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Abstract

Engineering systems, characterized by their high technical complexity and societal intricacies,
require a strategic design approach to navigate multifaceted challenges. Understanding the
circumstances that affect strategic action in these systems is crucial for managing complex
real-world challenges. These challenges go beyond localized coordination issues and
encompass intricate dynamics, requiring a deep understanding of the underlying structures
impacting strategic behaviors, the interactions between subsystems, and the conflicting
needs and expectations of diverse actors. Traditional optimization and game-theoretic
approaches to guide individual and collective decisions need adaptation to capture the
complexities of these design ecosystems, particularly in the face of increasing numbers of
decision-makers and various interconnections between them. This paper presents a
framework for studying strategic decision-making processes in collective systems. It tackles
the combinatorial complexity and interdependencies inherent in large-scale systems by
representing strategic decision-making processes as binary normal-form games, then dissects
and reinterprets them in terms of multiple compact games characterized by two
real-numbered structural factors and classifies them across four strategy dynamical domains
associated with different stability conditions. We provide a mathematical characterization
and visual representation of emergent strategy dynamics in games with three or more actors
intended to facilitate its implementation by researchers and practitioners and elicit new
perspectives on design and management for optimizing systems-of-systems performance. We
conclude this paper with a discussion of the opportunities and challenges of adopting this
framework within and beyond the context of engineering systems.

1 Introduction

Understanding emergence in large-scale systems-of-systems has become a prominent feature in
addressing complex real-world challenges [1]. Such collective systems entail the integration of
interconnected entities, each with a level of operational and managerial autonomy from the
others, while collectively contributing to the overarching system’s objectives. Collaborative
decision-making plays a pivotal role in facilitating information exchange and coordinating the
activities of individual actors to guide the system toward optimized performance. However,
despite the potential benefits of coordinated collective action, its seamless execution faces
structural challenges related to the combinatorial complexity of aligning individual objectives
and incentives [2]. These hindrances go beyond localized actor-to-actor coordination challenges
and encompass intricate dynamics that result from the interplay of many subsystems, direct and
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indirect stakeholders, and decision-making agents. Addressing these challenges necessitates a
deep understanding of the underlying structure of the collective decision-making process that
impacts the strategic behaviors and interactions within the system.

Engineering systems are a subset of collective systems marked by high technical complexity,
social intricacy, and elaborate processes geared toward fulfilling significant societal
functions [3]. While general collective systems refer to groups of agents collaborating to
produce a collective behavior that transcends the sum of individual contributions [4], the
nuanced nature of engineering systems implies the need for a strategic design approach to
navigate their multifaceted challenges. The complexity within engineering systems becomes
evident in endeavors such as aircraft design, where societal needs and expectations,
communicated through regulations, can directly impact lower-level technical decisions [5]. The
evolving concept of complexity within engineering systems necessitates ongoing efforts to
define, measure, and comprehend its intricate nature. Challenges arise in understanding and
modeling emergence, a fundamental characteristic of complex collective systems, which
manifests in various forms within engineering contexts, such as non-linear emergent properties
and those arising from interdependent choices in multi-agent systems [6].

The strategic design of engineering systems seeks to tackle the complex interplay between
technical and social dimensions. In the technical realm, the challenge lies in comprehending
interactions between subsystems while maintaining their levels of operational and managerial
independence [7]. Simultaneously, the social dimension of engineering systems involves diverse
actors, categorized into users, stakeholders, and societal entities. The conflicting needs and
expectations of these actors amplify the complexity of the system design [3]. The strategic
challenges embedded in engineering systems design, particularly concerning the emergence of
unfavorable dynamics and the modeling of interactive decisions among multiple actors,
highlight the need for advanced methodologies. Traditional game-theoretic approaches, often
designed for two-player scenarios, must be revised to capture the intricacies of complex design
ecosystems [5]. The classification of emergence based on non-linearities and multi-agent
systems guides the selection of appropriate methods for system-level governance, necessitating
shifts in design perspectives [6]. As engineering systems become more complex, a
comprehensive and adaptable framework is increasingly necessary to address strategic
challenges in their intricate design landscapes.

Game theory is a valuable framework to address the strategic challenges embedded in
engineering systems. As the mathematical study of strategic interactions among independent
actors, the last four decades have seen an increasing number of researchers employing
game-theoretical methods to model decision dynamics in multidisciplinary engineering systems,
treating different systems actors as distinct players engaged in a sequence of games throughout
the design process [8—10]. Recent literature shows applications of game theory to study
modularity as a mechanism for facilitating cooperation in systems-of-systems [11], develop
computational models to assist engineering systems design under competition [12], and
investigate the link between risk attitudes and strategic decisions in the context of collective
systems [13]. Existing formulations emphasize dynamics among two actors, for which extensive
work exists centered on Nash equilibria in social dilemma games. However, as design
ecosystems become more intricate, existing game-theoretic approaches need to be revised in
modeling the complex interactions among an increasing number of design actors [5]. Broader
classes of engineered systems — including inter-agency, international, or public-private
partnerships — exhibit strategy dynamics among more than two actors. More existing work is
needed to formulate and understand the emergent dynamics in strategic scenarios with three or
more actors due partly to a combinatorial growth of possible outcomes.

We turn to non-cooperative game theory to comprehend the nature of these strategy
dynamics in collective systems. By adopting this analytical lens, we gain valuable insights into
the strategic components associated with the stability of collective action and the risk of
coordination failure among multiple decision-makers pursuing their self-interests. The
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application of game theory in this context helps us analyze how individual motivations and
incentives can influence collaborative decision-making processes and how this, in turn, impacts
the system’s overall performance and collective efficiency. Understanding and describing the
interdependence of decisions among the actors in the system is essential to producing useful
models of emergent behavior and anticipating potential outcomes that cannot be solely attributed
to individual components. By investigating these dynamics, we can shed light on how collective
systems adapt and respond to various stimuli, offering new perspectives on system design and
management.

1.1 Motivating challenges

Understanding the emergence of strategies within complex collective systems poses significant
challenges for engineers and system designers when evaluating a system’s ability to integrate
with others and align with common goals. This property, referred to as directional

integrability [14], when extended to larger systems-of-systems, is linked to each subsystem’s
level of managerial control and collaboration [7]. Individual actors within the system face
critical choices regarding the openness of their subsystems, and these choices have far-reaching
implications for the system’s overall performance. The decision to pursue an open strategy,
facilitating full integration, or to maintain a closed system introduces complex trade-offs. Actors
must weigh the potential benefits of collective integration against the costs and risks associated
with opening their own systems. Although an open strategy might be optimal on a collective
level, it might not be the most advantageous path for the individual actor.

The complexity escalates dramatically as the number of actors within the system increases.
Decision-making becomes a tangled web of anticipating other actors’ choices, potential
coalitions, and the risks associated with incomplete information. Understanding the social
dynamics at play becomes essential, as factors like communication, the way options are
framed [15, 16], and actors’ varying motivations and incentives [17] significantly influence the
strategic landscape. A particularly worrying outcome in multi-actor systems is the potential for
integration to halt. Imagine a scenario where a single actor initially takes the risk of opening
their system, hoping others will follow. However, if others exploit this openness, keeping their
systems closed and reaping the benefits without contributing, this can discourage further
integration efforts. The system can easily become stuck in a situation where the benefits of
wider integration seem out of reach, as no individual actor wants to be the only one taking on the
burden of an open system.

To overcome these challenges, there’s a critical need for new modeling approaches and
analytical tools explicitly designed to handle the emergent dynamics of multi-actor scenarios.
These models must move beyond traditional two-player game-theoretic frameworks to robustly
capture complex interactions and coalition formation. Holistic decision-making approaches
considering the technical, social, and strategic interdependencies are needed. Alongside
sophisticated modeling, a focus on developing mechanisms to incentivize integration is
paramount. Finding ways to align individual actor benefits with the goals of the collective
system is essential to ensure sustained progress and avoid stagnation. Addressing these
challenges is crucial for successfully engineering and managing complex systems-of-systems. A
deep understanding of these emergent strategic dynamics and incentive structures will empower
us to build systems that foster coordination, reduce incompatibilities, and ultimately facilitate
the harmonious integration of interdependent subsystems for the greater good.

1.2 Our research endeavor

Our work focuses on studying complex strategy dynamics in collective systems, with an aim to
comprehend the factors that influence the decisions and interactions of system actors. We
acknowledge the complexity of these systems and strive to design mechanisms that promote
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collaboration in large-scale systems-of-systems. The objective of this paper is to provide a
general mathematical characterization and visual representation of emergent strategy dynamics
in binary games that can be leveraged in the strategic design of engineering systems. It extends
the existing concept of structural fear and greed in two-player games to any finite number of
actors. These structural factors are presented on a Cartesian coordinate plane, with each
quadrant defining a dynamical domain with specific strategic stability conditions.

The remainder of this paper is organized as follows. Section 2 recaps the mainstream
treatment of strategy dynamics centered around normal-form games with two players and two
available strategies each. Section 3 presents our extended characterization of strategy dynamics
for binary strategic-form games with any number of players, with more details provided in the
Appendix. Here we introduce the concept of strategic hindrance, with Section 3.3 applying the
proposed framework to assess the evolution of strategy dynamics in the design for integrability
of an urban transit system stylized as a volunteer’s dilemma, and Section A.4 extending this
framework to visually assess additional generic strategic settings (viz. public goods game, fated
truel game, majority game, and others). Then, in Section 4, we address the assumptions and
limitations of our proposed approach. We conclude with Section 5, summarizing contributions
and our vision for future work.

2 Strategy dynamics in 2X2 social dilemmas

The concept of fear and greed strategy dynamics is based on the study of social dilemmas using
game theory. A “game” is any decision-making process involving multiple independent actors

with specific preferences over the decisions any of them could make and their consequences. We
focus on normal-form games, the most common representations used to model social dilemmas.

2.1 Normal-form games

A normal-form game consists of

* A player set NV consisting of n > 1 player names or other identifiers (ids);

— for the sake of simplicity, we use A" = {1, ..., n} and dummy ids i, j,k € NV,

— a game with n = 1 is referred to as a “trivial” decision problem.
* A finite set of pure individual strategies S; = {sl(l), ey sl(mi)} >, withm; > 2Vie N
— apure strategy is a complete contingency plan that a player can execute in

anticipation of the actions that the other players could take;

— the product § = S§; X --- X S, is the set of all possible pure collective strategies
§={(S1, ..., Sn), with |S| =T} m;;

— an nx?2 normal-form game (also known as binary game) is one in which m; = 2 for
every i € N, resulting in a total of 2" pure collective strategies.

* A payoff function U; : S — R”" valuing the preference of player i for each s € S;

— the value of Uj(s) is assumed to be measured on a cardinal utility scale;

- Jds € 8: Ui(s) #0, or equivalently, max; |U;(s)| # O for every i € NV.

The central objective of game theory is to understand what will, could, or should happen in a
given game. One of the main solution concepts in game theory is the Nash equilibrium, which
unified several earlier ideas related to the stability of collective action in non-cooperative
games [18]. The ideas we develop in this work are relevant to studying pure-strategy Nash
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equilibria (PNE), in which every player is expected to commit fully to one and only one pure
individual strategy (see Definition A.1 in the Appendix).

