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Abstract— High-resolution earth surface imagery is 
significant for surface object identification and edge detection, 
supporting field-level object-oriented classification and 
classification refinement. The U.S. National Agriculture Imagery 
Program (NAIP) provides high-definition images covering the 
Conterminous United States during the agricultural growing 
season (June-August). Such an annual drone imagery product 
possesses spatial resolution as high as 0.6m, covering cloud-free 
red, green, blue, and near-infrared channels, acting as a premium 
data source to promote applications of field-level crop 
identification. However, the NAIP imageries are unavailable in 
other nations, leading to a challenge to global precise crop 
mapping.. This study explores a near-real high-resolution 
generation workflow to produce NAIP-like images with high 
spatial resolution by leveraging the capabilities of Generative 
Adversarial Networks (GANs). By employing the Sentinel-2 
imagery as source data and NAIP data as destination data, we 
utilized the Pix2Pix GAN to produce high-resolution imagery with 
high-definition object context and edge like NAIP. We used pixel-
to-pixel differences and correlations between processed and actual 
NAIP images in three bands to evaluate the model performance. 
This progress showcases the potential of GANs in translating 
satellite imagery to NAIP-like imagery. Moreover, it offers a clue 
to refine field-level crop-type mapping and boundary extraction in 
other nations without NAIP. 

Keywords: GAN, Pix2Pix, NAIP, Sentinel-2, Field level crop 
mapping 

I. INTRODUCTION  

The field-level crop-type mapping is well-known for 

agriculture management and relevant decision-making. The 

successful cases, including the United States Department of 

Agriculture’s (USDA) Cropland Data Layer (CDL), In-season 

CDL [1], [2], [3], and refined CDL was proposed and 

published [4]. The existing CDL products usually have 30m 

spatial resolution with well performance for large crop fields 

within the U.S.; however, the mixing pixels is unavoidable for 

certain places with small and fragment fields like Kenya and 

India. This issue introduces a challenge to global crop 

mapping. The National Agricultural Imagery Program 

(NAIP), administered by the USDA Farm Service Agency 

(FSA), conducted high-resolution airborne imagery, provided 

a clue to eliminate this issue. This program encompasses the 

Continental United States (CONUS) during the agricultural 

major growing season (June-August), providing high-

resolution imagery (0.6 meters) as an invaluable resource for 

field-based agricultural research. NAIP data can easily extract 

field edges to conduct the object classification or segment 

fields after classification. Meanwhile, it can also provide basic 

data for agriculture management research like irrigation 

schedule decision-making [5], [6]. However, the NAIP-like 

data products are still limited in other nations due to being 

costly and time-consuming, causing a challenge for global 

precise crop mapping.  

To obtain NAIP-like data during summer growing season, 

we proposed a novel approach to generate synthetic NAIP 

images from Sentinel-2 inputs. This approach depended on 

conditional generative adversarial networks (cGAN), 

explicitly employing the pix2pix cGAN model, Using NAIP 

images as the training set and the pix2pix model as the training 

architecture, our goal is to leverage Sentinel-2 imagery to 

produce high-resolution fake-NAIP images. The efficacy of 

cGANs in learning mappings from input to output images 

while concurrently optimizing a tailored loss function has 

been substantiated in the seminal work on diverse image-to-

image translation tasks[7].  

The application of generative adversarial networks 

(GANs) for enhancing and synthesizing satellite imagery has 

gained significant traction in recent years. Several studies 

have demonstrated the utility of conditional GANs (cGANs) 

in image-to-image translation tasks across various domains. 

The pix2pix framework [7]employs cGANs for various image 

translation tasks, such as converting aerial photos to maps. 

This approach highlights the effectiveness of using a U-Net-

based generator architecture combined with a PatchGAN 

discriminator, which penalizes structures at the patch scale 

rather than globally. This architecture has proven effective in 

maintaining local coherence while allowing large-scale 

transformations. Subsequent research has built upon the 

pix2pix framework to address specific remote sensing and 

satellite imagery challenges. The CycleGAN framework 

[8]extends the pix2pix model by introducing cycle 

consistency to enable unpaired image-to-image translation. 

