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Abstract—  High-resolution earth surface imagery is
significant for surface object identification and edge detection,
supporting  field-level  object-oriented  classification and
classification refinement. The U.S. National Agriculture Imagery
Program (NAIP) provides high-definition images covering the
Conterminous United States during the agricultural growing
season (June-August). Such an annual drone imagery product
possesses spatial resolution as high as 0.6m, covering cloud-free
red, green, blue, and near-infrared channels, acting as a premium
data source to promote applications of field-level crop
identification. However, the NAIP imageries are unavailable in
other nations, leading to a challenge to global precise crop
mapping.. This study explores a near-real high-resolution
generation workflow to produce NAIP-like images with high
spatial resolution by leveraging the capabilities of Generative
Adversarial Networks (GANs). By employing the Sentinel-2
imagery as source data and NAIP data as destination data, we
utilized the Pix2Pix GAN to produce high-resolution imagery with
high-definition object context and edge like NAIP. We used pixel-
to-pixel differences and correlations between processed and actual
NAIP images in three bands to evaluate the model performance.
This progress showcases the potential of GANs in translating
satellite imagery to NAIP-like imagery. Moreover, it offers a clue
to refine field-level crop-type mapping and boundary extraction in
other nations without NAIP.

Keywords: GAN, Pix2Pix, NAIP, Sentinel-2, Field level crop
mapping

I.  INTRODUCTION

The field-level crop-type mapping is well-known for
agriculture management and relevant decision-making. The
successful cases, including the United States Department of
Agriculture’s (USDA) Cropland Data Layer (CDL), In-season
CDL [1], [2], [3], and refined CDL was proposed and
published [4]. The existing CDL products usually have 30m
spatial resolution with well performance for large crop fields
within the U.S.; however, the mixing pixels is unavoidable for
certain places with small and fragment fields like Kenya and
India. This issue introduces a challenge to global crop
mapping. The National Agricultural Imagery Program
(NAIP), administered by the USDA Farm Service Agency
(FSA), conducted high-resolution airborne imagery, provided
a clue to eliminate this issue. This program encompasses the
Continental United States (CONUS) during the agricultural
major growing season (June-August), providing high-
resolution imagery (0.6 meters) as an invaluable resource for
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field-based agricultural research. NAIP data can easily extract
field edges to conduct the object classification or segment
fields after classification. Meanwhile, it can also provide basic
data for agriculture management research like irrigation
schedule decision-making [5], [6]. However, the NAIP-like
data products are still limited in other nations due to being
costly and time-consuming, causing a challenge for global
precise crop mapping.

To obtain NAIP-like data during summer growing season,
we proposed a novel approach to generate synthetic NAIP
images from Sentinel-2 inputs. This approach depended on
conditional generative adversarial networks (cGAN),
explicitly employing the pix2pix cGAN model, Using NAIP
images as the training set and the pix2pix model as the training
architecture, our goal is to leverage Sentinel-2 imagery to
produce high-resolution fake-NAIP images. The efficacy of
c¢GANs in learning mappings from input to output images
while concurrently optimizing a tailored loss function has
been substantiated in the seminal work on diverse image-to-
image translation tasks[7].

The application of generative adversarial networks
(GANs) for enhancing and synthesizing satellite imagery has
gained significant traction in recent years. Several studies
have demonstrated the utility of conditional GANs (cGANs)
in image-to-image translation tasks across various domains.
The pix2pix framework [7]employs cGANs for various image
translation tasks, such as converting aerial photos to maps.
This approach highlights the effectiveness of using a U-Net-
based generator architecture combined with a PatchGAN
discriminator, which penalizes structures at the patch scale
rather than globally. This architecture has proven effective in
maintaining local coherence while allowing large-scale
transformations. Subsequent research has built upon the
pix2pix framework to address specific remote sensing and
satellite imagery challenges. The CycleGAN framework
[8]extends the pix2pix model by introducing cycle
consistency to enable unpaired image-to-image translation.
This approach has benefited applications where paired
training data is scarce, enabling more flexible and broad
applications of image translation without requiring exact
pairings of input and output images. Integrating domain
knowledge from physical sciences into deep learning models
has proven essential for ensuring physical consistency in
synthetic satellite imagery generation. Another research



introduced the Earth Intelligence Engine[9], which is a
generative vision pipeline that synthesizes physically
consistent satellite imagery for flood risk visualization. This
work leverages physics-based models to improve the
trustworthiness and interpretability of generated imagery,
bridging the gap between data-driven methods and physical
modeling.

