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Abstract 

 

Two-photon lithography (TPL) is an attractive technique for nanoscale additive manufacturing of functional 

3D structures due to its ability to print sub-diffraction features with light. Despite its advantages, it has not 

been widely adopted due to its slow point-by-point writing mechanism. Projection TPL (P-TPL) is a high-

throughput variant that overcomes this limitation by enabling the printing of entire 2D layers at once. 

However, printing the desired 3D structures is challenging due to the lack of fast and accurate process 

models. Here, we present a fast and accurate physics-based model of P-TPL to predict the printed geometry 

and the degree of curing. Our model implements a finite difference method enabled by operator splitting to 

solve the reaction-diffusion rate equations that govern photopolymerization. When compared with finite 

element simulations, our model is at least a hundred times faster and its predictions lie within 5% of the 

predictions of the finite element simulations. This rapid modeling capability enabled performing high-

fidelity simulations of printing of arbitrarily complex 3D structures for the first time. We demonstrate how 

these 3D simulations can predict those aspects of the 3D printing behavior that cannot be captured by 

simulating the printing of individual 2D layers. Thus, our models provide a resource-efficient and 

knowledge-based predictive capability that can significantly reduce the need for guesswork-based iterations 

during process planning and optimization.  
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1. Introduction 

Two-photon lithography (TPL) is a photopolymerization-based technique that offers the ability to 

additively manufacture cm-scale three-dimensional (3D) structures with 100 nm-scale features [1-3]. TPL 

relies on non-linearities in the absorption of high-intensity light from a femtosecond laser and the 

subsequent polymerization chemistry to achieve resolutions that are smaller than the optical diffraction 

limit [1]. Thus, TPL has found applications in a diverse range of research areas, such as medicine [4, 5], 

microelectronics [6], mechanical metamaterials [7-9], optical metamaterials [10, 11], and micromachines 

[12, 13]. Although TPL is an attractive choice for prototyping, its deployment beyond the laboratory has 

been hindered by its low printing rate. A conventional TPL system scans a focused laser spot point-by-

point, creating and overlapping individual polymerized volumes (i.e., “voxels”) to build up a 3D structure. 

The slow processing is a consequence of the low scanning speed that lies between 10 µm s−1 and 100 mm 

s−1 [14]. Several approaches have been demonstrated recently that increase the throughput of TPL via 

parallelization, rapid serial scanning, or a combination of the two techniques [15-18]. However, these 

approaches have not yet been well-studied and predictive process models for these approaches are lacking. 

Consequently, printing of the desired 3D structures requires slow and error-prone guesswork-based 

iterations. Here, we focus on overcoming this challenge for the projection two-photon lithography (P-TPL) 

process, which is a high-throughput implementation of TPL. We present a physics-based model of 

photopolymerization to enable rapid and accurate predictions of the 3D printed geometry and the degree of 

curing during P-TPL. 

  P-TPL is a high-throughput technique that replaces the serial scanning scheme of conventional TPL 

with a layer-by-layer projection scheme. We have previously demonstrated that P-TPL can increase the 

throughput by up to three orders of magnitude with no loss of resolution [15]. A schematic of the P-TPL 

system is shown in Fig. 1. In this technique, a patterned 2D femtosecond light sheet is projected within the 

photopolymer material to cure a thin layer of the material around the focal plane. A key element of P-TPL 

is that the light sheet is focused in both the space and the time domains by temporally stretching and re-

compressing the femtosecond pulses [15]. This ensures that a strong axial gradient of light dosage exists 

around the focal plane, thereby achieving axial (i.e., depth) resolutions on the scale of 1 μm. A digital mask 

is applied using a digital micromirror device (DMD) to pattern the beam. The DMD consists of more than 

a million micromirrors and each one of them can be independently switched on or off to act as a switchable 

pixel (px). Femtosecond laser light, that is reflected from the DMD, initiates polymerization in those regions 

of photopolymer that correspond to the illuminated pixels of the DMD. Therefore, the entire X-Y plane can 

be printed at once and the rate of printing is independent of the density or complexity of the projected 

pattern. An X-Y-Z stage allows for repositioning of the photopolymer relative to the focal plane for printing 

at different planes. 3D structures are generated by updating the image on the DMD and printing at the 

different X-Y planes.  

Models that can accurately predict the printing outcomes are highly valuable for process planning, 

control, and optimization. However, physics-based models of TPL are not readily available as only a few 

studies have modeled the photopolymerization mechanisms underlying TPL  [19-24]. We suspect that it is 

because of the significant challenges involved in computationally modeling photopolymerization at the 

time scales of TPL. During conventional TPL, the relevant physical processes vary over time scales ranging 

from tens of ns to minutes, i.e., on a time scale spanning at least ten orders of magnitude [25]. It is 

computationally challenging to perform physics-based simulations over such a long period. We have 

previously demonstrated that accurate 2D finite element (FE) models of photopolymerization in P-TPL can 

be developed by taking advantage of its area projection scheme, which significantly reduces the time 

complexity [23]. However, 3D models have remained elusive due to the computational complexity of the 
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problem. Here, we overcome this challenge by presenting a finite difference method (FDM) that 

implements operator splitting to achieve rapid and accurate modeling of 3D printing in P-TPL.   

