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1. Introduction

A topological dynamical system is a pair (X,T) where X is compact metric space and T € C(X, X).
If the system (X,T') has zero topological entropy, then Sarnak’s Mobius disjointness conjecture [16, Main
Conjecture| asserts that

N
% Z u(n)f(T"z) =o(1), for every f € C(X) and every z € X. (1)
n=1

Here p: N — {—1,0, 1} denotes the Mobius function. We refer to the recent comprehensive surveys [6,13,3]
for references and reports on progress on the conjecture and related topics.

One strong piece of evidence towards the validity of Conjecture (1) is that it is implied by the Chowla
conjecture [18, Conjecture 1.1], see [17]. In 2017, Tao [18] introduced logarithmically averaged versions of
both Sarnak’s and Chowla’s conjectures, that were shown to be logically equivalent. Pertinent to this paper,
if (X, T) has zero entropy, then the logarithmically averaged Mobius disjointness conjecture [18, Conjecture
1.5] predicts that

* Corresponding author.
E-mail addresses: amir.algom@math.haifa.ac.il (A. Algom), zhirenw@psu.edu (Z. Wang).

https://doi.org/10.1016/j.jmaa.2024.128621
0022-247X/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar tech-
nologies.



2 A. Algom, Z. Wang / J. Math. Anal. Appl. 540 (2024) 128621

N
1 pn)f(T"z) _
log N 21 " =o0(1), forevery f € C(X) and every z € X. (2)

The surveys [6,13,3] contain information on progress on this conjecture as well. We also mention the work
of Frantzikinakis and Host [7] on it.

Recently, we studied the rate of decay in Sarnak’s conjecture, showing that there are systems satisfying
Sarnak’s conjecture for which the o(1) as in (1) decays to zero arbitrarily slowly [1]. The purpose of this
paper is to study this problem for the logarithmically averaged Mdobius disjointness conjecture (2). Here is
our main result:

Theorem 1.1. For every decreasing and strictly positive sequence T(n) — 0 there is a zero entropy dynamical
system (X, T) that satisfies:

1. There exist x € X and f € C(X) such that |f(z)] =1 and

. 1 o () f(T"x)
1}\1{1;1&1” log (N) - 7(N) nz::l n > 0.

2. The system (X, T) satisfies conjecture (2).

A few remarks are in order:

1. Using the summation by parts identity,

N nos N—1 M N
> L (ﬁ > u(n)f(T”x)> b S ) f (T,

M=1

for any z € X and f € C(X,R,) in a given dynamical system. So, a decay rate in conjecture (1) would
imply a decay rate in conjecture (2). Thus, as a corollary of Theorem 1.1 we see that there can be no
decay rate in conjecture (1). Hence, Theorem 1.1 generalizes our previous result [1, Theorem 1.1] about
the (lack of a) decay rate in conjecture (1).

2. Theorem 1.1 part (1) is also formally stronger than [I, Theorem 1.1 part (1)] since it is an assertion
about the corresponding lim inf rather than lim sup.

3. By [4, Corollary 10], if Conjecture (1) holds true then for every zero entropy system (X,T) and f €
C(X), (1) holds uniformly in z € X. We remark that we expect a similar result to hold also for the
logarithmically averaged version (2), following e.g. the arguments of Gomilko-Lemariczyk-de la Rue [9].
We do not know, however, if this has appeared in print.

Our results and methods are also related to [6,12,8,14,2]. We refer to [1, Section 1] for more discussion about
this.

We end this introduction with an outline of our construction. Morally, we take advantage of the logarith-
mic averaging to run a version of our argument from [1] in short intervals, thus obtaining stronger results.
More precisely, we consider subshifts of

({—1,0, 1Y x {-1,1}Z, T) , where T'(y, z) = (oy, 0¥ 2) and o is the left shift.

