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Abstract 10

Engineering systems, characterized by their high technical complexity and societal intricacies, 11

require a strategic design approach to navigate multifaceted challenges. Understanding the 12

circumstances that affect strategic action in these systems is crucial for managing complex 13

real-world challenges. These challenges go beyond localized coordination issues and 14

encompass intricate dynamics, requiring a deep understanding of the underlying structures 15

impacting strategic behaviors, the interactions between subsystems, and the conŕicting 16

needs and expectations of diverse actors. Traditional optimization and game-theoretic 17

approaches to guide individual and collective decisions need adaptation to capture the 18

complexities of these design ecosystems, particularly in the face of increasing numbers of 19

decision-makers and various interconnections between them. This paper presents a 20

framework for studying strategic decision-making processes in collective systems. It tackles 21

the combinatorial complexity and interdependencies inherent in large-scale systems by 22

representing strategic decision-making processes as binary normal-form games, then dissects 23

and reinterprets them in terms of multiple compact games characterized by two 24

real-numbered structural factors and classiőes them across four strategy dynamical domains 25

associated with different stability conditions. We provide a mathematical characterization 26

and visual representation of emergent strategy dynamics in games with three or more actors 27

intended to facilitate its implementation by researchers and practitioners and elicit new 28

perspectives on design and management for optimizing systems-of-systems performance. We 29

conclude this paper with a discussion of the opportunities and challenges of adopting this 30

framework within and beyond the context of engineering systems. 31

32

1 Introduction 33

Understanding emergence in large-scale systems-of-systems has become a prominent feature in 34

addressing complex real-world challenges [1]. Such collective systems entail the integration of 35

interconnected entities, each with a level of operational and managerial autonomy from the 36

others, while collectively contributing to the overarching system’s objectives. Collaborative 37

decision-making plays a pivotal role in facilitating information exchange and coordinating the 38

activities of individual actors to guide the system toward optimized performance. However, 39

despite the potential benefits of coordinated collective action, its seamless execution faces 40

structural challenges related to the combinatorial complexity of aligning individual objectives 41

and incentives [2]. These hindrances go beyond localized actor-to-actor coordination challenges 42

and encompass intricate dynamics that result from the interplay of many subsystems, direct and 43
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indirect stakeholders, and decision-making agents. Addressing these challenges necessitates a 44

deep understanding of the underlying structure of the collective decision-making process that 45

impacts the strategic behaviors and interactions within the system. 46

Engineering systems are a subset of collective systems marked by high technical complexity, 47

social intricacy, and elaborate processes geared toward fulfilling significant societal 48

functions [3]. While general collective systems refer to groups of agents collaborating to 49

produce a collective behavior that transcends the sum of individual contributions [4], the 50

nuanced nature of engineering systems implies the need for a strategic design approach to 51

navigate their multifaceted challenges. The complexity within engineering systems becomes 52

evident in endeavors such as aircraft design, where societal needs and expectations, 53

communicated through regulations, can directly impact lower-level technical decisions [5]. The 54

evolving concept of complexity within engineering systems necessitates ongoing efforts to 55

define, measure, and comprehend its intricate nature. Challenges arise in understanding and 56

modeling emergence, a fundamental characteristic of complex collective systems, which 57

manifests in various forms within engineering contexts, such as non-linear emergent properties 58

and those arising from interdependent choices in multi-agent systems [6]. 59

The strategic design of engineering systems seeks to tackle the complex interplay between 60

technical and social dimensions. In the technical realm, the challenge lies in comprehending 61

interactions between subsystems while maintaining their levels of operational and managerial 62

independence [7]. Simultaneously, the social dimension of engineering systems involves diverse 63

actors, categorized into users, stakeholders, and societal entities. The conflicting needs and 64

expectations of these actors amplify the complexity of the system design [3]. The strategic 65

challenges embedded in engineering systems design, particularly concerning the emergence of 66

unfavorable dynamics and the modeling of interactive decisions among multiple actors, 67

highlight the need for advanced methodologies. Traditional game-theoretic approaches, often 68

designed for two-player scenarios, must be revised to capture the intricacies of complex design 69

ecosystems [5]. The classification of emergence based on non-linearities and multi-agent 70

systems guides the selection of appropriate methods for system-level governance, necessitating 71

shifts in design perspectives [6]. As engineering systems become more complex, a 72

comprehensive and adaptable framework is increasingly necessary to address strategic 73

challenges in their intricate design landscapes. 74

Game theory is a valuable framework to address the strategic challenges embedded in 75

engineering systems. As the mathematical study of strategic interactions among independent 76

actors, the last four decades have seen an increasing number of researchers employing 77

game-theoretical methods to model decision dynamics in multidisciplinary engineering systems, 78

treating different systems actors as distinct players engaged in a sequence of games throughout 79

the design process [8±10]. Recent literature shows applications of game theory to study 80

modularity as a mechanism for facilitating cooperation in systems-of-systems [11], develop 81

computational models to assist engineering systems design under competition [12], and 82

investigate the link between risk attitudes and strategic decisions in the context of collective 83

systems [13]. Existing formulations emphasize dynamics among two actors, for which extensive 84

work exists centered on Nash equilibria in social dilemma games. However, as design 85

ecosystems become more intricate, existing game-theoretic approaches need to be revised in 86

modeling the complex interactions among an increasing number of design actors [5]. Broader 87

classes of engineered systems Ð including inter-agency, international, or public-private 88

partnerships Ð exhibit strategy dynamics among more than two actors. More existing work is 89

needed to formulate and understand the emergent dynamics in strategic scenarios with three or 90

more actors due partly to a combinatorial growth of possible outcomes. 91

We turn to non-cooperative game theory to comprehend the nature of these strategy 92

dynamics in collective systems. By adopting this analytical lens, we gain valuable insights into 93

the strategic components associated with the stability of collective action and the risk of 94

coordination failure among multiple decision-makers pursuing their self-interests. The 95
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application of game theory in this context helps us analyze how individual motivations and 96

incentives can influence collaborative decision-making processes and how this, in turn, impacts 97

the system’s overall performance and collective efficiency. Understanding and describing the 98

interdependence of decisions among the actors in the system is essential to producing useful 99

models of emergent behavior and anticipating potential outcomes that cannot be solely attributed 100

to individual components. By investigating these dynamics, we can shed light on how collective 101

systems adapt and respond to various stimuli, offering new perspectives on system design and 102

management. 103

1.1 Motivating challenges 104

Understanding the emergence of strategies within complex collective systems poses significant 105

challenges for engineers and system designers when evaluating a system’s ability to integrate 106

with others and align with common goals. This property, referred to as directional 107

integrability [14], when extended to larger systems-of-systems, is linked to each subsystem’s 108

level of managerial control and collaboration [7]. Individual actors within the system face 109

critical choices regarding the openness of their subsystems, and these choices have far-reaching 110

implications for the system’s overall performance. The decision to pursue an open strategy, 111

facilitating full integration, or to maintain a closed system introduces complex trade-offs. Actors 112

must weigh the potential benefits of collective integration against the costs and risks associated 113

with opening their own systems. Although an open strategy might be optimal on a collective 114

level, it might not be the most advantageous path for the individual actor. 115

The complexity escalates dramatically as the number of actors within the system increases. 116

Decision-making becomes a tangled web of anticipating other actors’ choices, potential 117

coalitions, and the risks associated with incomplete information. Understanding the social 118

dynamics at play becomes essential, as factors like communication, the way options are 119

framed [15, 16], and actors’ varying motivations and incentives [17] significantly influence the 120

strategic landscape. A particularly worrying outcome in multi-actor systems is the potential for 121

integration to halt. Imagine a scenario where a single actor initially takes the risk of opening 122

their system, hoping others will follow. However, if others exploit this openness, keeping their 123

systems closed and reaping the benefits without contributing, this can discourage further 124

integration efforts. The system can easily become stuck in a situation where the benefits of 125

wider integration seem out of reach, as no individual actor wants to be the only one taking on the 126

burden of an open system. 127

To overcome these challenges, there’s a critical need for new modeling approaches and 128

analytical tools explicitly designed to handle the emergent dynamics of multi-actor scenarios. 129

