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A B S T R A C T

An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection
(EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the
model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of
basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power
maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power
sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency
and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element
simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a
processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy
is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training
effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely
predicted for any random spatiotemporal power excitation.
1. Introduction

Associated with aggressively downscaled technology nodes, the
power density of semiconductor chips is continuously increasing [1],
which therefore results in higher thermal gradients and more and
higher-temperature hot spots in the semiconductor chips and degrades
their performance and reliability [2,3]. In addition, higher heat dissi-
pation induced by the increased power density imposes a significant
challenge to the cooling system of semiconductor chips [4], which
in turn makes the thermal issues more severe. To maintain high
performance and prolong their lifespan, dynamic thermal management
has been implemented to reduce chip temperature and suppress hot
spots [5,6]. This however requires an accurate and efficient prediction
of the dynamic thermal profile in the chips with high resolution to
capture all crucial hot spots. Many approaches have been employed
for thermal simulations of semiconductor chips. For instance, direct
numerical simulations (DNSs) based on the finite element method
(FEM), finite difference method (FDM) or finite volume method (FVM)
offer temperature solutions of semiconductor chips accurately. Due
to a required large number of degrees of freedom (DoF), DNSs are
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computationally intensive and prohibitive for dynamic thermal man-
agement for large-scale semiconductor chips. To satisfy the demand of
efficiency, several other approaches are developed including thermal
circuit models [7–10], the Green’s function method [11], machine
learning based approaches [12,13], etc., by sacrificing accuracy and/or
resolution of temperature solutions.

The block model of HotSpot [9], one of the popular thermal cir-
cuit models, realizes high efficiency by using large lumped thermal
elements, which consequently results in low resolution and inaccurate
temperature solutions. For some floorplans, the block model of HotSpot
even leads to a 200% error, compared with DNSs [14]. The grid
model of HotSpot [7] was thereby developed to improve the accuracy
through dividing each functional unit (FU) of semiconductor chips into
much smaller elements, and it inherently becomes computationally
time-consuming similar to an FDM. For the Green’s function method,
temperature solutions are obtained through the convolution of the
power map (PM) with the Green’s function. The Green’s function is the
spatial impulse response to a unit point power source with an assump-
tion that the chip is infinitely large. It is therefore difficult to take into
account boundary conditions (BCs) for a realistic semiconductor chip
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with a finite dimension [13,15]. Although the method of image has
been used to address the issue, it is only valid for adiabatic BCs [11].
Moreover, it is hard to implement the Green’s function method for
transient thermal simulations [13,16]. To overcome this limitation,
effort has been made such as the power blurring method [11]. In
addition, applying the Green’s function method to 3D dynamic thermal
simulations still remains challenging. Due to the simplicity, machine
learning approaches have become popular in recent years for thermal
simulation of semiconductor chips [12,13,17]. It is however difficult to
implement high spatial resolution in these approaches that would re-
quire extremely intensive training [17], especially in large-scale chips.
Furthermore, due to the absence of any physical guidance, machine
learning based approaches usually perform poorly in extrapolation
cases.

Due to the ability to accomplish high accuracy, efficiency and
resolution simultaneously, data-learning approaches enabled by proper
orthogonal decomposition (POD) [18,19] have been attracting more
attentions in recent years, especially in large-scale numerical simu-
lations [20–22]. Using the POD, the problem of interest is projected
from the physical space onto a POD space that is represented by a
finite set of basis functions (or POD modes). The POD modes are
extracted/trained by solution data collected from DNSs subjected to
variations of spatiotemporal heat excitations and BCs. The heat transfer
equation is then projected onto the POD modes to close the model using
the Galerkin projection (GP) that also incorporates the fundamental
physical principles of heat transfer into the model. This rigorous POD-
GP simulation methodology generates an optimal set of POD modes
that are tailored to capture essential thermal behavior induced by
variations of spatiotemporal heat excitations and BCs. Together with
the physics-based guidance enforced by the GP, the POD-GP method-
ology thus offers a very accurate and efficient prediction of dynamic
thermal simulations of semiconductor chips at different levels if the
quality of the solution data is adequate. POD-GP based approaches have
been successfully applied to steady-state and dynamic thermal simu-
lations of semiconductor devices [23,24], integrated circuits [25–27],
interconnects [28] and microprocessors [29–31].

A global POD-GP thermal model (hereafter GPOD-GP) using the
POD modes trained for an entire chip has been demonstrated in pre-
vious studies [29–31]. Using 5 modes in GPOD-GP, a speedup over
17,000 times was achieved in a multi-core processor with a high
accuracy [29], compared to DNS via FEniCS using the FEM (FEniCS-
FEM) [32]. However, an extensive training effort is needed for GPOD-
GP to ensure good data quality and to cover enough spatial variation of
dynamic PMs to maintain its accuracy, which becomes prohibitive for
a large-scale chip. In this study, accuracy and robustness of GPOD-GP
is first examined in a quad-core CPU, AMD ATHLON II X4 610e [33].
Based on the findings, GPOD-GP is revised and the ensemble POD-GP
model (EnPOD-GP) is proposed to improve the training efficiency and
simulation accuracy.

Fig. 1(a) depicts the workflow of EnPOD-GP training, including data
collection from DNSs, generation of model parameters and develop-
ment of EnPOD-GP. EnPOD-GP trains an individual POD-GP model
(IPOD-GP) for the power source provided by each FU of a multi-core
CPU using the temperature solution data of the entire CPU induced
by the FU. Thus, there are a total of 𝑁𝐹𝑈 sets of POD modes, each
of which is trained independently to construct EnPOD-GP, and there
is no need for a training PM of the entire CPU. In contrast, GPOD-GP
generates one set of global POD modes accounting for power sources
in all FUs in the entire CPU to capture spatial variation of the power
density provided by several dynamic PMs. With 𝑁𝐹𝑈 IPOD-GP models
generated, an EnPOD-GP model is constructed for the multi-core CPU,
as shown in Fig. 1(a). The temperature solution of the multi-core CPU
can then be obtained by EnPOD-GP via the solution (𝑇𝑛(𝑟, 𝑡)) predicted
by each of the 𝑁𝐹𝑈 IPOD-GP models, as shown in Fig. 1(b). To be
more specific, 𝑇𝑛(𝑟, 𝑡) of the 𝑛th IPOD-GP model induced by the 𝑛th
power source 𝑃 is solved first for the entire CPU, and the dynamic
2

𝑛

Fig. 1. Workflow of (a) training for each of IPOD-GPs to construct the EnPOD-GP
model, where no PM is needed, and (b) temperature prediction using EnPOD-GP for a
multi-core CPU subjected to a dynamic PM with the spatial distribution, 𝑃1 − 𝑃𝑁𝐹𝑈

. 𝑛
denotes the 𝑛th FU and 𝑁𝐹𝑈 is the total number of FUs.

temperature in the entire space 𝑇 (𝑟, 𝑡) is then the sum of all 𝑇𝑛(𝑟, 𝑡) based
on the superposition principle. Note that either GPOD-GP or EnPOD-GP
solves the dynamic solution in its POD space first before calculating the
spatiotemporal temperature in the entire chip. The details described in
Fig. 1 will be presented in the following sections.

