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Abstract

Two-photon lithography (TPL) is an attractive technique for nanoscale additive manufacturing of functional
3D structures due to its ability to print sub-diffraction features with light. Despite its advantages, it has not
been widely adopted due to its slow point-by-point writing mechanism. Projection TPL (P-TPL) is a high-
throughput variant that overcomes this limitation by enabling the printing of entire 2D layers at once.
However, printing the desired 3D structures is challenging due to the lack of fast and accurate process
models. Here, we present a fast and accurate physics-based model of P-TPL to predict the printed geometry
and the degree of curing. Our model implements a finite difference method enabled by operator splitting to
solve the reaction-diffusion rate equations that govern photopolymerization. When compared with finite
element simulations, our model is at least a hundred times faster and its predictions lie within 5% of the
predictions of the finite element simulations. This rapid modeling capability enabled performing high-
fidelity simulations of printing of arbitrarily complex 3D structures for the first time. We demonstrate how
these 3D simulations can predict those aspects of the 3D printing behavior that cannot be captured by
simulating the printing of individual 2D layers. Thus, our models provide a resource-efficient and
knowledge-based predictive capability that can significantly reduce the need for guesswork-based iterations
during process planning and optimization.
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1. Introduction

Two-photon lithography (TPL) is a photopolymerization-based technique that offers the ability to
additively manufacture cm-scale three-dimensional (3D) structures with 100 nm-scale features [1-3]. TPL
relies on non-linearities in the absorption of high-intensity light from a femtosecond laser and the
subsequent polymerization chemistry to achieve resolutions that are smaller than the optical diffraction
limit [1]. Thus, TPL has found applications in a diverse range of research areas, such as medicine [4, 5],
microelectronics [6], mechanical metamaterials [7-9], optical metamaterials [10, 11], and micromachines
[12, 13]. Although TPL is an attractive choice for prototyping, its deployment beyond the laboratory has
been hindered by its low printing rate. A conventional TPL system scans a focused laser spot point-by-
point, creating and overlapping individual polymerized volumes (i.e., “voxels”) to build up a 3D structure.
The slow processing is a consequence of the low scanning speed that lies between 10 um s™! and 100 mm
s ! [14]. Several approaches have been demonstrated recently that increase the throughput of TPL via
parallelization, rapid serial scanning, or a combination of the two techniques [15-18]. However, these
approaches have not yet been well-studied and predictive process models for these approaches are lacking.
Consequently, printing of the desired 3D structures requires slow and error-prone guesswork-based
iterations. Here, we focus on overcoming this challenge for the projection two-photon lithography (P-TPL)
process, which is a high-throughput implementation of TPL. We present a physics-based model of
photopolymerization to enable rapid and accurate predictions of the 3D printed geometry and the degree of
curing during P-TPL.

P-TPL is a high-throughput technique that replaces the serial scanning scheme of conventional TPL
with a layer-by-layer projection scheme. We have previously demonstrated that P-TPL can increase the
throughput by up to three orders of magnitude with no loss of resolution [15]. A schematic of the P-TPL
system is shown in Fig. 1. In this technique, a patterned 2D femtosecond light sheet is projected within the
photopolymer material to cure a thin layer of the material around the focal plane. A key element of P-TPL
is that the light sheet is focused in both the space and the time domains by temporally stretching and re-
compressing the femtosecond pulses [15]. This ensures that a strong axial gradient of light dosage exists
around the focal plane, thereby achieving axial (i.e., depth) resolutions on the scale of 1 pm. A digital mask
is applied using a digital micromirror device (DMD) to pattern the beam. The DMD consists of more than
a million micromirrors and each one of them can be independently switched on or off to act as a switchable
pixel (px). Femtosecond laser light, that is reflected from the DMD, initiates polymerization in those regions
of photopolymer that correspond to the illuminated pixels of the DMD. Therefore, the entire X-Y plane can
be printed at once and the rate of printing is independent of the density or complexity of the projected
pattern. An X-Y-Z stage allows for repositioning of the photopolymer relative to the focal plane for printing
at different planes. 3D structures are generated by updating the image on the DMD and printing at the
different X-Y planes.

Models that can accurately predict the printing outcomes are highly valuable for process planning,
control, and optimization. However, physics-based models of TPL are not readily available as only a few
studies have modeled the photopolymerization mechanisms underlying TPL [19-24]. We suspect that it is
because of the significant challenges involved in computationally modeling photopolymerization at the
time scales of TPL. During conventional TPL, the relevant physical processes vary over time scales ranging
from tens of ns to minutes, i.e., on a time scale spanning at least ten orders of magnitude [25]. It is
computationally challenging to perform physics-based simulations over such a long period. We have
previously demonstrated that accurate 2D finite element (FE) models of photopolymerization in P-TPL can
be developed by taking advantage of its area projection scheme, which significantly reduces the time
complexity [23]. However, 3D models have remained elusive due to the computational complexity of the



problem. Here, we overcome this challenge by presenting a finite difference method (FDM) that
implements operator splitting to achieve rapid and accurate modeling of 3D printing in P-TPL.

Our choice of the simulation technique was driven by the need to overcome the speed versus accuracy
tradeoff that exists in computational modeling of manufacturing processes. In general, FE models are highly
accurate, but they are very slow for 3D simulations [26]. In contrast, data-driven machine learning (ML)
models can rapidly predict the process outcomes, but they are not as accurate as FE models [27]. For P-
TPL, we have demonstrated how neural network (NN)-based surrogate ML models can rapidly predict
whether printing would occur under a given set of conditions to >98% accuracy [28]. However, these
models could not accurately predict the size of the printed structures because of their poor fidelity. There
are many manufacturing problems that demand both speed and accuracy of predictions simultaneously. For
example, predicting the dimensions of the 3D printed structures with varying cross-sections requires
accurate 3D modeling of the reaction-diffusion equations in P-TPL. This is beyond the capabilities of the
NN surrogate models, and it would take an FE simulation on the order of days to perform a single
simulation. Fast and accurate predictions are also necessary to solve the inverse design problem, whereby
the processing parameters required for a desired printing outcome are determined through computation.
Optimization of this nature would require many forward design simulations, which would be impractically
slow using FE simulations. Thus, it is desirable to develop a P-TPL model that is capable of fast and
accurate predictions.