These models must move beyond traditional two-player game-theoretic frameworks to robustly 130

capture complex interactions and coalition formation. Holistic decision-making approaches 131

considering the technical, social, and strategic interdependencies are needed. Alongside 132

sophisticated modeling, a focus on developing mechanisms to incentivize integration is 133

paramount. Finding ways to align individual actor benefits with the goals of the collective 134

system is essential to ensure sustained progress and avoid stagnation. Addressing these 135

challenges is crucial for successfully engineering and managing complex systems-of-systems. A 136

deep understanding of these emergent strategic dynamics and incentive structures will empower 137

us to build systems that foster coordination, reduce incompatibilities, and ultimately facilitate 138

the harmonious integration of interdependent subsystems for the greater good. 139

1.2 Our research endeavor 140

Our work focuses on studying complex strategy dynamics in collective systems, with an aim to 141

comprehend the factors that influence the decisions and interactions of system actors. We 142

acknowledge the complexity of these systems and strive to design mechanisms that promote 143
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collaboration in large-scale systems-of-systems. The objective of this paper is to provide a 144

general mathematical characterization and visual representation of emergent strategy dynamics 145

in binary games that can be leveraged in the strategic design of engineering systems. It extends 146

the existing concept of structural fear and greed in two-player games to any finite number of 147

actors. These structural factors are presented on a Cartesian coordinate plane, with each 148

quadrant defining a dynamical domain with specific strategic stability conditions. 149

The remainder of this paper is organized as follows. Section 2 recaps the mainstream 150

treatment of strategy dynamics centered around normal-form games with two players and two 151

available strategies each. Section 3 presents our extended characterization of strategy dynamics 152

for binary strategic-form games with any number of players, with more details provided in the 153

Appendix. Here we introduce the concept of strategic hindrance, with Section 3.3 applying the 154

proposed framework to assess the evolution of strategy dynamics in the design for integrability 155

of an urban transit system stylized as a volunteer’s dilemma, and Section A.4 extending this 156

framework to visually assess additional generic strategic settings (viz. public goods game, fated 157

truel game, majority game, and others). Then, in Section 4, we address the assumptions and 158

limitations of our proposed approach. We conclude with Section 5, summarizing contributions 159

and our vision for future work. 160

2 Strategy dynamics in 2×2 social dilemmas 161

The concept of fear and greed strategy dynamics is based on the study of social dilemmas using 162

game theory. A ªgameº is any decision-making process involving multiple independent actors 163

with specific preferences over the decisions any of them could make and their consequences. We 164

focus on normal-form games, the most common representations used to model social dilemmas. 165

2.1 Normal-form games 166

A normal-form game consists of 167

• A player set N consisting of n ≥ 1 player names or other identifiers (ids); 168

± for the sake of simplicity, we use N = {1, . . . , n} and dummy ids i, j,k ∈N ; 169

± a game with n = 1 is referred to as a ªtrivialº decision problem. 170

• A finite set of pure individual strategies Si = {s
(1)
i , . . . , s

(mi)
i } ∋ si, with mi ≥ 2∀i ∈N ; 171

± a pure strategy is a complete contingency plan that a player can execute in 172

anticipation of the actions that the other players could take; 173

± the product S = S1 ×·· ·×Sn is the set of all possible pure collective strategies 174

s = ⟨s1, . . . , sn⟩, with |S|= ∏
n
i mi; 175

± an n×2 normal-form game (also known as binary game) is one in which mi = 2 for 176

every i ∈N , resulting in a total of 2n pure collective strategies. 177

• A payoff function Ui : S 7→ R
n valuing the preference of player i for each s ∈ S; 178

± the value of Ui(s) is assumed to be measured on a cardinal utility scale; 179

± ∃s ∈ S: Ui(s) ̸= 0, or equivalently, maxs |Ui(s)| ̸= 0 for every i ∈N . 180

The central objective of game theory is to understand what will, could, or should happen in a 181

given game. One of the main solution concepts in game theory is the Nash equilibrium, which 182

unified several earlier ideas related to the stability of collective action in non-cooperative 183

games [18]. The ideas we develop in this work are relevant to studying pure-strategy Nash 184
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equilibria (PNE), in which every player is expected to commit fully to one and only one pure 185

individual strategy (see Definition A.1 in the Appendix). 186

Figs 1(a) and (b) show examples of individual payoff matrices in 2×2 social dilemmas. We 187

can also write all payoffs in a 2×2 game as a simplified bimatrix: 188

[⟨Ui(si,s j) ,U j(s j,si)⟩]2×2
=

[

⟨Ui(ϕi,ϕ j) ,U j(ϕ j,ϕi)⟩ ⟨Ui(ϕi,ψ j) ,U j(ψ j,ϕi)⟩
⟨Ui(ψi,ϕ j) ,U j(ϕ j,ψi)⟩ ⟨Ui(ψi,ψ j) ,U j(ψ j,ψi)⟩

]

, (1)

where Sk = {ϕk,ψk} for every player k ∈N = {i, j}. The collective strategy set is S = 189

Si ×S j = {⟨ϕi,ϕ j⟩, ⟨ϕi,ψ j⟩, ⟨ψi,ϕ j⟩, ⟨ψi,ψ j⟩}. Strategies ϕ = ⟨ϕi,ϕ j⟩ and ψ = ⟨ψi,ψ j⟩ are 190

called diagonal; the other collective strategies, namely those in set S\{ϕ,ψ}, are called 191

off-diagonal. Labeling a combination of individual strategies as diagonal or off-diagonal is left 192

to the reader’s discretion, and it does not affect the nature of the game. In this work, ϕ is also 193

referred to as the status quo strategy Ð or starting point Ð and ψ is treated as the alternative or 194

desired outcome (from the perspective of the incentive designer or researcher) consistent with 195

economics literature [19]. 196

2.2 Structural fear and greed in 2×2 social dilemmas 197

Classical 2×2 social dilemmas name each strategy after the description that human players 198

would use to describe their behavior [15] and are often symmetric Ð meaning their payoff 199

functions do not depend on the players’ identities, i.e. Ui(s
′
i,s j) =U j(s

′
j,si). For instance, let us 200

assume that ϕk is a ªdefectiveº individual strategy and that ψk is a ªcooperativeº one. 201

Coordinating on ϕ and ψ can thus be called mutual (or unanimous) defection and cooperation, 202

respectively. These are the usual strategy labels in a classical social dilemma. Fig 1(a) shows a 203

generic payoff matrix used to characterize these games. Cooperation yields a ªrewardº, 204

Ui(ψi,ψ j) = R, which would be preferable to mutual defection, which results in a ªpunishmentº, 205

Ui(ϕi,ϕ j) = P < R [20]. The values Ui(ψi,ϕ j) = S and Ui(ϕi,ψ j) = T are called ªsucker’sº and 206

ªtemptationº payoffs, respectively, terms borrowed from the prisoner’s dilemma (PD) game [21]. 207

A sample individual payoff matrix of a PD game is shown in Fig 1(b). A PD game is 208

characterized by the relationships T > R > P > S. The stag hunt game, in contrast, of which a 209

sample individual payoff matrix is presented in Fig 1(c), satisfies R > T > P > S [22] Ð a 210

ªperiodic tableº of 2×2 games can be derived from different orderings of P, R, S, and T as 211

described in Ref. [23]. 212

The S payoff is associated with a player’s ªfearº of pursuing cooperation when others might 213

defect. Meanwhile, the T payoff is a player’s incentive to defect away from mutual cooperation 214

driven by the ªgreedº for higher returns. Ahn et al. [24] measure structural fear and greed, 215

respectively, as 216

Fi(ϕ,ψ) =
P−S

max{P,R,S,T}−min{P,R,S,T}
∈ [−1,+1] (2)

and 217

Gi(ϕ,ψ) =
T −R

max{P,R,S,T}−min{P,R,S,T}
∈ [−1,+1] . (3)

The expressions ªP−Sº and ªT −Rº in Eqs. (2) and (3) are the deviation losses measured with 218

respect to the status quo strategy ϕi. In the context of the 2×2 PD game, the structural fear 219

(Fi > 0) is the deficit of unilaterally cooperating when the other defects and the structural greed 220

(Gi > 0) is the benefit of taking advantage of a cooperating partner by choosing to defect 221

instead [25]. Either factor favors defection if positive. The higher the values of Fi and Gi, the 222

greater the incentive that player i has to defect instead of playing a cooperative strategy. 223

Previous works have identified four 2×2 strategy dynamical domains exhibiting different 224

payoff and risk dominance conditions based on the values of S and T , while setting P = 0 and 225
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Fig 1. Generic individual payoff matrix in a two-player two-strategy social dilemma game in

normal form. The strategy labels ϕ and ψ represent ªdefectionº and ªcooperationº, respectively.