2. Global POD-Galerkin-Projection model

For the POD-based approach, the temperature solution is given by
a linear combination of the POD modes 𝜑𝑗 ,

𝑇 (𝑟, 𝑡) =
𝑀
∑

𝑗=1
𝑎𝑗 (𝑡)𝜑𝑗 (𝑟), (1)

where 𝑎𝑗 is the weighting coefficient and 𝑀 is the selected number of
modes. The POD mode is generated by maximizing the mean square
inner product of the thermal solution with the POD mode, which
thereby leads to an eigenvalue problem [18]

∫𝛺′
⟨𝑇 (𝑟, 𝑡)⊗ 𝑇 (𝑟′, 𝑡)⟩𝜑(𝑟′)𝑑𝛺′ = 𝜆𝜑(𝑟), (2)

where ⟨⋅⟩ denotes an average process over the sampled solution data,
⊗ is the tensor operator and 𝜆 is the eigenvalue representing the mean
squared temperature captured by 𝜑(𝑟). To close the model, a set of
equations for 𝑎𝑖 need to be derived. This can be achieved by the GP
of the heat transfer equation onto each of the generated POD modes

∫𝛺
(𝜑𝑗 (𝑟)

𝜕𝜌𝐶𝑇
𝜕𝑡

+ ∇𝜑𝑗 (𝑟) ⋅ 𝑘∇𝑇 )𝑑𝛺 =

∫𝛺
𝜑𝑗 (𝑟)𝑃𝑑 (𝑟, 𝑡)𝑑𝛺 − ∫𝑆

𝜑𝑗 (𝑟)(−𝑘∇𝑇 ⋅ 𝑛)𝑑𝑆,
(3)

where 𝑗 = 1 to 𝑀 , and 𝑘, 𝜌 and 𝐶 are material properties of chips
(i.e., the thermal conductivity, density and specific heat, respectively),
𝑃𝑑 (𝑟, 𝑡) is the interior power density, 𝑆 is the boundary surface and 𝑛 is
its outward normal vector.

By incorporating (1), (3) can be expressed as a set of ordinary
differential equations (ODEs) for 𝑎𝑗 ,
𝑀
∑

𝑗=1
𝑐𝑖,𝑗

𝑑𝑎𝑗
𝑑𝑡

+
𝑀
∑

𝑗=1
𝑔𝑖,𝑗𝑎𝑗 = 𝑃𝑖, 𝑖 = 1 to 𝑀, (4)

where 𝑐𝑖,𝑗 , 𝑔𝑖,𝑗 and 𝑃𝑖 are the elements of the thermal capacitance
matrix, thermal conductance matrix and power vector in the POD
space, respectively. 𝑐𝑖,𝑗 is defined as

𝑐𝑖,𝑗 = 𝜌𝐶𝜑𝑖𝜑𝑗𝑑𝛺. (5)
∫𝛺
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Table 1
Percentage distribution of power consumption.

PM Core 1 Core 2 Core 3 Core 4 Other units

1 16.2% 17.5% 16.2% 31.8% 18.3%
2 16.9% 18.3% 16.2% 29.5% 19.1%
3 15.6% 16.7% 35.7% 14.5% 17.5%
4 16.0% 17.0% 39.0% 10.0% 18.0%

As indicated by (5), 𝑐𝑖,𝑗 are independent of BCs while 𝑔𝑖,𝑗 and 𝑃𝑖
are dependent on BCs. In this work, adiabatic and convective BCs
are implemented to the boundary surfaces of the chip. For adiabatic
boundary surfaces where the heat flux is zero, 𝑔𝑖,𝑗 and 𝑃𝑖 can be given
as

𝑔𝑖,𝑗 = ∫𝛺
𝑘∇𝜑𝑖 ⋅ ∇𝜑𝑗𝑑𝛺, 𝑃𝑖 = ∫𝛺

𝜑𝑖𝑃𝑑 (𝑟, 𝑡)𝑑𝛺. (6)

As to convective boundary surfaces, the heat flux on the surfaces is
described by

−𝑘∇𝑇 ⋅ 𝑛 = −𝑘𝜕𝑇
𝜕𝑛

= ℎ(𝑇 − 𝑇𝑎𝑚𝑏), (7)

where ℎ and 𝑇𝑎𝑚𝑏 are the heat transfer coefficient and ambient temper-
ature, respectively. Plugging (7) into (3), 𝑔𝑖,𝑗 and 𝑃𝑖 for the convective
BC become

𝑔𝑖,𝑗 = ∫𝛺
𝑘∇𝜑𝑖 ⋅ ∇𝜑𝑗𝑑𝛺 + ∫𝑆

ℎ𝜑𝑖𝜑𝑗𝑑𝑆, (8)

and

𝑃𝑖 = ∫𝛺
𝜑𝑖𝑃𝑑 (𝑟, 𝑡)𝑑𝛺 + ∫𝑆

ℎ𝜑𝑖𝑇𝑎𝑚𝑏𝑑𝑆. (9)

For GPOD-GP, the modes are trained by thermal data collected from
FEniCS-FEM responding to applied PMs and BCs in the entire chip
using a mesh with a grid number of 382,500 (i.e., 150 × 150 × 17
in 𝑥, 𝑦 and 𝑧 directions, respectively) and the grid size of 0.094 ×
0.081 × 0.046 mm3. To examine the model, four dynamic PMs with
different spatial distributions given in Table 1 are generated for the
selected multi-core CPU. PMs 1 to 3 are generated by gem5 [34] and
McPAT [35] using four selected benchmarks (Radix Soft, Monte Carlo,
2D heat and Advection Diffusion) [36]. The power distributions of PMs
1–3 are determined by the assignment of the benchmarks, as shown in
Table 2. Notes that uniform power consumption is generated in each FU
labeled in Fig. 2 for Cores 1–4, L2 Caches 1–4 and Northbridge only.
McPAT does not generate power dissipation in I/O or DDR3 Channels
due to gem5 limitations. There are thus 9 FUs in total. PM 1 is used to
train one set of POD modes for the entire multi-core CPU. PMs 2 and
3 are test PMs, where PM 2 is slightly deviated from PM 1 but power
applied to Cores 3 and 4 of PM 3 are very different from those in PM
1. As given in Table 1, the Core 3 power consumption in PM 3 is more
than double of that in PM 1, and the Core 4 power consumption in PM
3 is less than half of that in PM 1. Two GPOD-GP models are developed
in this work:

• GPOD-A: using data generated from PM 1
• GPOD-B: using data generated from both PMs 1 and 4.

PM 4 is created manually as an additional GPOD-B training PM, whose
power in each of Cores 3 and 4 is selected such that power percentages
of Cores 3 and 4 in PM 3 fall between those of the GPOD-B training
PMs (i.e., PMs 1 and 4), as seen in Table 1. The power percentages in
other cores/FUs PM 4 are similar to those in PM 1. This setting creates a
simple scenario to examine the leaning ability of GPOD-B influenced by
PM 3 that leads to dynamic thermal behavior bounded by the training
data resulting from PMs 1 and 4.

The training procedure for obtaining POD modes and eigenval-
ues was detailed in the first two paragraphs of Section 2 and pre-
sented [30]. The theoretical least square (LS) error of GPOD-GP against
3

Table 2
Benchmark assignments for the generation of PMs [36].

PM Core 1 Core 2 Core 3 Core 4

1 Radix Soft Monte Carlo 2D heat Adv. Diff.
2 Monte Carlo 2D heat Adv. Diff. Radix Soft
3 2D heat Adv. Diff. Radix Soft Monte Carlo

Fig. 2. Floorplan of AMD ATHLON II X4 610e CPU including localized high-power
densities (red boxes with a size of 0.7 × 0.75 mm2).