Given a rate function 7 we first construct two slowly growing sequences q,g) — o0, ¢ = 0,1. We then

construct two subshifts such that their base comes from concatenating words of length (k + 1)3 — k3, that
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have non-zero entries at distance at least ql(C) from each other. Our space X is a product of these two spaces

and a “switch” system: A subshift of {0,1} generated by elements x satisfying that x(i) = 2(i + 1) for
k* <i < (k+1)3 — 1. The function f is taken to be

I (@, 20), (D, 20), ) =25,

For Theorem 1.1 part (1), our construction of the point x € X relies on the following observation:

For every k > 1, ¢ = 0,1 and some polynomially growing sequences Méi), one may show that for some

c €0, q( )] orde [O,QI(CI)], either

( ) (0)

—14c¢ MpY,y
Z ST M@ (= MO e+ k) (e (n - M) + b+ k)
n=21(®
or
(1) —1+d Ml(ci—)l
Z Z Mg n—M,ﬁl))+c+k3)-u(q,(€1)(n—M,gl))+b+k3)
= n= M(l)

are larger than T) (or respectively (1)) times their statistically expected values, up to a controllable

error. Here A : N — {#1} denotes the L10uv1lle function.

We then construct our point x via working in one of the subshifts in our space: For every k we pick the
1 giving the inequality above, specifying some digits of the base point and an arithmetic progression in pu
to put in some digits of the fiber. The value of the s in the switch coordinate between k? and (k + 1)3 is
determined by the 7 giving this inequality. With some work, we show that x satisfies Theorem 1.1 part (1).

Finally, to derive part (2) of Theorem 1.1, we show that the systems we construct have bounded measure
complexity. This relies on the fact that every ergodic measure v in the systems we construct is supported
on a T-fixed point. The theorem then follows by invoking a recent result of Huang, Wang, and Ye [11]. See
Section 3 for more details.

2. Proof of Theorem 1.1 part (1)
2.1. Some preliminaries

Let o denote the left shift on {—1,0, 1}% as well as on any of the following subspaces: {—1,0,1}N, {0, 1}V,
and {—1,1}%. On {~1,0,1}? we define the metric

d(.’ﬂ,y) -3~ min{|n\:wn75yn}.
Also, for every z € {—1,0,1}N and k& > € N let x|} € {~1,0,1}*! be the word
k.
w'l = (.’I/'l,l'l+1, ""axk)a

and we use similar notation in the space {—1,0,1}% as well. Next, for every element = € {—1,0,1}N and
p € Ny we define 0Pz € {~1,0,1}N as 0 Pz = 2 if p = 0, and otherwise

(c7Px) [} = (0,...,0), and for all n > p, o~ Px(n) = z(n — p).
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Now, let
Z = {-1,0,1}N x {~1,1}Z.

This is a metric space using the sup-metric on both coordinates. Also, we denote by II;, i = 1,2, the
coordinate projections on Z. We define the skew-product T': Z — Z via

T(y,z) = (o (y), 0” ().

We say that X C Z is a subshift if it is closed and T-invariant. The following Lemma follows directly from
our construction:

Lemma 2.1. The system (Z,T) satisfies that for everyn € N and x = (y,2) € Z
T'(y, 2) = (o"y, o= vz)).
2.2. Construction of some zero entropy systems to be used in the proof

Fix a sequence 7(n) — 0 as in Theorem 1.1. Assuming (as we may) that 7 tends to zero sufficiently

slowly, we construct a sequence q,(co) = q,(co) (1) — oo that satisfies the following properties:

1. —zqtio) > 7(k?), and

2. q,(CO) < k3.

We also define a sequence q,gl) via

ql(cl) = ql(co) — 1.

Note that we also have limj,_, oo q,(cl) = 00.
Next, for every k and i € {0,1} let
AV =P jq) jeLy KB <K +jq) <(k+1)°} CN.
For every k € N and i € {0,1} we construct elements s*%) € {0,1}Y such that:

1. For every k% + j - q,(f) € A,(f),

sPO(R 4 q) =1if j < o
dy

(k+1)?—k31 L

2. s (n) = 0 for every integer n ¢ Al(j)7 orifne A](j) but n = k3 +j - q,(:) with j > [M} - 1.
Ay

The following Lemma is an immediate consequence of our construction. Recall the definition of 6 Pz from
Section 2.1.

