[

(k + 1)3 − k3

q
(i)
k

]

− 1.
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Next, for every k ∈ N and i ∈ {0, 1} define the truncations

R
(i)
k =

{(

σ−ps(k,i)
)

|
(k+1)3−1
k3 : p = 0, ..., q

(i)
k

}

⊆ {−1, 0, 1}(k+1)3−k3

.

We now define, for every i ∈ {0, 1}, the space P (i) of all infinite sequences such that

P (i) = {y ∈ {−1, 0, 1}N : y|
(k+1)3−1
k3 ∈ R

(i)
k for all k ∈ N}.

The following Lemma is an immediate consequence of Lemma 2.2, summation by parts, and the fact that 

the Cesàro mean of the sequences 1

q
(i)
k

tends to 0 for both i = 0, 1:

Lemma 2.3. For every i ∈ {0, 1} and y ∈ P (i),

k3−1
∑

j=1

y(j) =
∑

j≤k

([

j3 − (j − 1)3

q
(i)
j−1

]

− 1

)

= o(k3)

Finally, recalling the definition of the system (Z, T ) from Section 2.1, for every i ∈ {0, 1} we define the 

subshift of (Z, T )

Xi = cl

⎛

⎝

⋃

n∈N0

T n
(

P (i) × {−1, 0, 1}Z

)

⎞

⎠ .

For j ∈ {−1, 0, 1} we denote by j̄ ∈ {−1, 0, 1}N the constant element j̄(k) = i for every k.

Claim 2.4. For every i ∈ {0, 1} we have h(Xi, T ) = 0.

Proof. Fix i. We aim to prove the following statement:

For every sequence nk → ∞ and y ∈ P (i), if σnk y → y′ then ∃p such that σpy′ = 0̄. (3)

Note that (3) implies the Claim: Indeed, let ν be a T ergodic invariant measure. Let ν1 be its projection to 

the first coordinate. Then, by (3) and the ergodic Theorem,1 ν1 is the Dirac measure on {0}. It follows that 

for ν-a.e. (y, z), T (y, z) = (y, z). This shows that ν has zero metric entropy, and the Claim follows from the 

variational principle [19, Chapter 8].

To prove (3), let y ∈ P (i). Suppose σnk y → y′. Let m ∈ N. Then there is some k0 such that for all k > k0

we have that

y|nk+m
nk

= y′|m1 .

Note that, assuming k is large enough (depending on m), there can be at most 2 non-zero digit in y|nk+m
nk

: 

Indeed, such entries appear in places of the form �3 + jq
(i)
� + p for some � and p ∈ {0, ..., q

(i)
� }. We make the 

following two observations:

1. If there is some � and j1 < j2 such that

nk ≤ �3 + jiq
(i)
� + p ≤ nk + m, i = 1, 2,

1 For example, one can apply [5, Exercise 2.3.7] with (3) to see that there exists a ν1 generic point y that admits a p with σpy = 0̄.
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then

(j2 − j1) · q
(i)
� ≤ m.

So, assuming � = �(k) is large enough, we see that j2 − j1 < 1, a contradiction.

2. If there is some � and j1, j2, p1, p2 such that

nk ≤ �3 + j1q
(i)
� + p1 ≤ nk + m, and nk ≤ (� + 2)3 + j2q

(i)
�+2 + p2 ≤ nk + m

then, since �3 + j1q
(i)
� + p1 ≤ (� + 1)3 and (� + 2)3 + j2q

(i)
�+2 + p2 ≥ (� + 2)3, we have that

(� + 2)3 − (� + 1)3 ≤ (� + 2)3 + j2q
(i)
�+2 + p2 −

(

�3 + j1q
(i)
� + p1

)

≤ m.

Assuming � is large enough, this is impossible. Note that the same argument works for with � + 2

swapped for � + a for any a ≥ 2.