Figs 1(a) and (b) show examples of individual payoff matrices in 2x2 social dilemmas. We
can also write all payoffs in a 2x2 game as a simplified bimatrix:

(o) Us(sos: _ [ (Ui(9i,9), Ui(ej, @) (Ui( @i, w)), Uj(wj, i)
{Lilsios7). U550 o <Ui(‘lfia‘P;)vUj((P;a‘Vi)> <Uz-(%w;)>Uj(wj7vn)> -

where S = { @k, Y } for every player k € N = {i, j}. The collective strategy set is S =

Si x 8; = {{@i, 9;). (@i, j), (Wi, 95), (Wi, Wj) }. Strategies @ = (@i, ¢;) and y = (y;, y;) are
called diagonal, the other collective strategies, namely those in set S\{¢, v}, are called
off-diagonal. Labeling a combination of individual strategies as diagonal or off-diagonal is left
to the reader’s discretion, and it does not affect the nature of the game. In this work, ¢ is also
referred to as the status quo strategy — or starting point — and y is treated as the alternative or
desired outcome (from the perspective of the incentive designer or researcher) consistent with
economics literature [19].

2.2 Structural fear and greed in 2X2 social dilemmas

Classical 2x2 social dilemmas name each strategy after the description that human players
would use to describe their behavior [15] and are often symmetric — meaning their payoff
functions do not depend on the players’ identities, i.e. Uj(s},s;) = U;(s’;,s;). For instance, let us
assume that ¢y is a “defective” individual strategy and that y; is a “cooperative” one.
Coordinating on ¢ and Y can thus be called mutual (or unanimous) defection and cooperation,
respectively. These are the usual strategy labels in a classical social dilemma. Fig 1(a) shows a
generic payoff matrix used to characterize these games. Cooperation yields a “reward”,

Ui(vi, yj) = R, which would be preferable to mutual defection, which results in a “punishment”,
Ui(@i, ;) = P < R [20]. The values U;(y;, ¢;) = S and U;(¢@;, y;) = T are called “sucker’s” and
“temptation” payoffs, respectively, terms borrowed from the prisoner’s dilemma (PD) game [21].
A sample individual payoff matrix of a PD game is shown in Fig 1(b). A PD game is
characterized by the relationships 7 > R > P > S. The stag hunt game, in contrast, of which a
sample individual payoff matrix is presented in Fig 1(c), satisfies R > 7 > P > §[22] —a
“periodic table” of 2x2 games can be derived from different orderings of P, R, S, and T as
described in Ref. [23].

The S payoff is associated with a player’s “fear” of pursuing cooperation when others might
defect. Meanwhile, the T payoff is a player’s incentive to defect away from mutual cooperation
driven by the “greed” for higher returns. Ahn et al. [24] measure structural fear and greed,
respectively, as

P-5
Fi(e.w) = max (P.R,S,T} —min {P.R.S.T} - =141 @
and
T—R

S
max {P,R,S, T} —min{P,R,S, T}

The expressions “P —S” and “T — R” in Egs. (2) and (3) are the deviation losses measured with
respect to the status quo strategy ¢;. In the context of the 2x2 PD game, the structural fear
(F; > 0) is the deficit of unilaterally cooperating when the other defects and the structural greed
(G; > 0) is the benefit of taking advantage of a cooperating partner by choosing to defect
instead [25]. Either factor favors defection if positive. The higher the values of F; and G;, the
greater the incentive that player i has to defect instead of playing a cooperative strategy.
Previous works have identified four 2x2 strategy dynamical domains exhibiting different
payoff and risk dominance conditions based on the values of § and T, while setting P = 0 and
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(a) generic social dilemma

(b) A prisoner's dilemma

(c) A stag hunt

Sj Sj S
Ui(si,s;) Ui(si, sj) Ui(si, sj)
@i P T @i 0 2 Pi 0 12
Si Si Si
Yi S R yi -1 1 vi 2 1

@: defect; y: cooperate.

@: confess; y: stay silent.

@: chase hares; y: hunt the stag.

Fig 1. Generic individual payoff matrix in a two-player two-strategy social dilemma game in
normal form. The strategy labels ¢ and y represent “defection” and “cooperation”, respectively.
The value of P represents the punishment resulting from mutual defection; R > P is the reward
of mutual cooperation; § stands for sucker’s payoff (what a player gets from cooperating if the
other defects); and T stands for temptation to defect (the incentive to deviate away from the
cooperative strategy in the expectation of higher returns).

R =1[26-29]. These values map to one combination of positive (high) or negative (low)
structural fear and greed, as provided below and in Fig 1, per Egs. (2) and (3):

Harmony / HA (or cooperation):

S>>0 AN T<1 & FF<0 A Gi<O

Coexistence / CX (or anti-coordination):

S>0 A T>1 & FEF<0 A Gi>0

Bistability / BI (or coordination):
S<0 AN T & FE>0 A Gi<O

Defection / DE:
S<0 A T>1 & FE>0 A Gi>0

We introduce a fifth dynamical domain to represent player i’s indifference about the strategy set:

Indifference / ZZ:
S=0 AN T=1 & F=0 AN G;=0

The 22 harmony and defection dynamical domains are also known as (type y or type @)
dominance dynamics [30, 31]; while the coexistence and bistability domains are sometimes
referred to as negative and positive frequency dependence dynamics, respectively [32,33]. The
latter are also known as bipolar [34] — note that any 2x2 coexistence game can be transformed
into a bistability/bipolar game by switching the strategy labels of one of the two players.

Fig 2 shows how the values of S and 7" map to the factors F; and G; per Egs. (2) and (3),
assuming P = 0 and R = 1. The vast majority of the literature on social dilemma games focuses
on the payoff region defined by S € [—1,1] and T € [0,2]. These games cover the entire
harmony domain, 3/8 of the bistability and coexistence domains, and only /6 of the defection
domain — that is, 23/48 of the whole fear and greed strategy dynamics space. The structural fear
and greed values for the PD game in Fig 1(a) are F; = G; = 1/3, which fall on defection
dynamics, while the values for the SH game in Fig 1(b) are F; = 1/3 and G; = —1/3, falling on
bistability dynamics. Examples of harmony and coexistence games respectively include the
concord game (S=1/3and T =2/3 = F; = G; = —1/3) and the chicken game (S = 1/2 and
T=3/2= F=-1/3and G, =1/3).
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Fig 2. Mapping between the sucker’s (S) and the temptation (") payoffs and the structural fear
(F;) and structural greed (G;) factors per Egs. (2) and (3), assuming P =0 and R = 1. Each
quadrant is labeled after the 2 x2 strategy dynamics resulting from different combinations of low
and high levels of structural fear and greed: HA / harmony (F; < 0, G; < 0); CX / coexistence
(F; <0, G; > 0); BI/ bistability (F; > 0, G; < 0); and DE / defection (F; < 0, G; > 0). The vast
majority of the literature on social dilemma games focuses on the shaded region defined by
Se[-1,1]and T € [0,2].

2.3 Deviation losses and strategic stability

For general nx2 games, let us define the rescaled deviation loss ¢; in terms of the difference in
player i’s payoff when deviating from s} to s; € S; assuming the strategies of the other players
remain fixed:

Definition 1 Let i € N be a standpoint player in the n-player normal-form game

O = (N (), (U) e ):

where N is the set of n players, S; is the set of individual strategies, S = S!' are the collective
strategies, and U; : S — R is player i’s payoff function. The rescaled individual payoff loss of
deviating from s} to s; € S; contingent on a collective strategy s_; played by all other players

(—i = N\{i}) is

(57 5.1) = - [Uils7.5.0) — Uilsos)] € [-1,+1], *

A;
where A; = max; U;(s) — miny U;(s) > 0 is the peak-to-peak amplitude of i’s payoffs.

If Gy is an nx2 game and S; = {@;, y;}, we have that ¢;(¢;,s_;) = —£;(y;,s_;); for the sake of
simplicity, we write £} (s_;) = ¢;(¢;,s-;) moving forward. Thus, the maximum number of unique
values of ¢ (s;) per player in a binary normal-form game is 2"~1 Forn =2, we write

1
E?(S]):X Ui((Pi»Sj)_Ui(Wiasj) € [_17"_”’ (5)

February 29, 2024

7/40



We now rewrite Egs. (2) and (3) in terms of Egs. (4) and (5) as

1

1
Fio.w) = 1 [Ui(9i0)) ~Ui(wi 0))| = (w1, 0)) = (i (). ©)
and

1 *
Gi(o.¥) = + [U,-(% Vi) — Ui(l/’ivl//j)} = b vj) = G (;)- ™
l
If the labels ¢ and y are swapped above, F;(y, 9) = —Gi(@, ¥) and G;(y, @) = —F; (@, y).
In binary games, equilibrium conditions depend only on the signa of each player’s loss of
deviating away from a collective strategy (see Definitions A.2 and A.2a in the Appendix). More
precisely, s* = (s7,s%;) € S is aPNE if

Eg}{/lgi(S;(,S:) Z 0

In a 2x2 game, if both players’ structural fear or greed values fall in the same region (as is the
case for symmetric games), then

sgn/i(si,s;) = sgnl;(sj,si), ®)

for some s; € S; = {¢;, y;} and some s; € S; = {@;, y;}, where sgn : R +— {—1, 0, +1} is the
signum function. If both sides of Eq. (8) are equal to +1, then s = (s;,5;) must be a strict PNE.
We denote the set of PNE as S*. We use the bimatrix notation in Eq. (1) to compare cardinal
payoffs with the signa of the rescaled deviation losses and evaluate S* in a 2x2 game:

( sgnli (), sgnli(e)) ( sgnﬁ?‘(wj),—sgnéjf((pi)q ©)

“W“&ﬂ”hs@m%m@mw><s@m%x%ﬂmm>

| senF,sgnF;) ( sgnG;,—sgnF;)
(—sgnFj, sgnG;) (—sgnG;,—sgnGj) |’

Mapping a 2x2 game to the bimatrix form in Eq. (9) allows us to identify any PNE in it more
quickly and how they relate to the structural fear and greed factors. Fig 3 reintroduces the main
2x2 strategy dynamical domains using the aforementioned notation. As an example, the payoffs
in a symmetric game with harmony dynamics can be written as

<171> <3»2> <_7_> <_7+> .
(©Uha= |03 )~ | () (o)

we underline the cells where each of the two signa are greater than or equal to zero. Thus in the
game above, there is one PNE, v, since F;, F; <0 and G;,G; < 0, and

sgnli(@;, -) = —1=sgnl;(;,-),

implies that both players would always prefer y; (second row) and y; (second column) over ¢;
and ¢;. Similarly, in a symmetric game with coexistence dynamics, for example

<1’1> <472> <_7_> <+’+>
(Ui, Uj)]ysp = [(;4) <3,3>] ~ [<+7+> <_,_>}’

there are two PNE, $* = {(¢;, y;), (¥, ¢;) }, the off-diagonal strategies, since F; < 0 and
G; > 0 — likewise, F; < 0 and G; > 0 — imply
—sgnF; =+1=sgnG;
—sgnli (@;) = +1 = sgn (i)
sgnli(Yi, @;) = +1 =sgnl;(9;, ¥i),
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‘F,:f;(goj) G[:z;(wj)‘ ‘ F <0 G <0 H F <0 el H F, >0 G H F.>0 0

Sj S 5 S S
U; T B sgnUy ——— sgnUy ———— sgnUy ———— sgnUy —————
Pi Vi i Y Pi i Pi v Pi Vi
P g) &) i ~ —~ i = i+ i + = i + +
st A i = s si si si
v ~tilg) -ty Vi o+ + Vi * : i - + Vi = &
e.g. concord game, peace game e.g. chicken, Bach or Stravinsky e.g. stag hunt, coordination games e.g. prisoner's dilemma
(a) Harmony / HA (b) Coexistence / CX () Bistability / BI (d) Defection / DE

Fig 3. Classification of strategy dynamics in 2x2 social dilemma games in terms of the individual payoffs U;(s;,s;) and their relative
differences (+ versus —). An economically rational player would presumably prefer those collective strategies marked with a plus sign
(+) over those marked with a minus sign (—). In the case of indifference dynamics, notice that both s; rows are equal, implying that
player i’s payoff only depends on player j’s selection.

indicating that not taking the same action would be the most economically rational outcome.