Lemma 2.2. For every k € N large enough, i € {0,1} and p =0, ..., q,(j) we have

> (o) )=

jelk?, (k+1)*)NZ

(k+1)3k3] .
qy
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Next, for every k € N and 7 € {0,1} define the truncations
jo) _ {(U—ps(k,i)) |l(€l;+1)3—1 p= O,...,q,(j)} C {-1,0, 1}(k+1)37k3.
We now define, for every i € {0,1}, the space P of all infinite sequences such that
PO = {ye{-1,0,1}N: y|§£+1)3_1 € R,(:) for all k € N}.

The following Lemma is an immediate consequence of Lemma 2.2, summation by parts, and the fact that
the Cesaro mean of the sequences % tends to 0 for both ¢ = 0, 1:
i

Lemma 2.3. For every i € {0,1} and y € P,
k3 -1 .3 . 3
N -0 -1 _ 3
v =3 (|50 1) -
j=1 i<k 451

Finally, recalling the definition of the system (Z,T) from Section 2.1, for every i € {0,1} we define the
subshift of (Z,T)

X,=d| Y1 (P(i) x {—1,0,1}Z)
neNyg

For j € {—1,0,1} we denote by j € {—1,0,1}N the constant element j(k) = i for every k.
Claim 2.4. For every i € {0,1} we have h(X;, T) = 0.
Proof. Fix i. We aim to prove the following statement:
For every sequence njy — oo and y € P if 6™y — 3/ then Jp such that Py’ = 0. (3)

Note that (3) implies the Claim: Indeed, let v be a T ergodic invariant measure. Let v be its projection to
the first coordinate. Then, by (3) and the ergodic Theorem,' v; is the Dirac measure on {0}. It follows that
for v-a.e. (y,2), T(y, 2) = (y, z). This shows that v has zero metric entropy, and the Claim follows from the
variational principle [19, Chapter §].

To prove (3), let y € P®). Suppose 0™y — 4. Let m € N. Then there is some ko such that for all k > kg
we have that

neg+m

Note that, assuming k is large enough (depending on m), there can be at most 2 non-zero digit in ym’;*‘m:
Indeed, such entries appear in places of the form ¢3 —|—jqéz) + p for some £ and p € {0, ..., qf,l)}. We make the
following two observations:

1. If there is some £ and j; < jo such that

ng §£3+jz‘q;i)+]9§nk+m, 1=1,2,

! For example, one can apply [5, Exercise 2.3.7] with (3) to see that there exists a vy generic point y that admits a p with oPy = 0.
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then
(J2 — J1) ~q§” <m.

So, assuming ¢ = £(k) is large enough, we see that jo — j; < 1, a contradiction.
2. If there is some ¢ and j1, j2, p1, p2 such that
3 5 () 3, 5 (1)
ng <07+ j1qp° +p1 < ng+m, and ng < (04 2)° + jagyly +p2 <np +m

then, since ¢3 +j1qéi) +p1 < (0+1)%and (£ +2)3 +j2q§322 +p2 > (£ +2)3, we have that

(+2)° = (€+1)° < (C+2) + oDy + 72 — (€ + gl +p1) <

Assuming ¢ is large enough, this is impossible. Note that the same argument works for with ¢ + 2
swapped for £ + a for any a > 2.

We conclude that for every m the word y/|* consists of 0’s, with the exception of at most two non-zero entries
(note that these non-zero entries must be the same regardless of m). So, there exists some j € N, j = j(v/),
such that o/y’ = 0, proving (3). O

Finally, let
A={we{0,1}N: wi)=wi+1), k> <i<(k+1)> -1},

and define

We require the following Lemma:
Lemma 2.5. h(2,0) = 0.
Proof. As in the proof of Claim 2.4, suppose we show that
For every sequence ny — oo and w € A, if 0™ w — w’ then Ip such that oPw’ is a fixed point.  (4)

Then the Lemma will follow from the variational principle, since (4) implies that every ergodic measure for
(¥, 0) is a Dirac mass on a o-fixed point of the form i for i = 0, 1.