The value of P represents the punishment resulting from mutual defection; R > P is the reward

of mutual cooperation; S stands for sucker’s payoff (what a player gets from cooperating if the

other defects); and T stands for temptation to defect (the incentive to deviate away from the

cooperative strategy in the expectation of higher returns).

R = 1 [26±29]. These values map to one combination of positive (high) or negative (low) 226

structural fear and greed, as provided below and in Fig 1, per Eqs. (2) and (3): 227

Harmony / HA (or cooperation): 228

S > 0 ∧ T < 1 ⇔ Fi < 0 ∧ Gi < 0

Coexistence / CX (or anti-coordination): 229

S > 0 ∧ T > 1 ⇔ Fi < 0 ∧ Gi > 0

Bistability / BI (or coordination): 230

S < 0 ∧ T < 1 ⇔ Fi > 0 ∧ Gi < 0

Defection / DE: 231

S < 0 ∧ T > 1 ⇔ Fi > 0 ∧ Gi > 0

We introduce a fifth dynamical domain to represent player i’s indifference about the strategy set: 232

Indifference / ZZ: 233

S = 0 ∧ T = 1 ⇔ Fi = 0 ∧ Gi = 0

The 2×2 harmony and defection dynamical domains are also known as (type ψ or type ϕ) 234

dominance dynamics [30, 31]; while the coexistence and bistability domains are sometimes 235

referred to as negative and positive frequency dependence dynamics, respectively [32, 33]. The 236

latter are also known as bipolar [34] Ð note that any 2×2 coexistence game can be transformed 237

into a bistability/bipolar game by switching the strategy labels of one of the two players. 238

Fig 2 shows how the values of S and T map to the factors Fi and Gi per Eqs. (2) and (3), 239

assuming P = 0 and R = 1. The vast majority of the literature on social dilemma games focuses 240

on the payoff region defined by S ∈ [−1,1] and T ∈ [0,2]. These games cover the entire 241

harmony domain, 3/8 of the bistability and coexistence domains, and only 1/6 of the defection 242

domain Ð that is, 23/48 of the whole fear and greed strategy dynamics space. The structural fear 243

and greed values for the PD game in Fig 1(a) are Fi = Gi = 1/3, which fall on defection 244

dynamics, while the values for the SH game in Fig 1(b) are Fi = 1/3 and Gi =−1/3, falling on 245

bistability dynamics. Examples of harmony and coexistence games respectively include the 246

concord game (S = 1/3 and T = 2/3 ⇒ Fi = Gi = −1/3) and the chicken game (S = 1/2 and 247

T = 3/2 ⇒ Fi =−1/3 and Gi = 1/3). 248
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Fig 2. Mapping between the sucker’s (S) and the temptation (T ) payoffs and the structural fear

(Fi) and structural greed (Gi) factors per Eqs. (2) and (3), assuming P = 0 and R = 1. Each

quadrant is labeled after the 2×2 strategy dynamics resulting from different combinations of low

and high levels of structural fear and greed: HA / harmony (Fi < 0, Gi < 0); CX / coexistence

(Fi < 0, Gi > 0); BI / bistability (Fi > 0, Gi < 0); and DE / defection (Fi < 0, Gi > 0). The vast

majority of the literature on social dilemma games focuses on the shaded region defined by

S ∈ [−1,1] and T ∈ [0,2].

2.3 Deviation losses and strategic stability 249

For general n×2 games, let us define the rescaled deviation loss ℓi in terms of the difference in 250

player i’s payoff when deviating from s∗i to si ∈ Si assuming the strategies of the other players 251

remain fixed: 252

Definition 1 Let i ∈N be a standpoint player in the n-player normal-form game 253

GN =
(

N ,
(

Si

)

i∈N
,
(

Ui

)

i∈N

)

,

where N is the set of n players, Si is the set of individual strategies, S = Sn
i are the collective 254

strategies, and Ui : S 7→ R is player i’s payoff function. The rescaled individual payoff loss of 255

deviating from s∗i to si ∈ Si contingent on a collective strategy s9i played by all other players 256

(−i =N\{i}) is 257

ℓi(s
∗
i ,s9i) =

1

Ai

[

Ui(s
∗
i ,s9i)−Ui(si,s9i)

]

∈ [−1,+1] , (4)

where Ai = maxs Ui(s)−mins Ui(s)> 0 is the peak-to-peak amplitude of i’s payoffs. 258

If GN is an n×2 game and Si = {ϕi,ψi}, we have that ℓi(ϕi,s9i) =−ℓi(ψi,s9i); for the sake of 259

simplicity, we write ℓ∗i (s9i) = ℓi(ϕi,s9i) moving forward. Thus, the maximum number of unique 260

values of ℓ∗i (s j) per player in a binary normal-form game is 2n−1. For n = 2, we write 261

ℓ∗i (s j) =
1

Ai

[

Ui(ϕi,s j)−Ui(ψi,s j)
]

∈ [−1,+1] , (5)
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We now rewrite Eqs. (2) and (3) in terms of Eqs. (4) and (5) as 262

Fi(ϕ,ψ) =
1

Ai

[

Ui(ϕi,ϕ j)−Ui(ψi,ϕ j)
]

=−ℓi(ψi,ϕ j) = ℓ∗i (ϕ j), (6)

and

Gi(ϕ,ψ) =
1

Ai

[

Ui(ϕi,ψ j)−Ui(ψi,ψ j)
]

=−ℓi(ψi,ψ j) = ℓ∗i (ψ j). (7)

If the labels ϕ and ψ are swapped above, Fi(ψ,ϕ) =−Gi(ϕ,ψ) and Gi(ψ,ϕ) =−Fi(ϕ,ψ). 263

In binary games, equilibrium conditions depend only on the signa of each player’s loss of 264

deviating away from a collective strategy (see Definitions A.2 and A.2a in the Appendix). More 265

precisely, s⋆ = ⟨s⋆i ,s
⋆
9i⟩ ∈ S is a PNE if 266

min
i∈N

ℓi(s
⋆
i ,s

⋆
9i)≥ 0.

In a 2×2 game, if both players’ structural fear or greed values fall in the same region (as is the 267

case for symmetric games), then 268

sgnℓi(si,s j) = sgnℓ j(s j,si), (8)

for some si ∈ Si = {ϕi,ψi} and some s j ∈ S j = {ϕ j,ψ j}, where sgn : R 7→ {−1, 0,+1} is the 269

signum function. If both sides of Eq. (8) are equal to +1, then s = ⟨si,s j⟩ must be a strict PNE. 270

We denote the set of PNE as S⋆. We use the bimatrix notation in Eq. (1) to compare cardinal 271

payoffs with the signa of the rescaled deviation losses and evaluate S⋆ in a 2×2 game: 272

[⟨Ui,U j ⟩]2×2
∼

[

⟨ sgnℓ∗i (ϕ j), sgnℓ∗j(ϕi) ⟩ ⟨ sgnℓ∗i (ψ j),−sgnℓ∗j(ϕi) ⟩
⟨ −sgnℓ∗i (ϕ j), sgnℓ∗j(ψi) ⟩ ⟨ −sgnℓ∗i (ψ j),−sgnℓ∗j(ψi) ⟩

]

(9)

∼

[

⟨ sgn Fi, sgn Fj ⟩ ⟨ sgnGi,−sgn Fj ⟩
⟨ −sgn Fi, sgnG j ⟩ ⟨ −sgnGi,−sgnG j ⟩

]

.