A game with one or more PNE can also be formed by two individual payoff matrices
exhibiting different strategy dynamics. We provide two examples. One: we can model U; after
the harmony payoffs in Fig 3(a) and U; after the (transposed) defection payoffs in Fig 3(d);
using the bimatrix game notation in Eq. (9), we can write

(0, 0) (0,-1) (=+) (=-)
(ULUp 0 = (1, 0) { 1,1>}“{ +) <+7>}’ o

—~

where the collective strategy (y;, @;) is the only equilibrium in this game. The individual
strategies in Eq. (10) are also perfectly limited, meaning they yield an individual payoff that
depends only on each player’s strategy [35]. Using Eqs. (6) and (7), we calculate the structural
fear and greed for players i and j as F; = G; = —1 < 0 (both factors support ;) and

F; = Gj = +1 > 0 (both factors support ¢;), respectively. Two: let us reuse the coexistence
payoffs to model U; and (transposed) bistability payoffs per Fig 3(c) to model U; and write

_ [0, 00 (0,1 (=4 (=),
(Ui, Uj)yp = (1, 0) (—1, 1>} ~ { } (11
this time, however, there are no PNE. Also, each player only has one perfectly limited strategy:
¢; and @; always yield a zero payoff of zero to players i and j regardless of the other’s choice of
individual strategy. The values of structural fear and greed for players i and j are (F;, G;)
=(—1/2,4+1/2) and (F;,G;) = (+1/2, —1/2), respectively. If only the signa of each player’s
structural fear and greed factors are considered, the bimatrix game in Eq. (11) is qualitatively
equivalent to the 2 x2 zero-sum game

A N i A i | (12)

In the following section, we extend the definitions of ¢}, F;, and G; to normal-form games
with any number of players n > 2 and binary strategy sets S; = {@;, y; } for every i € N.

3 Strategy dynamics in nX2 games

In this section, we reformulate the rescaled deviation losses ¢} (s-;) = ¢;(¢;,s-;) for a player
i € N in an nx2 game in terms of the possible pure individual strategies played by subsets of
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N\{i}. We focus on the scenarios in which standpoint player i breaks their game into smaller
2x?2 games by making two types of conjectures about the possible individual actions of others:
1) some players will coordinate their strategies and act as one, and 2) some other players have
already made their choice of individual strategy and will not change their minds. Later, we apply
the proposed framework to describe individual and collective strategy dynamics in 3 X2 games
and characterize social dilemmas with three players.

3.1 Dissecting fear and greed in nX2 games: strategic
hindrance
We start by defining player-reduced binary normal-form games:

Definition 2 Let Gnr = (N, (S))ienr, (Ui)iens) be a normal-form game; let i € N be a
standpoint player in game Gy, let K C N\ {i} be a proper subset of players in N excluding i;
and let 7 = N\ (K U{i}) be the non-empty set of players different from i that are not in K.
Assume, without loss of generality, that player i anticipates a collective action sy by the players
in KC. From player i’s standpoint, the normal-form game G reduces to

Ganye = (MVE (81 e (G50 ) (13)

That is, Gank is a player-reduced game observed by player i within G .

We use Definition 2 to reformulate Eq. (4) in terms of s; € {¢;, y;} and s_; = (57, sk) as
C(sg,sc) = A;' - [Ui(fl%SmSzc)—Ui(llfi,SJ,S/c)] € [-1,+1]; (14)
where s 68}‘7‘, |J|€l..n—1];and sk ESI!Kl, Klel0..n-2].

Next, we characterize player i’s fear and greed in game G assuming a coordinated action
s7 € {97, w7} by player-set 7 and an unmovable action sx. = oy by player-set 7 :

Definition 3 Let Ganx be a player-reduced game observed by player i, where s = Oy is the
collective strategy of the (excluded) players in K. Assume that, in the face of uncertainty, player
i conjectures that all players in J act as one player with individual strategy s7 € {Q7,W7};
and that the players in KC have adopted a presumably immovable collective strategy sx. = Ox of
which player i is “certain.” The values of structural fear and greed specific to player i
concerning a unanimous course of action by the players in J are

F (0,9) = (07,00) = 4;'-[Ui(91,0.0x) = Ui(vi, 07 01| )
and

G (. ¥) = (i (v, 00) = A; [Ui(% Yz, 0xc) = Ui(Vi, ufy,o;c)], (16)

where A; = max; U;(s) — ming U;(s) > 0 and sxc € Syq.
A few of notes on Definition 3:

* Setting V' = {i, j} — which implies J = {;} and K = 0 — turns Egs. (15) and (16) into
Egs. (6) and (7), respectively.

* We intend the assumption of a fixed s = O to represent the scenarios in which each
player k € IC are committed to playing a particular individual strategy o} € Sy and player i
both know of their intentions and expects them to be fully realized; we call this a type I
player-reduced binary game: stationary K-players.
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* A second type of player-reduced binary game concerns the scenario in which one or more
players in /C are not expected to commit to oyc; we call this a type II player-reduced
binary game: reversing K-players (see Section A.2 in the Appendix for more details).

We now define the strategic hindrance of standpoint player i as the space of structural fear and
greed values for all possible type I player-reduced games where no more than n — 2 players are
fixed.

Definition 4 Given a binary n-player normal-form game Gs with individual strategy set
Si = { @i, ¥;}, we define the space of structural fear and greed values, or strategic hindrance, of
a playeri € N as

(oK) ’ ‘ T
n E5 (o, y) i (s, 0x)
Do) = = L VTUK =N\{i}, T#0. (17)
Gi ((P7 W) xg(n) gi (ij GIC) xg(n)
where g(n) is the number of possible player-reduced binary games G N\K With stationary

K-players (type I).

The total number of possible type I player-reduced binary games with fixed sx = oy is (see
Section A.2 in the Appendix):

g(n) =311, Vn>1. (18)

There are only 2"~ ! possible ¢;(s-;) that can be input as one of the 2 - g(n) entries of the
strategic hindrance space in Eq. (4). For instance, if n = 3, g(n) = 5, and each of the 2 x 5 = 10
entries in player i’s strategic hindrance space takes one of the 23~! = 4 values of 0¥ (s_;). This
implies that some deviation losses appear more than once and thus impact the emergent strategy
dynamics more than others. We quantify such an impact using the function

V(ng\is myi) = 270V 42\ =2, (19)

which counts how many entries of each player’s strategic hindrance space are equal to £} (s;)
based solely on the number of players in A\ {i} that play either ¢; and y;, ng\; and ny,;,
satisfying ng\; +ny\; = n— 1. The value of y in Eq. (19) is associated to the number of type I
player-reduced binary games in Eq. (18) via the following alternative formula for g(n) (see
Section A.3 in the Appendix):

Zyk n—1-k)-Cln—1,k)|; (20)

where C(n—1,k) = (";1) is the binomial coefficient and k counts the entries in s_; that are
equal to either @; or y; — note that Egs. (19) and (20) are symmetric with respect to strategy,
that is Y(ng\;,my\;) = Y(y\i;1g\;)- For instance, if n = 3 and N = {1,2,3}, the values of y
associated with each possible s_; are

for 5.1 = < 3>7 Ng\i = 2 and y\i = 0o = ']/(2, 0) =3;
for 5_; =<(p2 W3), gy =landny ;=1 = y(1,1)=2;
for sy = (v2,93), ng\;=landny,; =1 = y(1,1)=2;
and for s.1 = (y2,y3), ng\; =0andny; =2 = 7(0,2) =3;

and, per Eq. (20), g(3) = (1/2)-[7(0,2)- (1) + (1, 1) (2) + 7(2,0)- ()] = (1/2)- 10 =>5.
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Table 1. Strategic hindrance space Hl@) (@, y) for player i in a 3x2 game.

H” (9, v)
T K o) Fi(G)c) GEGK)
. O (0, P) (Wi, k)
{iy {k} - -
73 (@), wi) (v, wie)
9 (o) (@), wi)
{ky {i} - ,
Vi Gy o) (v w)
{i,k} 0  na  G(9.0) (v, we)

3.2 Strategic hindrance in 3X2 games

This section inspects the information that can be extracted from a strategic hindrance of a player
in a 3x2 game when represented in a Euclidean plane. Solving Eq. (17) for n = 3, player i’s
strategic hindrance can be expressed as:

L[4 (05,00) (05 w0) Li(@50) L (W) £ (05,00

- 21
Ai [0 (w00 (v w) (0w 6 (wiwe) 6 (v w)

HY (¢, y) =

Table 1 lists each of the corresponding g(3) = 5 structural fear and greed value pairs for n = 3 in
terms of the rescaled deviation losses £ (s;,s,). We use rectangular coordinates to describe a
generic individual strategic hindrance space in Fig 4. In Fig 6, we add strategic hindrance spaces
for the remaining two players and discuss how the visualization is useful for understanding the
stability of collective actions in the game. We repeat this assessment after modifying the payoffs
of one of the players, namely by multiplying by —1, which results in the strategic hindrance
spaces in Fig 9.

Generic individual 3x2 strategic hindrance space

A player’s strategic hindrance highlights the multiple modes of biases that are baked into the
payoff structure. In a one-shot game, a player may rely on simple arithmetic to play the pure
strategy that maximizes their expected value. This may be the case in games with more regular
payoff structures that produce fewer unique fear and greed value pairs per player, usually falling
entirely within the same strategy dynamical domain — e.g., the social dilemmas analyzed in
Section A.4. All structural fear and greed value pairs that form a strategic hindrance space in a
3x2 game can be contained within a convex polygon with at most four sides — we conjecture
that the number of sides of the convex polygon containing all fear and greed value pairs in an
individual strategic hindrance space is at most 4(n — 2) for n > 2.

The payoffs and absolute deviation losses that produce the strategic hindrance space in Fig 4
are provided in Fig 5. Using Egs. (14) and (15)—(17) we obtain player i’s strategic hindrance
space:

T
oK) 1[+2 43 +2 -3 +2]"

H (p,y)=| “3|s Lt a3 o1

(oxc)
Gi x5
The five fear and greed value pairs in the above strategic hindrance space are all unique and fall
across three 2x2 strategy dynamical domains — harmony (1), defection (1), and bistability (3).

The center of mass is located at the average structural fear and greed coordinates, F; = 6/25 and

February 29, 2024

12/40



1.0
max F; H——————f % -------------------------------------------
i) ‘
§ + \ljear and greed center of mass
E BI | DE
5 0.0
3]
g
17}
min F; ] {A fear and greed value pair
—1.0 !
T

—-1.0 min G; L) 0.0 max G; 1.0
Structural greed

Fig 4. Sample strategic hindrance space H§3) (¢, y) in a 3x2 game with g(3) = 5 unique type I
player-reduced games observed by standpoint player i. The payoff structure is shown in Fig 5.

Sk = Pk Sk = Yk
Ui(si, sj, k)
S =0 5 =Y 2 =1 5=
Si=Qi 1 1 3 1
Si=Vi -1 4 0 2
Ui(@i,sj, sk) = Ui(¥i, s, Sk) 2 -3 3 -1

Fig 5. Sample individual payoffs and absolute deviation losses in a 3x2 game. The resulting
strategic hindrance space is shown in Fig 4; the peak-to-peak payoff amplitude is A; = 5.