We conclude that for every m the word y′|m1 consists of 0’s, with the exception of at most two non-zero entries 

(note that these non-zero entries must be the same regardless of m). So, there exists some j ∈ N, j = j(y′), 

such that σjy′ = 0̄, proving (3). �

Finally, let

A := {w ∈ {0, 1}N : w(i) = w(i + 1), k3 ≤ i < (k + 1)3 − 1},

and define

Σ := cl

⎛

⎝

⋃

l∈N0

σlA

⎞

⎠ .

We require the following Lemma:

Lemma 2.5. h(Σ, σ) = 0.

Proof. As in the proof of Claim 2.4, suppose we show that

For every sequence nk → ∞ and w ∈ A, if σnk w → w′ then ∃p such that σpw′ is a fixed point. (4)

Then the Lemma will follow from the variational principle, since (4) implies that every ergodic measure for 

(Σ, σ) is a Dirac mass on a σ-fixed point of the form ī for i = 0, 1.

To prove (4), suppose σnk w → w′ for some w ∈ Σ. Let d(·, ·) denote the usual distance between a point 

and a set in R. Let C denote the set of cubic positive integers. Fix m ∈ N. Then there are two options:

1. If limk→∞ d(nk, C) = ∞ then there is some k0 large enough such that for all k > k0, [nk, nk + m] does 

not contain a cubic number.

2. Otherwise, there is some k0 = k0(m) such that for every k > k0 the interval [nk, nk + m] may contain 

at most 1 cubic number.

Now, if (1) happens then for every k large enough all the digits of w|nk+m
nk

= w′|m1 are the same. If (2) 

happens then still this might occur. Otherwise, there is some j = j(w′) where all the digits w′|j1 are equal, 
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and then all the digits w′|mj+1 are equal, but perhaps the constant digit occurring after j differs from that 

occurring before j. Note that j must be unique, and does not depend on m. So, either w′ = ī for i = 0, 1 or 

σjw′ = ī, proving (4). �

2.3. Correlations along arithmetic progressions in the Möbius function

Recall the definition of Z from Section 2.1 and let g : Z → {−1, 1} be the function

g(y, z) = z0.

For every k, i = 0, 1, and r, c such that r, c ∈ [0, q
(i)
k ], writing

M
(i)
k :=

∑

j≤k−1

([

j3 − (j − 1)3

q
(i)
j−1

]

− 1

)

let

Sk,i
r,c :=

q
(i)
k −1+r
∑

b=r

M
(i)
k+1

∑

n=M
(i)
k

λ(q
(i)
k (n − M

(i)
k ) + c + k3) · μ(q

(i)
k (n − M

(i)
k ) + b + k3).

In the following Lemma we use the construction from Section 2.2.

Lemma 2.6. For every k and i ∈ {0, 1} and for every two integers c, r ∈ [0, q
(i)
k ], let x ∈ P (i) × {−1, 0, 1}Z ⊆

Xi be any element such that:

1. For k3 ≤ n < (k + 1)3, Π1x(n) = s
(i)
k (n − r).

2. For M
(i)
k ≤ n < M

(i)
k+1, Π2x(n) = λ 

(

q
(i)
k (n − M

(i)
k ) + c + k3

)

.

Then

(k+1)3

∑

n=k3

g(T nx)μ(n) = Sk,i
r,c + O(q

(0)
k ).

Note that by the construction of P (i) × {−1, 0, 1}Z in Section 2.2, there exists an element x as in the 

statement of the Lemma in that space.

Proof. In this proof we suppress the i in our notation and simply write q, Mk. First, for every two integers 

j ∈ [Mk, Mk+1] and b ∈ [r, q + r − 1],

q(j−Mk)+b+k3

∑

d=1

(Π1x) (d) =

k3−1
∑

d=1

(Π1x) (d) +

q(j−Mk)+b+k3−1
∑

d=k3

(Π1x) (d)

= Mk +

q(j−Mk)+b+k3−1
∑

d=k3

s
(i)
k (d − r)