Mapping a 2×2 game to the bimatrix form in Eq. (9) allows us to identify any PNE in it more 273

quickly and how they relate to the structural fear and greed factors. Fig 3 reintroduces the main 274

2×2 strategy dynamical domains using the aforementioned notation. As an example, the payoffs 275

in a symmetric game with harmony dynamics can be written as 276

[⟨Ui,U j ⟩]2×2
=

[

⟨1,1⟩ ⟨3,2⟩
⟨2,3⟩ ⟨4,4⟩

]

∼

[

⟨−,−⟩ ⟨−,+⟩
⟨+,−⟩ ⟨+,+⟩

]

;

we underline the cells where each of the two signa are greater than or equal to zero. Thus in the 277

game above, there is one PNE, ψ , since Fi,Fj < 0 and Gi,G j < 0, and 278

sgnℓi(ϕi, ·) =−1 = sgnℓ j(ϕ j, ·),

implies that both players would always prefer ψi (second row) and ψ j (second column) over ϕi 279

and ϕ j. Similarly, in a symmetric game with coexistence dynamics, for example 280

[⟨Ui,U j ⟩]2×2
=

[

⟨1,1⟩ ⟨4,2⟩

⟨2,4⟩ ⟨3,3⟩

]

∼

[

⟨−,−⟩ ⟨+,+⟩

⟨+,+⟩ ⟨−,−⟩

]

,

there are two PNE, S⋆ = {⟨ϕi,ψ j⟩, ⟨ψi,ϕ j⟩}, the off-diagonal strategies, since Fi < 0 and 281

G j > 0 Ð likewise, Fj < 0 and Gi > 0 Ð imply 282

−sgnFi =+1 = sgnG j

−sgnℓ∗i (ϕ j) = +1 = sgnℓ∗j(ψi)

sgnℓi(ψi,ϕ j) = +1 = sgnℓ j(ϕ j,ψi),
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Fig 3. Classification of strategy dynamics in 2×2 social dilemma games in terms of the individual payoffs Ui(si,s j) and their relative

differences (+ versus −). An economically rational player would presumably prefer those collective strategies marked with a plus sign

(+) over those marked with a minus sign (−). In the case of indifference dynamics, notice that both si rows are equal, implying that

player i’s payoff only depends on player j’s selection.

indicating that not taking the same action would be the most economically rational outcome. 283

A game with one or more PNE can also be formed by two individual payoff matrices 284

exhibiting different strategy dynamics. We provide two examples. One: we can model Ui after 285

the harmony payoffs in Fig 3(a) and U j after the (transposed) defection payoffs in Fig 3(d); 286

using the bimatrix game notation in Eq. (9), we can write 287

[⟨Ui,U j ⟩]2×2
=

[

⟨ 0, 0⟩ ⟨ 0,−1⟩
⟨ 1, 0⟩ ⟨ 1,−1⟩

]

∼

[

⟨−,+⟩ ⟨−,−⟩
⟨+,+⟩ ⟨+,−⟩

]

, (10)

where the collective strategy ⟨ψi,ϕ j⟩ is the only equilibrium in this game. The individual 288

strategies in Eq. (10) are also perfectly limited, meaning they yield an individual payoff that 289

depends only on each player’s strategy [35]. Using Eqs. (6) and (7), we calculate the structural 290

fear and greed for players i and j as Fi = Gi =−1 < 0 (both factors support ψi) and 291

Fj = G j =+1 > 0 (both factors support ϕ j), respectively. Two: let us reuse the coexistence 292

payoffs to model Ui and (transposed) bistability payoffs per Fig 3(c) to model U j and write 293

[⟨Ui,U j ⟩]2×2
=

[

⟨ 0, 0⟩ ⟨ 0,−1⟩
⟨ 1, 0⟩ ⟨−1, 1⟩

]

∼

[

⟨−,+⟩ ⟨+,−⟩
⟨+,−⟩ ⟨−,+⟩

]

; (11)

this time, however, there are no PNE. Also, each player only has one perfectly limited strategy: 294

ϕi and ϕ j always yield a zero payoff of zero to players i and j regardless of the other’s choice of 295

individual strategy. The values of structural fear and greed for players i and j are ⟨Fi,Gi⟩ 296

= ⟨−1/2,+1/2⟩ and ⟨Fj,G j⟩ = ⟨+1/2,−1/2⟩, respectively. If only the signa of each player’s 297

structural fear and greed factors are considered, the bimatrix game in Eq. (11) is qualitatively 298

equivalent to the 2×2 zero-sum game 299

[⟨Ui,U j ⟩]2×2
=

[

⟨−1, 1⟩ ⟨ 1,−1⟩
⟨ 1,−1⟩ ⟨−1, 1⟩

]

. (12)

In the following section, we extend the definitions of ℓ∗i , Fi, and Gi to normal-form games 300

with any number of players n ≥ 2 and binary strategy sets Si = {ϕi,ψi} for every i ∈N . 301

3 Strategy dynamics in n×2 games 302

In this section, we reformulate the rescaled deviation losses ℓ∗i (s9i) = ℓi(ϕi,s9i) for a player 303

i ∈N in an n×2 game in terms of the possible pure individual strategies played by subsets of 304
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N\{i}. We focus on the scenarios in which standpoint player i breaks their game into smaller 305

2×2 games by making two types of conjectures about the possible individual actions of others: 306

1) some players will coordinate their strategies and act as one, and 2) some other players have 307

already made their choice of individual strategy and will not change their minds. Later, we apply 308

the proposed framework to describe individual and collective strategy dynamics in 3×2 games 309

and characterize social dilemmas with three players. 310

3.1 Dissecting fear and greed in n×2 games: strategic 311

hindrance 312

We start by defining player-reduced binary normal-form games: 313

Definition 2 Let GN = (N ,(Si)i∈N ,(Ui)i∈N ) be a normal-form game; let i ∈N be a 314

standpoint player in game GN ; let K ⊂N \{i} be a proper subset of players in N excluding i; 315

and let J =N\(K∪{i}) be the non-empty set of players different from i that are not in K. 316

Assume, without loss of generality, that player i anticipates a collective action sK by the players 317

in K. From player i’s standpoint, the normal-form game GN reduces to 318

GN\K =
(

N\K,
(

Si

)

i∈N\K
,
(

Ui( · ,sK)
)

i∈N\K

)

. (13)

That is, GN\K is a player-reduced game observed by player i within GN . 319

We use Definition 2 to reformulate Eq. (4) in terms of si ∈ {ϕi,ψi} and s9i = ⟨sJ , sK⟩ as 320

ℓ∗i (sJ , sK) = A91
i ·

[

Ui(ϕi, sJ , sK)−Ui(ψi, sJ , sK)
]

∈ [−1,+1] ; (14)

where sJ ∈ S
|J |
i , |J | ∈ [1 . . n−1]; and sK ∈ S

|K|
i , |K| ∈ [0 . . n−2]. 321

Next, we characterize player i’s fear and greed in game GN\K assuming a coordinated action 322

sJ ∈ {ϕJ ,ψJ } by player-set J and an unmovable action sK = σK by player-set J : 323

Definition 3 Let GN\K be a player-reduced game observed by player i, where sK = σK is the 324

collective strategy of the (excluded) players in K. Assume that, in the face of uncertainty, player 325

i conjectures that all players in J act as one player with individual strategy sJ ∈ {ϕJ ,ψJ }; 326

and that the players in K have adopted a presumably immovable collective strategy sK = σK of 327

which player i is ªcertain.º The values of structural fear and greed specific to player i 328

concerning a unanimous course of action by the players in J are 329

F
(σK)
i (ϕ,ψ) = ℓ∗i (ϕJ ,σK) = A91

i ·
[

Ui(ϕi,ϕJ ,σK)−Ui(ψi,ϕJ ,σK)
]

(15)

and 330

G
(σK)
i (ϕ,ψ) = ℓ∗i (ψJ ,σK) = A91

i ·
[

Ui(ϕi,ψJ ,σK)−Ui(ψi,ψJ ,σK)
]

, (16)

where Ai = maxs Ui(s)−mins Ui(s)> 0 and sK ∈ S
|K|
i . 331

A few of notes on Definition 3: 332

• Setting N = {i, j} Ð which implies J = { j} and K = /0 Ð turns Eqs. (15) and (16) into 333

Eqs. (6) and (7), respectively. 334

• We intend the assumption of a fixed sK = σK to represent the scenarios in which each 335

player k ∈K are committed to playing a particular individual strategy σk ∈ Sk and player i 336

both know of their intentions and expects them to be fully realized; we call this a type I 337

player-reduced binary game: stationary K-players. 338
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• A second type of player-reduced binary game concerns the scenario in which one or more 339

players in K are not expected to commit to σK; we call this a type II player-reduced 340

binary game: reversing K-players (see Section A.2 in the Appendix for more details). 341