Our choice of the simulation technique was driven by the need to overcome the speed versus accuracy 

tradeoff that exists in computational modeling of manufacturing processes. In general, FE models are highly 

accurate, but they are very slow for 3D simulations [26]. In contrast, data-driven machine learning (ML) 

models can rapidly predict the process outcomes, but they are not as accurate as FE models [27]. For P-

TPL, we have demonstrated how neural network (NN)-based surrogate ML models can rapidly predict 

whether printing would occur under a given set of conditions to >98% accuracy [28]. However, these 

models could not accurately predict the size of the printed structures because of their poor fidelity. There 

are many manufacturing problems that demand both speed and accuracy of predictions simultaneously. For 

example, predicting the dimensions of the 3D printed structures with varying cross-sections requires 

accurate 3D modeling of the reaction-diffusion equations in P-TPL. This is beyond the capabilities of the 

NN surrogate models, and it would take an FE simulation on the order of days to perform a single 

simulation. Fast and accurate predictions are also necessary to solve the inverse design problem, whereby 

the processing parameters required for a desired printing outcome are determined through computation. 

Optimization of this nature would require many forward design simulations, which would be impractically 

slow using FE simulations. Thus, it is desirable to develop a P-TPL model that is capable of fast and 

accurate predictions. 

Here, we demonstrate how an operator splitting approach combined with a finite difference method 

(FDM) can provide deterministic, physics-based, highly accurate 2D and 3D models of 

photopolymerization in P-TPL. Both FDM and FE method simulate physical phenomena by discretizing 

and solving the physics-based partial differential equations that describe the phenomena [29]. However, 

FDM solves partial differential equations via finite difference approximations that are often performed on 

uniform grids. In contrast, the FE method solves partial differential equations via variational techniques 

over mesh elements which are better suited for discretizing complex geometries [30, 31]. For simple 

geometries that can be readily discretized into uniform grids, this distinction often leads to FDM being 

faster and easier to implement than FE methods due to the ease of computing with uniform grids [29, 30]. 

This makes FDM particularly well suited for simulating photopolymerization in P-TPL because the 

simulations are performed over a cuboid geometry, which is simple enough to be discretized using a 

uniform 3D grid. However, for problems that have multiple coupled physical phenomena, such as the 

reaction-diffusion problem, FDM can become slow and inaccurate [32, 33]. This challenge in FDM has 

been overcome in the past by applying operator splitting techniques wherein the terms of the equations that 

arise from the different physics are computed separately at each time step [33, 34]. For example, operator 

splitting has been applied for the modeling of reaction-diffusion equations in combustion problems and in 

the modeling of epidemics [35, 36]. However, these techniques have not yet been applied for the modeling 

of photopolymerization during TPL. Here, we: (i) present a formulation of the operating splitting FDM 

(OS-FDM) to model the reaction-diffusion equations of P-TPL photopolymerization and (ii) demonstrate 

that the predictions are both fast and accurate.                

2. Modeling Methods 

2.1. Reaction-Diffusion Model of Photopolymerization 

 

The photopolymerization process in TPL is governed by the coupled physical phenomena of chemical 

reactions and diffusion of chemical species [19]. Upon absorption of light by the photopolymer material, 

radicals (i.e., reactive species) are generated locally in it. For acrylate-based photopolymers, such as those 
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used in P-TPL, these radicals initiate chain reactions in the photopolymer. These chain reactions lead to 

crosslinking via the formation of new covalent bonds between the carbon atoms of different photopolymer 

molecules. As the cross-linking process regenerates the radicals, the chain reactions can continue to 

crosslink (i.e., cure) the photopolymer until the radicals are terminated by reactions with those species that 

do not regenerate radicals. For example, radicals can be terminated by the dissolved oxygen that is present 

in the photopolymer [19]. Printing occurs when the degree of polymer curing (DOC) exceeds a threshold 

value (DOCth) above which the material becomes insoluble in a solvent. Thus, the printing process is 

determined by the combination of the kinetics of the chemical reactions and the spatiotemporal evolution 

of the concentration of the chemical species via diffusion. The reaction and the diffusion phenomena are 

coupled because the species that react may also diffuse. Thus, coupled reaction-diffusion equations govern 

the photopolymerization process.       

Previously, we have demonstrated that the following set of coupled partial differential equations (PDEs) 

constitutes an accurate model of the P-TPL polymerization process [23]: 

 

d

d𝑡
[R*] = −𝑘𝑝[P][R*] − 𝑘𝑞[O2][R*] (1) 

d

d𝑡
[P] = −𝑘𝑝[P][R*] − 𝑘𝑝[P][P*] (2) 

d

d𝑡
[P*] = 𝑘𝑝[P][R*] − 𝑘𝑡[O2][P*] (3) 

d

d𝑡
[O2] = −𝑘𝑞[O2][R*] − 𝑘𝑡[O2][P*] + 𝐷𝑂2 (

∂2[O2]

∂𝑥2
+
∂2[O2]

∂𝑦2
+
∂2[O2]

∂𝑧2
) (4) 

d

d𝑡
[Rx] = 𝑘𝑞[O2][R*] (5) 

d

d𝑡
[Px] = 𝑘𝑡[O2][P*] (6) 

 

In these equations, the square bracket notation [species] signifies the concentration of the chemical species. 