= Mk +

q(j−Mk)+b+k3−r−1
∑

d=k3−r

s
(i)
k (d) = Mk + j − Mk = j.
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Note the use of Lemma 2.3 in the second equality, and the use of the definition of s
(i)
k together with the 

fact that Mk+1 − Mk =
[

(k+1)3−k3

q

]

− 1 in the last one. Therefore,

(k+1)3

∑

n=k3

g(T nx)μ(n)

=

Mk+1
∑

j=Mk

q+r−1
∑

b=r

g(T q·(j−Mk)+b+k3

x)μ(q · (j − Mk) + b + k3) + O(q)

=

Mk+1
∑

j=Mk

q+r−1
∑

b=r

g

(

σq·(j−Mk)+b+k3

Π1x, σ
∑q·(j−Mk)+b+k3

d=1 (Π1x)(d)Π2x

)

μ(q · (j − Mk) + b + k3)

+O(q)

=

q+r−1
∑

b=r

g
(

σq·(j−Mk)+b−r+k3

s
(i)
k , σjΠ2x

)

μ(q(j − Mk) + b + k3) + O(q)

=

Mk+1
∑

j=Mk

q+r−1
∑

b=r

λ(q · (j − Mk) + c + k3) · μ(q · (j − Mk) + b + k3) + O(q)

Indeed: The first equality follows since g(T nx) and μ are both bounded sequences, in the second equality 

we use Lemma 2.1, and in the third equality we are using the previous equation array and the definition 

of x. This definition along with the definition of s
(i)
k justifies the last equality, where we simply get the 

definition of Sk,i
r,c . �

Remark 2.7. In the setup of Lemma 2.6, we may similarly find another x ∈ P (i) × {−1, 0, 1}Z that satisfies 

the conclusion of Lemma 2.6, but for −Sk,i
r,c . Indeed, this follows from the very same proof by picking 

x ∈ P (i) ×{−1, 0, 1}Z to be any element such that for every k3 ≤ n < (k +1)3 we have Π1x(n) = s
(i)
k (n −r), 

and for M
(i)
k ≤ n < M

(i)
k+1 we put Π2x(n) = −λ 

(

q
(i)
k (j − M

(i)
k ) + c + k3

)

.

We will also require the following Lemma:

Lemma 2.8. For every k large enough there is either some c ∈ [0, q
(0)
k ) such that

Sk,0
c,c ≥

1

2q
(0)
k

(k+1)3

∑

m=k3

μ(m)μ(m) − O(q
(0)
k ),

or some d ∈ [0, q
(1)
k ) with

−Sk,1
d+1,d ≥

1

2q
(1)
k

(k+1)3

∑

m=k3

μ2(m) − O(q
(0)
k ).

Proof. In this proof we again simply write q, M for q
(0)
k , M

(0)
k respectively. Now, for every c, r ∈ [0, q],

q−1
∑

c=0

Sk,0
c+r,c =

(k+1)3−k3

∑

m=1

λ(m + k3) ·
(

μ(m + r + k3) + ... + μ(m + r + q − 1 + k3)
)
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+O

(

q2

(k + 1)3 − k3

)

So,

q−1
∑

c=0

Sk,0
c,c =

(k+1)3−k3

∑

m=1

λ(m + k3) ·
(

μ(m + k3) + ... + μ(m + q − 1 + k3)
)

+ O
(

q2
)

.

Similarly,

q−1
∑

c=1

Sk,1
c+1,c =

(k+1)3−k3

∑

m=1

λ(m + k3) ·
(

μ(m + 1 + k3) + ... + μ(m + q − 1 + k3)
)

+ O
(

q2
)

.

Combining these equations,

q−1
∑

c=0

Sk,0
c,c −

q−1
∑

d=1

Sk,1
d+1,d =

(k+1)3

∑

m=k3

λ(m)μ(m) + O
(

q2
)

=

(k+1)3

∑

m=k3

μ2(m) + O
(

q2
)

.