Moreover, advancements in edge-enhanced GANs have
refined the ability to super-resolve remote sensing images,
addressing issues such as detail loss and blurring [10]. These
techniques ensure that the high-resolution images retain
critical edge details, essential for accurate interpretation and
analysis. These foundational works collectively underscore
the versatility and efficacy of GANS, particularly cGANS, in
addressing various challenges in satellite imagery analysis and
synthesis. The ongoing advancements continue to expand the
capabilities and applications of these models in remote
sensing and beyond.

II. METHDOLOGY

A. Study Area and Data Collection

In this study, we set a place in the Northern Missouri state
area as our study area, which was covered by both Sentinel-2
and NAIP images. TABLE I presents the image ID for both
Sentinel-2 and NAIP images we used in this project.

TABLE I DATA COLLECTION

Data Collection

Image Id

COPERNICUS/S2_SR/20220622T164849_20220
622T170254 T1ISSW

Data type

1 Sentinel-2

2022 NAIP image composite in Missouri State 40.6508

ngoh 40.5403

o

ILLINOIS 4 40.4297

Springfield Champaign
Q

40.3191

hattano

40.2086
40.0980
39.9874
39.8769
39.7663

39.6557

Data Collection

Image Id
COPERNICUS/S2_SR/20220620T165901 20220
620T171040 T15SWB
COPERNICUS/S2_SR/20220620T165901_20220
620T171040 T15SWC
COPERNICUS/S2_SR/20220620T165901_20220

Data type

2 Sentinel-2

3 Sentinel-2

4 | Sentinel-2 620T171040 T15SWC
s | NAD USDA/NAIP/DOQQ/m_3609214_sw_15_060 20
220621
¢ | NAD USDA/NAIP/DOQQ/m 3709250 sw_15_060_20
220621
USDA/NAIP/DOQQ/m 3809228 ne_15_060 20
7 | NaP 220620
USDA/NAIP/DOQQ/m_3809230 ne_15_060 20
§ | Nap 220620

We chose the area because it has cloud-free Sentinel-2
and NAIP at the similar time in the end of June 2022. The area
includes various landform features, such as cropland,
architecture, natural vegetation, and water content.

The Sentinel-2 and NAIP data for this study was collected
using Google Earth Engine (GEE) within a specific timeframe
and geographic region. Fig.1 includes the whole Missouri
state covered by NAIP 2022 image composite, the main study
area, and the pixels we picked for the experiment. The process
involved creating composites of both image types to ensure
consistency and clarity for subsequent analysis and model
training.
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Fig. 1 Study area (a. Missouri State NAIP 2022 image composite; b. Study area cover by NAIP 2022; c. experiment image chips)

B. Workflow

Figure 2 displays the workflow for generating high-
resolution NAIP images from Sentinel-2 data involves several
key steps. Initially, data is collected and preprocessed from
Google Earth Engine (GEE), focusing on areas with cloud-
free Sentinel-2 imagery and corresponding NAIP images.

Sentinel-2 data is filtered to select bands B4, B3, and B2 for
RGB composition, and specific date ranges are chosen to
match the NAIP acquisition period. The selected date is
exported and downloaded as GeoTIFF images. Sentinel-2 and
NAIP chips are then created, with both sets resized to 256x256
pixels. These image chips are fed into the pix2pix GAN model
to generate high-resolution NAIP images from the Sentinel-2



inputs. The generated NAIP images undergo validation to
assess their accuracy and quality against the real NAIP
images.