This approach has benefited applications where paired 

training data is scarce, enabling more flexible and broad 

applications of image translation without requiring exact 

pairings of input and output images. Integrating domain 

knowledge from physical sciences into deep learning models 

has proven essential for ensuring physical consistency in 

synthetic satellite imagery generation. Another research 
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introduced the Earth Intelligence Engine[9], which is a 

generative vision pipeline that synthesizes physically 

consistent satellite imagery for flood risk visualization. This 

work leverages physics-based models to improve the 

trustworthiness and interpretability of generated imagery, 

bridging the gap between data-driven methods and physical 

modeling. 

Moreover, advancements in edge-enhanced GANs have 

refined the ability to super-resolve remote sensing images, 

addressing issues such as detail loss and blurring [10]. These 

techniques ensure that the high-resolution images retain 

critical edge details, essential for accurate interpretation and 

analysis. These foundational works collectively underscore 

the versatility and efficacy of GANs, particularly cGANs, in 

addressing various challenges in satellite imagery analysis and 

synthesis. The ongoing advancements continue to expand the 

capabilities and applications of these models in remote 

sensing and beyond. 

II. METHDOLOGY 

A. Study Area and Data Collection 
In this study, we set a place in the Northern Missouri state 

area as our study area, which was covered by both Sentinel-2  

and NAIP images. TABLE I presents the image ID for both 

Sentinel-2 and NAIP images we used in this project.  

 

TABLE I  DATA COLLECTION 

 
Data Collection 

Data type Image Id 

1 Sentinel-2 
COPERNICUS/S2_SR/20220622T164849_20220

622T170254_T15SW 

 
Data Collection 

Data type Image Id 

2 Sentinel-2 
COPERNICUS/S2_SR/20220620T165901_20220

620T171040_T15SWB 

3 Sentinel-2 
COPERNICUS/S2_SR/20220620T165901_20220

620T171040_T15SWC 

4 Sentinel-2 
COPERNICUS/S2_SR/20220620T165901_20220

620T171040_T15SWC 

5 NAIP 
USDA/NAIP/DOQQ/m_3609214_sw_15_060_20

220621 

6 NAIP 
USDA/NAIP/DOQQ/m_3709250_sw_15_060_20

220621 

7 NAIP 
USDA/NAIP/DOQQ/m_3809228_ne_15_060_20

220620 

8 NAIP 
USDA/NAIP/DOQQ/m_3809230_ne_15_060_20

220620 

 

 We chose the area because it has cloud-free Sentinel-2 

and NAIP at the similar time in the end of June 2022. The area 

includes various landform features, such as cropland, 

architecture, natural vegetation, and water content. 

The Sentinel-2 and NAIP data for this study was collected 

using Google Earth Engine (GEE) within a specific timeframe 

and geographic region. Fig.1 includes the whole Missouri 

state covered by NAIP 2022 image composite, the main study 

area, and the pixels we picked for the experiment. The process 

involved creating composites of both image types to ensure 

consistency and clarity for subsequent analysis and model 

training.

 

 

Fig.  1 Study area (a. Missouri State NAIP 2022 image composite; b. Study area cover by NAIP 2022; c. experiment image chips) 

B. Workflow  
Figure 2 displays the workflow for generating high-

resolution NAIP images from Sentinel-2 data involves several 

key steps. Initially, data is collected and preprocessed from 

Google Earth Engine (GEE), focusing on areas with cloud-

free Sentinel-2 imagery and corresponding NAIP images. 

Sentinel-2 data is filtered to select bands B4, B3, and B2 for 

RGB composition, and specific date ranges are chosen to 

match the NAIP acquisition period. The selected date is 

exported and downloaded as GeoTIFF images. Sentinel-2 and 

NAIP chips are then created, with both sets resized to 256x256 

pixels. These image chips are fed into the pix2pix GAN model 

to generate high-resolution NAIP images from the Sentinel-2 
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inputs. The generated NAIP images undergo validation to 

assess their accuracy and quality against the real NAIP 

images. 