The species P represents the monomer (or oligomer) that undergoes cross-linking. The species R* represents 

the primary radicals that are formed from the photoinitiator molecules upon illumination. The species P* 

represents the secondary radicals that are formed during the cross-linking reactions when the primary 

radicals react with the species P. Rx represents the deactivated species formed when the primary radicals 

R* react with oxygen (O2), whereas Px represents the deactivated species formed when the secondary 

radicals P* react with oxygen. The deactivated species do not participate in the cross-linking process. The 

terms kp kq, and kt represent the reaction rate constants for the polymerization (i.e., cross-linking) reactions, 

the quenching reactions between the primary radicals and oxygen, and the termination reactions between 

the secondary radicals and oxygen, respectively.  

The optical input to the polymerizing system is provided through the output of the optical dosage model 

that predicts the distribution of optical dosage per pulse (Dp) in the focal volume. The term Dp is evaluated 

as the time integral of the square of the instantaneous intensity over the duration of the entire femtosecond 

pulse, and it represents the energy input per pulse during two-photon absorption. The optical dosage and 

intensity models that were used in this work are described elsewhere [15, 37]. After each femtosecond 

pulse, new primary radicals are generated in proportion to the dosage (Dp), the concentration of the 

photoinitiator (PI), the two-photon cross section of the PI molecule (σ(2)), and the quantum efficiency of the 

PI molecule (Φ), which represents the efficiency of radical generation. This relationship is represented by 
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Eq. (7). The parameter h is the Planck’s constant and ν is the central frequency of the illumination beam. 

The set of Eqs. (1)-(7) represent the governing equations that govern photopolymerization in P-TPL. The 

parameters that were used here to solve these equations are listed in Table 1. These parameters were 

obtained from literature and our past work [19, 37, 38].  

 

∆[R*] =
Dp𝜎

(2)Ф

ℎ2𝑣2
[PI] 

(7) 

 

 

 

Here, Eq. (4) is the only equation with spatial derivative terms and these terms correspond to the 

diffusion of oxygen through the photopolymer. As oxygen is the smallest molecule amongst the reacting 

species, its diffusive effect on the kinetics of the reactions is strongest. The diffusion of molecules larger 

than oxygen has not been considered here because the diffusivity of such molecules is at least 10 times 

lower than that of oxygen. In previous versions of our model, we had accounted for the diffusion of R*, 

which is the next larger species [23, 37]. However, we found that the diffusive effect of R* is negligible 

because of the low diffusivity of R* and because R* is rapidly consumed before any appreciable diffusion 

can occur [37]. For other larger species, it has been demonstrated that their diffusive effects become 

dominant only at longer time scales on the order of a second [20], which is at least 100 times longer than 

the time scales of P-TPL exposures. Therefore, for all species other than oxygen, their concentrations at 

any spatial location and any point in time can be fully determined if the past concentrations of various 

species at that same point in space are known. That is, the concentrations of these species are not influenced 

by how their concentrations are changing at neighboring points. For these ordinary differential equations 

(ODEs), tracking any type of spatial gradients is unnecessary as the rate equations can be solved 

independently at each spatial location. Thus, we observe that if the ODEs were to be decoupled from the 

spatial derivative terms in Eq. (4) by decoupling the effect of oxygen, the memory and compute time 

requirements for modeling would be significantly reduced. 

Nonetheless, oxygen diffusion is an important phenomenon in photopolymerization, and it cannot be 

abstracted away. An accurate model of oxygen diffusion is key to predicting chemical proximity effects, 

which is the primary advantage of this model over a simple optical model [37]. When we previously solved 

the reaction-diffusion model using the COMSOL software package, the FE method was applied to all 

variables and equations, which was computationally wasteful [23]. Here, we have overcome this challenge 

by applying an operator splitting method to Eq. (4). Operator splitting refers to obtaining a solution by 

separating the relevant governing differential equations into two or more parts, solving the parts separately 

at each time step, and then combining the solutions [34]. The terms of the equations are often separated by 

splitting the terms that represent the various physical phenomena [34]. Operator splitting also enables 

applying different numerical techniques to solve the split terms by optimizing the solver for each set of 

terms separately. Here, we have split Eq. (4) into two parts; one part represents the reaction phenomenon 

whereas the other part represents the diffusion phenomenon.    
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2.2. Operator splitting finite difference method (OS-FDM) 

We have implemented the OS-FDM model of Eqs. (1) – (7) in the MATLAB software package. The 

flowchart of the code is illustrated in the appendix. The model parameters and the initial conditions for 

these simulations are the same as those used in our past FE simulation of P-TPL [37]. The model parameters 

are listed in Table 1 and the initial conditions are listed in Table 2. The OS-FDM simulation was performed 

on a uniform rectangular 2D grid (for 2D problems) and a uniform rectangular 3D grid (for 3D problems). 

The total number of nodes (N) can be obtained in terms of the nodes along the X, Y, Z axes as: N=nx × ny 

× nz. To achieve faster simulations, computations were performed using N-length vectors wherever possible 

instead of 2D or 3D matrices. Each vector uses natural ordering, which for a finite difference discretization 

refers to numbering the nodes from left to right, bottom to top, and first page to last page [39]. Concentration 

vectors for each chemical species were created and set to their initial values that are listed in Table 2.  