DNS can be estimated by [30]

𝐸𝑟𝑟𝑡ℎ𝑒𝑜 =

√

√

√

√

√

𝑁𝑠
∑

𝑗=𝑀+1
𝜆𝑗

/ 𝑁𝑠
∑

𝑗=1
𝜆𝑗 , (10)

where 𝑁𝑠 is the number of data samples. As a counterpart to the
theoretical LS error, the numerical LS error is estimated by

𝐸𝑟𝑟𝑛𝑢𝑚 =

√

√

√

√

√

∑𝑁𝑡
𝑖=1 ∫𝛺 𝑒2(𝑟, 𝑡𝑖)𝑑𝛺

∑𝑁𝑡
𝑖=1 ∫𝛺

[

𝑇 (𝑟, 𝑡𝑖) − 𝑇𝑎𝑚𝑏
]2 𝑑𝛺

, (11)

where 𝑁𝑡 is the number of selected time steps in the thermal prediction,
𝑇 (𝑟, 𝑡𝑖) is the temperature solution from FEM which is used as the
baseline in this work, 𝑒(𝑟, 𝑡𝑖) is the temperature difference between FEM
and GPOD-GP (or EnPOD-GP in Section 3) at the 𝑖th time step. Fig. 3
shows that the ideal LS error of GPOD-A is approximately half of GPOD-
B’s error until it is near 0.00003% beyond 80 modes. This is because
the eigenvalue of GPOD-A decreases faster, as shown in Fig. 4, due to
less information provided by the training data for GPOD-A.

It should be noted that the error predicted by (10) is accurate only
if the quality of the training data is sufficient. The training data qual-
ity is predominantly influenced by (i) numerical accuracy of training
temperature data collected from DNSs and (ii) the deviation between
the training and testing simulations. The former is influenced by the
numerical method and grid resolution implemented in DNSs; the latter
in this work is determined by how well the PM in simulation is covered
by the training PMs. With inaccurate numerical training data, the POD
parameters in (4) cannot be estimated accurately. Accuracy of GPOD-
GP is thereby deteriorated, which is extensively studied in [30,31].
When the simulation setting deviates from the training condition (influ-
enced by PMs), the training is incomplete or inadequate and the error
is always large with a small number of modes, which is investigated
below.

To observe the learning ability of GPOD-GP influenced by the
training data quality, GPOD-A simulations are demonstrated below
using PMs 1 to 3. Fig. 3 shows that the LS training error of GPOD-A
(i.e., using the training PM, PM 1, in simulation) is nearly identical
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Fig. 3. Numerical and theoretical LS errors for the entire chip from GPOD-A and
GPOD-B.

Fig. 4. Eigenvalues derived from GPOD-A, GPOD-B, EnPOD-A and EnPOD-B.

to 𝐸𝑟𝑟𝑡ℎ𝑒𝑜 and stays near 0.01% beyond 35 modes due to computer
precision. When applying PM 2 (whose power distribution is slightly
different from PM 1; see Table 1), use of 3, 5, 11 or 15 modes leads to
an LS error near 3.5%, 2.2%, 1.1% or 0.72%, respectively. The error
reaches 0.069% with 99 modes and continues declining. When using
PM 3 (very different power consumptions in Cores 3 and 4 from PM
1), its LS error becomes nearly an order larger, and it needs 52 modes
to reach 2.2% (only 5 modes for the case using PM 2). The error from
PM 3 reaches 0.69% with 99 modes and still continues decreasing.
Even with inadequate training for GPOD-A subjected by PM 3, GPOD-A
clearly demonstrates its learning ability in this case to perform accurate
extrapolation when more modes are included.

The above findings resulting from the GPOD-A demonstration indi-
cate that the training data quality is the key to offer both high accuracy
and efficiency for GPOD-GP. When using the training data (collected
from the stimulation subjected to PM 1) that provides nearly perfect
data quality for GPOD-A, the LS error is as small as the ideal error
given in (10), as depicted in Fig. 3. For the simulation using PM 2, the
training data quality resulting from PM 1 is still sufficient to offer an
accurate prediction with just around 5 modes. The quality of the same
data from PM 1 is however insufficient for the simulation using PM 3,
4

which thus leads to an LS error near 29% with 5 modes. However, even
with an incomplete training leading to a poor data quality, GPOD-A
using PM 3 still demonstrates its learning ability to perform accurate
extrapolation far beyond its training setting when 50 or more modes
are included. Such a remarkable learning ability stems from the GP
in (3) that enforces physical principles of heat transfer in (4). To further
validate the learning ability associated with the data quality, PM 3 is
implemented in GPOD-B simulation, where PM 3 is within the bounds
of PMs 1 and 4 that are both used to train GPOD-B. Fig. 3 illustrates the
LS error induced by GPOD-B is greatly improved, which reaches 2.6%
with 5 modes and 2.2% with 6 modes. It becomes even smaller than
GPOD-A’s error with PM 2 beyond 9 modes.

As demonstrated in Fig. 3, although GPOD-GP thermal model is
able to reach a high accuracy and efficiency, multiple dynamic PMs
are needed in the training to cover enough variation of the power
distributions over all the cores. For CPUs/GPUs with a large number
of cores, the training then becomes computationally prohibitive.

3. Ensemble POD-Galerkin-Projection model

To improve the GPOD-GP accuracy and training efficiency, the
EnPOD-GP thermal simulation methodology is proposed in this work.
Unlike GPOD-GP that trains one global set of modes for the entire
chip, EnPOD-GP trains 𝑁𝐹𝑈 sets of POD modes, and each represents
an IPOD-GP model for the entire processor excited only by the power
source(s) in an FU. Similar to GPOD-GP, the modes of IPOD-GP for each
power source are generated and optimized by maximizing the mean
square inner product of the mode with the temperature solution data
collected from DNS of the entire chip subjected to the corresponding
power source. Therefore, for the 𝑛th IPOD-GP of the 𝑛th power source,
the eigenvalue problem becomes

∫𝛺′
⟨𝑇𝑛(𝑟, 𝑡)⊗ 𝑇𝑛(𝑟′, 𝑡)⟩𝜑𝑛(𝑟′)𝑑𝛺′ = 𝜆𝑛𝜑𝑛(𝑟), (12)

where 𝜑𝑛(𝑟) and 𝜆𝑛 are the modes and eigenvalue of 𝑛th IPOD-GP.
Once 𝜑𝑛(𝑟) are determined, the temperature induced by the power
consumption in the 𝑛th power source can be given by

𝑇𝑛(𝑟, 𝑡) =
𝑀𝑛
∑

𝑗=1
𝑎𝑗,𝑛(𝑡)𝜑𝑗,𝑛(𝑟), (13)

where 𝑀𝑛 is the number of modes of the 𝑛th power source.
To obtain 𝑎𝑗,𝑛(𝑡), as GPOD-GP does, the heat transfer equation is

projected onto the POD space represented by the modes of the IPOD-GP
for the 𝑛th power source

∫𝛺
(𝜑𝑗,𝑛(𝑟)