To prove (4), suppose o™ w — w' for some w € X. Let d(-,-) denote the usual distance between a point
and a set in R. Let C denote the set of cubic positive integers. Fix m € N. Then there are two options:

1. If limg 00 d(ng, C) = oo then there is some kg large enough such that for all k > ko, [ng, ng + m] does
not contain a cubic number.

2. Otherwise, there is some kg = ko(m) such that for every k > kg the interval [ny, ny + m] may contain
at most 1 cubic number.

Now, if (1) happens then for every k large enough all the digits of w|**™ = w'|T* are the same. If (2)
happens then still this might occur. Otherwise, there is some j = j(w’) where all the digits w’|] are equal,
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and then all the digits w’ m—l are equal, but perhaps the constant digit occurring after j differs from that
occurring before j. Note that j must be unique, and does not depend on m. So, either w’ =i for i = 0,1 or
oJw' =i, proving (4). O

2.8. Correlations along arithmetic progressions in the Mdbius function
Recall the definition of Z from Section 2.1 and let g : Z — {—1, 1} be the function

9(y, z) = 20.

For every k, i = 0,1, and r, ¢ such that r, ¢ € [0, ql(j)], writing

-3 - 3
G Z 7 -0U-1)
J<k—1 951

; @
ql(cb)*H’T MLy

Sfcl = Z Z /\(ql(f)(n - Mél)) +c+ k). ,u(q,(:)(n - M,gz)) +b+ K.
b=r n:MI(c”

let

In the following Lemma we use the construction from Section 2.2.

Lemma 2.6. For every k and i € {0,1} and for every two integers c,r € |0, q,(j)], let € P x{-1,0,1}% C
X; be any element such that:

1. Fork* <n < (k+1)3, I1z(n) s,(:)(n —r).
2. For M,Ei) <n< M,EQI, Iyz(n) = A (q,(:)(n — M,Ei)) +c+ k3).

Then
(k+1)° .
3 9T w)u(n) = ¥+ 0(g).
n=k3

Note that by the construction of P() x {-1,0, 1}Z in Section 2.2, there exists an element z as in the
statement of the Lemma in that space.

Proof. In this proof we suppress the ¢ in our notation and simply write ¢, M. First, for every two integers
j e [Mk, Mk+1] and b € [’I", q+r— 1],

q(G—My)+b+k? k3 -1 a(j—Mp)+b+k>—1
Y, )@= z)d+ Y (he)(d)
d=1 d=1 d=k3
q(j—Mpg)+b+k>—1
= M + Z sg)(dfr)
d=k?

q(j—Myp)+b+k>—r—1 ‘
— M, + > s (d) = My +j — My, = j.
d=k3—r
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Note the use of Lemma 2.3 in the second equality, and the use of the definition of sg) together with the
fact that Mp41 — My, = {W} — 1 in the last one. Therefore,

(k+1)*

S g(T"@)u(n)

n=k3

Mp41 g+r—1

= 3D @O MO ) g (= M) + b+ K7) + O(g)
j=M; b=r

Mp41 g+r—1

. a-(— My, ;3
_ Z Z g (qu'(]MkHbJrkSHlx, - 4= M)k (H””)(d)ﬂgx> w(q- (G — My) —|—b—|—k3)
j=Mj, b=r
+0(q)
q+r—1 . s -
Z g (O-Q-(J*JV[k)+b7r+k Sl(cl)’ UJH2x> w(q(G — M) + b+ ]{}3) +0(q)

b=r

Mpy41 g+r—1

S0 Ma- (G- M)+ e+ k) ulg- (5 — My) +b+ k) + O(q)
j=M; b=r

Indeed: The first equality follows since g(7T™z) and p are both bounded sequences, in the second equality
we use Lemma 2.1, and in the third equality we are using the previous equation array and the definition
of x. This definition along with the definition of SS) justifies the last equality, where we simply get the

definition of Sffcl |

Remark 2.7. In the setup of Lemma 2.6, we may similarly find another 2 € P®) x {—1,0,1}% that satisfies
the conclusion of Lemma 2.6, but for —Sf;ci. Indeed, this follows from the very same proof by picking

x € P x{-1,0,1}% to be any element such that for every k% < n < (k+1)3 we have I, z(n) = s,(:)(n—r),
and for M,gi) <n< M1521 we put Ilaz(n) = —A (q,(f)(j - Mlgi)) +c+ k3).