This implies the Lemma. �

2.4. Construction of the point and system as in Theorem 1.1

Recall that for every k the inequality from Lemma 2.8 is given by q
(i)
k where i is either 0 or 1. Recalling 

the spaces constructed in Section 2.2, we define

X := X0 × X1 × Σ. (5)

We now construct a point x ∈ X as follows: For every k ∈ N and k3 ≤ n < (k + 1)3, let i = 0, 1 correspond 

to the term yielding the inequality from Lemma 2.8. We put � := i and then define in the �-th coordinate 

x(�)(n) := x(n) where x is as in Lemma 2.6 if i = 0 or Remark 2.7 if i = 1, corresponding to k, and either 

r = c and c (if i = 0) or r = d + 1 and c = d (if i = 1) yielding the inequality from Lemma 2.8. Also, for 

the indices k3 ≤ n < (k + 1)3 we put � in the Σ-coordinate of x. For all � = 0, 1 and digits not covered by 

the procedure above, we make some choice that ensures x(�) ∈ P (�) × {−1, 0, 1}Z. Note that by Lemma 2.6

and the construction of P (�), such a choice is readily available.

Finally, we make X a dynamical system via the self-map T̂ ∈ C(X) defined by

T̂ (p(0), p(1), s) = (Tp(0), Tp(1), σ(s)).

The function f ∈ C(X) is taken to be

f((y(0), z(0)), (y(1), z(1)), s) = z
(s0)
0 .

We now prove part (1) of Theorem 1.1 via the following two claims:

Claim 2.9. We have h(X, T̂ ) = 0.

Proof. By Claim 2.4 and Lemma 2.5 each factor in the product space X has zero entropy, which implies 

the assertion via standard arguments. �
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Claim 2.10. For all N large enough,

N
∑

n=1

f(T̂ nx)μ(n)

n
≥ τ(N)

N
∑

n=1

μ2(n)

n
− O(1),

where O(1) does not depend on N . In particular,

lim inf
N→∞

1

(log N) · τ(N)

N
∑

n=1

f(T̂ nx)μ(n)

n
≥

6

π2
.

Proof. In this proof whenever we write qk we mean q
(0)
k (this is of little consequence since q

(1)
k = q

(0)
k − 1). 

First, we claim that for every large enough k ∈ N,

(k+1)3

∑

n=k3

f(T̂ nx)μ(n) ≥
1

2qk

(k+1)3

∑

n=k3

μ(n)2 − O(qk). (6)

Indeed, this follows since by our construction,

(k+1)3

∑

n=k3

f(T̂ nx)μ(n) =

(k+1)3

∑

n=k3

g(T̂ nx(�)(n))μ(n)

where g and x(�)(n) are as in Lemma 2.6 (corresponding to the parameters as in the choice of x). Then (6)

follows directly from a combination of Lemma 2.6 and Lemma 2.8, together with the construction of x and 

of q.

Given N let N ′ be such that (N ′)3 is the largest cube satisfying (N ′)3 ≤ N . Then

N
1
3 − 1 ≤ N ′ ≤ N

1
3 .

And,

N
∑

k=1

f(T̂ nx)μ(n)

n

=
N ′−1
∑

k=1

(k+1)3

∑

n=k3

f(T̂ nx)μ(n)

n
+

N
∑

n=(N ′)3

f(T̂ nx)μ(n)

n

=
N ′−1
∑

k=1

(k+1)3

∑

n=k3

f(T̂ nx)μ(n)

k3
− O

⎛

⎝

N ′−1
∑

k=1

((k + 1)3 − k3)
( 1

k3
−

1

(k + 1)3

)

⎞

⎠ − O

⎛

⎝

N
∑

n=(N ′)3

1

n

⎞

⎠

We now make use of (6) and get

N
∑

k=1

f(T̂ nx)μ(n)

n

≥

N ′−1
∑

k=1

⎛

⎝

(k+1)3

∑

n=k3

μ2(n)

2qkk3
− O

(

q2
k

k3

)