𝜕𝜌𝐶𝑇𝑛
𝜕𝑡

+ ∇𝜑𝑗,𝑛(𝑟) ⋅ 𝑘∇𝑇𝑛)𝑑𝛺 =

∫𝛺
𝜑𝑗,𝑛(𝑟)𝑃𝑑,𝑛(𝑟, 𝑡)𝑑𝛺 − ∫𝑆

𝜑𝑗,𝑛(𝑟)(−𝑘∇𝑇𝑛 ⋅ 𝑛)𝑑𝑆,
(14)

where 𝑃𝑑,𝑛(𝑟, 𝑡) is the interior power density in the 𝑛th power source.
Together with (13), (14) can be rewritten as a set of ODEs
𝑀𝑛
∑

𝑗=1
𝑐𝑛𝑖,𝑗

𝑑𝑎𝑗,𝑛
𝑑𝑡

+
𝑀𝑛
∑

𝑗=1
𝑔𝑛𝑖,𝑗𝑎𝑗,𝑛 = 𝑃𝑖,𝑛, 𝑖 = 1 to 𝑀𝑛, (15)

where 𝑐𝑛𝑖,𝑗 , 𝑔
𝑛
𝑖,𝑗 and 𝑃𝑖,𝑛 are the parameters of the IPOD-GP for the 𝑛th

power source, and their expressions are identical to those given in (5)–
(9). By solving (15), 𝑎𝑗,𝑛(𝑡) are determined, and temperature caused
by the 𝑛th power source is given by (13). Based on the superposition
principle, the dynamic temperature solution of the entire processor is
then the sum of temperatures derived from all the IPOD-GP models,
i.e.,

𝑇 (𝑟, 𝑡) =
𝑁𝐹𝑈
∑

𝑇𝑛(𝑟, 𝑡) =
𝑁𝐹𝑈
∑

𝑀𝑛
∑

𝑎𝑗,𝑛(𝑡)𝜑𝑗,𝑛(𝑟), (16)

𝑛=1 𝑛=1 𝑗=1
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Fig. 5. LS errors of EnPOD-A and EnPOD-B vs. number of modes per FU.

where the indices denote the 𝑗th mode of the 𝑛th FU. In this study,
𝑀𝑛 = 𝑀 for all units. The equivalent 𝑗th-mode eigenvalue considering
all FUs in EnPOD-GP is defined by

𝜆𝑒𝑞𝑗 =
𝑁𝐹𝑈
∑

𝑛=1
𝜆𝑗,𝑛𝑤𝑛, (17)

where 𝑤𝑛 is the area fraction for the 𝑛th FU over the chip area. Using
𝜆𝑒𝑞𝑗 , the theoretical LS error of EnPOD-GP can be estimated from (10).

Since each FU in EnPOD-GP is trained by the power source in the
corresponding FU independently of other FUs, there is no training PM
needed for entire processor and the training becomes more effective.
To demonstrate this, 2 EnPOD-GP models are constructed. EnPOD-A is
trained by a random uniform power density in each FU and EnPOD-B by
the same except for Core 4 where 4 localized high-power densities (1 to
3 times higher than the uniform level) shown in Fig. 2 are added to the
uniform power. Note that, since EnPOD-A is not exposed to localized
high power density in the training, it only works well for the cases
where power source in each FU is uniform. EnPOD-B is generated to
examine the EnPOD-GP’s ability to capture accurate hot spots induced
by localized high-power injections. Moderate variation of the high-
power injections in one core is implemented in the training. The same
mesh size for GPOD-GP is used for training EnPOD-A but a finer mesh
of 256 × 256 × 17 with a grid size of 0.055 × 0.047 × 0.046 mm3 is
applied for EnPOD-B with localized high power densities. Also, since
only moderate variation of the high-power injections is implemented in
one core during the training, Fig. 4 shows that EnPOD-B’s eigenvalue
declines only slightly slower than that of EnPOD-A. Compared with the
eigenvalues of GPOD-A and GPOD-B, due to more effective training,
eigenvalues of both EnPOD-A and EnPOD-B shown in Fig. 4 decrease
significantly faster than those of GPOD-A and GPOD-B. Thus, 𝐸𝑟𝑟𝑡ℎ𝑒𝑜
of both EnPOD-GP models illustrated in Fig. 5 decline relatively fast
compared to both GPOD-GP models in Fig. 3.

Note that the LS error of EnPOD-A shown in Fig. 5 is nearly
independent of the PMs because each of its IPOD-GP models is trained
independently without the need of training PM. In addition, the LS
error is accurately predicted in terms of the number of modes (i.e., the
DoF that determines the computational time) by (10) using 𝜆𝑒𝑞𝑗 until
8 modes and stays near 0.009% beyond 10 modes due to computer
precision. This is very different from thermal circuit models or machine
learning methods where the error cannot be predicted. Because of
localized high power densities included in EnPOD-B, Fig. 5 reveals
that its 𝐸𝑟𝑟𝑡ℎ𝑒𝑜 is slightly larger than EnPOD-A’s. To examine EnPOD-
B, PMs 1–3 are applied, together with additional localized high-power
5

densities injected at 4 locations in Core 4, as shown in Fig. 2. The
localized high power densities increase local thermal gradients, which
thus deteriorates the prediction accuracy. When they are applied to
higher power regions, thermal gradients are further enhanced. The
uniform power of Core 4 (where the localized high power density is
applied) in PMs 1 and 2 are more than double of that in PM 3 (see
Table 1). As a result, EnPOD-B induced by PMs 1 or 2 using 1 to 3
modes/FU leads to an LS error nearly double of that resulting from
PM 3. However, because of the learning ability guided by physical
principles incorporated via the GP given in (14), the LS errors of
EnPOD-B resulting from all these 3 PMs, together with the localized
high power densities, reduce drastically and merge gradually beyond 3
modes/FU. Their LS errors become less than 1% with 4 modes/FU and
all equal 0.58% with 5 or more modes/FU.

The LS error resulting from EnPOD-B induced by localized high-
power densities is however relatively large, compared to those from
EnPOD-A. For example, EnPOD-A reaches an LS error of 0.31% with
just 4 modes/FU. The relatively large LS error from EnPOD-B mainly
arises from the less accurate numerical training data due to the high
thermal gradients induced by localized high-power excitations. This
is similar to the observation in [30] that demonstrated a significant
improvement in the POD-GP accuracy by replacing a coarser-mesh
training in DNS with a finer mesh in a situation with high thermal
gradients. This is however very different from the incomplete training
presented in Fig. 3, where the numerical accuracy in training data is
high enough and physical principles of heat transfer enforced by the
GP allow the incompletely trained POD modes to perform sophisticate
extrapolation to reach high accuracy. On the contrary, less-accurate
numerical training data for EnPOD-B resulting from high thermal gra-
dients leads to a constant LS error, as observed for EnPOD-B in Fig. 5.
This constant LS error is induced by the less-accurate POD modes
generated by less-accurate numerical training data. Nevertheless, LS
errors of EnPOD-B subjected to various PMs all merger to a very small
value with a handful of modes. This demonstrates that EnPOD-GP is
resilient to various PMs even in situations where localized high-power
densities are applied. It should be noted that implementation of a finer
mesh in EnPOD-B will further improve the accuracy without increasing
its computing time, as suggested by the study in [30]; however more
training effort will be needed.