Validation
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Fig. 2 Workflow

C. Multi-spectrum Data Pre-processing

Sentinel-2 Data Collection: Sentinel-2 data was collected
from June 20 to June 28, 2022. Relevant bands (B2, B3, B4,
B8, B11, B12) were selected, and cloud masking was applied
using a 10% cloud probability threshold. The median
composite, filtered by date and geography, provided a clear,
cloud-free image for further processing. NAIP Data
Collection: The NAIP data used the images on June 28, 2022
which were the closet date image with available Sentinel-2.
Composite Visualization: The Sentinel-2 composite was
visualized in true color using bands B4, B3, and B2 with
adjusted values for clarity. The NAIP composite used RGB
bands for true color visualization. Both composites were
added to the GEE map for visual inspection and validation.

The preprocessing steps involved aligning and
normalizing Sentinel-2 and NAIP images to ensure
compatibility for training a Generative Adversarial Network
(GAN) model. The Sentinel-2 imagery, initially in a different
spatial resolution and coordinate reference system (CRS), was
reprojected and cropped to match the NAIP image
specifications. The reprojecting process utilized the GDAL
library through Rasterio, calculating the necessary
transformation parameters to align the Sentinel-2 image to the
CRS of the NAIP imagery. Specifically, the
calculate default transform and reproject functions from
Rasterio were employed, ensuring pixel alignment and
maintaining image integrity during transformation.

Following reprojection, the Sentinel-2 image was cropped
to match the NAIP image bounds using the mask function in
conjunction with a bounding box derived from the NAIP
image metadata. This ensured that the spatial extents of both
datasets were identical, facilitating direct comparison and
model training. The resulting reprojected and cropped
Sentinel-2 image was then resampled to a resolution of
256x256 pixels using OpenCV’s resize function, a critical step
to match the input dimensions required by the GAN model.

Normalization of the pixel values was also performed,
scaling the data to a range between -1 and 1, which is optimal
for the tanh activation function employed in the generator

network. The preprocessed Sentinel-2 and NAIP images were
subsequently used to train the GAN, where the generator
model synthesized high-resolution NAIP images from the
Sentinel-2 inputs. Once trained, the generator model was
capable of producing synthetic NAIP imagery, which was
validated against actual NAIP data.

This preprocessing pipeline ensured that the input
Sentinel-2 and target NAIP images were spatially and
spectrally aligned, facilitating practical training of the GAN
model and improving the fidelity of the generated outputs. The
alignment and normalization procedures are critical for
maintaining the geometric and radiometric integrity of the
datasets, which are paramount for the success of image-to-
image translation tasks in remote sensing applications.

D. Training

This research used the Pix2Pix to translate satellite
imagery from Sentinel-2 to high-resolution NAIP images. The
model consists of three main components: the discriminator,
the generator, and the composite model, which combines both
the generator and discriminator for joint training. The
discriminator, designed to differentiate between real and
synthesized images, was constructed using a series of
convolutional layers with leaky ReLU activations and batch
normalization, culminating in a patch-based output layer to
classify image patches as real or fake. The generator employed
an encoder-decoder architecture with skip connections, where
the encoder progressively reduces the spatial dimensions of
the input image through convolutional layers, and the decoder
restores the original dimensions through transposed
convolutions, integrating skip connections to preserve high-
resolution details.

The encoder blocks in the generator comprised
convolutional layers with leaky ReLU activations. In contrast,
the decoder blocks incorporated transposed convolutional
layers, batch normalization, and optional dropout layers,
concluding with a tanh activation function to generate the
output image. The generator model was trained to minimize
the L1 loss between the generated and real images, promoting
accurate reconstruction. In contrast, the discriminator was
trained using binary cross-entropy loss to distinguish real
images from generated ones.