⎞

⎠ + O

⎛

⎝

N ′−1
∑

k=1

1

k2

⎞

⎠ − O
(

log N − log(N ′)3
)
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≥
1

2qN ′−1

N ′−1
∑

k=1

(k+1)3

∑

n=k3

μ2(n)

k3
− O

⎛

⎝

N ′−1
∑

k=1

q2
k

k3

⎞

⎠ − O

⎛

⎝

N ′−1
∑

k=1

1

k2

⎞

⎠ − O

(

log
N

(N ′)3

)

≥
1

2qN ′−1

N ′−1
∑

k=1

(k+1)3

∑

n=k3

μ2(n)

n
− O(1)

≥ τ(N)

N ′−1
∑

k=1

(k+1)3

∑

n=k3

μ2(n)

n
− O(1)

≥ τ(N)
N

∑

n=1

μ2(n)

n
− O

⎛

⎝τ(N)
N

∑

n=(N ′)3+1

1

n

⎞

⎠ − O(1)

≥ τ(N)
N

∑

n=1

μ2(n)

n
− O(1).

Note that we made of the facts that qk ≤ k
1
8 and 1

2qk
> τ(k3) in the computations. The proof of the Claim, 

and thus of Theorem 1.1, follows immediately by the standard fact that limN→∞
1

log N

∑N
n=1

μ2(n)
n

= 6
π2 . �

3. Proof of Theorem 1.1 part (2)

In this Section we prove Part (2) of Theorem 1.1. That is, we show that the system (X, T̂ ) given in (5)

satisfies the logarithmically averaged Möbius disjointness conjecture (2). In fact, we will prove a stronger 

claim, that (X, T̂ ) satisfies the “usual” Möbius disjointness conjecture (1).

To this end, we will invoke the following (special case of a) Theorem of Huang, Wang, and Ye [11]: Let 

ρ be an invariant measure for (X, T̂ ). Letting d be the sup metric on X = X0 × X1 × Σ, for every n define 

a metric on X via

d̄(x, y) =
1

n

n−1
∑

i=0

d(T̂ ix, T̂ iy).

Let ε > 0 and let

Sn(d, ρ, ε) =

{

min m : ∃x1, ..., xm s.t. ρ

(

m
⋃

i=1

Bd̄(xi, ε)

)

> 1 − ε

}

.

We say that ρ has bounded measure complexity if for every ε > 0 we have that Sn(d, ρ, ε) = Oε,ρ(1).

Theorem 3.1. [11, Theorem 1.1] If every invariant measure ρ has bounded measure complexity then (X, T̂ )

satisfies the Möbius disjointness conjecture (1).

Thus, via Theorem 3.1, if we prove the following Claim then Theorem 1.1 part (2) will follow:

Claim 3.2. The system (X, T̂ ) has bounded measure complexity.

Proof. Recall that

X = X0 × X1 × Σ
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where all these spaces were constructed in Section 2.2. We now show that (3) and (4), that were already 

proved in Section 2.2, imply the Claim: Indeed, let ν be a T̂ ergodic invariant measure. Let ν̃ be its projection 

to Π1X1 ×Π1X2 ×Σ, where Π1 is the projection to the first coordinate. Then, by (3) and (4) and the ergodic 

Theorem, ν̃ is the Dirac measure on {0} × {0} × {i} for some i ∈ {0, 1}. It follows that for ν-a.e. x we have 

that T̂ x = x. Therefore, for any invariant measure ρ we have that for ρ-a.e. x, T̂ x = x. This clearly implies 

that ρ has bounded measure complexity, as claimed. �

Thus, Theorem 1.1 part (2) is proved.

Finally, we make two more remarks. First, in [10] it is shown that systems with bounded measure 

complexity have zero entropy. So, for an alternative proof of Claims 2.4 and 2.5 we could have argued (as 

we do above) that (3) and (4) imply bounded measure complexity, and then appeal directly to [10]. Also, 

via Claims 2.4 and 2.5 and their proof, an alternative proof of Theorem 1.1 part (2) may be derived from 

[15] using the arguments presented in [6, Section 3.4.1].
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