More detailed solutions from GPOD-A, GPOD-B, EnPOD-A and
EnPOD-B subjected to PM 3 are compared to results from FEniCS-FEM
in Figs. 6 and 7. In Fig. 6, the temperature evolution at the intersection
of Path A and B indicated in Fig. 2 shows that all of POD-GP models
with 3 or more modes provide accurate dynamic temperature. Note
that the dynamic temperature predicted by GPOD-A subjected to PM
3 happens to be reasonably accurate at this intersection located at
(3.61 mm, 3.16 mm) even though the overall LS error for this case is
close to 25% with 3 modes, as shown in Fig. 3, due to inadequate
training data quality for GPOD-A subjected to PM 3. The large error
for GPOD-A subjected to PM 3 is clearly observed in Fig. 7(a) and (b),
where the LS error is as large as 20% when 7 modes are included (see
Fig. 3). Compared with GPOD-A that is trained only from temperature
data induced by PM 1, GPOD-B is generated via a more thorough
training using temperature data influenced by PMs 1 and 4. GPOD-
B with 3 or more modes therefore reaches a very good agreement
with FEniCS-FEM, as shown in Figs. 6(b) and 7(c)–(d), although very
small deviations are still observed in some locations, for instance, near
5.0 mm < 𝑦 < 6.5 mm in Fig. 7(d). The substantial improvement
for GPOD-B is due to the better data quality for PM 3. Fig. 7(e)–(h)
also confirm the excellent agreement given in Fig. 5 between EnPOD-
A/EnPOD-B using 3 or more modes per FU and FEniCS-FEM. Fig. 5
shows that use of 3 modes per FU in EnPOD-A or EnPOD-B reaches
an LS error near 0.58% or 0.78%, respectively. For GPOD-B, 13 or 17
modes are needed, respectively, as indicated in Fig. 3.

To offer better visualization of the thermal profiles presented in
Fig. 7, thermal maps for these profiles resulting from POD-GP models
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Fig. 6. Dynamic temperature at the intersection of Paths A and B given in Fig. 2
predicted by (a) GPOD-A, (b) GPOD-B and (c) EnPOD-A and (d) EnPOD-B and HotSpot,
compared with FEniCS-FEM. All simulations here are performed subjected to PM 3, and
EnPOD-B simulation includes additional localized high power densities.

and FniCS-FEM at 𝑡 = 20 ms are illustrated in Fig. 8. Similar to Fig. 7(a)
and (b), the thermal map in Fig. 8(b) resulting from GPOD-A deviates
significantly from Fig. 8(a) predicted by FEniCS-FEM due to inadequate
training for GPOD-A in this case. Other POD-GP models offer very
accurate thermal maps compared to FEniCS-FEM results. Alongside
the LS error over the entire simulation time and space presented in
Figs. 3 and 5, the absolute temperature error distribution with the
maximum absolute error for each model over the entire simulation time
is presented in Fig. 9. It can be seen in Fig. 9(b)–(d) that using only 3
modes GPOD-B leads to a maximum error near 0.5 ◦C and for both
EnPOD-A and EnPOD-B the maximum error near 0.1 ◦C is achieved.
In contrast, large absolute errors are observed in Fig. 9(a) for GPOD-A
even with 7 modes, where the maximum is as high as 2.1 ◦C in Core 3.

For thermal simulations of large-scale semiconductor chips, thermal
circuit models [7,8,11,14,37–39], are usually used because of their
computing efficiency compared to DNSs. However, it has been shown
in many studies that, even though their large time-scale (on the order
of seconds) or steady-state thermal responses are close to the rigorous
FEM results [7,8,11,14,37–39], large deviations from the FEM are
always observed in smaller time scales [8,11,14,37]. A scaling factor
𝐶𝑓 for capacitance elements is thus included in HotSpot [7] for users
to fit the transient response for a certain period of time to obtain
a reasonable agreement with FEM simulation [40]. One of the most
popular state-of-the-art simulators, the grid model of HotSpot, is also
applied to thermal simulation of the selected quad-core CPU using
the same numerical settings used in the training of EnPOD-B. The
spatiotemporal temperature solution derived from HotSpot is included
in Figs. 6(d) and 7(g)–(h), compared to FEniCS-FEM and EnPOD-B. 𝐶𝑓
is utilized to adjust its transient response, as seen in Figs. 6(d) and
Fig. 7(g) and (h) for a thermal response to continuous random power
excitations. Although a careful selection of 𝐶𝑓 could approximately fit
FEM results around several millisecond, it is not likely to work for a
longer period unless large-timescale (in seconds) or steady-state results
are of interest.

There are 9 IPOD-GP models in each of EnPOD-A and EnPOD-B. As
shown in Table 3 for EnPOD-A, 9 × 3 ODEs (i.e., 3 modes for each
IPOD-GP) given in (4) are needed to reach an LS error near 0.58%
and |Err|𝑚𝑎𝑥 = 0.088 ◦C while only 17 ODEs (17 modes) in GPOD-B
are needed to reach similar accuracy (ErrLS = 0.57% and |Err|𝑚𝑎𝑥 =
0.086 ◦C), as given in Table 4. It is noted that Table 4 includes the total
6

Fig. 7. Temperature profiles at 𝑡 = 20 ms from GPOD-A, GPOD-B, EnPOD-A, EnPOD-B,
FEniCS and HotSpot along Paths A (First column) and B (Second Column), respectively.
Note that in EnPOD-A and EnPOD-B the number of modes is for each FU. The test PM,
PM 3, is applied to all simulations, and additional localized high power densities are
included in both HotSpot and EnPOD-B.

number of modes (i.e., the dimension of the ODE system matrix) for
GPOD-B. Table 3 however lists the number of modes per FU (i.e., for
each IPOD-GP of EnPOD-A), where the number of modes for each FU
is taken to be identical in this study. However, the 9 sets of ODEs
in EnPOD-GP are independent and the ODE system matrix is thereby
highly sparse. Specifically, the ODE system matrix for EnPOD-A is
block-diagonal with very small block matrices. For instance, as shown
in Table 3, use of 2 modes per IPOD-GP for EnPOD-A renders a set of
ODEs with 9 small block matrices each with a size as small as 2 × 2,
which leads to an LS error of 3%. When using 3 modes per IPOD-GP,
the size of each block matrix becomes 3 × 3 and EnPOD-A reaches
an LS error of 0.58%. For GPOD-B with 17 modes, all 𝑔𝑖,𝑗 elements of
the 17 × 17 ODE system matrix are non-zero. Thus, the computational
time for solving the 17 ODEs using GPOD-B is not much different from
what is needed for 27 ODEs needed in EnPOD-A (16.7 s vs. 18.8 s).
Furthermore, based on the findings in Figs. 3–5, to reach a higher
accuracy, the number of modes needed in GPOD-B will be larger than
that needed in EnPOD-A, as also shown in Tables 3 and 4. This becomes
more obvious for microprocessors with more cores since considerably
more PMs are needed in the GPOD-GP training to account for power
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Fig. 8. Thermal maps at 𝑡 = 20 ms in the device layer of the multi-core CPU subjected
to PM 3 predicted by (a) FEniCS-FEM, (b) GPOD-A, (c) GPOD-B and (d) EnPOD-A.
Similar thermal maps at 𝑡 = 20 ms induced by PM 3 with localized high-power densities
in Core 4 predicted by (e) FEniCS-FEM and (f) EnPOD-B.