Here, we have performed computations with a uniform time step of 10 µs. As the period between the 

pulses is 200 µs, this value of time step is fine enough to capture the effect of individual femtosecond pulses 

on the polymerization process. At the beginning of the simulation, a list of those time steps was created at 

which pulse illumination events occur. As the duration of each pulse is at least 10-8 times shorter than the 

time step, each pulse event can be uniquely associated with a single time step. At these time steps, the effect 

of each femtosecond pulse illumination event was captured by updating the concentration of the primary 

radicals R* and the PI using Eq. (7). To implement Eq. (7), a vector of the optical dosage at each node was 

created from the optical simulation. The concentration of R* was increased by the value calculated from 

Eq. (7) and the concentration of PI was reduced by half that amount because each PI generates two primary 

radicals. This pulse tracking scheme is equivalent to making the approximation that each illumination event 

occurs instantaneously and that a significant unilluminated dark time exists until the next illumination event. 

This approximation is justified here due to the time scales of pulse duration and laser repetition rate, and it 

has been found to be accurate in our past FE simulations of P-TPL [23, 37].  

At each time step, the concentrations of all chemical species other than O2 were updated by solving 

Eqs. (1) – (3) and (5) – (6)  using the fourth order Runge-Kutta (RK4) method [40]. The RK4 method was 

chosen because these equations form a set of coupled nonlinear ODEs. The RK4 method is explicit, so it 

does not require the solution of a nonlinear matrix equation, which is computationally expensive. At the 

same time, it is a higher order method and enables relatively larger time steps without an unacceptable 

increase in the accumulated error. To maximize computation speed, calculations were largely performed to 

single precision and the values of intermediate variables were memorized and reused wherever it was 

possible. It is noteworthy that for these computations, it is not necessary to know the concentration of O2 at 

the current time step; instead, knowledge of the values from the previous time step is adequate. This allows 

one to solve Eqs. (1) – (3) and (5) – (6) separately from Eq. (4) at each time step, thereby representing the 

operator splitting aspect of this method. Nevertheless, these equations are still coupled with Eq. (4) because 

the effect of change in [O2] is captured in the next time step.           

The concentration of O2 was calculated at each time step by solving Eq. (4) with the updated values of 

[R*] and [P*], thus coupling Eq. (4) with the rest of the equations and linearizing the reaction terms. 

Computing the solution of Eq. (4) requires discretizing the spatial derivative term. This was done by using 

a centered difference approximation for the spatial derivative terms [39]. In two dimensions, based on a 

five-point stencil, Eq. (4) can be discretized over space as: 
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[𝑂2]𝑖,𝑗
′ = −𝑘𝑞[𝑂2][R

*]
𝑖,𝑗
− 𝑘𝑡[𝑂2][P

*]
𝑖,𝑗
 + 𝐷𝑂2 (

[𝑂2]𝑖−1,𝑗 + [𝑂2]𝑖+1,𝑗 + [𝑂2]𝑖,𝑗−1 + [𝑂2]𝑖,𝑗+1 − [𝑂2]𝑖,𝑗

𝑙2
) 

            (8) 

Here, l is the mesh node spacing and the LHS represents the time derivative of the concentration of O2 at 

the spatial node (i, j). The formulation in three dimensions is identical except for the addition of terms 

representing adjacent nodes in the third dimension, i.e., the spatial derivatives were based on a seven-point 

stencil for a 3D problem. The implicit (backward) Euler method was used to solve Eq. (4) at each time step. 

This allows for the change in oxygen to be simulated without the loss of numerical stability. The standard 

formulation of the implicit Euler method is [41]: 

𝑦𝑖+1 = 𝑦𝑖 +
𝑑𝑦𝑖+1

𝑑𝑡
∆𝑡                 (9) 

In order to represent this as a matrix operation, a sparse N × N matrix A was created to represent the 

dependency of the rate of change of [O2] at a given node on the values of [𝑂2] at adjacent nodes; this is 

equivalent to using Eq. (8) to approximate the time derivative. When [𝑂2] is a vector of the values of oxygen 

concentration at each of the 𝑁 nodes listed in natural ordering, in two dimensions, Eq. (9) can be written as 

the matrix operation: 

[𝑂2]𝑐𝑢𝑟𝑟𝑒𝑛𝑡  = 𝐴 × [𝑂2]𝑛𝑒𝑥𝑡         (10) 

where: 

 

𝐴 =

(

 
 
 
 
 
 

𝑎1 𝑎2 ⋯ 𝑎2 ⋯

𝑎2 𝑎1 𝑎2 ⋯ 𝑎2 ⋯

⋱
𝑎2 ⋯ 𝑎2 𝑎1 𝑎2 ⋯ 𝑎2 ⋯

⋱
⋯ 𝑎2 ⋯ 𝑎2 𝑎1 𝑎2 ⋯ 𝑎2 ⋯

⋱
⋯ 𝑎2 ⋯ 𝑎2 𝑎1)

 
 
 
 
 
 

                 (11) 

𝑎1 = 1 + Δ𝑡 (𝑘𝑞[R
∗]𝑖,𝑗 + 𝑘𝑡[P

∗]𝑖,𝑗 +
4𝐷02

𝑙2
)       (12) 

𝑎2 = (
−Δ𝑡𝐷o2

𝑙2
)           (13) 

In three dimensions, the formulation of Eq. (10) is similar, except that A has two additional off-diagonals 

of 𝑎2 representing the additional connectivity in the third dimension. Solving Eq. (10) is the only step in 

this technique that requires direct matrix operations. Since A is symmetric positive definite (as it is 

Hermitian and strictly diagonally dominant), it can be solved very rapidly using the conjugate gradient 

method—indeed, more rapidly than it would take to iterate using a higher order explicit method.  