Here, we demonstrate how an operator splitting approach combined with a finite difference method
(FDM) can provide deterministic, physics-based, highly accurate 2D and 3D models of
photopolymerization in P-TPL. Both FDM and FE method simulate physical phenomena by discretizing
and solving the physics-based partial differential equations that describe the phenomena [29]. However,
FDM solves partial differential equations via finite difference approximations that are often performed on
uniform grids. In contrast, the FE method solves partial differential equations via variational techniques
over mesh elements which are better suited for discretizing complex geometries [30, 31]. For simple
geometries that can be readily discretized into uniform grids, this distinction often leads to FDM being
faster and easier to implement than FE methods due to the ease of computing with uniform grids [29, 30].
This makes FDM particularly well suited for simulating photopolymerization in P-TPL because the
simulations are performed over a cuboid geometry, which is simple enough to be discretized using a
uniform 3D grid. However, for problems that have multiple coupled physical phenomena, such as the
reaction-diffusion problem, FDM can become slow and inaccurate [32, 33]. This challenge in FDM has
been overcome in the past by applying operator splitting techniques wherein the terms of the equations that
arise from the different physics are computed separately at each time step [33, 34]. For example, operator
splitting has been applied for the modeling of reaction-diffusion equations in combustion problems and in
the modeling of epidemics [35, 36]. However, these techniques have not yet been applied for the modeling
of photopolymerization during TPL. Here, we: (i) present a formulation of the operating splitting FDM
(OS-FDM) to model the reaction-diffusion equations of P-TPL photopolymerization and (ii) demonstrate
that the predictions are both fast and accurate.

2. Modeling Methods
2.1. Reaction-Diffusion Model of Photopolymerization
The photopolymerization process in TPL is governed by the coupled physical phenomena of chemical

reactions and diffusion of chemical species [19]. Upon absorption of light by the photopolymer material,
radicals (i.e., reactive species) are generated locally in it. For acrylate-based photopolymers, such as those



used in P-TPL, these radicals initiate chain reactions in the photopolymer. These chain reactions lead to
crosslinking via the formation of new covalent bonds between the carbon atoms of different photopolymer
molecules. As the cross-linking process regenerates the radicals, the chain reactions can continue to
crosslink (i.e., cure) the photopolymer until the radicals are terminated by reactions with those species that
do not regenerate radicals. For example, radicals can be terminated by the dissolved oxygen that is present
in the photopolymer [19]. Printing occurs when the degree of polymer curing (DOC) exceeds a threshold
value (DOCy;) above which the material becomes insoluble in a solvent. Thus, the printing process is
determined by the combination of the kinetics of the chemical reactions and the spatiotemporal evolution
of the concentration of the chemical species via diffusion. The reaction and the diffusion phenomena are
coupled because the species that react may also diffuse. Thus, coupled reaction-diffusion equations govern
the photopolymerization process.

Previously, we have demonstrated that the following set of coupled partial differential equations (PDEs)
constitutes an accurate model of the P-TPL polymerization process [23]:
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In these equations, the square bracket notation [species] signifies the concentration of the chemical species.
The species P represents the monomer (or oligomer) that undergoes cross-linking. The species R represents
the primary radicals that are formed from the photoinitiator molecules upon illumination. The species P
represents the secondary radicals that are formed during the cross-linking reactions when the primary
radicals react with the species P. R* represents the deactivated species formed when the primary radicals
R" react with oxygen (O.), whereas P* represents the deactivated species formed when the secondary
radicals P" react with oxygen. The deactivated species do not participate in the cross-linking process. The
terms k, k,, and k; represent the reaction rate constants for the polymerization (i.e., cross-linking) reactions,
the quenching reactions between the primary radicals and oxygen, and the termination reactions between
the secondary radicals and oxygen, respectively.

The optical input to the polymerizing system is provided through the output of the optical dosage model
that predicts the distribution of optical dosage per pulse (D,) in the focal volume. The term D, is evaluated
as the time integral of the square of the instantaneous intensity over the duration of the entire femtosecond
pulse, and it represents the energy input per pulse during two-photon absorption. The optical dosage and
intensity models that were used in this work are described elsewhere [15, 37]. After each femtosecond
pulse, new primary radicals are generated in proportion to the dosage (D,), the concentration of the
photoinitiator (PI), the two-photon cross section of the PI molecule (¢), and the quantum efficiency of the
PI molecule (@), which represents the efficiency of radical generation. This relationship is represented by