We will also require the following Lemma:

Lemma 2.8. For every k large enough there is either some ¢ € |0, q,(co)) such that

(k+1)?
k,0 o (0)
k  m=k3
or some d € [0, q,(cl)) with
(k+1)3
k1 0
~Sitha = — > #im) - O0(q).
2qk m=k3

Proof. In this proof we again simply write ¢, M for q,(co), M ,io) respectively. Now, for every ¢, r € [0, ¢,

q—1 (k+1)%—k3
ZSffm = Z A(m + k) - (u(m+r+k3)+...+,u(m+r+q— 1+k3))
c=0

7 m=1
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So,
q—1 (k+1)°—K®
SSEO= 3" AmAE) - (pm+ )+ A p(m+ g — 1+ E)) + 0 (7).
c=0 m=1
Similarly,
q—1 (k+1)3 -k
ZSfch = Z Am+E) - (pm+14+k) + . +pm+q—1+E))+0 (¢%).
c=1 m=1

Combining these equations,

g—1 q—1 (k+1)® (k+1)3
D OSEI=S Seha= Y. Amum)+0(¢*) = Y prm)+0 ().
=0 d=1 m=Fk3 m=Ek3

This implies the Lemma. 0O

2.4. Construction of the point and system as in Theorem 1.1

Recall that for every k the inequality from Lemma 2.8 is given by q](:) where i is either 0 or 1. Recalling

the spaces constructed in Section 2.2, we define
XI:X()XXlXZ. (5)

We now construct a point € X as follows: For every k € N and k% <n < (k+1)3, let i = 0,1 correspond
to the term yielding the inequality from Lemma 2.8. We put ¢ := ¢ and then define in the ¢-th coordinate
2 (n) := x(n) where z is as in Lemma 2.6 if i = 0 or Remark 2.7 if 4 = 1, corresponding to k, and either
r=candc (ifi=0)orr=d+1and ¢c=4d (if i = 1) yielding the inequality from Lemma 2.8. Also, for
the indices k% < n < (k + 1) we put £ in the ¥-coordinate of x. For all £ = 0,1 and digits not covered by
the procedure above, we make some choice that ensures () € P() x {-1,0, 1}Z. Note that by Lemma 2.6
and the construction of P()| such a choice is readily available.
Finally, we make X a dynamical system via the self-map 7' € C(X) defined by

T, pV, 5) = (TP, Tp', a(s)).
The function f € C(X) is taken to be
F(®,29), (10, 20), 5) = %™,
We now prove part (1) of Theorem 1.1 via the following two claims:
Claim 2.9. We have h(X,T) = 0.

Proof. By Claim 2.4 and Lemma 2.5 each factor in the product space X has zero entropy, which implies
the assertion via standard arguments. O
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Claim 2.10. For all N large enough,

T 2

i >7’ iﬂ

n=1
where O(1) does not depend on N. In particular
al 6
o >0
l}ﬂlilof (logN g = g2
Proof. In this proof whenever we write g we mean ql,(C ) (this is of little consequence since q,(C ) = q,(co)
First, we claim that for every large enough k € N
(k+1)* 1 (k+1)*
> @ autn) > 5 S pln)? — Olar)
n=k3 qx n=Fk3
Indeed, this follows since by our construction
(k+1)? (k+1)?
S f@r)pun) = Y g(T" (n))u(n)
n=k3 n=k3

1).

where g and 29 (n) are as in Lemma 2.6 (corresponding to the parameters as in the choice of z). Then (6)
follows directly from a combination of Lemma 2.6 and Lemma 2.8, together with the construction of x and
of q.