 

Fig.  2 Workflow 

C. Multi-spectrum Data Pre-processing 
Sentinel-2 Data Collection: Sentinel-2 data was collected 

from June 20 to June 28, 2022. Relevant bands (B2, B3, B4, 

B8, B11, B12) were selected, and cloud masking was applied 

using a 10% cloud probability threshold. The median 

composite, filtered by date and geography, provided a clear, 

cloud-free image for further processing. NAIP Data 

Collection: The NAIP data used the images on June 28, 2022 

which were the closet date image with available Sentinel-2. 

Composite Visualization: The Sentinel-2 composite was 

visualized in true color using bands B4, B3, and B2 with 

adjusted values for clarity. The NAIP composite used RGB 

bands for true color visualization. Both composites were 

added to the GEE map for visual inspection and validation. 

The  preprocessing steps involved aligning and 

normalizing Sentinel-2 and NAIP images to ensure 

compatibility for training a Generative Adversarial Network 

(GAN) model. The Sentinel-2 imagery, initially in a different 

spatial resolution and coordinate reference system (CRS), was 

reprojected and cropped to match the NAIP image 

specifications. The reprojecting process utilized the GDAL 

library through Rasterio, calculating the necessary 

transformation parameters to align the Sentinel-2 image to the 

CRS of the NAIP imagery. Specifically, the 

calculate_default_transform and reproject functions from 

Rasterio were employed, ensuring pixel alignment and 

maintaining image integrity during transformation. 

Following reprojection, the Sentinel-2 image was cropped 

to match the NAIP image bounds using the mask function in 

conjunction with a bounding box derived from the NAIP 

image metadata. This ensured that the spatial extents of both 

datasets were identical, facilitating direct comparison and 

model training. The resulting reprojected and cropped 

Sentinel-2 image was then resampled to a resolution of 

256x256 pixels using OpenCV’s resize function, a critical step 

to match the input dimensions required by the GAN model. 

Normalization of the pixel values was also performed, 

scaling the data to a range between -1 and 1, which is optimal 

for the tanh activation function employed in the generator 

network. The preprocessed Sentinel-2 and NAIP images were 

subsequently used to train the GAN, where the generator 

model synthesized high-resolution NAIP images from the 

Sentinel-2 inputs. Once trained, the generator model was 

capable of producing synthetic NAIP imagery, which was 

validated against actual NAIP data. 

This preprocessing pipeline ensured that the input 

Sentinel-2 and target NAIP images were spatially and 

spectrally aligned, facilitating practical training of the GAN 

model and improving the fidelity of the generated outputs. The 

alignment and normalization procedures are critical for 

maintaining the geometric and radiometric integrity of the 

datasets, which are paramount for the success of image-to-

image translation tasks in remote sensing applications. 

D. Training  
This research used the Pix2Pix to translate satellite 

imagery from Sentinel-2 to high-resolution NAIP images. The 

model consists of three main components: the discriminator, 

the generator, and the composite model, which combines both 

the generator and discriminator for joint training. The 

discriminator, designed to differentiate between real and 

synthesized images, was constructed using a series of 

convolutional layers with leaky ReLU activations and batch 

normalization, culminating in a patch-based output layer to 

classify image patches as real or fake. The generator employed 

an encoder-decoder architecture with skip connections, where 

the encoder progressively reduces the spatial dimensions of 

the input image through convolutional layers, and the decoder 

restores the original dimensions through transposed 

convolutions, integrating skip connections to preserve high-

resolution details. 

The encoder blocks in the generator comprised 

convolutional layers with leaky ReLU activations. In contrast, 

the decoder blocks incorporated transposed convolutional 

layers, batch normalization, and optional dropout layers, 

concluding with a tanh activation function to generate the 

output image. The generator model was trained to minimize 

the L1 loss between the generated and real images, promoting 

accurate reconstruction. In contrast, the discriminator was 

trained using binary cross-entropy loss to distinguish real 

images from generated ones. 

For training, the dataset consisting of paired Sentinel-2 

and NAIP images was preprocessed to normalize pixel values 

between -1 and 1 and split into patches suitable for input to the 

GAN. The training process involved alternately updating the 

discriminator and generator, where the discriminator was first 

trained on real and fake image pairs, followed by updating the 

generator to improve the quality of the synthesized images 

based on the discriminator’s feedback. The Adam optimizer 

with a learning rate 0.0002 and a beta1 parameter of 0.5 was 

employed to train both models. The model’s performance was 

periodically evaluated by generating samples from the 

validation set and saving the generator’s weights, ensuring the 

progressive improvement of image synthesis quality 

throughout the training epochs. This approach enabled the 

model to learn intricate mappings from Sentinel-2 to NAIP 

imagery, facilitating the generation of high-fidelity synthetic 

NAIP images from Sentinel-2 inputs. 