We now define the strategic hindrance of standpoint player i as the space of structural fear and 342

greed values for all possible type I player-reduced games where no more than n−2 players are 343

fixed. 344

Definition 4 Given a binary n-player normal-form game GN with individual strategy set 345

Si = {ϕi,ψi}, we define the space of structural fear and greed values, or strategic hindrance, of 346

a player i ∈N as 347

H
(n)
i (ϕ,ψ) =





F
(σK)
i (ϕ,ψ)

G
(σK)
i (ϕ,ψ)





T

×g(n)

=

[

ℓ∗i (ϕJ ,σK)

ℓ∗i (ψJ ,σK)

]T

×g(n)

, ∀J ∪K =N\{i}, J ≠ /0. (17)

where g(n) is the number of possible player-reduced binary games GN\K with stationary 348

K-players (type I). 349

The total number of possible type I player-reduced binary games with fixed sK = σK is (see 350

Section A.2 in the Appendix): 351

g(n) = 3n−1 −2n−1, ∀n ≥ 1. (18)

There are only 2n−1 possible ℓ∗i (s9i) that can be input as one of the 2 ·g(n) entries of the 352

strategic hindrance space in Eq. (4). For instance, if n = 3, g(n) = 5, and each of the 2×5 = 10 353

entries in player i’s strategic hindrance space takes one of the 23−1 = 4 values of ℓ∗i (s9i). This 354

implies that some deviation losses appear more than once and thus impact the emergent strategy 355

dynamics more than others. We quantify such an impact using the function 356

γ(nϕ\i, nψ\i) = 2nϕ\i +2nψ\i −2, (19)

which counts how many entries of each player’s strategic hindrance space are equal to ℓ∗i (s9i) 357

based solely on the number of players in N \{i} that play either ϕ j and ψ j, nϕ\i and nψ\i, 358

satisfying nϕ\i +nψ\i = n−1. The value of γ in Eq. (19) is associated to the number of type I 359

player-reduced binary games in Eq. (18) via the following alternative formula for g(n) (see 360

Section A.3 in the Appendix): 361

g(n) =
1

2

[

n−1

∑
k=0

γ(k, n−1− k) ·C(n−1, k)

]

; (20)

where C(n−1,k) =
(

n−1
k

)

is the binomial coefficient and k counts the entries in s91 that are 362

equal to either ϕ j or ψ j Ð note that Eqs. (19) and (20) are symmetric with respect to strategy, 363

that is γ(nϕ\i,nψ\i) = γ(nψ\i,nϕ\i). For instance, if n = 3 and N = {1,2,3}, the values of γ 364

associated with each possible s91 are 365

for s91 = ⟨ϕ2,ϕ3⟩, nϕ\i = 2 and nψ\i = 0 ⇒ γ(2, 0) = 3;

for s91 = ⟨ϕ2,ψ3⟩, nϕ\i = 1 and nψ\i = 1 ⇒ γ(1, 1) = 2;

for s91 = ⟨ψ2,ϕ3⟩, nϕ\i = 1 and nψ\i = 1 ⇒ γ(1, 1) = 2;

and for s91 = ⟨ψ2,ψ3⟩, nϕ\i = 0 and nψ\i = 2 ⇒ γ(0, 2) = 3;

and, per Eq. (20), g(3) = (1/2) · [γ(0,2) · (1)+ γ(1, 1) · (2)+ γ(2, 0) · (1)] = (1/2) ·10 = 5. 366
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Table 1. Strategic hindrance space H
(3)
i (ϕ,ψ) for player i in a 3×2 game.

H
(3)
i (ϕ,ψ)

J K σK F
(σK)
i G

(σK)
i

{ j} {k}
ϕk ℓ∗i (ϕ j,ϕk) ℓ∗i (ψ j,ϕk)

ψk ℓ∗i (ϕ j,ψk) ℓ∗i (ψ j,ψk)

{k} { j}
ϕ j ℓ∗i (ϕ j,ϕk) ℓ∗i (ϕ j,ψk)

ψ j ℓ∗i (ψ j,ϕk) ℓ∗i (ψ j,ψk)

{ j,k} /0 n/a ℓ∗i (ϕ j,ϕk) ℓ∗i (ψ j,ψk)

3.2 Strategic hindrance in 3×2 games 367

This section inspects the information that can be extracted from a strategic hindrance of a player 368

in a 3×2 game when represented in a Euclidean plane. Solving Eq. (17) for n = 3, player i’s 369

strategic hindrance can be expressed as: 370

H
(3)
i (ϕ,ψ) =

1

Ai

[

ℓ∗i (ϕ j,ϕk) ℓ∗i (ϕ j,ψk) ℓ∗i (ϕ j,ϕk) ℓ∗i (ψ j,ϕk) ℓ∗i (ϕ j,ϕk)

ℓ∗i (ψ j,ϕk) ℓ∗i (ψ j,ψk) ℓ∗i (ϕ j,ψk) ℓ∗i (ψ j,ψk) ℓ∗i (ψ j,ψk)

]T

. (21)

Table 1 lists each of the corresponding g(3) = 5 structural fear and greed value pairs for n = 3 in 371

terms of the rescaled deviation losses ℓ∗i (s j,sk). We use rectangular coordinates to describe a 372

generic individual strategic hindrance space in Fig 4. In Fig 6, we add strategic hindrance spaces 373

for the remaining two players and discuss how the visualization is useful for understanding the 374

stability of collective actions in the game. We repeat this assessment after modifying the payoffs 375

of one of the players, namely by multiplying by −1, which results in the strategic hindrance 376

spaces in Fig 9. 377

Generic individual 3×2 strategic hindrance space 378

A player’s strategic hindrance highlights the multiple modes of biases that are baked into the 379

payoff structure. In a one-shot game, a player may rely on simple arithmetic to play the pure 380

strategy that maximizes their expected value. This may be the case in games with more regular 381

payoff structures that produce fewer unique fear and greed value pairs per player, usually falling 382

entirely within the same strategy dynamical domain Ð e.g., the social dilemmas analyzed in 383

Section A.4. All structural fear and greed value pairs that form a strategic hindrance space in a 384

3×2 game can be contained within a convex polygon with at most four sides Ð we conjecture 385

that the number of sides of the convex polygon containing all fear and greed value pairs in an 386

individual strategic hindrance space is at most 4(n−2) for n > 2. 387

The payoffs and absolute deviation losses that produce the strategic hindrance space in Fig 4 388

are provided in Fig 5. Using Eqs. (14) and (15)±(17) we obtain player i’s strategic hindrance 389

space: 390

H
(3)
i (ϕ,ψ) =





F
(σK)
i

G
(σK)
i





T

×5

=
1

5

[

+2 +3 +2 −3 +2

−3 −1 +3 −1 −1

]T

.

The five fear and greed value pairs in the above strategic hindrance space are all unique and fall 391

across three 2×2 strategy dynamical domains Ð harmony (1), defection (1), and bistability (3). 392

The center of mass is located at the average structural fear and greed coordinates, ÅFi = 6/25 and 393
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Fig 4. Sample strategic hindrance space H
(3)
i (ϕ,ψ) in a 3×2 game with g(3) = 5 unique type I

player-reduced games observed by standpoint player i. The payoff structure is shown in Fig 5.

Fig 5. Sample individual payoffs and absolute deviation losses in a 3×2 game. The resulting

strategic hindrance space is shown in Fig 4; the peak-to-peak payoff amplitude is Ai = 5.

ÅGi =−3/25. There are always γ(n−1, 0) pairs along the ordinate ℓ∗i (ϕ9i) and γ(0, n−1) along 394

the abscissa ℓ∗i (ψ9i), with their intersection representing the player-reduced binary game where 395

all other players play as one. 396

In games where players’ incentives are sparser, pre-existing beliefs of what others would do 397

could make a player dismiss the likelihood of specific outcomes. The strategic hindrance space 398

represents the spectrum of such beliefs, each of which a standpoint player would weigh 399

according to a perceived chance, guiding their presumptions about the course of the game. If the 400

standpoint player in our hypothetical 3×2 game example were to assign the same weight to all 401

instances in Fig 4, the most prevalent strategy dynamics affecting their decision-making process 402

would be structural bistability. This would involve the anticipation of aligning their strategies 403

with at least one of the two other players. Since the remaining emergent strategy dynamics are 404

harmony and defection, the standpoint player would prefer everyone to pursue a unanimous 405

course of action, fully embracing either ψ or ϕ . 406
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Fig 6. Strategic hindrance spaces in the sample 3×2 game in Fig 7. Player 1’s payoff structure is

taken from Fig 5, so their strategic hindrance space is the same as in Fig 4. Bistability dynamics

prevail across the strategic hindrance spaces of all players, while the emergence of harmony and

defection may add further appeal to the diagonal collective strategies ψ and ϕ .