Given N let N’ be such that (N’)3 is the largest cube satisfying (N')?> < N. Then

Ni —1<N' <N

ol

And,

/\

Zf (n)
k=

1

N1 (k) T N Tm2) u(n
NN RTINS SO (G0
k=1 n=k3 n=(N")3
N'—1 (k+1)3 N'—1 N
= > ud <) —0 [ > ((k+1)? kS)(klgfﬁ) —o( > %
k=1 n=k3 k=1

We now make use of (6) and get

= e O (log N —log(N')?)
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R (k+1)* N'—1 2 N1 N
> £ -0 — —O(log —)
2an'—1 ; nzk3 = = (N7)?
1 N'—1 (k+1)° L2
> o1
T 20v l; nzl’;3 )
N —1 (k+1)3 /142( )
>N 3 Y B o
k=1 n=k3
2 (n) S
>T(N)Y_ —=-0|rN) > —]-0@)
n=1 n=(N")3+1

Note that we made of the facts that g < k3 and 5- > 7(k3) in the computations The proof of the Claim,

6
- 72

and thus of Theorem 1.1, follows immediately by the 5tandard fact that imy 00 152 g N Z " (”) O

3. Proof of Theorem 1.1 part (2)

In this Section we prove Part (2) of Theorem 1.1. That is, we show that the system (X,7’) given in (5)
satisfies the logarithmically averaged Mobius disjointness conjecture (2). In fact, we will prove a stronger
claim, that (X,T) satisfies the “usual” Méobius disjointness conjecture (1).

To this end, we will invoke the following (special case of a) Theorem of Huang, Wang, and Ye [11]: Let
p be an invariant measure for (X, T) Letting d be the sup metric on X = Xy x X7 x X, for every n define
a metric on X via

Let € > 0 and let

Sn(d, p,€) = {minm 23Ty, e Ty SELp <U Bd(xi,e)> >1-— e} .

i=1
We say that p has bounded measure complexity if for every € > 0 we have that S, (d, p,€) = O, ,(1).

Theorem 3.1. [11, Theorem 1.1] If every invariant measure p has bounded measure complexity then (X, T)
satisfies the Mébius disjointness conjecture (1).

Thus, via Theorem 3.1, if we prove the following Claim then Theorem 1.1 part (2) will follow:
Claim 3.2. The system (X, T) has bounded measure complexity.

Proof. Recall that

X:X()XXlXE
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where all these spaces were constructed in Section 2.2. We now show that (3) and (4), that were already
proved in Section 2.2, imply the Claim: Indeed, let v be a T ergodic invariant measure. Let U be its projection
to Iy X x IT; X x X, where 15 is the projection to the first coordinate. Then, by (3) and (4) and the ergodic
Theorem, ¥ is the Dirac measure on {0} x {0} x {i} for some i € {0,1}. It follows that for v-a.e. x we have
that Tz = z. Therefore, for any invariant measure p we have that for p-a.e. x, Tz = z. This clearly implies
that p has bounded measure complexity, as claimed. O

Thus, Theorem 1.1 part (2) is proved.

Finally, we make two more remarks. First, in [10] it is shown that systems with bounded measure
complexity have zero entropy. So, for an alternative proof of Claims 2.4 and 2.5 we could have argued (as
we do above) that (3) and (4) imply bounded measure complexity, and then appeal directly to [10]. Also,
via Claims 2.4 and 2.5 and their proof, an alternative proof of Theorem 1.1 part (2) may be derived from
[15] using the arguments presented in [6, Section 3.4.1].

Acknowledgments

This research was supported by Grant No. 2022034 from the United States - Israel Binational Science
Foundation (BSF), Jerusalem, Israel. Z.W. was also supported by the NSF grant DMS-1753042 and a von
Neumann Fellowship at the TAS.

References

[1] Amir Algom, Zhiren Wang, Arbitrarily slow decay in the Mobius disjointness conjecture, in: Ergodic Theory and Dynamical
Systems, 2022.