Eq. (7). The parameter /4 is the Planck’s constant and v is the central frequency of the illumination beam.
The set of Egs. (1)-(7) represent the governing equations that govern photopolymerization in P-TPL. The
parameters that were used here to solve these equations are listed in Table 1. These parameters were
obtained from literature and our past work [19, 37, 38].
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Here, Eq. (4) is the only equation with spatial derivative terms and these terms correspond to the
diffusion of oxygen through the photopolymer. As oxygen is the smallest molecule amongst the reacting
species, its diffusive effect on the kinetics of the reactions is strongest. The diffusion of molecules larger
than oxygen has not been considered here because the diffusivity of such molecules is at least 10 times
lower than that of oxygen. In previous versions of our model, we had accounted for the diffusion of R”,
which is the next larger species [23, 37]. However, we found that the diffusive effect of R* is negligible
because of the low diffusivity of R* and because R" is rapidly consumed before any appreciable diffusion
can occur [37]. For other larger species, it has been demonstrated that their diffusive effects become
dominant only at longer time scales on the order of a second [20], which is at least 100 times longer than
the time scales of P-TPL exposures. Therefore, for all species other than oxygen, their concentrations at
any spatial location and any point in time can be fully determined if the past concentrations of various
species at that same point in space are known. That is, the concentrations of these species are not influenced
by how their concentrations are changing at neighboring points. For these ordinary differential equations
(ODEs), tracking any type of spatial gradients is unnecessary as the rate equations can be solved
independently at each spatial location. Thus, we observe that if the ODEs were to be decoupled from the
spatial derivative terms in Eq. (4) by decoupling the effect of oxygen, the memory and compute time
requirements for modeling would be significantly reduced.

Nonetheless, oxygen diffusion is an important phenomenon in photopolymerization, and it cannot be
abstracted away. An accurate model of oxygen diffusion is key to predicting chemical proximity effects,
which is the primary advantage of this model over a simple optical model [37]. When we previously solved
the reaction-diffusion model using the COMSOL software package, the FE method was applied to all
variables and equations, which was computationally wasteful [23]. Here, we have overcome this challenge
by applying an operator splitting method to Eq. (4). Operator splitting refers to obtaining a solution by
separating the relevant governing differential equations into two or more parts, solving the parts separately
at each time step, and then combining the solutions [34]. The terms of the equations are often separated by
splitting the terms that represent the various physical phenomena [34]. Operator splitting also enables
applying different numerical techniques to solve the split terms by optimizing the solver for each set of
terms separately. Here, we have split Eq. (4) into two parts; one part represents the reaction phenomenon
whereas the other part represents the diffusion phenomenon.



2.2. Operator splitting finite difference method (OS-FDM)

We have implemented the OS-FDM model of Egs. (1) — (7) in the MATLAB software package. The
flowchart of the code is illustrated in the appendix. The model parameters and the initial conditions for
these simulations are the same as those used in our past FE simulation of P-TPL [37]. The model parameters
are listed in Table 1 and the initial conditions are listed in Table 2. The OS-FDM simulation was performed
on a uniform rectangular 2D grid (for 2D problems) and a uniform rectangular 3D grid (for 3D problems).
The total number of nodes (V) can be obtained in terms of the nodes along the X, Y, Z axes as: N=n, X n,
x n.. To achieve faster simulations, computations were performed using N-length vectors wherever possible
instead of 2D or 3D matrices. Each vector uses natural ordering, which for a finite difference discretization
refers to numbering the nodes from left to right, bottom to top, and first page to last page [39]. Concentration
vectors for each chemical species were created and set to their initial values that are listed in Table 2.

Here, we have performed computations with a uniform time step of 10 ps. As the period between the
pulses is 200 ps, this value of time step is fine enough to capture the effect of individual femtosecond pulses
on the polymerization process. At the beginning of the simulation, a list of those time steps was created at
which pulse illumination events occur. As the duration of each pulse is at least 10" times shorter than the
time step, each pulse event can be uniquely associated with a single time step. At these time steps, the effect
of each femtosecond pulse illumination event was captured by updating the concentration of the primary
radicals R" and the PI using Eq. (7). To implement Eq. (7), a vector of the optical dosage at each node was
created from the optical simulation. The concentration of R* was increased by the value calculated from
Eq. (7) and the concentration of PI was reduced by half that amount because each PI generates two primary
radicals. This pulse tracking scheme is equivalent to making the approximation that each illumination event
occurs instantaneously and that a significant unilluminated dark time exists until the next illumination event.
This approximation is justified here due to the time scales of pulse duration and laser repetition rate, and it
has been found to be accurate in our past FE simulations of P-TPL [23, 37].

At each time step, the concentrations of all chemical species other than O, were updated by solving
Egs. (1) —(3) and (5) — (6) using the fourth order Runge-Kutta (RK4) method [40]. The RK4 method was
chosen because these equations form a set of coupled nonlinear ODEs. The RK4 method is explicit, so it
does not require the solution of a nonlinear matrix equation, which is computationally expensive. At the
same time, it is a higher order method and enables relatively larger time steps without an unacceptable
increase in the accumulated error. To maximize computation speed, calculations were largely performed to
single precision and the values of intermediate variables were memorized and reused wherever it was
possible. It is noteworthy that for these computations, it is not necessary to know the concentration of O, at
the current time step; instead, knowledge of the values from the previous time step is adequate. This allows
one to solve Egs. (1) — (3) and (5) — (6) separately from Eq. (4) at each time step, thereby representing the
operator splitting aspect of this method. Nevertheless, these equations are still coupled with Eq. (4) because
the effect of change in [O-] is captured in the next time step.