Fig 7. Sample 3×2 game used to generate the strategic hindrance spaces in Fig 6. Player 1’s

incentives are modeled after the payoff structure in Fig 5. This game has two PNE: ϕ and ψ .

Inferring collective stability from multiple strategic hindrance spaces 407

The strategic hindrance space in Fig 4 is a prognostic of a single player’s stability of rational 408

strategic action based on their payoff structure. Suppose all other players shared similar payoff 409

structures; in this scenario, we can anticipate the emergence of PNE coherent with the individual 410

rational preferences coinciding in the same strategy dynamical domains. In some circumstances, 411

we can also repeal PNE by inverting some players’ strategy dynamics, breaking compatibilities 412

apart. For the grand game to exhibit PNE consistent with player 1’s preferences, the payoff 413

structures of the other players must also result in a combination of harmony, bistability, and 414

defection dynamics. Fig 6 highlights such a scenario with similar strategic hindrances, with 415

player 2’s strategic hindrance space spanning the same three strategy dynamical domains as 416

player 1’s, and all player 3’s fear and greed value pairs (weakly) falling under bistability. The 417

baseline 3×2 game is presented in Fig 7. The PNE set in this game, S⋆ = {ϕ,ψ}, results from 418

the intersection between the rational preferences of all three players under bistability dynamics 419

(which already favor ϕ and ψ) and the strict stability under harmony and defection dynamics for 420

players 1 and 2. 421

In contrast with the strategic hindrance spaces in Fig 6, we can create a scenario where there 422
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Fig 8. Modified 3×2 game after negating player 1’s payoffs in Fig 7, resulting in no PNE. This

3-cube representation highlights the anticipated lack of convergence toward a collective strategy.

Table 2. Deviation losses and strategic hindrance spaces for the 3×2 game in Fig 8. All spaces

are visualized in Fig 9. The results for players 2 and 3 are also shared in Fig 6.

Player 1 Player 2 Player 3

ℓ∗i

ℓ∗1(ϕ2,ϕ3) =
1
5
(−1−1) =− 2

5
ℓ∗2(ϕ3,ϕ1) =

1
3
(3−0) = +1 ℓ∗3(ϕ1,ϕ2) =

1
3
(2−0) = + 2

3

ℓ∗1(ϕ2,ψ3) =
1
5
(−3−0) =− 3

5
ℓ∗2(ϕ3,ψ1) =

1
3
(1−0) = + 1

3
ℓ∗3(ϕ1,ψ2) =

1
3
(0−0) = 0

ℓ∗1(ψ2,ϕ3) =
1
5
(−1+4) = + 3

5
ℓ∗2(ψ3,ϕ1) =

1
3
(0−1) =− 1

3
ℓ∗3(ψ1,ϕ2) =

1
3
(0−0) = 0

ℓ∗1(ψ2,ψ3) =
1
5
(−1+2) = + 1

5
ℓ∗2(ψ3,ψ1) =

1
3
(0−2) =− 2

3
ℓ∗3(ψ1,ψ2) =

1
3
(0−3) =−1

H
(3)
i

1

5

[

−2 −3 −2 +3 −2

+3 +1 −3 +1 +1

]

1

3

[

+3 +1 +3 −1 +3

−1 −2 +1 −2 −2

]

1

3

[

0 −3 0 −3 −3

+2 0 +2 0 +2

]

is no set of type I player-reduced game observed by all players that strictly falls under the same 423

2×2 strategy dynamical domain. We can achieve this by negating player 1’s payoffs in Fig 7. 424

The resulting game is shared in Fig 8 using an alternative 3-cub representation to highlight the 425

directions of strict and weak payoff improvement to identify PNE, with the vertical, horizontal, 426

and depth axes listing the individual strategies for players 1, 2, and 3, respectively. Each vertex 427

represents a collective strategy outcome. The direction of each orthogonal edge connecting two 428

vertices is determined by the sign of the individual deviation loss associated with it. A vertex is a 429

PNE if it is a sink [36], meaning that all arcs connected to it are incoming [36]. There are no 430

sinks in Fig 6; so, there are no PNE. The deviation losses and strategic hindrance spaces in this 431

game are provided in Table 2 and visualized in Fig 9. 432

Negating an individual payoff structure causes observed harmony dynamics to turn into 433

defection; it also causes bistability to turn into coexistence (and vice-versa). Harmony and 434

defection are both dominance dynamics and thus are compatible, as described for 2×2 games in 435

Section 2.3 and Eq. (10) Ð in Section A.4, we discuss public goods games, which have a single 436

PNE and where the aspiration level of each player can be set to result in either pure defection or 437

pure harmony dynamics. The same cannot be said about coexistence and bistability. In the 2×2 438

games in Eq. (11) and Eq. (12), we observe that combining positive and negative frequency 439

dependence may result in the absence of PNE. Coexistence dynamics do not favor a unanimous 440

course of action. Player 1’s coexistence-based preferences in Fig 9 cancel out the intersecting 441

harmony-bistability-defection preferences of players 2 and 3 that favor ϕ and ψ . 442

It is still possible to create a 3×2 game where the incidence of coexistence and bistability 443

results in the emergence of PNE. This can be done by mitigating harmony and defection. For 444

instance, in Fig 8, making U2(s) = 0 at s = ⟨ϕ1,ϕ2,ψ3⟩ and s = ⟨ψ1,ψ2,ϕ3⟩ makes the rescaled 445
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Fig 9. Strategic hindrance spaces in the 3×2 game in Fig 8. All strategic hindrance spaces but

player 1’s are the same as in Fig 6 Ð the payoff structures of players 2 and 3 are taken from

Fig 7. The coexistence dynamics that emerge for player 1 indicate a greater incentive for

refusing to align with the strategies of players 2 and 3.

deviation losses ℓ∗2(ϕ3,ψ1) and ℓ∗2(ψ3,ϕ1) in Table 2 become zero, turning all but one of the 446

g(3) = 5 type I player-reduced games into borderline bistability games with either F2 = 0 or 447

G2 = 0. Player 2’s modified strategic hindrance is similar to that of player 3, as shown in Fig 10 448

Ð unanimity games, in the following section, are characterized by the emergence of analogous 449

borderline bistability dynamics for all players. The lower left and upper right vertices in Fig 8 Ð 450

respectively {⟨ϕ1,ψ2,ψ3⟩ and ⟨ψ1,ϕ2,ϕ3⟩} Ð weakly become sinks. These weak PNE result 451

from the intersection of player 1’s coexistence-driven disfavoring of unanimity and players 2 and 452

3’s bistability-driven inclination to coordinate with other players. Here the incidence of player 453

1’s observed harmony and defection dynamics is negligible. 454

3.3 Application case: integrability of an urban transit 455

system 456

Here, we analyze the emergence of strategy dynamics in the strategic design for the integrability 457

of a fictional urban transit system, highlighting the complexities that arise as the number of key 458

design actors increases. In this example, we explore the concept of directional integrability [14], 459

briefly discussed in Section 1.1, to assess how well the system-of-systems aligns with shared 460

goals, considering the levels of managerial control and collaboration among its components. 461

The baseline 2×2 scenario 462

Let us consider two managerially and operationally independent system design actors: 463

• Irene, a software developer who was contracted by the public transportation authority to 464

implement a passenger information system; and 465
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Fig 10. Altered strategy dynamics derived from the 3×2 game in Fig 8 after making U2(s) = 0

at s = ⟨ϕ1,ϕ2,ψ3⟩ and s = ⟨ψ1,ψ2,ϕ3⟩, resulting in ℓ∗2(ϕ3,ψ1) = ℓ∗2(ψ3,ϕ1) = 0 in Table 2. The

strategic hindrance spaces of players 2 and 3 are akin to those in a unanimity game (Fig A.5)

characterized in Section A.4. The PNE set is S⋆ = {⟨ϕ1,ψ2,ψ3⟩, ⟨ψ1,ϕ2,ϕ3⟩}.