[2] Dmitry Dolgopyat, Changguang Dong, Adam Kanigowski, Péter Nandori, Flexibility of statistical properties for smooth
systems satisfying the central limit theorem, Invent. Math. 230 (1) (2022) 31-120.

[3] Michael Drmota, Mariusz Lemariczyk, Clemens Miillner, Joél Rivat, Some recent developments on the Sarnak conjecture.

[4] E.H. el Abdalaoui, Joanna Kulaga-Przymus, Mariusz Lemanczyk, Thierry de la Rue, Mébius disjointness for models of
an ergodic system and beyond, Isr. J. Math. 228 (2) (2018) 707-751.

[5] Manfred Einsiedler, Thomas Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics,
vol. 259, Springer-Verlag, London, 2011.

[6] Sébastien Ferenczi, Joanna Kulaga-Przymus, Mariusz Lemariczyk, Sarnak’s conjecture: what’s new, in: Ergodic Theory
and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, in: Lecture Notes in Math., vol. 2213,
Springer, Cham, 2018, pp. 163—235.

[7] Nikos Frantzikinakis, Bernard Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. Math. (2) 187 (3) (2018)
869-931.

[8] Krzysztof Fraczek, Adam Kanigowski, Mariusz Lemanczyk, Prime number theorem for regular Toeplitz subshifts, Ergod.
Theory Dyn. Syst. 42 (4) (2022) 1446-1473.

[9] Alexander Gomilko, Mariusz Lemanczyk, Thierry de la Rue, Mobius orthogonality in density for zero entropy dynamical
systems, Pure Appl. Funct. Anal. 5 (6) (2020) 1357-1376.

[10] Wen Huang, Jian Li, Jean-Paul Thouvenot, Leiye Xu, Xiangdong Ye, Bounded complexity, mean equicontinuity and

discrete spectrum, Ergod. Theory Dyn. Syst. 41 (2) (2021) 494-533.
[11] Wen Huang, Zhiren Wang, Xiangdong Ye, Measure complexity and Mé&bius disjointness, Adv. Math. 347 (2019) 827-858.
[12] Adam Kanigowski, Mariusz Lemariczyk, Maksym Radziwill, Prime number theorem for analytic skew products, preprint,
arXiv:2004.01125, 2020.

[13] Joanna Kulaga-Przymus, Mariusz Lemariczyk, Sarnak’s conjecture from the ergodic theory point of view, Encyclopedia
Complexity Systems Sci. (2024), in press, https://link-springer-com.ezproxy.haifa.ac.il /referenceworkentry/10.1007/978-
1-0716-2388-6__735.

engxing Lian, Ruxi Shi, A counter-example for polynomial version of Sarnak’s conjecture, Adv. Math. & 5.

Zh ing Lian, Ruxi Shi, A le f 1 ial i fS k’ j Adv. Math. 384 (2021) 107765

] Kaisa Matomiki, Maksym Radziwill, Multiplicative functions in short intervals, Ann. Math. (2) 183 (3) (2016) 1015-1056.

] Peter Sarnak, Mobius randomness and dynamics, Not. S. Afr. Math. Soc. 43 (2) (2012) 89-97.

] Terence Tao, The Chowla conjecture and the Sarnak conjecture, https://terrytao.wordpress.com/2012/10/14 /the-chowla-
conjecture-and-the-sarnak-conjecture/.

[18] Terence Tao, Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, in: Number Theory—

Diophantine Problems, Uniform Distribution and Applications, Springer, Cham, 2017, pp. 391-421.
[19] Peter Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-
Berlin, 1982.



	Arbitrarily slow decay in the logarithmically averaged Sarnak conjecture
	1 Introduction
	2 Proof of Theorem 1.1 part (1)
	2.1 Some preliminaries
	2.2 Construction of some zero entropy systems to be used in the proof
	2.3 Correlations along arithmetic progressions in the Möbius function
	2.4 Construction of the point and system as in Theorem 1.1

	3 Proof of Theorem 1.1 part (2)
	Acknowledgments
	References