Fig. 9. Absolute error distributions induced by PM 3, where the maximum absolute
error occurs, predicted by (a) GPOD-A, (b) GPOD-B, (c) EnPOD-A and (d) EnPOD-
B, against FEniCS-FEM. EnPOD-B simulation includes additional localized high power
densities. Note that the error scale in (a) is different from those in (b)–(d).

density variation among the cores. In contrast, an arbitrary random
power excitation applied to each FU will be sufficient for EnPOD-GP
without the need of a PM. Much more information provided by more
training PMs will inevitably lead to a slower decrease in the eigenvalue.
7

Table 3
LS and maximum absolute errors and computational time for EnPOD-A associated with
the number of modes. The number inside parentheses indicates the total number of
POD modes.

Mode No./FU Time (s) ErrLS (%) |Err|max (◦C)

1(9) 11.8 10.6 0.815
2(18) 15.2 3.00 0.594
3(27) 18.8 0.58 0.088
4(36) 23.0 0.31 0.061
5(45) 28.1 0.098 0.037
6(54) 32.9 0.063 0.029
7(63) 38.2 0.024 0.012

Table 4
LS and maximum absolute errors and computational time for GPOD-B associated with
the number of modes.

Mode No. Time (s) ErrLS (%) |Err|max (◦C)

2 6.5 11.4 1.075
5 7.9 2.6 0.340
11 12.3 1.03 0.153
17 16.7 0.57 0.086
27 25.0 0.32 0.046
55 48.9 0.098 0.022

Fig. 10. Computational time vs. LS error of the entire chip for the thermal simulation
with PM 3 using GPOD-B and EnPOD-A. The computational time for FEM is more than
23 h.

As shown in Fig. 4, the eigenvalue of GPOD-A declines faster than that
of GPOD-B even though only one additional training PM is included
in GPOD-B. Contrarily, the decrease in the eigenvalue for EnPOD-A is
considerably faster (see Fig. 4) and its LS error is basically independent
of the PMs (see Fig. 5).

As shown in Fig. 10 and Tables 3 and 4, when 18 ODEs with a
diagonal block system matrix in EnPOD-A or 5 ODEs with a non-sparse
system matrix in GPOD-B are used, the LS errors for both models are
near 2.6%–3%. In this case with the similar errors, GPOD-B is around
twice as fast as EnPOD-A. To reach an LS error below 2%, the GPOD-
B computational time drastically increases while the time needed for
EnPOD-A just increases slowly. As clearly illustrated in Fig. 10, the
computing speed for EnPOD-A becomes considerably faster as higher
accuracy is desired.

Results presented in Figs. 3–10 suggest that for a processor with
many more cores EnPOD-GP is much preferable to GPOD-GP in terms
of training effort and simulation efficiency and accuracy.

Training effort: As shown above, to ensure good data quality for the
training, thermal data collected from DNSs needs to accounting for
enough variations of PMs. For a large number of FUs, an enormous
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number of training PMs are needed for GPOD-GP and becomes com-
putationally intolerable and prohibitive. Conversely, only one simple
dynamic random PM is needed for an effective training of IPOD-GP to
construct EnPOD-GP.

Simulation efficiency and accuracy: Even if the computationally
intensive training of POD modes can be somehow achieved to construct
GPOD-GP for a processor with many cores, the slowly decrease in the
eigenvalue would require an very larger number of modes to reach
reasonable accuracy. Contrarily, in EnPOD-GP, each FU (or each IPOD-
GP) only needs 2 or 3 ODEs (i.e., 2 or 3 modes) to reach high accuracy;
there are 𝑁𝐹𝑈 sets of ODEs and each set is independent of others. Thus,
omputational time of EnPOD-GP only increases linearly with 𝑁𝐹𝑈 ;
owever, for GPOD-GP the number of modes increases drastically as
ore cores (more FUs) are involved in order to reach a reasonable

ccuracy.
For a small number of cores, GPOD-GP is faster unless extremely

igh accuracy is needed, as demonstrated in Fig. 10. As the number of
ores is scaled up, the overhead of the increased DoF for EnPOD-GP is
ased by its highly sparse system matrix, and EnPOD-GP will become
onsiderably more efficient than GPOD-GP to reach good accuracy.
ne of the major overhead for POD-GP is the slow post processing
alculations for temperature using (16), especially in a large-scale chip
ith fine spatial resolution. Practically for most chip-level applications

elevant to thermal issues, only temperatures near hot spots and at
ome time instants are of interest. The times included in Fig. 10 and
ables 3 and 4 are estimated for evaluating temperature using (16) in
he whole chip over the entire simulation time. If only the temperature
t selected location near hot spots are of interest, the computational
ime and memory space will drastically reduce.

Regarding the computational time, it takes more than 30 h for
EniCS-FEM and 3.53 h for HotSpot to perform thermal simulation of
he quad-core CPU subject to the localized high power injections. For
nPOD-B (instead of EnPOD-A given in Table 3), 32.5 s is needed using
modes per FU to reach ErrLS = 2.8% or |Err|𝑚𝑎𝑥 = 0.59 ◦C and 43 s

s needed using 3 modes per FU to reach ErrLS = 0.78% or |Err|𝑚𝑎𝑥 =
.14 ◦C for the entire CPU. As mentioned above, the computing speed
an be significantly improved for EnPOD-B, if temperature is only
alculated at certain points in time and/or space from (16).

. Discussions

The demonstrations of GPOD-A and GPOD-B have illustrated the
mportance of the quality of training thermal data to reach both high ef-
iciency and accuracy. When using poor-quality data due to incomplete
raining (e.g., the GPOD-A simulation with PM 3), Fig. 3 shows that
POD-GP is still able to reach a high accuracy with many more modes.
his is very different from most machine learning based methods,
here the prediction far beyond the training setting in general fails. The

imulation with PM 3 using GPOD-B whose training PMs, PMs 1 and 4,
over the variation in PM 3 demonstrates that an appropriate training
etting in GPOD-GP can achieve both high accuracy and efficiency.
imilar training settings can be performed using many PMs to cover a
ange of variation for each of major heating sources, Cores 1–4, without
reat difficulty. However, using more data from a larger number of
raining PMs, the eigenvalue will decrease more slowly, as observed
n Fig. 4 for GPOD-B and GPOD-A. In addition, for a processor with
onsiderably more cores, the computing effort to accommodate a huge
umber of PMs for training a set of POD modes to account for possible
ariations of all heat sources would become practically prohibitive.

On the other hand, the EnPOD-GP methodology trains IPOD-GP
odels independently, which offers simpler training settings, minimal

raining effort, fast declining eigenvalues, and extremely high accuracy.
ompared to GPOD-GP, more computational time is needed for EnPOD-
P in a processor with a small number of cores unless a very high
8

ccuracy is needed, as shown in Fig. 10. In a processor with more cores, w
f one can manage to achieve a computationally extensive training
or a well-trained GPOD-GP, its eigenvalue would decline considerably
ores slowly and thus more modes (longer computational time) are
eeded to reach a good accuracy. Since the IPOD-GP models of EnPOD-
P are all independent, the large block-diagonal matrix with very

mall block matrices in EnPOD-GP will be more efficient than GPOD-
P. Moreover, when implementing a parallel computing environment

such as MPI) in the sparse EnPOD-GP system, EnPOD-GP will offer a
uperior advantage over the dense system matrix of GPOD-GP. EnPOD-
P will be further investigated in the near future on CPUs/GPUs with
onsiderably more cores in parallel computing environments.