Dirichlet boundary conditions were applied to represent the presence of abundant oxygen in the 

photopolymer beyond the region of printing by holding the oxygen concentration constant at its initial value 

at the boundary nodes. This allows for the simulation of only the area of interest while still capturing the 

effect of diffusion throughout the simulated volume. Dirichlet boundary conditions can be applied by 
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replacing the rows and columns of 𝐴 corresponding to boundary elements with identity matrices to keep 

them unchanging at their prescribed value. However, this approach causes 𝐴 to become asymmetric and 

non-Hermitian. To preserve its good convergence properties, the boundary conditions are instead reapplied 

at each time step by changing the values of [𝑂2] at boundary nodes to their prescribed values after solving 

Eq. (10). 

By separately solving Eq. (4) and the set of Eqs. (1) – (3) and (5) – (6), the evolution of the 

concentrations of all species were computed over time. At each time step, the DOC was evaluated from the 

change in concentration of the species P as: DOC = (1- [P]/[P]o). The subscript (o) notation indicates the 

initial value of the parameter. The value of the polymerization rate constant (kp) was updated intermittently 

to account for the deceleration of the polymerization reaction with an increase in the DOC. The relationship 

between the kp and the DOC was obtained from literature values [19]. For the range of values of DOC 

observed in this study, kp was obtained by decreasing it linearly by 6% of its initial value for every 1% 

increase in the DOC. The parameter kp was updated only when the change in the Euclidean norm of DOC 

over a time step exceeded a tolerance value, which was set to 0.001 here. At each time step, the printed 

region can be determined from the DOC distribution by evaluating the regions in which the computed DOC 

exceeds the solubility threshold DOCth. Thus, the model presented here can be used to simulate both the 

printed geometry and the degree of polymer curing resulting from a given set of processing conditions.   

3. Results and Discussions 

3.1. 2D modeling  

 

We have characterized the performance of the OS-FDM model by simulating the printing of benchmark 

3D structures that exhibit translational symmetry along one axis. Specifically, we have simulated the 

printing of a single layer of an array of five lines with the projected linewidth of 5 pixel (px), a period of 

30 px, and a length of 150 px. For our simulated P-TPL system, each pixel is demagnified to 113 nm in the 

projected image. The time-averaged optical power of the beam was 139 nW/px at the entrance of the 

objective lens. The rest of the optical system parameters were identical to those in our previous work [37]. 

The bitmap image for this printing operation is shown in Fig. 2(a). The image was projected for a total of 

20 laser pulses at a laser repetition rate of 5 kHz, which resulted in an exposure time of 4 ms. Due to the 

symmetry of the lines along the length axis, this simulation problem reduces into a 2D problem. During the 

simulation, the evolution of the concentration of the various species was tracked through the exposure 

period and for a subsequent dark period of 100 ms. The simulation was performed over a 2D region that 

had a width of 30 μm along the lateral direction (i.e., X axis) and 10 μm along the axial direction (i.e., Z 

axis). The model was spatially discretized with a node spacing of 100 nm and temporally discretized with 

a time step of 10 μs. The concentration of the species at the non-node locations was obtained by spline 

interpolation. 

The optical dosage distribution, the printed geometry, and the 2D DOC profile at various instants of 

time are shown in Figs. 2(b) – (f). The printed geometry was obtained by identifying the regions where the 

DOC at the end of the 100 ms dark period exceeds the DOCth. The processing conditions simulated here 

result in the printing of five distinct lines corresponding to the five projected lines. The printed linewidths 

vary from 500 – 514 nm and the heights vary from 697 – 707 nm. The variations in the linewidth exist 

because the lines on the periphery are narrower than the lines at the center. As illustrated in Fig. 2(b), the 

optical dosage along the periphery is lower than the dosage at the center. Thus, the variation in the printed 

linewidth is consistent with the variation in the optical dosage. This demonstrates that the OS-FDM 
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photopolymerization model can faithfully capture the effect of variations in the optical dosage (i.e., the 

optical input to the OS-FDM model) on the printing outcome (i.e., the DOC profile and feature size).  

The OS-FDM model also enables tracking the temporal evolution of the concentrations of the various 

chemical species, as shown in Fig. 3. Each individual pulse of light can be tracked by the peaks in the R* 

concentration. As expected, the primary radicals R* are immediately consumed and some of them are 

converted into the secondary radicals P*. The concentration of P* increases in discrete steps corresponding 

to each pulse of light. After the end of the exposure period, the concentration of P* decreases exponentially 

with time due to the termination reactions between P* and O2. This exponential decay is consistent with the 

predictions of FE models [37]. In the early stages, the concentration of O2 decreases over time due to its 

consumption by the primary and secondary radicals. In the later stages, the concentration of O2 begins to 

slowly rise due to the diffusion of O2 from the surrounding medium. This initial drop and recovery in the 

concentration of O2 is also consistent with the predictions of FE models [37]. Thus, the OS-FDM model 

can accurately capture the temporal evolution of the concentration of the chemical species during 

photopolymerization in P-TPL.   