G; = —3/25. There are always y(n— 1, 0) pairs along the ordinate ¢; (¢-;) and ¥(0, n— 1) along
the abscissa ¢ (y_;), with their intersection representing the player-reduced binary game where
all other players play as one.

In games where players’ incentives are sparser, pre-existing beliefs of what others would do
could make a player dismiss the likelihood of specific outcomes. The strategic hindrance space
represents the spectrum of such beliefs, each of which a standpoint player would weigh
according to a perceived chance, guiding their presumptions about the course of the game. If the
standpoint player in our hypothetical 3 X2 game example were to assign the same weight to all
instances in Fig 4, the most prevalent strategy dynamics affecting their decision-making process
would be structural bistability. This would involve the anticipation of aligning their strategies
with at least one of the two other players. Since the remaining emergent strategy dynamics are
harmony and defection, the standpoint player would prefer everyone to pursue a unanimous
course of action, fully embracing either y or ¢.
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Fig 6. Strategic hindrance spaces in the sample 32 game in Fig 7. Player 1’s payoff structure is
taken from Fig 5, so their strategic hindrance space is the same as in Fig 4. Bistability dynamics
prevail across the strategic hindrance spaces of all players, while the emergence of harmony and
defection may add further appeal to the diagonal collective strategies ¥ and ¢.

$3=@3 $3=13
(U, U, Us)
S2= @2 S2=1Yn S2=¢2 S2=1Yn
ST QI (1,3,2) (1,0, 0) (3,1, 0) (1,0, 0)
S1=Y1 -1, 0, 0) (4, 1, 0) (0,0, 0) (2,2, 3)

Fig 7. Sample 3x2 game used to generate the strategic hindrance spaces in Fig 6. Player 1’s
incentives are modeled after the payoff structure in Fig 5. This game has two PNE: ¢ and v.

Inferring collective stability from multiple strategic hindrance spaces

The strategic hindrance space in Fig 4 is a prognostic of a single player’s stability of rational
strategic action based on their payoff structure. Suppose all other players shared similar payoff
structures; in this scenario, we can anticipate the emergence of PNE coherent with the individual
rational preferences coinciding in the same strategy dynamical domains. In some circumstances,
we can also repeal PNE by inverting some players’ strategy dynamics, breaking compatibilities
apart. For the grand game to exhibit PNE consistent with player 1’s preferences, the payoff
structures of the other players must also result in a combination of harmony, bistability, and
defection dynamics. Fig 6 highlights such a scenario with similar strategic hindrances, with
player 2’s strategic hindrance space spanning the same three strategy dynamical domains as
player 1’s, and all player 3’s fear and greed value pairs (weakly) falling under bistability. The
baseline 3x2 game is presented in Fig 7. The PNE set in this game, S* = {@, y}, results from
the intersection between the rational preferences of all three players under bistability dynamics
(which already favor ¢ and ) and the strict stability under harmony and defection dynamics for
players 1 and 2.

In contrast with the strategic hindrance spaces in Fig 6, we can create a scenario where there
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D{ Strict improvement in the specified direction

< Weak improvement in any direction

Fig 8. Modified 3x2 game after negating player 1’s payoffs in Fig 7, resulting in no PNE. This
3-cube representation highlights the anticipated lack of convergence toward a collective strategy.

Table 2. Deviation losses and strategic hindrance spaces for the 3 x2 game in Fig 8. All spaces
are visualized in Fig 9. The results for players 2 and 3 are also shared in Fig 6.

Player 1 Player 2 Player 3

G(@@s)=3(-1-1)==3  65(p3,01) = 53-0)=+1 G(01,92) = 3(2-0)=+3
” (@2 ys) = 4(-3-0)=-3 Glos ) =43(1-0)=+3 Gloyn) =3(0-0)= 0
1

Gy, 03) = H(—1+4) = +1 Gy, o) =30-1)=—4 Gy, e) =30-0)= 0

Gy ys) = $(—1+2) = +4 Gys,p) = $(0-2)=-3 Gy,y) =5(0-3)=—1
o 1[2 3 2 2 1 [+3 +1 43 -1 43 1fo -3 0 -3 -3
H < 3 3
' 5043 41 =3 +1 +1 3 -1 =2 41 -2 =2 342 0 42 0 42

is no set of type I player-reduced game observed by all players that strictly falls under the same
2x2 strategy dynamical domain. We can achieve this by negating player 1’s payoffs in Fig 7.
The resulting game is shared in Fig 8 using an alternative 3-cub representation to highlight the
directions of strict and weak payoff improvement to identify PNE, with the vertical, horizontal,
and depth axes listing the individual strategies for players 1, 2, and 3, respectively. Each vertex
represents a collective strategy outcome. The direction of each orthogonal edge connecting two
vertices is determined by the sign of the individual deviation loss associated with it. A vertex is a
PNE if it is a sink [36], meaning that all arcs connected to it are incoming [36]. There are no
sinks in Fig 6; so, there are no PNE. The deviation losses and strategic hindrance spaces in this
game are provided in Table 2 and visualized in Fig 9.

Negating an individual payoff structure causes observed harmony dynamics to turn into
defection; it also causes bistability to turn into coexistence (and vice-versa). Harmony and
defection are both dominance dynamics and thus are compatible, as described for 2x2 games in
Section 2.3 and Eq. (10) — in Section A.4, we discuss public goods games, which have a single
PNE and where the aspiration level of each player can be set to result in either pure defection or
pure harmony dynamics. The same cannot be said about coexistence and bistability. In the 2x2
games in Eq. (11) and Eq. (12), we observe that combining positive and negative frequency
dependence may result in the absence of PNE. Coexistence dynamics do not favor a unanimous
course of action. Player 1’s coexistence-based preferences in Fig 9 cancel out the intersecting
harmony-bistability-defection preferences of players 2 and 3 that favor ¢ and y.

It is still possible to create a 3x2 game where the incidence of coexistence and bistability
results in the emergence of PNE. This can be done by mitigating harmony and defection. For
instance, in Fig 8, making U (s) =0 at s = (@, @2, y3) and s = (y1, ¥, @3) makes the rescaled
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Fig 9. Strategic hindrance spaces in the 3x2 game in Fig 8. All strategic hindrance spaces but
player 1’s are the same as in Fig 6 — the payoff structures of players 2 and 3 are taken from
Fig 7. The coexistence dynamics that emerge for player 1 indicate a greater incentive for
refusing to align with the strategies of players 2 and 3.

deviation losses £;(¢3, yi) and £5(y3, @1) in Table 2 become zero, turning all but one of the
g(3) = 5 type I player-reduced games into borderline bistability games with either F> = 0 or
G, = 0. Player 2’s modified strategic hindrance is similar to that of player 3, as shown in Fig 10
— unanimity games, in the following section, are characterized by the emergence of analogous
borderline bistability dynamics for all players. The lower left and upper right vertices in Fig 8 —
respectively {(@1, y2, W3) and (Y1, @2, ¢3)} — weakly become sinks. These weak PNE result
from the intersection of player 1’s coexistence-driven disfavoring of unanimity and players 2 and
3’s bistability-driven inclination to coordinate with other players. Here the incidence of player
1’s observed harmony and defection dynamics is negligible.

3.3 Application case: integrability of an urban transit
system

Here, we analyze the emergence of strategy dynamics in the strategic design for the integrability
of a fictional urban transit system, highlighting the complexities that arise as the number of key
design actors increases. In this example, we explore the concept of directional integrability [14],
briefly discussed in Section 1.1, to assess how well the system-of-systems aligns with shared
goals, considering the levels of managerial control and collaboration among its components.

The baseline 2 x2 scenario

Let us consider two managerially and operationally independent system design actors:

* Irene, a software developer who was contracted by the public transportation authority to
implement a passenger information system; and
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Fig 10. Altered strategy dynamics derived from the 3x2 game in Fig 8 after making U, (s) =0
ats = (@1, 02, y3) and s = (Y1, Yo, @3), resulting in €5 (@3, y1) = €5 (y3,9;1) = 0 in Table 2. The
strategic hindrance spaces of players 2 and 3 are akin to those in a unanimity game (Fig A.5)
characterized in Section A.4. The PNE set is S* = {{(@1, y2, y3), (Y1, 02, 93) }.

* Jamie, an infrastructure contractor whom the regional transportation policy agency tasked
to design and maintain the traffic management system.

Irene’s primary role is to help commuters plan their routes and access real-time information on

buses, trams, and subways, while Jamie’s contribution to developing and managing road

infrastructure and traffic critically impacts the flow of vehicles and the safety of passengers.
Each actor can independently choose an open or closed system strategy:

* @; — closed system to leverage partial integrability: the system will take advantage of the
capabilities of other open systems, but the latter cannot exploit the former.

* y; — open system to pursue synergistic integrability: the system’s capabilities can be
fully leveraged by everyone.

We consider keeping the system closed as the status quo strategy since it would not require an
actor to de-constrain and expand the capabilities of their system beyond its boundaries to
interact with others. In this context, pursuing synergistic integrability would be an alternative
course of action — see Fig 11(a). We justify these assumptions by arguing that strategic
decisions have an intended direction and are irreversible [37]. We also disregard potential
halfway or “mixed” contingency plans, assuming that any decision to deviate from the status quo
can be construed as a technical variation of the same alternative strategy. Thus, we focus on the
incentives that affect a system actor’s decision to abandon an already in-place or
taken-for-granted strategy in favor of a presumably riskier technological alternative whose
potential depends on whether other actors adopt it.

The strategic tradeoffs: A volunteer’s dilemma

We are interested in assessing the value utility of each system actor based on how their strategic
decisions would intersect. The possible strategic outcomes considered are described in Fig 11(b).
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strategy .
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i » Tuiene, . System
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system system
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*
: .2 Open
Open system I
sys'gem Partially” » _ ' .'Fully
integrated v ; integrated
Alternative
strategy
(a) Individual path to increased integrability (b) Possible collective strategy outcomes
Actor i's Actor j's strategy
expected outcomes Closed system  Open system
Actor i's ~ Closed system peril opportunity
strategy  Open system compromise compromise

peril < compromise < opportunity

(c) Actor j's presumed impact on actor i's outcomes

Fig 11. Increasing integrability strategically: (a) Each actor (say, actor i) decides whether to
keep their system closed (status quo) or to allocate resources to making their system fully
integrable for the benefit of other systems (alternative strategy); (b) The expected outcomes
resulting from the interaction between two systems, i and j, as a tradeoff between the value of
synergistic integrability versus the risky prospect of taking advantage of the other system’s
increased openness; and (c) hypothetical assessment of system actor i’s expected outcomes from
choosing to open or close their system (rows) contingent on actor j’s strategy (columns).

We estimate each actor’s expected value using the following three rules:

1. If no system actors open their systems (s = ¢), the defective integration will result in
disappointing long-term outcomes for everyone (a “peril”).

2. No actor implementing an open system (s; = ;) benefits significantly from increased
integrability when others do the same (a “compromise”).

3. An actor who maintains a closed system (s; = ¢;) can potentially take advantage of the
partial integrability resulting from others opening their systems (an “opportunity”).