The concentration of O, was calculated at each time step by solving Eq. (4) with the updated values of
[R"] and [P"], thus coupling Eq. (4) with the rest of the equations and linearizing the reaction terms.
Computing the solution of Eq. (4) requires discretizing the spatial derivative term. This was done by using
a centered difference approximation for the spatial derivative terms [39]. In two dimensions, based on a
five-point stencil, Eq. (4) can be discretized over space as:
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Here, / is the mesh node spacing and the LHS represents the time derivative of the concentration of O, at
the spatial node (i, j). The formulation in three dimensions is identical except for the addition of terms
representing adjacent nodes in the third dimension, i.e., the spatial derivatives were based on a seven-point
stencil for a 3D problem. The implicit (backward) Euler method was used to solve Eq. (4) at each time step.
This allows for the change in oxygen to be simulated without the loss of numerical stability. The standard
formulation of the implicit Euler method is [41]:
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In order to represent this as a matrix operation, a sparse N x N matrix 4 was created to represent the
dependency of the rate of change of [O:] at a given node on the values of [0,] at adjacent nodes; this is
equivalent to using Eq. (8) to approximate the time derivative. When [0, ] is a vector of the values of oxygen
concentration at each of the N nodes listed in natural ordering, in two dimensions, Eq. (9) can be written as
the matrix operation:
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In three dimensions, the formulation of Eq. (10) is similar, except that 4 has two additional off-diagonals
of a, representing the additional connectivity in the third dimension. Solving Eq. (10) is the only step in
this technique that requires direct matrix operations. Since A is symmetric positive definite (as it is
Hermitian and strictly diagonally dominant), it can be solved very rapidly using the conjugate gradient
method—indeed, more rapidly than it would take to iterate using a higher order explicit method.

Dirichlet boundary conditions were applied to represent the presence of abundant oxygen in the
photopolymer beyond the region of printing by holding the oxygen concentration constant at its initial value
at the boundary nodes. This allows for the simulation of only the area of interest while still capturing the
effect of diffusion throughout the simulated volume. Dirichlet boundary conditions can be applied by



replacing the rows and columns of A corresponding to boundary elements with identity matrices to keep
them unchanging at their prescribed value. However, this approach causes A to become asymmetric and
non-Hermitian. To preserve its good convergence properties, the boundary conditions are instead reapplied
at each time step by changing the values of [0,] at boundary nodes to their prescribed values after solving
Eq. (10).

By separately solving Eq. (4) and the set of Egs. (1) — (3) and (5) — (6), the evolution of the
concentrations of all species were computed over time. At each time step, the DOC was evaluated from the
change in concentration of the species P as: DOC = (1- [P]/[P],). The subscript (o) notation indicates the
initial value of the parameter. The value of the polymerization rate constant (k,) was updated intermittently
to account for the deceleration of the polymerization reaction with an increase in the DOC. The relationship
between the k, and the DOC was obtained from literature values [19]. For the range of values of DOC
observed in this study, k, was obtained by decreasing it linearly by 6% of its initial value for every 1%
increase in the DOC. The parameter &, was updated only when the change in the Euclidean norm of DOC
over a time step exceeded a tolerance value, which was set to 0.001 here. At each time step, the printed
region can be determined from the DOC distribution by evaluating the regions in which the computed DOC
exceeds the solubility threshold DOC. Thus, the model presented here can be used to simulate both the
printed geometry and the degree of polymer curing resulting from a given set of processing conditions.

3. Results and Discussions

3.1. 2D modeling

We have characterized the performance of the OS-FDM model by simulating the printing of benchmark
3D structures that exhibit translational symmetry along one axis. Specifically, we have simulated the
printing of a single layer of an array of five lines with the projected linewidth of 5 pixel (px), a period of
30 px, and a length of 150 px. For our simulated P-TPL system, each pixel is demagnified to 113 nm in the
projected image. The time-averaged optical power of the beam was 139 nW/px at the entrance of the
objective lens. The rest of the optical system parameters were identical to those in our previous work [37].
The bitmap image for this printing operation is shown in Fig. 2(a). The image was projected for a total of
20 laser pulses at a laser repetition rate of 5 kHz, which resulted in an exposure time of 4 ms. Due to the
symmetry of the lines along the length axis, this simulation problem reduces into a 2D problem. During the
simulation, the evolution of the concentration of the various species was tracked through the exposure
period and for a subsequent dark period of 100 ms. The simulation was performed over a 2D region that
had a width of 30 um along the lateral direction (i.e., X axis) and 10 um along the axial direction (i.e., Z
axis). The model was spatially discretized with a node spacing of 100 nm and temporally discretized with
a time step of 10 us. The concentration of the species at the non-node locations was obtained by spline
interpolation.

The optical dosage distribution, the printed geometry, and the 2D DOC profile at various instants of
time are shown in Figs. 2(b) — (f). The printed geometry was obtained by identifying the regions where the
DOC at the end of the 100 ms dark period exceeds the DOCy,. The processing conditions simulated here
result in the printing of five distinct lines corresponding to the five projected lines. The printed linewidths
vary from 500 — 514 nm and the heights vary from 697 — 707 nm. The variations in the linewidth exist
because the lines on the periphery are narrower than the lines at the center. As illustrated in Fig. 2(b), the
optical dosage along the periphery is lower than the dosage at the center. Thus, the variation in the printed
linewidth is consistent with the variation in the optical dosage. This demonstrates that the OS-FDM



photopolymerization model can faithfully capture the effect of variations in the optical dosage (i.e., the
optical input to the OS-FDM model) on the printing outcome (i.e., the DOC profile and feature size).

The OS-FDM model also enables tracking the temporal evolution of the concentrations of the various
chemical species, as shown in Fig. 3. Each individual pulse of light can be tracked by the peaks in the R
concentration. As expected, the primary radicals R” are immediately consumed and some of them are
converted into the secondary radicals P*. The concentration of P* increases in discrete steps corresponding
to each pulse of light. After the end of the exposure period, the concentration of P* decreases exponentially
with time due to the termination reactions between P* and O,. This exponential decay is consistent with the
predictions of FE models [37]. In the early stages, the concentration of O, decreases over time due to its
consumption by the primary and secondary radicals. In the later stages, the concentration of O, begins to
slowly rise due to the diffusion of O, from the surrounding medium. This initial drop and recovery in the
concentration of O, is also consistent with the predictions of FE models [37]. Thus, the OS-FDM model
can accurately capture the temporal evolution of the concentration of the chemical species during
photopolymerization in P-TPL.