We have further characterized the accuracy of the OS-FDM model by comparing its feature size 

predictions to the predictions of a FE model. The printing parameters for these tests were identical to those 

used for the study shown in Fig. 2(f). The FE model was set up using the commercially available COMSOL 

package, which can simulate coupled reaction-diffusion phenomena. Our FE modeling technique is 

described in detail elsewhere [37]. To benchmark the performance of the two methods, the simulations were 

performed on the same workstation computer, which had an Intel® i7-9700K processor and 64 GB of RAM. 

The comparisons between OS-FDM and FE models were performed by varying the model discretization 

parameters. For the OS-FDM studies, the time step was fixed at 10 μs, but the node spacing was varied 

between 100 nm and 200 nm. These values for the node spacing were identified by performing a mesh 

convergence study, as shown in Fig. 4. The size of the central line was found to converge at node spacings 

of 200 nm and lower. For the FE studies, the number of mesh elements, which is equivalent to the number 

of nodes, was held constant based on a separate set of mesh convergence studies. The time step for the FE 

studies was varied by tuning the solver tolerance parameter. As an adaptive time stepping algorithm was 

implemented in the COMSOL model to optimize the speed, the time step could not be directly controlled. 

Despite this lack of quantitative information, it is qualitatively known that lower tolerances lead to shorter 

time steps. Therefore, this qualitative relationship was used here to compare the studies.  

The results of the comparison tests are summarized in Table 3. For these tests, the prediction of the 

converged FE model with the smallest tolerance (i.e., first row in Table 3) was considered to be the ground 

truth value. The mean width and height refer to the average value of the widths and heights over the five 

lines. The percentage error in the width was calculated as the ratio of the root mean square error in the 

widths of the five lines and the mean width of the ground truth model. The percentage error in the height 

was evaluated similarly. It can be observed from Table 3 that the predictions of the OS-FDM model with 

the finest mesh are within 5% of the benchmark FE model predictions. The OS-FDM simulations were at 

least 300 times faster than the benchmark FE model and at least 100 times faster than the FE model with a 

poorer tolerance (i.e., second row in Table 3). Thus, the OS-FDM model significantly improves the speed 

of the simulations with a modest decrease in the accuracy.  

At this point, one may criticize that an equivalent tradeoff between speed and accuracy can be achieved 

by simply using coarser discretization in the FE models; therefore, there is no net computational advantage 

to using OS-FDM. However, the data summarized in Table 3 demonstrates that this criticism is not valid 

here. Although coarsening the FE model did increase the speed, the FE model was still 50 times slower 

than the OS-FDM model. At the same time, the accuracy of the coarse FE model was worse than that of the 
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OS-FDM models. Thus, the speed versus accuracy tradeoff in FE models is not conducive to performing 

rapid and accurate simulations of P-TPL. In contrast, OS-FDM models can rapidly simulate 

photopolymerization in P-TPL with high fidelity. Therefore, the OS-FDM models provide a significant 

computational advantage over FE models.      

 

3.2. 3D modeling 

 

The computational advantage of OS-FDM has enabled us to perform high-fidelity physics-based 3D 

simulations of photopolymerization in P-TPL for the first time. Due to the extremely slow computations 

during FE modeling, it was previously impractical to perform high-fidelity 3D simulations. For example, 

with a mesh coarser than the mesh of the 2D FE simulations and a tolerance of 10-4, it took 85,020 seconds 

(i.e., a day) to solve a 3D FE simulation of a 3D log-pile structure with 5 layers. In comparison, our OS-

FDM model was able to solve the identical problem in 84 seconds with a coarse mesh (i.e., 200 nm spacing) 

and 733 seconds with a fine mesh (i.e., 100 nm spacing). Thus, the OS-FDM technique demonstrates a 

speedup of up to two orders of magnitude even for 3D problems, and it provides access to higher precision 

computational ability if so desired. 

The simulation of photopolymerization in 3D enables performing such studies of P-TPL that cannot be 

performed with 2D simulations of single layers alone. For example, 3D simulations can reveal whether the 

projection of subsequent layers causes any additional printing in the adjacent layers. To demonstrate this, 

we have performed a set of 3D simulations of a log-pile printing operation that consisted of projecting three 

distinct layers. In each layer, a array of five lines was projected wherein the period of the array was 10 px, 

and each line was 7 px wide and 50 px long. Lines in each layer were oriented at right angles to the lines in 

the previous layer and the layers were separated by 500 nm. Each layer was projected for 2 ms, i.e., for a 

total of 10 pulses. The optical power of the beam was held constant at 200 nW/px. A node spacing of 100 

nm was used for the OS-FDM simulations, and the simulations were performed over a cube of side length 

10 μm. All other model parameters were identical to the parameters in the 2D OS-FDM models. The DOC 

of the entire volume was recorded periodically after 10 ms of dark time following the completion of each 

projection. The results of these studies are summarized in Fig. 5. Only those regions where the DOC 

exceeded the DOCth are shown in the figure.       