Under these circumstances, and without any other actors involved, Irene and Jamie cannot take
advantage of increased integrability at the same time. Focusing on Irene’s point of view,
maximizing value would require them to keep the system closed while Jamie opens theirs. If
Jamie refuses, the best alternative for Irene is to adopt an open approach. It is worth noting that
the chance of peril may also result from a coordination failure between subsystems due to
technical or operational reasons.
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We summarize the expectations of any of the two actors in Fig 11(c) and assume they are
(ordinally) symmetric, as their preferences depend only on the combination of strategies, not on
who makes each decision. Assigning values to each outcome turns this problem into a
normal-form game. The compromise of opening the system is more preferred than the peril of a
failed integration but less preferred than the opportunity of taking advantage of other open
systems; thus, we set “peril” = —1, “compromise” = 0, and “opportunity” = +1. This is
equivalent to a volunteer’s dilemma, where “volunteering” and “free-riding” are the alternative
and the status quo strategies, respectively. We can model the payoff function for this game using
Eq. (A.6) in Section A.4 in the Appendix:

0 if s; = y;
Ui(si,Sj7S]C): +1 ifsi=¢; Asy=yy 22)
—1 otherwise,

With two actors, there is only one value of structural fear and one value of structural greed, the
former is negative and congruent with the difference between the value of “peril” and the value
of “compromise”, and the latter is positive and proportional to the value of “opportunity” minus
the value of “compromise.” So, it exhibits pure coexistence dynamics.

Potential impact of increasing the number of actors

Assume the involvement of a third actor named Kumar, who has been tasked to oversee safety
and communications in the larger urban transit ecosystem and whose actions are critical to
achieving synergistic integrability. Like Irene and Jamie, Kumar is presumed to be operationally
and managerially independent in implementing an open or a closed system; however, Irene and
Jamie may not be aware of Kumar’s exact level of autonomy. For example, Irene may believe
that a governmental agency supersedes Kumar’s authority in whole or part and that whatever
Kumar can do has already been defined. From Irene’s standpoint:

(a) Kumar may never open their system — a plausible assumption considering the
prioritization of security, reliability, data privacy, and regulatory compliance.

(b) Kumar may surely open the safety and communications system for scalability,
adaptiveness, and transparency.

In the context of the volunteer’s dilemma, it can be inferred that if Irene decides to maintain a
closed system, it will likely result in favorable outcomes in scenario (b). However, if Kumar
chooses not to pursue integrability, the risk of peril is greater in the event of (a). Notice that, in
scenarios (a) and (b), it could be Jamie, not Kumar, the one presumed to have fixed their strategy.
Also, it is possible that

(c) Jamie and Kumar align their strategies, simultaneously opening or closing their systems,

which, as in scenario (b), would make the closed system strategy riskier. If we assign the indices
i, j, and k to the three actors, we can list the following five player-reduced binary games from
the standpoint of actor i:

(1) actor j’s strategy may be uncertain, but actor k will surely maintain the status quo;
(2) actor j’s strategy may be uncertain, but actor k will surely choose the alternative;
(3) actor k’s strategy may be uncertain, but actor j will surely maintain the status quo;
(4) actor k’s strategy may be uncertain, but actor j will surely choose the alternative;

(5) both j’s and k’s strategies may be uncertain, but they will surely align their actions.
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Fig 12. Type I player-reduced binary games that would be observed by standpoint player i in a 32 volunteer’s dilemma per Eq. (22)

Fig 12 lists each of these games. Three of them exhibit coexistence dynamics and the remaining
two exhibit defection dynamics. Specifically, using Eq. (A.7) in Section A.4 in the Appendix,
we obtain the strategic hindrance

-1 +1 -1 41 —11"

H§3)(<p,w)=5
F1o41 41 +1 41

If we add a fourth actor, the ratio of coexistence to defection becomes 7 to 12. With five
actors, it becomes 15 to 50. The incidence of defection dynamics on each player’s strategic
hindrance grows at a higher rate than the incidence of coexistence dynamics as n grows; more
specifically,

Number of CX pairs Pt |
Number of DE pairs 371 —2141°

We plot the evolution of coexistence and defection dynamics in the n-player volunteer’s dilemma
in Fig 13 as the share of the total number of type I player-reduced binary games, g(n), that fall
into each domain as the number of actors increases. In the context of our urban transit system
example, we can expect the progress of integrability across the ecosystem to become stagnant
after one actor (if any) has broken away from the status quo and implemented an open system
(one of n possible PNE), assuming the actors are “economically rational.” However, if more
subsystems were to be integrated, the increasing predominance of defection dynamics would
lead to a decreasing likelihood of any system actor volunteering and opening their subsystems.
This quantitative insight into the evolution of defection in the volunteer’s dilemma game is
reminiscent of the prevalence of the diffusion of responsibility and bystander effect phenomena
observed in real-world settings [38].

A key takeaway of this example is how crucial the efficient coordination of actions among
stakeholders and systems is for optimizing resource allocation and reaching greater collective
performance. For instance, if we wanted to incentivize systems-of-systems integrability in this
hypothetical setting, one potential approach is to organize interconnected subsystems into small
clusters to minimize the risk of coordination failure. In real-world systems-of-systems, we
expect actors’ strategic tradeoffs and information to be asymmetrical and evolving, requiring the
design of mechanisms to align incentives and optimize the allocation of resources. As
engineering systems become more complex, managing integration and reducing incompatibility
among diverse subsystems becomes increasingly challenging. Tackling these challenges will
enable the management of interdependent subsystems in a harmonious way throughout each
stage of the design process, ultimately leading to the creation of efficient and effective
systems-of-systems that benefit society as a whole.

February 29, 2024

20/40



(=
®
.

»
>

A A
0.8 A \3;«:,1 S
=
% _ X
B 0.6 .
DE pairs
2 04 ¥o;
% : 1
ol
" ®
* R g g
o414 TR D S S 'S
T T T T T T T ! ! : I
2 3 4 5 6 7 8 9 10 M v

Number of players, n

Fig 13. Evolution of the strategy dynamics in n-player volunteer’s dilemma as a proportion of
the number of (F;, G;) pairs in an individual strategic hindrance space that fall on a specific
domain to the total number of type I player-reduced games, g(n). The incidence of defection
dynamics in the volunteer’s dilemma becomes more significant as n grows, while the proportion
of type I player-reduced games with coexistence dynamics decreases.

4 Discussion of assumptions and limitations

The formulation proposed in this paper takes inspiration from existing subjectivistic and
epistemic approaches to game theory [39,40], focusing less on the players’ knowledge and more
on their beliefs. This worldview is present, in particular, in the computation of values of
structural fear and greed for every player-reduced normal-form game — grouping one or more
actors as one player (set ) and setting the strategies of any remaining player (set ) as “fixed”.
We can use the latter to represent actors in the context of engineering systems whose actions
have presumably been “optimized”. For example, in the example of an urban transit system in
Section 3.3, a designer who believes that at least one other system actor is bound to invest in
integrability might decide to take advantage of the latter. Here, the actor attempts to complete
information about the game despite lacking “common” or “objective” knowledge about the
likelihood of a specific combination of other players’ strategies. While the strategic hindrance
space allows a standpoint player to become better informed of such combinations and
understand how they are distributed across the four strategy dynamical domains, the weight that
the actor assigns to each player-reduced game will still depend on their understanding of the
other players and the context in which individual and collective decisions are being made.

Another instance of incompleteness of information that could be modeled as a
player-reduced normal-form game is when a player is uncertain about whether the rest of the
players are acting as individual agents or as a collective [41]. For example, in the El Farol bar
game in Eq. (A.12), there are players who might never go to the bar because they believe
everyone else is going (by coincidence or by collusion), so it would already be 2/3 full by the
time they arrive — in a dynamic context, this could lead to a “belief-distorted” Nash equilibria,
as discussed by Wiszniewska-Matyszkiel [42]. For such player, going to El Farol bar is like
playing a chicken game (low fear, high greed); but for those who are not so pessimistic about the
bar being crowded, the game is called harmony (low fear, low greed).

Studying strategy selection in n-player binary normal-form games in terms of individual
deviations losses is not original of this work. Examples of similar approaches can be found in
Giith and Kalfoken’s [43] theory of resistance avoidance and Selten’s [34] theory of risk
dominance in bipolar games. These approaches focus on measuring the likeliness that an
individual remains at (or deviates towards) an equilibrium point; both works then prescribe
objective ways in which such “resistances” or “diagonal probabilities” could be aggregated.
Studying equilibria in player-reduced normal-form games from a subjectivistic point of view is
not a new concept either. For instance, in Kalai and Lehrer’s [44] model of subjective games,
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players in a large game environment would restrict themselves to assessing only the portion of
the game they know (viz. an “environment response function”) and approaching a subjective
Nash equilibrium that might coincide with an objective equilibrium regardless of how optimistic
or pessimistic their beliefs are about the “outsiders” to their subjective games. Similarly,
Battigalli and Guaitoli [45] drop the “common prior assumption” (the premise of the existence
of a collectively known probability distribution across the players’ strategies [46]) and favor a
model of “steady-state equilibria” where an individual bases their actions on conjectures about
others’ strategies and is unable (or even apathetic) to fact check.

Despite its subjectivistic nature, the proposed framework shares some similarities with
existing objective and normative approaches to characterizing n-player games. In yet another
work on equilibria selection, Giith [47] assesses the applicability of requiring consistency and
non-emptiness of equilibria when choosing a solution concept. The analysis, which builds on
previous work by Peleg and Tijs [48] and Norde et al. [49], questions the robustness of a
solution concept (whether Nash equilibrium or not) when all players are considered and when
some of the players are “gone” and their inclinations might not be revealed. On one hand,
compared to Giith’s analysis, the structural fear and greed spaces provide a visual means of
understanding how robust a collective strategy is to unilateral deviations, namely, by checking if
those fear and greed spaces fall inside regions of single PNE like the harmony and defection
strategy dynamical domains. On the other hand, the proposed framework also provides insights
into how consistent a collective strategy outcome remains across all possible player-reduced
games by estimating how much the players’ structural fear and greed spaces overlap. Both
framework qualities do not constitute a solution concept themselves but could prove helpful
when assessing incentive mechanisms to guide strategic behaviors toward desired outcomes.

A significant limitation of our framework is its focus on one-shot normal-form games where
players are limited to only two pure individual strategies, and these actions are assumed to be
irreversible once taken. It does not account for the possibility of mixed strategies, where players
can adopt a probabilistic combination of pure strategies, which would add a layer of versatility
to the model. Moreover, the assumption of irreversible actions may only sometimes be accurate
in real-world engineering systems. Going back to the urban transit system example, the strategic
decisions involved, while initially appearing irreversible, may be subject to change as the
systems development process evolves. Feedback from the public, changing urban dynamics,
unforeseen route modifications, and integration of new transportation modes, could lead to
adjustments to the original “game”. Despite these limitations, our framework can serve as a
supplementary early approach to evaluate the long-term implications of strategic decisions in
engineering systems. It also allows researchers and practitioners to revise and reevaluate the
landscape of strategic decisions and tradeoffs throughout the design process, accommodating the
complexities and evolving nature of such engineering systems projects. Including mixed
strategies and the possibility of reversible actions in future iterations of this framework could
enhance its applicability and accuracy in representing the dynamics of strategic decision-making
in complex engineering systems.

5 Conclusion and opportunities for future work

This paper formalizes the concept of fear and greed to describe two dimensions of strategic
hindrances in strategic games with more than two players. Coming up from an engineering
systems background, we discuss a motivating example highlighting the importance of strategic
decisions in our field before introducing our proposed approach to studying strategic
decision-making processes while capturing the complexities of incentives and relationships
between actors. Building on non-cooperative game theory literature, we present a method to
dissect large normal-form games, repackage them into player-reduced instances from each
player’s standpoint, and embrace a subjectivistic lens to scan each player’s overall strategic
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stability. Our framework helps us visualize the shape and scope of the strategy dynamics that
influence the players’ strategic behavior. This framework can help engineering systems
researchers and practitioners identify and mitigate the structural forces that hinder the alignment
of individual actions toward reaching and sustaining collective harmony.