We have further characterized the accuracy of the OS-FDM model by comparing its feature size
predictions to the predictions of a FE model. The printing parameters for these tests were identical to those
used for the study shown in Fig. 2(f). The FE model was set up using the commercially available COMSOL
package, which can simulate coupled reaction-diffusion phenomena. Our FE modeling technique is
described in detail elsewhere [37]. To benchmark the performance of the two methods, the simulations were
performed on the same workstation computer, which had an Intel® 17-9700K processor and 64 GB of RAM.
The comparisons between OS-FDM and FE models were performed by varying the model discretization
parameters. For the OS-FDM studies, the time step was fixed at 10 ps, but the node spacing was varied
between 100 nm and 200 nm. These values for the node spacing were identified by performing a mesh
convergence study, as shown in Fig. 4. The size of the central line was found to converge at node spacings
of 200 nm and lower. For the FE studies, the number of mesh elements, which is equivalent to the number
of nodes, was held constant based on a separate set of mesh convergence studies. The time step for the FE
studies was varied by tuning the solver tolerance parameter. As an adaptive time stepping algorithm was
implemented in the COMSOL model to optimize the speed, the time step could not be directly controlled.
Despite this lack of quantitative information, it is qualitatively known that lower tolerances lead to shorter
time steps. Therefore, this qualitative relationship was used here to compare the studies.

The results of the comparison tests are summarized in Table 3. For these tests, the prediction of the
converged FE model with the smallest tolerance (i.e., first row in Table 3) was considered to be the ground
truth value. The mean width and height refer to the average value of the widths and heights over the five
lines. The percentage error in the width was calculated as the ratio of the root mean square error in the
widths of the five lines and the mean width of the ground truth model. The percentage error in the height
was evaluated similarly. It can be observed from Table 3 that the predictions of the OS-FDM model with
the finest mesh are within 5% of the benchmark FE model predictions. The OS-FDM simulations were at
least 300 times faster than the benchmark FE model and at least 100 times faster than the FE model with a
poorer tolerance (i.e., second row in Table 3). Thus, the OS-FDM model significantly improves the speed
of the simulations with a modest decrease in the accuracy.

At this point, one may criticize that an equivalent tradeoff between speed and accuracy can be achieved
by simply using coarser discretization in the FE models; therefore, there is no net computational advantage
to using OS-FDM. However, the data summarized in Table 3 demonstrates that this criticism is not valid
here. Although coarsening the FE model did increase the speed, the FE model was still 50 times slower
than the OS-FDM model. At the same time, the accuracy of the coarse FE model was worse than that of the



OS-FDM models. Thus, the speed versus accuracy tradeoff in FE models is not conducive to performing
rapid and accurate simulations of P-TPL. In contrast, OS-FDM models can rapidly simulate
photopolymerization in P-TPL with high fidelity. Therefore, the OS-FDM models provide a significant
computational advantage over FE models.

3.2. 3D modeling

The computational advantage of OS-FDM has enabled us to perform high-fidelity physics-based 3D
simulations of photopolymerization in P-TPL for the first time. Due to the extremely slow computations
during FE modeling, it was previously impractical to perform high-fidelity 3D simulations. For example,
with a mesh coarser than the mesh of the 2D FE simulations and a tolerance of 10, it took 85,020 seconds
(i.e., a day) to solve a 3D FE simulation of a 3D log-pile structure with 5 layers. In comparison, our OS-
FDM model was able to solve the identical problem in 84 seconds with a coarse mesh (i.e., 200 nm spacing)
and 733 seconds with a fine mesh (i.e., 100 nm spacing). Thus, the OS-FDM technique demonstrates a
speedup of up to two orders of magnitude even for 3D problems, and it provides access to higher precision
computational ability if so desired.

The simulation of photopolymerization in 3D enables performing such studies of P-TPL that cannot be
performed with 2D simulations of single layers alone. For example, 3D simulations can reveal whether the
projection of subsequent layers causes any additional printing in the adjacent layers. To demonstrate this,
we have performed a set of 3D simulations of a log-pile printing operation that consisted of projecting three
distinct layers. In each layer, a array of five lines was projected wherein the period of the array was 10 px,
and each line was 7 px wide and 50 px long. Lines in each layer were oriented at right angles to the lines in
the previous layer and the layers were separated by 500 nm. Each layer was projected for 2 ms, i.e., for a
total of 10 pulses. The optical power of the beam was held constant at 200 nW/px. A node spacing of 100
nm was used for the OS-FDM simulations, and the simulations were performed over a cube of side length
10 um. All other model parameters were identical to the parameters in the 2D OS-FDM models. The DOC
of the entire volume was recorded periodically after 10 ms of dark time following the completion of each
projection. The results of these studies are summarized in Fig. 5. Only those regions where the DOC
exceeded the DOCy, are shown in the figure.