It was observed that the projection of the first layer led to the printing of five distinct lines with finite 

gaps between the lines. Projection of the second layer on top of this layer created a porous 3D log-pile 

structure. However, projecting the third layer on top of this structure led to excess printing that filled in the 

pores between the lines. This excess printing occurs due to the presence of the background dosage. To 

verify this, we have tracked the concentration of the various species and the DOC at the center of the central 

line in the first layer (i.e., at X=Y=Z=0). This data is shown in Fig. 6. It is observed that non-zero R* 

concentrations arise in this spot when the second and the third layers are projected, beginning at 12 ms and 

24 ms, respectively. These R* concentrations are significantly lower than the R* concentrations due to the 

projection of the first layer because the second and third layers are not focused at this plane. However, the 

concentration of O2 is also lower at these later instants of time than at the beginning, which suppresses the 

inhibiting effect of O2 on the polymerization reactions at these later times. Consequently, the increase in 

DOC due to these off-focal projections cannot be neglected here. The OS-FDM technique enables us to 

perform rapid iterative 3D simulations to identify processing conditions that would eliminate these defects. 

For example, upon repeating the printing with a lower power of 139 nW/px, no excess printing was 

observed, as illustrated in Fig. 7. It is noteworthy here that a 2D simulation of a single layer would have 

predicted the formation of distinct lines in both cases (i.e., higher and lower power), but the full multi-layer 
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3D simulation revealed differences between the two cases. Thus, OS-FDM enables performing such 

physics-based simulation studies of P-TPL that were not possible in the past.    

As our OS-FDM simulations are performed on a cuboid volume using a uniform grid, the model 

performance is expected to be invariant to the geometric complexity of the printed structure provided the 

overall size of the simulated volume and the discretization parameters remain the same. We have verified 

this expectation by simulating the printing of an arbitrarily complex 3D structure (i.e., GT logo) comprising 

three different layers. The images projected in the three layers are shown in Figs. 8(a)-(c). Simulation was 

performed over the same volume (i.e., cube of side length 10 μm) and with the same discretization (i.e., 

node spacing of 100 nm) as used for simulating the 3D log-pile structure shown in Fig. 7. Each layer was 

projected for 2 ms, i.e., for a total of 10 pulses and the optical power of the beam was held constant at 139 

nW/px. The layers were spaced along the depth direction at 700 nm. We observed no difference in the solve 

time for simulating the GT logo versus the 3D log-pile structure shown in Fig. 7 (difference < 0.2%). The 

resulting DOC profile is shown in Figs. 8(d) and (e). The three layers of the GT can be distinctly identified 

by the overhanging sections that are present in the second and the third layers. It is noteworthy that the 

solve time of our OS-FDM technique is invariant to both the complexity of the projected 2D bitmap images 

and the spacing of the layers, but it increases with an increase in the number of layers and a decrease in the 

node spacing (as shown in Table 3). For some complex 3D geometries, such as those with large curvatures 

or steep angles, one may want to tune both the number of layers and the node spacing to achieve accurate 

predictions, which will lead to longer simulations. Nevertheless, the OS-FDM simulations are significantly 

faster than the FE simulations and can therefore be applied to computationally simulate the printing of a 

variety of complex 3D structures. 

                  

3.3. Limitations and potential extensions of the model  

 

As a first step, here we have validated the accuracy of the OS-FDM model by benchmarking it against 

the FE models. The FE models were themselves validated against empirical data from physical experiments 

[23]. It was previously observed that the FE models could accurately predict the feature widths, but the 

predicted heights were lower at higher exposures [23]. We suspect that this discrepancy occurs primarily 

due to the enhanced light absorption via single-photon absorption because the single-photon absorptivity 

of the cured polymer is higher than the uncured material [42]. To account for this effect, Eq. 7 must be 

updated with additional single-photon absorption terms. As the rest of the equations remain unchanged, the 

OS-FDM model formulation will stay the same.  

Although our model was formulated for the P-TPL process, we anticipate that our OS-FDM approach 

can also be applied to predict the outcome of other TPL implementations. Our technique is well suited for 

those TPL implementations that use low repetition rate femtosecond lasers (i.e., rates of ~1 kHz), such as 

the high-throughput implementation based on digital holography [17] . Our model of photopolymerization 

can be adapted to such studies with minimal changes due to the similar time scale of illumination and 

polymerization reactions. To adapt our OS-FDM model to the more prevalent TPL implementations that 

use high repetition rate lasers (i.e., rates of ~100 MHz), one must modify the polymerization rate equations 

to include the illumination term within the differential rate equations. Nevertheless, our work demonstrates 

that OS-FDM is an accurate and rapid technique for physics-based simulation of photopolymerization.        

4. Conclusions 

In summary, we have demonstrated that an operator splitting finite difference method (OS-FDM) can 

accurately and rapidly simulate the outcome of the reaction-diffusion photopolymerization processes in P-
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TPL. We have modeled photopolymerization in P-TPL via OS-FDM by representing the underlying 

physical phenomena through a set of partial differential equations that are coupled through the reaction and 

the diffusion terms. Operator splitting was achieved by splitting the reaction and diffusion terms so that the 

reaction terms could be solved without evaluating any spatial derivatives, while still capturing the effect of 

diffusion on the reactions in subsequent time steps. When compared with finite element simulations, 

operator splitting led to a computational speedup by 100 – 300 times and an accuracy within 5%. This 

significant speedup enabled performing high-fidelity 3D simulations of multi-layered 3D structures for the 

first time. The 3D simulations revealed additional modes of defects that could not be predicted from the 2D 

simulations of the single layers alone. Thus, OS-FDM enables rapid and high-fidelity physics-based 

simulation of photopolymerization in P-TPL. By significantly reducing the need for guesswork-based 

iterations during process planning and optimization, our work will enable scalable nanomanufacturing of 

complex 3D structures for various applications in computing, energy, transportation, and human health.                          