The proposed framework can be extended to applications in cognitive engineering,
particularly in enhancing the understanding and management of strategic decision-making in
engineering systems design. By modeling strategic interactions as simplified games, this
framework allows for a more explicit conceptualization of the human and socio-technical
elements that underlie strategic decision-making processes. In cognitive engineering, where the
emphasis is on aligning human cognitive capabilities with the design and operation of complex
systems, our approach seeks to simplify the intricate decision-making landscape and make it
more accessible and understandable from a human cognitive perspective. The mathematical
rigor of the framework provides a structured way to analyze and interpret strategic interactions
and reconcile human intuition with quantitative analysis. This aspect is particularly beneficial in
enhancing strategic decision-support systems to augment human cognition. Our framework can
be integrated into such tools and facilitate the presentation of complex strategic scenarios in a
more digestible format, allowing for a more comprehensive evaluation of options and their
potential consequences.

In exploring the intricacies of strategic decision-making in the context of collective systems,
we encounter several challenges that require further investigation. These challenges present us
with valuable opportunities to enrich our understanding and develop frameworks that help
sustain collaboration among operationally and managerially independent actors in the design of
engineering systems. This framework could serve as a foundation for developing practical
incentive mechanisms and network interventions in future work. This direction aims to facilitate
the emergence of more favorable strategy dynamics within engineering systems. By
understanding the nuances of individual and collective strategic behaviors, researchers and
practitioners can identify opportunities to guide actors toward more mutually beneficial and
sustainable strategies subtly. For instance, tailored incentives can help align individual
motivations with broader system goals, thus encouraging cooperative behaviors that positively
contribute to the overall health and efficiency of the system.

Network interventions can also help rectify interactions and dependencies between blocs and
coalitions of actors whose strategies significantly influence the strategic hindrance of a specific
decision-maker. These interventions could include adjusting communication channels and
redefining linked incentives to enhance collaboration and reduce friction in decision-making
processes. Applying and refining these approaches within the framework’s structure can help
steer engineering systems toward more efficient and harmonious operations. Extending this
framework in such practical directions can unlock a more grounded and realistic understanding
of how strategic decisions play out in complex engineering environments. Ultimately, this could
lead to more resilient and adaptive engineering systems capable of navigating the challenges of
evolving socio-technical landscapes. We hope this line of work helps unlock new strategies and
frameworks that propel engineering systems design to tackle increasingly complex
socio-technical challenges.
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Appendix

A.1 Pure-strategy Nash equilibria in normal-form games

Definition A.1 Let Gy = (N, (Si)ienr, (Ui)ienr) be a normal-form game. A collective strategy
s* = (s7,s*,) € S is a pure-strategy Nash equilibrium (PNE) if for each player i € N and each
si € S; the following inequality is satisfied:

Ui(s7,s*;) — Ui(si,s%;) > 0.

We now provide an equivalent definition of PNE for binary normal-form games.
Definition A.2 Let Gnr be a nx2 game, and let S; = {s;,s'}. A collective strategy
s* = (s7,s%;) € Sisa PNE in Gy if

3 N N T/ (- . > ().
fg_}\rfl [U,(SI,S,Z) Ul(sl7sfl)i| _0

We can also characterize PNE in nx2 games in terms of the rescaled deviation losses ¢; in
Definition 1. From Eq. (4), we know that

Ui(s¥,s-) — Ui(si, %) o< £i(s7,57;).
We can use this relationship to restate Definition A.2 as follows

Definition A.2a Let Gy be a nx2 game, and let s;,s7 € S; = {@;, y;}, where s; # s7. A
collective strategy s* = (sf,s*;) € S is a PNE in G if
G}\I/lgl‘(j';(,s:‘) 2 0.

1

A.2 Types and number of player-reduced binary games

Definition 2 in Section 3 describes the notion of a player-reduced binary game as an event in
which a standpoint player i in the normal-form game G makes early conjectures about the
strategic behavior of a subset of players K C A\ {i}. We express this as

Ganie = (MVE (81) e (G556 ) (13)

where s is the collective action by the players in K. Player i would move on to making
conjectures about the strategic behavior of the remaining players in the non-empty subset

J =N\(KU{i}). We then characterize structural fear and greed in Definition 3 under two
premises: 1) that the players in J would align their strategies, moving collectively from a status
quo sy = @ towards the alternative s 7 = y7; and 2) that the actions of those in X would
remain fixed at si = Ox.

We refer to the first and second premises as aligned J-players and stationary K-players,
respectively, and we label the player-reduced binary games that meet both conditions as type I.
Relaxing the second premise allows us to elicit other types of player-reduced binary games that
could be observed by player i in G . In particular, for n > 2, there are games Type Il Ganxc
where one or more players k € IC whom player i expects will not commit to individual actions
S¢ = Oy € ox. We call these player-reduced binary games type I1, and we refer to the alternative
premise associated with it as reversing KC-players. We respectively denote by g(n) and g*(n) the
numbers of possible type I and type II player-reduced games observed by a player i in Gu/,
explain their derivation, and provide multiple analytic expressions to calculate them.

February 29, 2024

24/40



Number of player-reduced binary games of type I: stationary K-players

To determine the expression for g(n), we note that

¢ The value of g(n) is also the number of ways in which we can partition set A"\ {i} into
one non-proper subset (7) and one proper subset (k).

» We must count all possible oy in Eq. (17) for every K C M\ {i}. Let Q be a subset of K
and let its complement be Q¢ = K\ Q. We can use Q and Q¢ to identify the players in K
who presumably committed to ¢ and , respectively — that is, ox = (@p, Wor). It
follows that, since either Q or Q° can be empty, the set of possible ox has the same
cardinality as P(K), the set of all subsets (or power set) of : 2lKl,

* Every possible K contains between zero and n — 2 players taken from N\ {i}. Also, the
number of K of the same size is the number of |KC|-combinations of elements in M\ {i}.
Then, the value of g(n) can be expressed as the sum of all the products between C(n— 1,k)
— the binomial coefficient — and the total number of possible 6x-, which we know is 2IKl,

These give us our first formula for the number of player-reduced games:

n—2
g)=HGucll= X IPK)= Y 2™ (i) (A1)
KCM(i} IK|=0

adding and subtracting the (n — 1)-th term gives:
| LY oKl gkl e
1 (n— n—1y.
g(n)=-2" M + Z 2 (1 )‘(\;q)’
IK|=0
which by means of the binomial identity simplifies to
g(n)=3""1_2m1 Vn> 1. (18)
Starting with g(1) = 0 (no game), Eq (18) returns the Lucas sequence
0,1,5,19,65,211,665,2059,6305,19171,...

listed as sequence A@@1047 in Sloane’s Encyclopedia [51].
The value of g(n) can also be expressed in terms of Stirling numbers of the second kind, {Z},
which count the number of ways to partition a set of n elements into k non-empty subsets, as

follows [52]:
n n

where {4} = 2(1+3""1)—2""!and {}} = 2"~ — 1. For instance, if V" = {i, j,k},

Gy=1  ~N={ju{j}ulkh
and {3}=3 N ={}u{jk}={ij}ulk} = {i.ku{j).

So g(3) =2(1) 43 = 5. In the context of the static games with n > 2 treated in this work, the
term {g} is associated with the number of player-reduced games where the individual strategies
of at least two players other than i differ, i.e. s; # s¢, where j,k € N\ {i}; and the term {}} is
associated with the player-reduced games Ganc whose strategy profiles include the diagonal
collective strategy s_; € {@_;, Y_;},i.e. 51 = =81 =Sj41 = = .

The directed graphs in Fig A.1 describe the player-reduced binary games with fixed
sk = ox, K C N\ {i}, for 2 < n < 4. The vertices represent the possible collective strategies
S =€ S,-’“l that the standpoint player i faces. Each arc represents one player-reduced game; the
source and target vertices are associated with structural fear and structural greed, respectively.
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Fig A.1. Type I player-reduced normal-form games G observed by each player in n x 2 games for 2 < n < 4. Every player-reduced
game is formed by the actions of standpoint player i = 1, the coordinated actions of the players in set J = A\ (K U{i}), and the
presumably set in stone action ox by all players in K. On the right, we create directed graphs made of 2"~! vertices, one for every
collective strategy s_; = (s, Sx), and connect them according to the possible deviations under the premises of aligned 7-players and
stationary C-players. Then, each edge represents a possible player-reduced game (listed from A to Y); and the source and target vertices
respectively represent the components of s_; in ¢;(s_;) needed to compute the values of F; and G; per Egs. (15) and (16).

Number of player-reduced binary games of type Il: reversing K-players

We derive g*(n) by analyzing the discrete geometry of all possible transitions between two
different collective strategies s_; and s; that can be observed by player i. Either action can be
equal to any possible combinations of n — 1 individual strategies s; € S; = { @}, y;}. So, the
total number of possible transitions is

‘S;z—l % S;l—l| o |87_1‘ _ (271—1) . (2n—1) _2n—1 :4n—l _2n—1'

In calculating the number of type I player-reduced binary games g(n) = 3"~! — 2"~ we
assumed the collective action s by the aligned 7 -players moved in the direction @7 — 7.
Asserting the premise of reversing [C-players, we note type I player-reduced binary games also
extend to s 7 moving in the opposite direction, namely y.; — @. This means that the total
number of type II player-reduced binary games must be equal to

g'(n)=4""1-2""1_2.¢(n) (A.2)
:4}171 _2(3}171)_’_2}171.
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(2} Vs [ZRRZY ¢ Vs | ¥y

Fig A.2. Transitions between non-diagonal collective strategies representing the number of
player-reduced games with anti-coordination for n =3 and n = 4. Let 7 C A\ {i} and

K =N\(JU{i}); and let O be a subset of K, with complement Q¢ = K\ Q. As all players in J
deviate from @7 — Y7, all players in Q deviate from Yy — @p while the players in Q°, if any,
keep their strategies fixed. The number of player-reduced games following the aforementioned
description of anti-coordination is 4"~ —2(3"~1) — 2"~  This figure complements Fig A.1.

Fig A.2 shows the directed graphs describing the associations between collective strategies
that result in type II player-reduced games and that complement the type I games presented in
Fig A.1 for n = 3 and n = 4 — note that g*(2) = 0 consistent with K = @. Combined, the total
number of player-reduced binary games with stationary and reversing [C-players assuming the
aligned J-players move from ¢ towards — W7 is

gln)+g" () =41 =3,

We can also count g(n) and g*(n) by breaking apart the transition between any two collective
strategies into the moves by each player and labeling the number of existing intersecting
collective actions transitioning in the same direction. This approach is demonstrated using
square grids in Fig A.3 for n € [2 .. 4]. The result shows the number g(n) emerge as the number
of states in the Hanoi graph analog of the Sierpinski triangle — from the Tower of Hanoi puzzle
with 3 towers and 7 — 1 disks — minus the 2"~! states along the diagonal s = sj-; while the
number g*(n), counting all type II player-reduced binary games, emerge as two times the
number of even values in Pascal’s triangle up to row 2"~ 1.