It was observed that the projection of the first layer led to the printing of five distinct lines with finite
gaps between the lines. Projection of the second layer on top of this layer created a porous 3D log-pile
structure. However, projecting the third layer on top of this structure led to excess printing that filled in the
pores between the lines. This excess printing occurs due to the presence of the background dosage. To
verify this, we have tracked the concentration of the various species and the DOC at the center of the central
line in the first layer (i.e., at X=Y=Z=0). This data is shown in Fig. 6. It is observed that non-zero R
concentrations arise in this spot when the second and the third layers are projected, beginning at 12 ms and
24 ms, respectively. These R* concentrations are significantly lower than the R* concentrations due to the
projection of the first layer because the second and third layers are not focused at this plane. However, the
concentration of O is also lower at these later instants of time than at the beginning, which suppresses the
inhibiting effect of O, on the polymerization reactions at these later times. Consequently, the increase in
DOC due to these off-focal projections cannot be neglected here. The OS-FDM technique enables us to
perform rapid iterative 3D simulations to identify processing conditions that would eliminate these defects.
For example, upon repeating the printing with a lower power of 139 nW/px, no excess printing was
observed, as illustrated in Fig. 7. It is noteworthy here that a 2D simulation of a single layer would have
predicted the formation of distinct lines in both cases (i.e., higher and lower power), but the full multi-layer
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3D simulation revealed differences between the two cases. Thus, OS-FDM enables performing such
physics-based simulation studies of P-TPL that were not possible in the past.

As our OS-FDM simulations are performed on a cuboid volume using a uniform grid, the model
performance is expected to be invariant to the geometric complexity of the printed structure provided the
overall size of the simulated volume and the discretization parameters remain the same. We have verified
this expectation by simulating the printing of an arbitrarily complex 3D structure (i.e., GT logo) comprising
three different layers. The images projected in the three layers are shown in Figs. 8(a)-(c). Simulation was
performed over the same volume (i.e., cube of side length 10 um) and with the same discretization (i.e.,
node spacing of 100 nm) as used for simulating the 3D log-pile structure shown in Fig. 7. Each layer was
projected for 2 ms, i.e., for a total of 10 pulses and the optical power of the beam was held constant at 139
nW/px. The layers were spaced along the depth direction at 700 nm. We observed no difference in the solve
time for simulating the GT logo versus the 3D log-pile structure shown in Fig. 7 (difference < 0.2%). The
resulting DOC profile is shown in Figs. 8(d) and (e). The three layers of the GT can be distinctly identified
by the overhanging sections that are present in the second and the third layers. It is noteworthy that the
solve time of our OS-FDM technique is invariant to both the complexity of the projected 2D bitmap images
and the spacing of the layers, but it increases with an increase in the number of layers and a decrease in the
node spacing (as shown in Table 3). For some complex 3D geometries, such as those with large curvatures
or steep angles, one may want to tune both the number of layers and the node spacing to achieve accurate
predictions, which will lead to longer simulations. Nevertheless, the OS-FDM simulations are significantly
faster than the FE simulations and can therefore be applied to computationally simulate the printing of a
variety of complex 3D structures.

3.3. Limitations and potential extensions of the model

As a first step, here we have validated the accuracy of the OS-FDM model by benchmarking it against
the FE models. The FE models were themselves validated against empirical data from physical experiments
[23]. It was previously observed that the FE models could accurately predict the feature widths, but the
predicted heights were lower at higher exposures [23]. We suspect that this discrepancy occurs primarily
due to the enhanced light absorption via single-photon absorption because the single-photon absorptivity
of the cured polymer is higher than the uncured material [42]. To account for this effect, Eq. 7 must be
updated with additional single-photon absorption terms. As the rest of the equations remain unchanged, the
OS-FDM model formulation will stay the same.

Although our model was formulated for the P-TPL process, we anticipate that our OS-FDM approach
can also be applied to predict the outcome of other TPL implementations. Our technique is well suited for
those TPL implementations that use low repetition rate femtosecond lasers (i.e., rates of ~1 kHz), such as
the high-throughput implementation based on digital holography [17] . Our model of photopolymerization
can be adapted to such studies with minimal changes due to the similar time scale of illumination and
polymerization reactions. To adapt our OS-FDM model to the more prevalent TPL implementations that
use high repetition rate lasers (i.e., rates of ~100 MHz), one must modify the polymerization rate equations
to include the illumination term within the differential rate equations. Nevertheless, our work demonstrates
that OS-FDM is an accurate and rapid technique for physics-based simulation of photopolymerization.

4. Conclusions
In summary, we have demonstrated that an operator splitting finite difference method (OS-FDM) can

accurately and rapidly simulate the outcome of the reaction-diffusion photopolymerization processes in P-
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TPL. We have modeled photopolymerization in P-TPL via OS-FDM by representing the underlying
physical phenomena through a set of partial differential equations that are coupled through the reaction and
the diffusion terms. Operator splitting was achieved by splitting the reaction and diffusion terms so that the
reaction terms could be solved without evaluating any spatial derivatives, while still capturing the effect of
diffusion on the reactions in subsequent time steps. When compared with finite element simulations,
operator splitting led to a computational speedup by 100 — 300 times and an accuracy within 5%. This
significant speedup enabled performing high-fidelity 3D simulations of multi-layered 3D structures for the
first time. The 3D simulations revealed additional modes of defects that could not be predicted from the 2D
simulations of the single layers alone. Thus, OS-FDM enables rapid and high-fidelity physics-based
simulation of photopolymerization in P-TPL. By significantly reducing the need for guesswork-based
iterations during process planning and optimization, our work will enable scalable nanomanufacturing of
complex 3D structures for various applications in computing, energy, transportation, and human health.

Appendix
A flowchart of the OS-FDM implementation is shown in Fig. Al.
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Nomenclature

Chemical species
PI photoinitiator
R’ primary radical
P monomer
0O, oxygen
P secondary radical formed from monomer P
R* quenched primary radical
P dead polymer chain
Symbols
ky polymerization rate constant at a specific degree of polymer conversion
ky radical quenching rate constant
ki termination rate constant
Do> diffusivity of O,
DOC degree of polymer conversion
DOCy, threshold degree of polymer conversion
D, optical dosage per pulse
o®@ two-photon cross-section of photoinitiator
h Planck’s constant
(0] quantum yield of photoinitiator
v frequency of light

13



References

L.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Baldacchini, T., Three-dimensional microfabrication using two-photon polymerization:
fundamentals, technology, and applications. 2015: William Andrew.