Compared to FEniCS-FEM simulation, a reduction in the DoF near
or 5 orders of magnitude is observed to achieve an LS error around

.6%–3% for EnPOD-A or GPOD-GP, respectively. To reach an LS error
ear 3%, the computing speedup over FEniCS-FEM by 5459 and 10,504
imes for EnPOD-A and GPOD-B is observed, respectively, and to reach
n error near 0.58%, the speedup becomes 4413 and 4969 times. For
he case with localized high power, to reach an LS error near 2.8% or
.78%, EnPOD-B computing speed is 3355 or 2517 times faster than
EniCS-FEM and 390 or 295 times faster than HotSpot, respectively. It
s noted that, after solving the ODEs in (4) in the POD space, the post
rocessing for GPOD-GP or EnPOD-GP using (1) or (16), respectively, is
eeded to obtain spatiotemporal temperature. The post process takes 50
o 100 times longer than solving the ODEs [30]. Unlike thermal circuit
odels (e.g., HotSpot [7] or PACT [8]) or DNSs where solution over the

ntire time and space must be solved all together, for the POD-GP based
pproaches one can post-process temperature only at selected locations
r time instants to significantly improve the computing efficiency and
emory space.

. Conclusions

The EnPOD-GP simulation methodology has been proposed for ther-
al simulation of multi-core CPUs. The pros and cons of EnPOD-GP

nd GPOD-GP have been investigated in terms of accuracy and ef-
iciency, compared to FEniCS-FEM. GPOD-GP suffers from intensive
raining, and for a processor with a large number of cores, the training
ffort becomes computationally intolerable. However, the training for
nPOD-GP is very simple and effective, and the trained modes are
esilient to any dynamic PM. EnPOD-GP thus offers very accurate
patiotemporal thermal solution in the selected multi-core processor
ubjected to different PMs. EnPOD-GP is however less efficient than
POD-GP for processors with only a handful of cores unless a very high
ccuracy is desired. For a processor with more cores, EnPOD-GP will
ecome relatively more efficient due to its highly sparse system matrix,
nd its LS error influenced by computational DoF can be accurately
redicted. Compared to FEniCS-FEM to obtain the temperature profile
n the whole multi-core CPU for the entire simulation time, a 3-order
imulation speedup can be achieved with a high accuracy for both
nPOD-GP and GPOD-GP for the selected multi-core CPU. Compared
o HotSpot, a 2-order speedup is observed for EnPOD-GP in the high
esolution case. For most applications of chip-level thermal simulations,
nly temperature near hot spots at certain time instants are needed
rom (1) or (16), and computational times for EnPOD-GP and GPOD-GP
ould be one or two order shorter.

It is noted that construction of EnPOD-GP models solely relies on
he quality of the training thermal data from DNSs for the structures
f interest regardless of materials or complexity of the structures.
he approach can be applied to semiconductor structures at different

evels, including flip-chip and 2.5D/3D packaging technologies. Ad-
itionally, owing to the high efficiency and accuracy, the proposed
nPOD-GP thermal simulation methodology can be implemented for
hermal predictions in runtime applications, such as true real-time
hermal management (e.g., thermal-aware task scheduling), runtime
eliability management, power management, etc. Based on the ability
o predict accurate hot spots efficiently in microprocessors with a large
umber of cores, the developed EnPOD-GP simulation methodology

ill soon be applied to dynamic thermal analysis for modern GPUs.



Integration 97 (2024) 102201L. Jiang et al.

t
P
t
i
a

D

c
i

D

R

CRediT authorship contribution statement

Lin Jiang: Conceptualization, Methodology, Software, Validation,
Investigation, Data curation, Writing – original draft, Visualization.
Anthony Dowling: Software, Data curation. Yu Liu: Conceptualiza-
ion, Methodology, Resources, Writing – review & editing, Supervision,
roject administration, Funding acquisition. Ming-C. Cheng: Concep-
ualization, Methodology, Formal analysis, Validation, Resources, Writ-
ng – review & editing, Supervision, Project administration, Funding
cquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

eferences

[1] S.I. Guggari, Analysis of thermal performance metrics—application to CPU
cooling in HPC servers, IEEE Trans. Compon. Packag. Manuf. Technol. 11 (2)
(2021) 222–232.

[2] A. Heinig, R. Fischbach, M. Dittrich, Thermal analysis and optimization of 2.5
D and 3D integrated systems with Wide I/O memory, in: Proc. ITHERM, IEEE,
2014, pp. 86–91.

[3] J. Zhou, J. Yan, K. Cao, Y. Tan, T. Wei, M. Chen, G. Zhang, X. Chen, S. Hu,
Thermal-aware correlated two-level scheduling of real-time tasks with reduced
processor energy on heterogeneous MPSoCs, J. Syst. Archit. 82 (2018) 1–11.

[4] D. Ansari, K.-Y. Kim, Hotspot thermal management using a microchannel-pinfin
hybrid heat sink, Int. J. Therm. Sci. 134 (2018) 27–39.

[5] M.S. Mohammed, A.K. Al-Dhamari, A.A.-H. Ab Rahman, N. Paraman, A.A.
Al-Kubati, M. Marsono, Temperature-aware task scheduling for dark silicon
many-core system-on-chip, in: Proc. ICMSAO, IEEE, 2019, pp. 1–5.

[6] Y.G. Kim, M. Kim, J. Kong, S.W. Chung, An adaptive thermal management
framework for heterogeneous multi-core processors, IEEE Trans. Comput. 69 (6)
(2020) 894–906.

[7] W. Huang, K. Sankaranarayanan, R.J. Ribando, M.R. Stan, K. Skadron,
An improved block-based thermal model in HotSpot 4.0 with granularity
considerations, in: Proc. WDDD, 2007.

[8] Z. Yuan, P. Shukla, S. Chetoui, S. Nemtzow, S. Reda, A.K. Coskun, PACT:
An extensible parallel thermal simulator for emerging integration and cooling
technologies, IEEE Trans. CAD ICs Syst. 41 (4) (2021) 1048–1061.

[9] HotSpot 6.0 temperature modeling tool, 2021, http://lava.cs.virginia.edu/
HotSpot/versions.htm (accessed on 1, October 2021).

[10] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, D. Atienza, 3D-ICE: Fast
compact transient thermal modeling for 3D ICs with inter-tier liquid cooling, in:
Proc. ICCAD, IEEE, 2010, pp. 463–470.

[11] A. Ziabari, J.-H. Park, E.K. Ardestani, J. Renau, S.-M. Kang, A. Shakouri,
Power blurring: Fast static and transient thermal analysis method for packaged
integrated circuits and power devices, IEEE Trans. VLSI Syst. 22 (11) (2014)
2366–2379.

[12] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, P.
Beckman, Machine learning-based temperature prediction for runtime thermal
management across system components, IEEE Trans. Parallel Distrib. Sys. 29 (2)
(2017) 405–419.

[13] H. Sultan, A. Chauhan, S.R. Sarangi, A survey of chip-level thermal simulators,
ACM Comput. Surv. 52 (2) (2019) 1–35.

[14] D. Fetis, P. Michaud, An evaluation of HotSpot-3.0 block-based temperature
model, in: Proc. WDDD, 2006.

[15] Y. Zhan, S.S. Sapatnekar, High-efficiency green function-based thermal simulation
algorithms, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 26 (9) (2007)
1661–1675.
9

[16] S. Varshney, H. Sultan, P. Jain, S.R. Sarangi, Nanotherm: An analytical fourier-
boltzmann framework for full chip thermal simulations, in: Proc. ICCAD, IEEE,
2019, pp. 1–8.