A.3 Distribution of deviation losses in strategic hin-
drance spaces

We characterize the incidence of the rescaled deviation losses £/ (s-;) on Hl(") (o, ), player i’s
strategic hindrance in Definition 4, across observed type I player-reduced games. Let us set

* Ny and Ny, as the subsets of players in ' that play ¢ and v, respectively;
* ng = |Np| and ny = | Ny as the numbers of players that adopt such strategies; and

* ng\i = N\ {i}| and ny\; = [Ny \ {i}], so ng\i Ty =n—1.
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Fig A.3. Alternative approach to counting the number of player-reduced binary games observed
by one player (viz. i = 1) in an n X 2 game, for n € [2 .. 4]. Each grid on the rightmost column
shows all possible transitions from s_; and s*;; these grids are broken apart into individual
transitions from s; and s% € S; — @; — y; in yellow/light gray and y; — @; in dark blue/gray,
going from row to column; and either null transitions of stationary C-players — blank cells, if
any, with “no changes” — or reversed transition of reversing K-players — marked with an x.

Recall that 7 = N\ (KU{i}) and | 7| € [1 ..n—1]. Replacing k = || =n—1—|J] in
Eq. (A.1), gives us an expression for g(n) in terms of J:

n—1 n—1
gmy= Y 2V o)=Y @V-n-(17) = X IPHI)L (A3
|T]=1 |7]=1 NASE):

where PT(7) is the set of all non-empty subsets of 7. From the definition of strategic hindrance
in Eq. (17), we know dimg ((F;)) = dimg ((G;)) = g(n) and all players in 7 would coordinate
on either @7 or Y. Let |T| = ny\; if s7 = @7 and |J| = ny\; if s7 = y7. We can write

() = 5 [dimg ((F3) + dim ((G))] (A4)
1 nil n i n— l n71 nwi n—
=7 HE‘ZOQ 9\ _1).(%\"_) +5 nEzo(z \ _1)'(nw\l,»)

after adding and subtracting the O-th term to the summation (without affecting the interpretation
of g(n) using Eq. (A.3), as 2° — 1 = 0).
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Fig A.4. Number of reduced-player games, g(n) from Eq. (A.1), and values of y(k, n — 1 —k), k € {ng\;,ny\;}, from Eq. (A.5) observed
by each player in games with up to n = 12 players. The subscripts denote the occurrences of each v and are equal to C(n— 1,k). For every
integer n > 1, the sum of the y(k,n— 1 —k)-C(n— 1,k) products equal 2g(n) per Eq. (20). For n = 3, notice that the deviation losses
(@2, y3) and £ (y2, @3) would be weighted twice (k = 1); this is consistent with the directed graph representation of the player-reduced
games for n = 3, in Fig A.1, where both vertices (¢, y3) and (y», @3) are once a source and once a target.

Redefining g(n) in terms of ny; and ny,; allows us to count the number of player-reduced
games where a specific number of players in N\ {i} select one strategy or the other. Adding
one to ng,; means subtracting one from ny,;, and vice versa. Let ng\; =k and ny\; =n—1—k;
we can rewrite Eq. (A.4) as

1 n—1 - 1 n—1 1 .
g)=2 | Y@ -0 +5 | L@ -0 (,5h)
2 i 2 iz
1
=5 [Z}/ n—1-—k)- C(n—l,k)] (20)
where C(n—1,k) = (”;1) = (Hﬁlk) and the function
y(k,n—1—k)=2k42m" 1=k _2 (A.5)
or
Y(ngyis i) = 2"0V 2" =2, (19)

counts how many entries of each individual strategic hindrance space of size g(n) x 2 are equal
to ¢ (s_;) based solely on the number of players in N'\ {i} that play ¢ and those that play y.
Values of y(k, n — 1 — k) and their occurrences for games with up to n = 12 players are provided
in Fig A.4. The triangular arrays arising from the computation of y(n — 1 — k, k) and the product
y(n—1—k,k)-C(n— 1,k) can be found in Sloane’s Encyclopedia [51] under the catalog
numbers A350770 and A350771, respectively.
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A.4 Strategy dynamics of 3x2 social dilemma games

This section calculates the strategic hindrance spaces of nine social dilemmas in normal form
and n = 3. The strategic hindrance of every player in each game are the same; thus, their
strategy dynamics can be considered symmetrical. All of the strategic hindrance spaces are
compiled in Fig A.5.

Volunteer’s dilemma

Each player can either volunteer for the common good (y) or do nothing and possibly benefit
from the contributions of others (¢) — helping maintain the status quo. Player i’s payoff in this
game is defined as
0 ifsi=wy
Ui(siasjale) =4qa ifS[:(P,'/\SJZ Y7 (A6)
—b otherwise,

where a and b are both positive real numbers. Each player in the volunteer’s dilemma in
Eq. (A.6) has one perfectly limited strategy, viz. W;, which yields constant U;(y;,s_;) for any
s.; € Si"_l (i.e. the payoff of volunteering does not depend on whether others also volunteer or
not) restricting interactive effects [35]. There are exactly n PNE in this game, each of them equal
to s* = (y;, @;) for every i € N: every time one and only one player has volunteered.
Incentives modeled after a volunteer’s dilemma can lead to maintaining the status quo
becoming the dominant strategy. After one actor has chosen a cooperative strategy, such as
investing in integrability in the context of the urban transit system, others, acting economically
rational, may decide to seize such opportunity and take advantage of the volunteer’s contribution
without reciprocating. As all actors would prefer to keep their systems closed to avoid the
disadvantages of being the only one to open their system, integration could fail due to collective
inaction. Defection dynamics are anticipated to emerge and dominate the conflict as the number
of players increases.
Using Eqgs. (14)—(16) to obtain the rescaled deviation losses in this game for every player
i € N'— with the help of Table 1:

60100 = A (U901, 00) —Ui(Wis 01, @0) ) = (=b—0)/A; = —b/A;
(05 v) = A (U0 05,0 Ui, 01 w0) ) = (a—0)/Ai= a/A;
w00 = A7 (U0 w500 — Ui w00 ) = (a=0)/Ai= a/a;
G (w0 = A (Ui v —Uiwi v w)) = (a=0)/Ai= a/A;
where A; = maxU; — minU; = a+ b. Using Eq. (21), the strategic hindrance is:
1) (p.y) = — b ta b ta -b) (A7)
l atblta +a +a +a +a

Three of the g(3) = 5 player-reduced binary games exhibit coexistence while the remaining two
exhibit defection. Fig A.5 shows the strategic hindrance space of the 3x2 volunteer’s dilemma
fora=1and b=2.

Diner’s dilemma

Three graduate students go for lunch and agree to split the bill equally before ordering. When
the menu arrives, they choose individually between ordering the combo plate with extra protein
(@) or just a fresh empanada (y). The difference in cost between dishes, ¢ (in utility units), is
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believed to be greater than the difference in satisfaction, b; that is 0 < b < c. However, they
might be tempted to order the more satisfying combo plate if they suspect everyone else will
order empanadas, implying that b > ¢/n — which guarantees U;(¢;,s-;) > U;(y;,s-;), signaling
pure defection dynamics. Let Ny C A be the subset of diners ordering the combo plate,

ng = |Nol, and let ny\; = [Ny \{i}|; player i’s payoff is modeled as

b—nyg (5) if 5; = ;
n

Ui(si,s-i) = c _
—Ng\; (;) otherwise.

(A.8)

From Eq. (A.8), we notice that the difference in individual payoff between choosing s; = ¢; and
choosing s; = y; for a given s_; € S,."*' always equals maxU; = b —c¢/n > 0. This game has a
single PNE (viz. @) for any n > 2. The 3-player diner’s dilemma in Fig A.5 uses b = 1 and

¢ = 2. Using Egs. (14)—(16) and Table 1:

Glop o) = A [(1-3-3) = (=2-3) | =+(1/3)/A;,
Glopw) =4 [(1-2-3) = (=1-3) ] =+(1/3)/A;,
Gy o) = At [(1-2-3) = (=1-3) ] =+(1/3) /A;,
Glyjow) = A [(1-1-3) = (1 0-3)] =+(1/3)/A

where A; = maxU; —minU; =b+c¢—2-¢/n=5/3. All rescaled deviation losses are signed
positive; ordering the combo plate instead of just a pastry is always the dominant strategy. The
strategic hindrance is, using Eq. (21):

T T

1 1 1 1 1
H(3)( )_L +§ +§ +§ +§ +§ +1
SRR TE] PR R R

1

5

+1

x5
Glance and Huberman [53] introduced the diner’s dilemma as a potential extension of the PD

game to study the emergence of cooperation in settings with more than two players. A
player-reduced binary game is a classical 2x2 PD game if

Ui(i, ¥, 0x) > Ui(Wi, Y7, 0 ) > Uil @i, 97, 0) > Ui Wi, @7, ), (A9)
which is equivalent to the relationship 7 > R > P > § from Section 2.2 and Fig 1. Setting

1 b n+1

n c 2-n

guarantees that all player-reduced games in a diner’s dilemma are classical 2x2 PD games.

Public goods game (PGG)

The public goods game (PGG) with linear variable contributions is defined by

L+ny; (%) if s; = ¢;

Ui(si,s-i) = a; (A.10)
Ny (—) otherwise,
n
where ny = [Nyl, ny\; = [Ny \{i}|, and Ny, € N is the subset of players that contribute one

token to the public pool (). Not contributing to the public pool is represented by strategy ¢;.
Factor a; > 0 multiplies the tokens in the pool before dividing them evenly among all players.
Similar to Eq. (A.8), the image of Eq. (A.10) contains only two values per player, meaning the
absolute individual deviation losses are constant (and equal to 1 — a;/n), and each player
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Fig A.5. A player fear and greed value space in seven 3 x2 social dilemmas normal-form games.
Some fear and greed value pairs are repeated.

observes dominance strategy dynamics depending on the value of ;. For n = 3 and setting
a; =2, Eq. (21) gives the strategic hindrance space

T T

1 1 1 _"_% 1 +1

5

1 [+3
Hl@)((Pall/):% L1

Y

+1 +
+i +

[SIE N
W= W
W= W

+
+ +4 +1] s
where A; = maxU; — minU; = 1 +a; — 2 -a;/n = 5/3, which exhibits the same pure defection
dynamics as those of the diner’s dilemma example above and whose strategic hindrance is
depicted in Fig A.5 using Eq. (A.8).

Similar to the diner’s dilemma, we can turn every player-reduced game in a PGG into a

classical 2x2 PD game if we set, Vi € N :

n
5 <a; <mn,
which ensures that every level of mutual cooperation between two or more players will always
yield a greater utility than mutual defection, yet guarantee that the temptation to defect
unilaterally remains higher, satisfying Eq. (A.9). Comparing Egs. (A.8) and (A.10), we can
define any diner’s dilemma into a PGG by calculating

n—1

B/ +1-(3/n)

For values of g; greater than n, the PGG yields harmony dynamics. Whenever a; # n for every

i € N and n > 2, the PGG has only one PNE, with each s} equal to either ¢; if sgn(a —n) = —1
or \; if sgn(a —n) = +1 — where sgn : R — Z is the signum function which returns 1 if x > 0,
—1ifx <0,and 0if x = 0. If a; = n, the game is that of indifference (as ny = 1+ ny,\;), and S*
is trivially equal to 2".
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A prisoner’s dilemma variant

Here, we introduce an alternative version of a PD game with increased incentives for defection.
Prosecutors separately promise three alleged co-conspirators in a crime a lighter treatment if
they snitch on their associates (¢) instead of remaining silent (y). All three suspects will face a
minimum sentence if they keep quiet. If some snitch while others refuse to talk, the tipsters will
be acquitted, while the quiet ones will face a combined sentence of ¢ times the minimum. But if
they all confess, they will all face b times the minimum sentence. Let 1 < b < c; player i’s
payoff in this game is defined as

0 ifsi=@iNsg =Yy
-1 if (si,57,56) =¥
—b if (si,s7,5¢) =@
—c/ny  otherwise.