JonusSauskas, L., S. Juodkazis, and M. Malinauskas, Optical 3D printing: bridging the gaps in the
mesoscale. Journal of Optics, 2018. 20(5): p. 053001.

Sun, H.-B. and S. Kawata, Two-photon photopolymerization and 3D lithographic
microfabrication, in NMR* 3D Analysis* Photopolymerization. 2004, Springer. p. 169-273.
Narayan, R.J., et al., Medical prototyping using two photon polymerization. Materials Today,
2010. 13(12): p. 42-48.

Selimis, A., V. Mironov, and M. Farsari, Direct laser writing: Principles and materials for
scaffold 3D printing. Microelectronic Engineering, 2015. 132: p. 83-89.

Wu, E.-S., et al. Two-photon lithography for microelectronic application. in Optical/Laser
Microlithography V. 1992. SPIE.

Bauer, J., et al., Approaching theoretical strength in glassy carbon nanolattices. Nature materials,
2016. 15(4): p. 438-443.

Meza, L.R., S. Das, and J.R. Greer, Strong, lightweight, and recoverable three-dimensional
ceramic nanolattices. Science, 2014. 345(6202): p. 1322-1326.

Bauer, J., et al., Nanolattices: an emerging class of mechanical metamaterials. Advanced
Materials, 2017. 29(40): p. 1701850.

Hossain, M.M. and M. Gu, Fabrication methods of 3D periodic metallic nano/microstructures for
photonics applications. Laser & Photonics Reviews, 2014. 8(2): p. 233-249.

Wang, H., et al., Two-Photon Polymerization Lithography for Optics and Photonics:
Fundamentals, Materials, Technologies, and Applications. Advanced Functional Materials, 2023:
p. 2214211.

Huang, T.Y., et al., 3D printed microtransporters: Compound micromachines for
spatiotemporally controlled delivery of therapeutic agents. Advanced Materials, 2015. 27(42): p.
6644-6650.

Soreni-Harari, M., et al., Multimaterial 3D Printing for Microrobotic Mechanisms. Soft Robotics,
2020. 7(1): p. 59-67.

Cao, C., et al., Click chemistry assisted organic-inorganic hybrid photoresist for ultra-fast two-
photon lithography. Additive Manufacturing, 2022. 51: p. 102658.

Saha, S.K., et al., Scalable submicrometer additive manufacturing. Science, 2019. 366(6461): p.
105-109.

Somers, P., et al., Rapid, continuous projection multi-photon 3D printing enabled by
spatiotemporal focusing of femtosecond pulses. Light: Science & Applications, 2021. 10(1): p.
199.

Ouyang, W., et al., Ultrafast 3D nanofabrication via digital holography. Nature
Communications, 2023. 14(1): p. 1716.

Hahn, V., et al., Rapid assembly of small materials building blocks (Voxels) into large functional
3D metamaterials. Advanced Functional Materials, 2020: p. 1907795.

Mueller, J.B., et al., Polymerization Kinetics in Three-Dimensional Direct Laser Writing.
Advanced Materials, 2014. 26(38): p. 6566-6571.

Yang, L., et al., On the schwarzschild effect in 3D two-photon laser lithography. Advanced
Optical Materials, 2019. 7(22): p. 1901040.

Sun, M., et al., Modeling of two-photon polymerization in the strong-pulse regime. Additive
Manufacturing, 2022. 60: p. 103241.

Johnson, J.E., Y. Chen, and X. Xu, Model for polymerization and self-deactivation in two-photon
nanolithography. Optics Express, 2022. 30(15): p. 26824-26840.

14



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.
41.

42.

Pingali, R. and S.K. Saha, Reaction-Diffusion Modeling of Photopolymerization During
Femtosecond Projection Two-Photon Lithography. Journal of Manufacturing Science and
Engineering, 2022. 144(2).

Uppal, N. and P.S. Shiakolas, Modeling of temperature-dependent diffusion and polymerization
kinetics and their effects on two-photon polymerization dynamics. Journal of
Micro/Nanolithography, MEMS and MOEMS, 2008. 7(4): p. 043002-043002.

Mueller, J.B., J. Fischer, and M. Wegener, Reaction mechanisms and in situ process diagnostics,
in Three-Dimensional Microfabrication Using Two-photon Polymerization. 2016, Elsevier. p. 82-
101.

Zimmerman, W.B.J., Multiphysics modeling with finite element methods. Vol. 18. 2006: World
Scientific Publishing Company.

Kudela, J. and R. Matousek, Recent advances and applications of surrogate models for finite
element method computations: A review. Soft Computing, 2022. 26(24): p. 13709-13733.
Pingali, R. and S. Saha, Printability Prediction in Projection Two-Photon Lithography via
Machine Learning Based Surrogate Modeling of Photopolymerization, in Manufacturing Science
and Engineering Conference 2023. 2023, ASME: New Brunswick, New Jersey.

Li, Z., Z. Qiao, and T. Tang, Numerical solution of differential equations: introduction to finite
difference and finite element methods. 2017: Cambridge University Press.

Thomas, J.W., Numerical partial differential equations: finite difference methods. Vol. 22. 1998:
Springer Science & Business Media.

Jagota, V., A.P.S. Sethi, and K. Kumar, Finite element method: an overview. Walailak Journal of
Science and Technology (WJST), 2013. 10(1): p. 1-8.

Edelson, D. and N.L. Schryer, Modeling chemically reacting flow systems—i. A comparison of
finite difference and finite element methods for one-dimensional reactive diffusion. Computers &
Chemistry, 1978. 2(2): p. 71-74.