[17] H. Sultan, S.R. Sarangi, Variability-aware thermal simulation using CNNs, in:
Proc. VLSID, IEEE, 2021, pp. 65–70.

[18] G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the
analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1) (1993) 539–575.

[19] J.L. Lumley, The structure of inhomogeneous turbulent flows, Atmosp. Turbul.
Radio Wave Propag. (1967) 166–178.

[20] M. Rovira, K. Engvall, C. Duwig, Proper orthogonal decomposition analysis of the
large-scale dynamics of a round turbulent jet in counterflow, Phys. Rev. Fluids
6 (1) (2021) 014701.

[21] G. Jiang, H. Liu, K. Yang, X. Gao, A fast reduced-order model for radial
integral boundary element method based on proper orthogonal decomposition
in nonlinear transient heat conduction problems, Comput. Methods Appl. Mech.
Engrg. 368 (2020) 113190.

[22] S. Fresca, A. Manzoni, POD-DL-ROM: Enhancing deep learning-based re-
duced order models for nonlinear parametrized PDEs by proper orthogonal
decomposition, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114181.

[23] W. Jia, B.T. Helenbrook, M.-C. Cheng, Thermal modeling of multi-fin field effect
transistor structure using proper orthogonal decomposition, IEEE Trans. Electron
Devices 61 (8) (2014) 2752–2759.

[24] R. Venters, B.T. Helenbrook, K. Zhang, M.-C. Cheng, Proper-orthogonal-
decomposition based thermal modeling of semiconductor structures, IEEE Trans.
Electron Devices 59 (11) (2012) 2924–2931.

[25] W. Jia, B.T. Helenbrook, M.-C. Cheng, Fast thermal simulation of FinFET circuits
based on a multiblock reduced-order model, IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. 35 (7) (2016) 1114–1124.

[26] D.S. Meyer, B.T. Helenbrook, M.-C. Cheng, Proper orthogonal decomposition-
based reduced basis element thermal modeling of integrated circuits, Internat.
J. Numer. Methods Engrg. 112 (5) (2017) 479–500.

[27] M.-C. Cheng, W. Jia, B.T. Helenbrook, Thermal modeling for FinFET NAND gate
circuits using a multi-block reduced-order model, in: Proc. THERMINIC, IEEE,
2015, pp. 1–4.

[28] W. Jia, M.-C. Cheng, A methodology for thermal simulation of interconnects
enabled by model reduction with material property variation, J. Comput. Sci.
61 (2022) 101665.

[29] L. Jiang, M. Veresko, Y. Liu, M.-C. Cheng, An effective physics simulation
methodology based on a data-driven learning algorithm, in: Proc. PASC, 2022,
pp. 1–10.

[30] L. Jiang, Y. Liu, M.-C. Cheng, Fast-accurate full-chip dynamic thermal simulation
with fine resolution enabled by a learning method, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. 42 (8) (2023) 2675–2688.

[31] L. Jiang, A. Dowling, M.-C. Cheng, Y. Liu, PODTherm-GP: A physics-based data-
driven approach for effective architecture-level thermal simulation of multi-core
CPUs, IEEE Trans. Comput. 72 (10) (2023) 2951–2962.

[32] FEniCS project, 2023, https://fenicsproject.org/ (accessed on 1, October 2023).
[33] K. Dev, A.N. Nowroz, S. Reda, Power mapping and modeling of multi-core

processors, in: Proc. ISLPED, IEEE, 2013, pp. 39–44.
[34] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D.R. Hower, T. Krishna, S. Sardashti, et al., The gem5 simulator, ACM SIGARCH
Comput. Archit. News 39 (2) (2011) 1–7.

[35] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, McPAT:
An integrated power, area, and timing modeling framework for multicore and
manycore architectures, in: Proc. MICRO, 2009, pp. 469–480.

[36] A. Dowling, F. Swiatowicz, Y. Liu, A.J. Tolnai, F.H. Engel, COMBS: First
open-source based benchmark suite for multi-physics simulation relevant HPC
research, in: Proc. ICA3PP, Springer, 2020, pp. 3–14.

[37] W. Huang, K. Skadron, S. Gurumurthi, R.J. Ribando, M.R. Stan, Differentiating
the roles of IR measurement and simulation for power and temperature-aware
design, in: Proc. ISPASS, IEEE, 2009, pp. 1–10.

[38] H.-H. Chu, Y.-C. Kao, Y.-S. Chen, Adaptive thermal-aware task scheduling for
multi-core systems, J. Syst. Softw. 99 (2015) 155–174.

[39] J.-H. Han, X. Guo, K. Skadron, M.R. Stan, From 2.5 D to 3D chiplet systems:
Investigation of thermal implications with HotSpot 7.0, in: Proc. ITHERM, IEEE,
2022, pp. 1–6.

[40] W. Huang, K. Sankaranarayanan, K. Skadron, R.J. Ribando, M.R. Stan, Accurate,
pre-RTL temperature-aware design using a parameterized, geometric thermal
model, IEEE Trans. Comput. 57 (9) (2008) 1277–1288.

http://refhub.elsevier.com/S0167-9260(24)00065-8/sb1
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb1
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb1
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb1
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb1
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb2
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb2
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb2
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb2
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb2
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb3
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb3
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb3
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb3
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb3
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb4
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb4
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb4
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb5
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb5
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb5
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb5
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb5
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb6
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb6
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb6
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb6
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb6
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb7
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb7
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb7
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb7
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb7
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb8
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb8
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb8
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb8
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb8
http://lava.cs.virginia.edu/HotSpot/versions.htm
http://lava.cs.virginia.edu/HotSpot/versions.htm
http://lava.cs.virginia.edu/HotSpot/versions.htm
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb10
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb10
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb10
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb10
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb10
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb11
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb12
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb13
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb13
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb13
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb14
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb14
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb14
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb15
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb15
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb15
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb15
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb15
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb16
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb16
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb16
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb16
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb16
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb17
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb17
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb17
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb18
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb18
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb18
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb19
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb19
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb19
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb20
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb20
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb20
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb20
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb20
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb21
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb22
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb22
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb22
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb22
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb22
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb23
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb23
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb23
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb23
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb23
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb24
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb24
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb24
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb24
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb24
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb25
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb25
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb25
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb25
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb25
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb26
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb26
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb26
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb26
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb26
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb27
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb27
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb27
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb27
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb27
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb28
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb28
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb28
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb28
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb28
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb29
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb29
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb29
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb29
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb29
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb30
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb30
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb30
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb30
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb30
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb31
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb31
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb31
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb31
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb31
https://fenicsproject.org/
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb33
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb33
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb33
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb34
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb34
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb34
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb34
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb34
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb35
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb35
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb35
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb35
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb35
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb36
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb36
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb36
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb36
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb36
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb37
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb37
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb37
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb37
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb37
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb38
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb38
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb38
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb39
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb39
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb39
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb39
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb39
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb40
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb40
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb40
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb40
http://refhub.elsevier.com/S0167-9260(24)00065-8/sb40

	Ensemble learning model for effective thermal simulation of multi-core CPUs
	Introduction
	Global POD-Galerkin-Projection Model
	Ensemble POD-Galerkin-Projection Model
	Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