U,'(S,’,Sj,S}C) =

The rescaled deviation losses in the 3 x2 version of this game are

00100 = A (U910, 00) —Ui(vis 01.00)) = (<b+c )/Ai= (e=b)/A;
(95 w) = Al(MWM%w@fMWm%ww):((Hwﬁwm:+kﬂvm,
w90 = A (U000 = Uiwi 3, 00) ) = ( 0+ ¢/2) /A= +(c/2)/As,
G (i) = Al@Mu%N@—UWNm%D=(O+1)MF: +1/A;.

where A; = c¢. Fig A.5 shows the individual strategic hindrance in a three-person prisoner’s
dilemma, with b = 2 and ¢ = 6, calculated via Eq. (21):

c—b ¢/2 ¢c—b /2 c—b]"

/2 +1 ¢/2 +1 +1
+4 43 44 43 +4]"

1
WW%WC[

_1
6

+3 +1 +3 +1 +1

This take on the n-player prisoner’s dilemma game is a simplification of Weil’s [54]
description with a stronger condition on the payoff dominance of defection modeled after the
original, classical interpretation for two actors by Merrill Flood and Melvin Dresher, and
contextualized by Albert W. Tucker [55]. Condition b < ¢ guarantees that unanimous defection
(@) is always the only PNE and that it is suboptimal regardless of the number of players. And
setting b > 1 guarantees that unanimous cooperation () is always preferred over ¢. However,
in contrast with the diner’s dilemma and the PGG — in which every player-reduced game can be
turned into a classical 2x2 PD game — the reward of staying silent in this model is lower than
the punishment from defecting any time at least one suspect confesses. These characteristics
also differ from alternative generalizations of the prisoner’s dilemma such as those in the works
by Goehring and Kahan [56] and Diekmann [57] that reduce the problem to an n-player
volunteer’s dilemma, which has n PNE rather than only one.

Fated truel

Consider three mutual paintball adversaries, Blondie, Angel Eyes, and Tuco, each with one
paintball left, holding their markers at point-blank. Each of them must decide which of the other
two rivals to fire at, the one on their left (¢;) or the one on their right (y;). To make it out clean,
a standpoint player must first coincide with a second player on targetting their remaining rival
and pray for the latter to target the second player. When two players target the same rival, they
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Fig A.6. Possible outcomes and individual payoffs in a fated truel game (player i’s standpoint) per Eq. (A.11). Each arrow points at the

players’ targets.

are anti-coordinating their strategies in opposite directions to shooting each other. Specifically,
two consecutive players Tuco (i) and Blondie (i + 1), the former on the left and the latter on the
right, must play ¢; and Y| to shoot Angel Eyes (i — 1). Angel Eyes might still manage to mark
one of them, albeit with less effectiveness. For Tuco to come out of the standoff clean, Angel
Eyes must target Blondie by playing (¢;_1). Let a be the expected payoff for making it out clean,
b the expected payoff for firing at the same target as another player with the risk of being hit by
that target, and c the expected payoff of being shot at; it follows that a > b > ¢ € R. Player i’s
payoff contingent on actions by the players on their left (i — 1) and right (i+1) is defined as

a ifsir =i Asio1 = Qi1
Ui(siysit1,8i-1) = 4 b if s; # sip1 =i (A.11)
¢ otherwise.
The eight possible outcomes in this game are depicted in Fig A.6. Two possible outcomes could

see all players defeated in the standoff: ¢ (everyone targets their rival on their right) and y (their
rival on their left). The generic individual strategic hindrance in a fated truel game is provided in

Fig A5 usinga =2, b =1, and ¢ = —3. The deviation losses in this game are:
G (@1, @i 1):A;1~[c—b]:A;1-[_3_ 1]: —4/A;
(@1, Wint) =A7 - [e—c] =A7 - [-3-(=3)] = 0
G(Wir1,0i-1) =A;  [a—a]=A7"- [ 2— 2]= 0
G i) AT [b=c] =41 1= (=3)] = +4/4,

While A; = a— ¢ =2 — (—3) = 5. The space of fear and greed values is:
(-4 0 —4 o -4"

oY (9,v) = <
0 44 0 44 44

Since the payoff that player i would obtain from choosing ¢; or y; depends not only on the
strategies of the other players but also their identities (i.e. indices or positions), the fated truel
cannot be considered a symmetric game in the classical sense, even though the resulting strategy
dynamics are symmetrical. Also, notice that the fated truel game exhibits 2 x2 indifference
dynamics anytime b = ¢ (all values of structural fear and greed are zero) resulting in S* = S.
When a > b > ¢, this game exhibits pure 2x2 coexistence and S* = S\ {¢, y}.

El Farol bar

Three groups of friends decide independently whether to have fun at the small and only bar in
Santa Fé (y), unaware of how crowded it is. Neither group wants to be at a bar packed beyond
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its limits; if they find the bar to be more than 2/3 full, they will regret not having stayed (at
someone’s) home (). So, although they would love to meet another group there, they prefer not
all groups to show up, which requires anti-coordination. For any a > b > 0, player i’s payoff in
this game is defined as

if <S,‘,Sj,Sk> =y
if s; = Vi Ns_.i=Q_;

ifsi=y; Asj# sk
otherwise.

Ui(Si,Sj,Sk) = (A.IZ)

o S Q O

For n = 3, this game has 3 PNE each of them equal to s* = (¢;, y_;) for every i € /. In Fig A.5,
a = 100% fun, b = 25% fun, and ¢ = 10% fun. The individual strategic hindrance is:

1 [-90 —15 —90 —15 —90]"

(3)
H; (P71I/ = Thn
)= 50 —15 410 —15 410 +10

Simple majority game

A player only benefits when they are one of the [1n/2] or more members of A/ who choose the
same strategy (¢ or ). Those who are part of a minority receive nothing. When 7 is even, a
stalemate could result in penalties for all players. They payoff function is given by

1/ng ifsi= @i Ang>n/2
I/ny  ifsi=y; Any>n/2

A.13
—c  ifng=ny=n/2 ¢ )

Ui(Si,Sj,Sk) =
0 otherwise,

where ¢ > 0 is the associated penalty for failing to form a simple majority. The set of PNE in
this game is S* = {@, y}. For n = 3 and ¢ = 0, the individual strategic hindrance is:

1 [+ 0 43 0 +3

Hl@)(‘l’,‘/’) = 12 | | ]
o -+ o -1 -1

Matching pennies with more than 2 players

Matching pennies are zero-sum variants of simple majority games. In these games, the sum of
the benefits received by the players who form a majority must equal the sum of the absolute
losses that minority players incur. The payoff function in a symmetric version of these games is

0 if ny € {0,n/2,n}
—ny/ng ifsi=@ Anypell..n/2)

—ng/ny ifsi=yiAnyel[l. . n/2)
1 otherwise,

Ui(si,sj, k) = (A.14)

The individual payoff matrix for a three-player version of this game is provided in Table A.7.

The corresponding strategic hindrance space is

) 1[+2 0 +2 o +2]"

H (o) =3 :
310 -2 0 -2 -2

same as that of the three-player simple majority game in Fig A.5 using Eq. (A.13) with ¢ = 0.
While S* = {¢, y} for n > 2, the classical 2-player game version of this game in Eq. (12),
characterized by sgn (U;(s;,s;)) = —sgn(U;(s},s;)) # 0, has no PNE.
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Ui(si, sj» Sk)
S =1 5=V S S 5=
S 0 1 1 -2
Si=VYi —2 1 1 0
Ui(@i,sj, sk) = Ui(¥i, s, Sk) 2 0 0 =2

Fig A.7. Individual payoff matrix in a three-player matching pennies game, a zero-sum variant
of a majority game. The peak-to-peak payoff amplitude is A; = 3. The assigning of ¢ or y as
“heads” or “tails” can be done arbitrarily. The resulting structural fear and greed value space is
the same as the one for the majority game in Fig A.S5.

Unanimity game
All players in A/ must choose the same strategy (¢ or ) to reap a benefit b > 0:

b ifsy=-=si1=5=Sit1=""=5n
Ui(si,s-i) = .
' 0 otherwise.

For N = {i, j,k}, the deviation losses in this game are: ¢ (¢_;) = —(;(y.;) =b/A; =1 and
(@i, wik) = £; (), o) = 0. The individual strategic hindrance is:

1

b 0 +b 0 +b]"
:Z .

H (¢, y)
0 -b 0 —b —b

All type I player-reduced binary games in a n X2 unanimity game are 2 x?2 bistability games.
Under these dynamics, stable rational collective action requires that every player belongs to a
(sub-) coalition with at least one other player willing to choose the same strategy. With n = 3,
only two of such coalitions can be formed: (@1, @2, 3) and (Y, Y2, y3). With n = 4, there are
eight ways in which rational players would align their strategies: two instances in which all
players choose the same strategy (i.e. ¢ and ) plus six instances in which two of them play ¢;
and the other two play y;. We can obtain the number of PNE as |S*| = max{2, 2" —2n} for
n > 2, which adds the two collective diagonal strategies, ¢ and Y, and every possible binary
sequence of length n = ny +ny where ny > 1 and ny > 1 (sequence A852515 in Sloane’s
Encyclopedia [51]).

A nx2 game with no PNE

After characterizing the relationship between deviation losses, the emergence of strategy
dynamics, and equilibria conditions in several classical nx2 social dilemmas, we conclude with
a formula that recursively constructs a binary game with no PNE for n > 2. Building on the
bimatrix game in Eq. (11) and Definition A.2a, the following formula allocates a balanced
ternary payoff vector U € {—1, 0, +1}" to every s € S such that minear 4;(s;,5-;) < 0; by
assigning a strict cyclic order to NV, e.g. [1,2,....n—1,n] = [i,i+1,...,i—2,i—1], the
perfectly limited individual payoff function

0 ifs,' = Q;
Ui(sissg,sic) = 4 +1 if sg = (@i1,@i-1) V 57 = (Wir1, Pit2) (A.15)

—1 otherwise,

where i € [1 .. n], guarantees that there is at least one player in A/ and no more than n — 1 that
would be better off deviating away from any s € S. For instance, if n = 3, the rescaled deviation
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losses for player i = 1 are

(@1, 0im1) = A;! (Uz((Pu‘PiJrh(Pifl)*Ui(llfiv(PiJrh(Pi )) =( 0-1)/Ai= —b/A,;,
(@1, Wio1) = A (Ul(<P:,<Pi+1,ll/i—1)—Ui(ll/i7<Pi+1,V/i )) =( 0+1)/A;= +b/A;,
(Wi, 0i-1) = 1(Ut((Ptallli+17(Pi—l)_Ui(l//iv‘I/iHa(Pi ))z( 0—1)/A;= —b/A;,
é;k(llji+l7llll ) 1 ( l( 17%+15%*])7Ui(%7%+]a% )) :( 0+1)/Al: +b/Al,

where A; = 2. The individual strategic hindrance is:

3

P, im1) L@t W) @it 0i-1) £ (Wit 01-1) £ (@101

G Wik 1,0i-1) 6 Wi, Wim1) 6 (@i Wim1) 6 (Wi, Wim1) £ (Wi 1, Wim1)

-1 +1 -1 -1 —1]"
[—1 1+l 1 41

Do.y) = [
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