Ramos, J.1., 4 review of some numerical methods for reaction-diffusion equations. Mathematics
and computers in simulation, 1983. 25(6): p. 538-548.

MacNamara, S. and G. Strang, Operator Splitting, in Splitting Methods in Communication,
Imaging, Science, and Engineering, R. Glowinski, S.J. Osher, and W. Yin, Editors. 2016,
Springer International Publishing: Cham. p. 95-114.

Wichman, 1.S., On the use of operator-splitting methods for the equations of combustion.
Combustion and flame, 1991. 83(3-4): p. 240-252.

Ahmed, N., et al., Positivity preserving operator splitting nonstandard finite difference methods
Jfor SEIR reaction diffusion model. Open Mathematics, 2019. 17(1): p. 313-330.

Kim, H., R. Pingali, and S.K. Saha, Rapid printing of nanoporous 3D structures by overcoming
the proximity effects in projection two-photon lithography. Virtual and Physical Prototyping,
2023. 18(1): p. €2230979.

Rumi, M., et al., Structure—Property Relationships for Two-Photon Absorbing Chromophores:
Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. Journal of the American
Chemical Society, 2000. 122(39): p. 9500-9510.

Greenbaum, A., Iterative methods for solving linear systems. 1997: SIAM.

Tan, D. and Z. Chen, On a general formula of fourth order Runge-Kutta method. Journal of
Mathematical Science & Mathematics Education, 2012. 7(2): p. 1-10.

Chapra, S.C. and R.P. Canale, Numerical Methods for Engineers. 2010: McGraw-Hill Higher
Education.

Saha, S.K., et al., Effect of proximity of features on the damage threshold during submicron
additive manufacturing via two-photon polymerization. Journal of Micro and Nano-
Manufacturing, 2017. 5(3).

15



Figure Captions List

Figure 1: Schematic of P-TPL. (a) Overview of the process and (b) overview of the system. (Reprinted
with permission from Saha et al. [15]. Copyright by AAAS).

Figure 2: Results of 2D simulations performed with OS-FDM. (a) Bitmap image, (b) simulated optical
dosage profile, (c) cross-sectional view of the simulated printed lines, i.e., regions where predicted DOC >
DOCy, (d) DOC profile at the end of the exposure (.= 4 ms). (e) DOC profile after 10 ms following the
end of exposure, (f) DOC profile after 100 ms following the end of exposure. The same color bar applies

to (d) — ().

Figure 3: Temporal evolution of the concentration of various chemical species and the DOC at the center
of the central line, obtained from the 2D OS-FDM simulation.

Figure 4: Mesh convergence of the 2D OS-FDM simulations.

Figure 5: DOC profile from 3D OS-FDM simulations of multi-layered log-pile printing. (a) 10 ms after
projection of the first layer, (b) 10 ms after projection of the second layer, (c) 10 ms after projection of the
third layer. The same color bar applies to all sub-parts. Optical power was 200 nW/px.

Figure 6: Temporal evolution of the concentration of various chemical species and the DOC at the center
of the central line of the first layer, obtained from the 3D OS-FDM simulation.

Figure 7: DOC profile from 3D OS-FDM simulation of a multi-layered porous log-pile printed with an
optical power of 139 nW/px. Profile was captured 10 ms after the projection of the third layer.

Figure 8: 3D OS-FDM simulation for printing of an arbitrarily complex 3D structure. (a)-(c) Digital images
projected on three different layers, ordered from first layer (leftmost) to last layer (rightmost). (d) Simulated
DOC profile of a three-layered structure printed with an optical power of 139 nW/px. () DOC profile of
the same structure as viewed from a different orientation. 3D profiles were captured 10 ms after the
projection of the third layer.

Figure A1l: Flowchart for implementing OS-FDM for simulation of photopolymerization in P-TPL.
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Figure 3:
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Figure 4:
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Figure 6:
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Figure 7 :
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Figure 8:
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Figure Al :
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Table Captions List

Table 1: Parameters for the reaction-diffusion model
Table 2: Initial conditions for OS-FDM and FE models

Table 3: Performance of OS-FDM versus FE models
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Source

Parameter Value
a®@ 133x107°° cm*s/photon- Estimate from Rumi et al. (Fig. 5,
molecule compound 8 of reference [38])
h 6.626x10%*m* kg / s Fundamental constant
ky 4.3x10* dm* mol's™! Mueller et al. [19]
ky 2.3x10° dm* mol's™ Mueller et al. [19]
ki 5.9 x10* dm? mol's™ Calibrated using empirical data [37]
0.0061 Calibrated using empirical data [37]
DOCy, 0.068 Measured [37]
Do: 1.2x1012 m?s™! Estimated using Stokes-Einstein equation
v 375 THz Printer laser
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Table 2

Parameter Initial value Source
[O2] 6 x 103 mol dm™ Mueller et al. [19]
[PI] 1.65 x 103 mol dm™ Resist composition, PI at 0.1% by weight
[P] 4.0 mol dm™ Material datasheet [37]
[R*], [P*] 0 mol dm™3 No light exposure at = 0
[R*], [P¥] 0 mol dm™3 No reaction products at t = 0
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Table 3

Model Discretization Time to | Mean width Mean Width Height
parameters solve (s) (nm) height (nm) | error (%) | error (%)
FE Tolerance = 10°1° 8207 531 741 0 0
FE Tolerance = 10® 3403 531 744 0.3 0.4
FE Tolerance = 10 249 585 822 10.5 10.9
OS- Node spacing = 25 508 703 4.6 52
FDM 100 nm
OS- Node spacing = 5 495 693 7.0 6.5
FDM 200 nm
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