E. Validation 
The validation of the generated NAIP images was 

conducted by comparing the digital values of each pixel 

between the generated (fake) and real NAIP images. This 
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comparison involved converting both sets of images into 

binary representations using a thresholding process, where 

pixel values above a certain threshold were set to one and 

those below were set to zero. Precision, recall, and F1 score 

metrics were then computed to quantify the model’s 

performance. Precision measured the ratio of correctly 

identified relevant pixels to the total pixels identified as 

relevant in the generated images. Recall assessed the ratio of 

correctly identified relevant pixels to the total actual relevant 

pixels in the real images. The F1 score, which combines 

precision and recall, provided a comprehensive evaluation of 

both the accuracy and completeness of the generated images. 

High scores across these metrics indicated a close match 

between the generated and real NAIP images, confirming the 

effectiveness of the pix2pix GAN model in accurately 

replicating high-resolution satellite imagery. 

III. EXPIREMENT AND RESULT 

A. Experiment design and results 
The experiment was conducted four times, each with a 

different Sentinel-2 image from distinct study areas input into 

the trained model. Figure 3 presents the results of these 

experiments, showcasing the original Sentinel-2 image, the 

generated NAIP image, and the real NAIP image side by side. 

Both visual inspection and statistical analysis were employed 

to evaluate the model's performance. 

 

 

Fig. 3. Experiment 1 to 4 Sentinel-2, Generated NAIP, and Real NAIP image comparison

B. Visual Comparison 
When the generated NAIP images are compared with the 

original Sentinel-2 inputs, there is a significant improvement 

in resolution, specifically in the clarity of the edges of each 

object on the ground. When comparing the generated NAIP 

with the real NAIP, we found that both experiments performed 

well in enhancing the edges of objects. However, in the 

generated NAIP by experiment 2, we found a significant color 

difference compared to the real NAIP. 

C. Statistical Analysis 
 Table II presents the validation results of the generated 

NAIP images using precision, recall, and F1 score metrics. 
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The analysis indicates that the generated images are highly 

similar to the real NAIP images. Precision scores range from 

0.71 to 0.96, with an average of around 88% accuracy, 

demonstrating the model's ability to identify relevant features 

within the imagery accurately. Recall scores average 0.91, 

reflecting the model's effectiveness in capturing the 

comprehensive set of relevant features. The F1 scores, which 

balance precision and recall, consistently fall between 0.74 

and 0.96, with an average of 0.89, highlighting the robustness 

of the model in generating high-fidelity NAIP images. These 

results confirm the efficacy of the pix2pix GAN model in 

enhancing Sentinel-2 data, producing high-resolution images 

that closely align with the real NAIP images. The validation 

process substantiates the reliability of the generated outputs, 

validating the model's performance across multiple image 

sets. This comprehensive assessment underscores the 

potential of the pix2pix GAN model in practical applications 

requiring high-resolution satellite imagery translation.  

TABLE II VALIDATION RESULTS 

Experiments 
 

Precision Recall F1 Score 

Exp 1 
0.92 0.98 0.94 

Exp 2 
0.71 0.77 0.74 

Exp 3 
0.94 0.92 0.93 

Exp 4 
0.96 0.97 0.96 

Avg. 
0.88 0.91 0.89 

 

IV. CONCLUSION 
The study introduced a method to utilize Sentinel-2 

imagery for creating synthetic NAIP (National Agriculture 

Imagery Program) images with a significantly improved 

resolution, from 10-meter pixels to 0.6-meter pixels. The 

improved resolution and sharpness of the generated NAIP 

images facilitate in-depth monitoring and analysis of 

agricultural fields. Future work will involve testing and 

refining the model with Sentinel-2 images from locations 

outside the United States, with the goal of establishing a global 

database of NAIP-like imagery. This expansion could further 

improve agricultural monitoring and research on a global 

scale.  
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