• Jamie, an infrastructure contractor whom the regional transportation policy agency tasked 466

to design and maintain the traffic management system. 467

Irene’s primary role is to help commuters plan their routes and access real-time information on 468

buses, trams, and subways, while Jamie’s contribution to developing and managing road 469

infrastructure and traffic critically impacts the flow of vehicles and the safety of passengers. 470

Each actor can independently choose an open or closed system strategy: 471

• ϕi Ð closed system to leverage partial integrability: the system will take advantage of the 472

capabilities of other open systems, but the latter cannot exploit the former. 473

• ψi Ð open system to pursue synergistic integrability: the system’s capabilities can be 474

fully leveraged by everyone. 475

We consider keeping the system closed as the status quo strategy since it would not require an 476

actor to de-constrain and expand the capabilities of their system beyond its boundaries to 477

interact with others. In this context, pursuing synergistic integrability would be an alternative 478

course of action Ð see Fig 11(a). We justify these assumptions by arguing that strategic 479

decisions have an intended direction and are irreversible [37]. We also disregard potential 480

halfway or ªmixedº contingency plans, assuming that any decision to deviate from the status quo 481

can be construed as a technical variation of the same alternative strategy. Thus, we focus on the 482

incentives that affect a system actor’s decision to abandon an already in-place or 483

taken-for-granted strategy in favor of a presumably riskier technological alternative whose 484

potential depends on whether other actors adopt it. 485

The strategic tradeoffs: A volunteer’s dilemma 486

We are interested in assessing the value utility of each system actor based on how their strategic 487

decisions would intersect. The possible strategic outcomes considered are described in Fig 11(b). 488
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Fig 11. Increasing integrability strategically: (a) Each actor (say, actor i) decides whether to

keep their system closed (status quo) or to allocate resources to making their system fully

integrable for the benefit of other systems (alternative strategy); (b) The expected outcomes

resulting from the interaction between two systems, i and j, as a tradeoff between the value of

synergistic integrability versus the risky prospect of taking advantage of the other system’s

increased openness; and (c) hypothetical assessment of system actor i’s expected outcomes from

choosing to open or close their system (rows) contingent on actor j’s strategy (columns).

We estimate each actor’s expected value using the following three rules: 489

1. If no system actors open their systems (s = ϕ), the defective integration will result in 490

disappointing long-term outcomes for everyone (a ªperilº). 491

2. No actor implementing an open system (si = ψi) benefits significantly from increased 492

integrability when others do the same (a ªcompromiseº). 493

3. An actor who maintains a closed system (si = ϕi) can potentially take advantage of the 494

partial integrability resulting from others opening their systems (an ªopportunityº). 495

Under these circumstances, and without any other actors involved, Irene and Jamie cannot take 496

advantage of increased integrability at the same time. Focusing on Irene’s point of view, 497

maximizing value would require them to keep the system closed while Jamie opens theirs. If 498

Jamie refuses, the best alternative for Irene is to adopt an open approach. It is worth noting that 499

the chance of peril may also result from a coordination failure between subsystems due to 500

technical or operational reasons. 501
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We summarize the expectations of any of the two actors in Fig 11(c) and assume they are 502

(ordinally) symmetric, as their preferences depend only on the combination of strategies, not on 503

who makes each decision. Assigning values to each outcome turns this problem into a 504

normal-form game. The compromise of opening the system is more preferred than the peril of a 505

failed integration but less preferred than the opportunity of taking advantage of other open 506

systems; thus, we set ªperilº =−1, ªcompromiseº = 0, and ªopportunityº =+1. This is 507

equivalent to a volunteer’s dilemma, where ªvolunteeringº and ªfree-ridingº are the alternative 508

and the status quo strategies, respectively. We can model the payoff function for this game using 509

Eq. (A.6) in Section A.4 in the Appendix: 510

Ui(si,sJ ,sK) =











0 if si = ψi

+1 if si = ϕi ∧ sJ = ψJ

−1 otherwise,

(22)

With two actors, there is only one value of structural fear and one value of structural greed, the 511

former is negative and congruent with the difference between the value of ªperilº and the value 512

of ªcompromiseº, and the latter is positive and proportional to the value of ªopportunityº minus 513

the value of ªcompromise.º So, it exhibits pure coexistence dynamics. 514

Potential impact of increasing the number of actors 515

Assume the involvement of a third actor named Kumar, who has been tasked to oversee safety 516

and communications in the larger urban transit ecosystem and whose actions are critical to 517

achieving synergistic integrability. Like Irene and Jamie, Kumar is presumed to be operationally 518

and managerially independent in implementing an open or a closed system; however, Irene and 519

Jamie may not be aware of Kumar’s exact level of autonomy. For example, Irene may believe 520

that a governmental agency supersedes Kumar’s authority in whole or part and that whatever 521

Kumar can do has already been defined. From Irene’s standpoint: 522

(a) Kumar may never open their system Ð a plausible assumption considering the 523

prioritization of security, reliability, data privacy, and regulatory compliance. 524

(b) Kumar may surely open the safety and communications system for scalability, 525

adaptiveness, and transparency. 526

In the context of the volunteer’s dilemma, it can be inferred that if Irene decides to maintain a 527

closed system, it will likely result in favorable outcomes in scenario (b). However, if Kumar 528

chooses not to pursue integrability, the risk of peril is greater in the event of (a). Notice that, in 529

scenarios (a) and (b), it could be Jamie, not Kumar, the one presumed to have fixed their strategy. 530

Also, it is possible that 531

(c) Jamie and Kumar align their strategies, simultaneously opening or closing their systems, 532

which, as in scenario (b), would make the closed system strategy riskier. If we assign the indices 533

i, j, and k to the three actors, we can list the following five player-reduced binary games from 534

the standpoint of actor i: 535

(1) actor j’s strategy may be uncertain, but actor k will surely maintain the status quo; 536

(2) actor j’s strategy may be uncertain, but actor k will surely choose the alternative; 537

(3) actor k’s strategy may be uncertain, but actor j will surely maintain the status quo; 538

(4) actor k’s strategy may be uncertain, but actor j will surely choose the alternative; 539

(5) both j’s and k’s strategies may be uncertain, but they will surely align their actions. 540
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Fig 12. Type I player-reduced binary games that would be observed by standpoint player i in a 3×2 volunteer’s dilemma per Eq. (22)

Fig 12 lists each of these games. Three of them exhibit coexistence dynamics and the remaining 541

two exhibit defection dynamics. Specifically, using Eq. (A.7) in Section A.4 in the Appendix, 542

we obtain the strategic hindrance 543

H
(3)
i (ϕ,ψ) =

1

2

[

−1 +1 −1 +1 −1

+1 +1 +1 +1 +1

]T

.

If we add a fourth actor, the ratio of coexistence to defection becomes 7 to 12. With five 544

actors, it becomes 15 to 50. The incidence of defection dynamics on each player’s strategic 545

hindrance grows at a higher rate than the incidence of coexistence dynamics as n grows; more 546

specifically, 547

Number of CX pairs

Number of DE pairs
=

2n−1 −1

3n−1 −2n +1
.

We plot the evolution of coexistence and defection dynamics in the n-player volunteer’s dilemma 548

in Fig 13 as the share of the total number of type I player-reduced binary games, g(n), that fall 549

into each domain as the number of actors increases. In the context of our urban transit system 550

example, we can expect the progress of integrability across the ecosystem to become stagnant 551

after one actor (if any) has broken away from the status quo and implemented an open system 552

(one of n possible PNE), assuming the actors are ªeconomically rational.º However, if more 553

subsystems were to be integrated, the increasing predominance of defection dynamics would 554

lead to a decreasing likelihood of any system actor volunteering and opening their subsystems. 555

This quantitative insight into the evolution of defection in the volunteer’s dilemma game is 556

reminiscent of the prevalence of the diffusion of responsibility and bystander effect phenomena 557

observed in real-world settings [38]. 558

A key takeaway of this example is how crucial the efficient coordination of actions among 559

stakeholders and systems is for optimizing resource allocation and reaching greater collective 560

performance. For instance, if we wanted to incentivize systems-of-systems integrability in this 561

hypothetical setting, one potential approach is to organize interconnected subsystems into small 562

clusters to minimize the risk of coordination failure. In real-world systems-of-systems, we 563

expect actors’ strategic tradeoffs and information to be asymmetrical and evolving, requiring the 564

design of mechanisms to align incentives and optimize the allocation of resources. As 565

engineering systems become more complex, managing integration and reducing incompatibility 566

among diverse subsystems becomes increasingly challenging. Tackling these challenges will 567

enable the management of interdependent subsystems in a harmonious way throughout each 568

stage of the design process, ultimately leading to the creation of efficient and effective 569

systems-of-systems that benefit society as a whole. 570
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Fig 13. Evolution of the strategy dynamics in n-player volunteer’s dilemma as a proportion of

the number of ⟨Fi,Gi⟩ pairs in an individual strategic hindrance space that fall on a specific

domain to the total number of type I player-reduced games, g(n). The incidence of defection

dynamics in the volunteer’s dilemma becomes more significant as n grows, while the proportion

of type I player-reduced games with coexistence dynamics decreases.