For training, the dataset consisting of paired Sentinel-2
and NAIP images was preprocessed to normalize pixel values
between -1 and 1 and split into patches suitable for input to the
GAN. The training process involved alternately updating the
discriminator and generator, where the discriminator was first
trained on real and fake image pairs, followed by updating the
generator to improve the quality of the synthesized images
based on the discriminator’s feedback. The Adam optimizer
with a learning rate 0.0002 and a betal parameter of 0.5 was
employed to train both models. The model’s performance was
periodically evaluated by generating samples from the
validation set and saving the generator’s weights, ensuring the
progressive improvement of image synthesis quality
throughout the training epochs. This approach enabled the
model to learn intricate mappings from Sentinel-2 to NAIP
imagery, facilitating the generation of high-fidelity synthetic
NAIP images from Sentinel-2 inputs.

E. Validation

The validation of the generated NAIP images was
conducted by comparing the digital values of each pixel
between the generated (fake) and real NAIP images. This



comparison involved converting both sets of images into
binary representations using a thresholding process, where
pixel values above a certain threshold were set to one and
those below were set to zero. Precision, recall, and F1 score
metrics were then computed to quantify the model’s
performance. Precision measured the ratio of correctly
identified relevant pixels to the total pixels identified as
relevant in the generated images. Recall assessed the ratio of
correctly identified relevant pixels to the total actual relevant
pixels in the real images. The F1 score, which combines
precision and recall, provided a comprehensive evaluation of
both the accuracy and completeness of the generated images.
High scores across these metrics indicated a close match

between the generated and real NAIP images, confirming the
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effectiveness of the pix2pix GAN model in accurately
replicating high-resolution satellite imagery.

III. EXPIREMENT AND RESULT

A. Experiment design and results

The experiment was conducted four times, each with a
different Sentinel-2 image from distinct study areas input into
the trained model. Figure 3 presents the results of these
experiments, showcasing the original Sentinel-2 image, the
generated NAIP image, and the real NAIP image side by side.
Both visual inspection and statistical analysis were employed
to evaluate the model's performance.
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Fig. 3. Experiment 1 to 4 Sentinel-2, Generated NAIP, and Real NAIP image comparison

B. Visual Comparison

When the generated NAIP images are compared with the
original Sentinel-2 inputs, there is a significant improvement
in resolution, specifically in the clarity of the edges of each
object on the ground. When comparing the generated NAIP
with the real NAIP, we found that both experiments performed

well in enhancing the edges of objects. However, in the
generated NAIP by experiment 2, we found a significant color
difference compared to the real NAIP.

C. Statistical Analysis

Table II presents the validation results of the generated
NAIP images using precision, recall, and F1 score metrics.



The analysis indicates that the generated images are highly
similar to the real NAIP images. Precision scores range from
0.71 to 0.96, with an average of around 88% accuracy,
demonstrating the model's ability to identify relevant features
within the imagery accurately. Recall scores average 0.91,
reflecting the model's effectiveness in capturing the
comprehensive set of relevant features. The F1 scores, which
balance precision and recall, consistently fall between 0.74
and 0.96, with an average of 0.89, highlighting the robustness
of the model in generating high-fidelity NAIP images. These
results confirm the efficacy of the pix2pix GAN model in
enhancing Sentinel-2 data, producing high-resolution images
that closely align with the real NAIP images. The validation
process substantiates the reliability of the generated outputs,
validating the model's performance across multiple image
sets. This comprehensive assessment underscores the
potential of the pix2pix GAN model in practical applications
requiring high-resolution satellite imagery translation.

TABLE Il VALIDATION RESULTS

Experiments
Precision Recall F1 Score
Exp 1 0.92 0.98 0.94
Exp2 0.71 0.77 0.74
Exp 3 0.94 0.92 0.93
Exp 4 0.96 0.97 0.96
Avg. 0.88 0.91 0.89

IV. CONCLUSION

The study introduced a method to utilize Sentinel-2
imagery for creating synthetic NAIP (National Agriculture
Imagery Program) images with a significantly improved
resolution, from 10-meter pixels to 0.6-meter pixels. The
improved resolution and sharpness of the generated NAIP
images facilitate in-depth monitoring and analysis of
agricultural fields. Future work will involve testing and
refining the model with Sentinel-2 images from locations
outside the United States, with the goal of establishing a global
database of NAIP-like imagery. This expansion could further
improve agricultural monitoring and research on a global
scale.
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