 

Appendix 

A flowchart of the OS-FDM implementation is shown in Fig. A1. 
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Nomenclature 

Chemical species 

 

PI  photoinitiator 

R*  primary radical 

P  monomer 

O2  oxygen 

P*  secondary radical formed from monomer P 

Rx  quenched primary radical 

Px  dead polymer chain 

 

Symbols 

 

kp  polymerization rate constant at a specific degree of polymer conversion 

kq  radical quenching rate constant  

kt  termination rate constant  

DO2  diffusivity of O2 

DOC degree of polymer conversion 

DOCth threshold degree of polymer conversion 

𝐷𝑝  optical dosage per pulse 

𝜎(2) two-photon cross-section of photoinitiator 

h  Planck’s constant 

Φ  quantum yield of photoinitiator 

v  frequency of light 
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Figure Captions List 

Figure 1: Schematic of P-TPL. (a) Overview of the process and (b) overview of the system. (Reprinted 

with permission from Saha et al. [15]. Copyright by AAAS). 

Figure 2: Results of 2D simulations performed with OS-FDM. (a) Bitmap image, (b) simulated optical 

dosage profile, (c) cross-sectional view of the simulated printed lines, i.e., regions where predicted DOC > 

DOCth, (d) DOC profile at the end of the exposure (te = 4 ms). (e) DOC profile after 10 ms following the 

end of exposure, (f) DOC profile after 100 ms following the end of exposure. The same color bar applies 

to (d) – (f).     

Figure 3: Temporal evolution of the concentration of various chemical species and the DOC at the center 

of the central line, obtained from the 2D OS-FDM simulation.          

Figure 4: Mesh convergence of the 2D OS-FDM simulations.  

Figure 5: DOC profile from 3D OS-FDM simulations of multi-layered log-pile printing. (a) 10 ms after 

projection of the first layer, (b) 10 ms after projection of the second layer, (c) 10 ms after projection of the 

third layer. The same color bar applies to all sub-parts. Optical power was 200 nW/px.      

Figure 6: Temporal evolution of the concentration of various chemical species and the DOC at the center 

of the central line of the first layer, obtained from the 3D OS-FDM simulation.        

Figure 7: DOC profile from 3D OS-FDM simulation of a multi-layered porous log-pile printed with an 

optical power of 139 nW/px. Profile was captured 10 ms after the projection of the third layer.      

Figure 8: 3D OS-FDM simulation for printing of an arbitrarily complex 3D structure. (a)-(c) Digital images 

projected on three different layers, ordered from first layer (leftmost) to last layer (rightmost). (d) Simulated 

DOC profile of a three-layered structure printed with an optical power of 139 nW/px. (e) DOC profile of 

the same structure as viewed from a different orientation. 3D profiles were captured 10 ms after the 

projection of the third layer.     

Figure A1: Flowchart for implementing OS-FDM for simulation of photopolymerization in P-TPL.  
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Table Captions List 

 

Table 1: Parameters for the reaction-diffusion model 

 

Table 2: Initial conditions for OS-FDM and FE models 

 

Table 3: Performance of OS-FDM versus FE models 
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Table 1 

 

Parameter Value Source 

𝜎(2) 133×10–50 cm4s/photon-

molecule 

Estimate from Rumi et al. (Fig. 5, 

compound 8 of reference [38])  

h 6.626×10–34 m2 kg / s Fundamental constant 

kp 4.3×104 dm3 mol–1s–1 Mueller et al. [19] 

kq 2.3×106 dm3 mol–1s–1 Mueller et al. [19] 

kt 5.9 ×104 dm3 mol–1s–1 Calibrated using empirical data [37] 

 0.0061 Calibrated using empirical data [37] 

DOCth 0.068 Measured [37] 

DO2 1.2×10-12 m2 s–1 Estimated using Stokes-Einstein equation 

ν 375 THz Printer laser  
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Table 2 

Parameter Initial value Source 

[O2] 6 × 10−3
 mol dm−3

 Mueller et al. [19] 

[PI] 1.65 × 10−3
 mol dm−3 Resist composition, PI at 0.1% by weight 

[P] 4.0 mol dm−3 Material datasheet [37] 

[R∗], [P∗]  0 mol dm−3 No light exposure at t = 0 

[Rx], [Px] 0 mol dm−3 No reaction products at t = 0 
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Table 3 

Model Discretization 

parameters 

Time to 

solve (s) 

Mean width 

(nm) 

Mean 

height (nm) 

Width 

error (%) 

Height  

error (%) 

FE Tolerance = 10-10 8207 531 741 0 0 

FE Tolerance = 10-8 3403 531 744 0.3 0.4 

FE Tolerance = 10-4 249 585 822 10.5 10.9 

OS-

FDM 

Node spacing = 

100 nm 
25 

508 703 4.6 5.2 

OS-

FDM 

Node spacing = 

200 nm 
5 

495 693 7.0 6.5 

 

 

 

 

 