4 Discussion of assumptions and limitations 571

The formulation proposed in this paper takes inspiration from existing subjectivistic and 572

epistemic approaches to game theory [39, 40], focusing less on the players’ knowledge and more 573

on their beliefs. This worldview is present, in particular, in the computation of values of 574

structural fear and greed for every player-reduced normal-form game Ð grouping one or more 575

actors as one player (set J ) and setting the strategies of any remaining player (set K) as ªfixedº. 576

We can use the latter to represent actors in the context of engineering systems whose actions 577

have presumably been ªoptimizedº. For example, in the example of an urban transit system in 578

Section 3.3, a designer who believes that at least one other system actor is bound to invest in 579

integrability might decide to take advantage of the latter. Here, the actor attempts to complete 580

information about the game despite lacking ªcommonº or ªobjectiveº knowledge about the 581

likelihood of a specific combination of other players’ strategies. While the strategic hindrance 582

space allows a standpoint player to become better informed of such combinations and 583

understand how they are distributed across the four strategy dynamical domains, the weight that 584

the actor assigns to each player-reduced game will still depend on their understanding of the 585

other players and the context in which individual and collective decisions are being made. 586

Another instance of incompleteness of information that could be modeled as a 587

player-reduced normal-form game is when a player is uncertain about whether the rest of the 588

players are acting as individual agents or as a collective [41]. For example, in the El Farol bar 589

game in Eq. (A.12), there are players who might never go to the bar because they believe 590

everyone else is going (by coincidence or by collusion), so it would already be 2/3 full by the 591

time they arrive Ð in a dynamic context, this could lead to a ªbelief-distortedº Nash equilibria, 592

as discussed by Wiszniewska-Matyszkiel [42]. For such player, going to El Farol bar is like 593

playing a chicken game (low fear, high greed); but for those who are not so pessimistic about the 594

bar being crowded, the game is called harmony (low fear, low greed). 595

Studying strategy selection in n-player binary normal-form games in terms of individual 596

deviations losses is not original of this work. Examples of similar approaches can be found in 597

Güth and Kalfoken’s [43] theory of resistance avoidance and Selten’s [34] theory of risk 598

dominance in bipolar games. These approaches focus on measuring the likeliness that an 599

individual remains at (or deviates towards) an equilibrium point; both works then prescribe 600

objective ways in which such ªresistancesº or ªdiagonal probabilitiesº could be aggregated. 601

Studying equilibria in player-reduced normal-form games from a subjectivistic point of view is 602

not a new concept either. For instance, in Kalai and Lehrer’s [44] model of subjective games, 603
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players in a large game environment would restrict themselves to assessing only the portion of 604

the game they know (viz. an ªenvironment response functionº) and approaching a subjective 605

Nash equilibrium that might coincide with an objective equilibrium regardless of how optimistic 606

or pessimistic their beliefs are about the ªoutsidersº to their subjective games. Similarly, 607

Battigalli and Guaitoli [45] drop the ªcommon prior assumptionº (the premise of the existence 608

of a collectively known probability distribution across the players’ strategies [46]) and favor a 609

model of ªsteady-state equilibriaº where an individual bases their actions on conjectures about 610

others’ strategies and is unable (or even apathetic) to fact check. 611

Despite its subjectivistic nature, the proposed framework shares some similarities with 612

existing objective and normative approaches to characterizing n-player games. In yet another 613

work on equilibria selection, Güth [47] assesses the applicability of requiring consistency and 614

non-emptiness of equilibria when choosing a solution concept. The analysis, which builds on 615

previous work by Peleg and Tijs [48] and Norde et al. [49], questions the robustness of a 616

solution concept (whether Nash equilibrium or not) when all players are considered and when 617

some of the players are ªgoneº and their inclinations might not be revealed. On one hand, 618

compared to Güth’s analysis, the structural fear and greed spaces provide a visual means of 619

understanding how robust a collective strategy is to unilateral deviations, namely, by checking if 620

those fear and greed spaces fall inside regions of single PNE like the harmony and defection 621

strategy dynamical domains. On the other hand, the proposed framework also provides insights 622

into how consistent a collective strategy outcome remains across all possible player-reduced 623

games by estimating how much the players’ structural fear and greed spaces overlap. Both 624

framework qualities do not constitute a solution concept themselves but could prove helpful 625

when assessing incentive mechanisms to guide strategic behaviors toward desired outcomes. 626

A significant limitation of our framework is its focus on one-shot normal-form games where 627

players are limited to only two pure individual strategies, and these actions are assumed to be 628

irreversible once taken. It does not account for the possibility of mixed strategies, where players 629

can adopt a probabilistic combination of pure strategies, which would add a layer of versatility 630

to the model. Moreover, the assumption of irreversible actions may only sometimes be accurate 631

in real-world engineering systems. Going back to the urban transit system example, the strategic 632

decisions involved, while initially appearing irreversible, may be subject to change as the 633

systems development process evolves. Feedback from the public, changing urban dynamics, 634

unforeseen route modifications, and integration of new transportation modes, could lead to 635

adjustments to the original ªgameº. Despite these limitations, our framework can serve as a 636

supplementary early approach to evaluate the long-term implications of strategic decisions in 637

engineering systems. It also allows researchers and practitioners to revise and reevaluate the 638

landscape of strategic decisions and tradeoffs throughout the design process, accommodating the 639

complexities and evolving nature of such engineering systems projects. Including mixed 640

strategies and the possibility of reversible actions in future iterations of this framework could 641

enhance its applicability and accuracy in representing the dynamics of strategic decision-making 642

in complex engineering systems. 643

5 Conclusion and opportunities for future work 644

This paper formalizes the concept of fear and greed to describe two dimensions of strategic 645

hindrances in strategic games with more than two players. Coming up from an engineering 646

systems background, we discuss a motivating example highlighting the importance of strategic 647

decisions in our field before introducing our proposed approach to studying strategic 648

decision-making processes while capturing the complexities of incentives and relationships 649

between actors. Building on non-cooperative game theory literature, we present a method to 650

dissect large normal-form games, repackage them into player-reduced instances from each 651

player’s standpoint, and embrace a subjectivistic lens to scan each player’s overall strategic 652

February 29, 2024 22/40



stability. Our framework helps us visualize the shape and scope of the strategy dynamics that 653

influence the players’ strategic behavior. This framework can help engineering systems 654

researchers and practitioners identify and mitigate the structural forces that hinder the alignment 655

of individual actions toward reaching and sustaining collective harmony. 656

The proposed framework can be extended to applications in cognitive engineering, 657

particularly in enhancing the understanding and management of strategic decision-making in 658

engineering systems design. By modeling strategic interactions as simplified games, this 659

framework allows for a more explicit conceptualization of the human and socio-technical 660

elements that underlie strategic decision-making processes. In cognitive engineering, where the 661

emphasis is on aligning human cognitive capabilities with the design and operation of complex 662

systems, our approach seeks to simplify the intricate decision-making landscape and make it 663

more accessible and understandable from a human cognitive perspective. The mathematical 664

rigor of the framework provides a structured way to analyze and interpret strategic interactions 665

and reconcile human intuition with quantitative analysis. This aspect is particularly beneficial in 666

enhancing strategic decision-support systems to augment human cognition. Our framework can 667

be integrated into such tools and facilitate the presentation of complex strategic scenarios in a 668

more digestible format, allowing for a more comprehensive evaluation of options and their 669

potential consequences. 670

In exploring the intricacies of strategic decision-making in the context of collective systems, 671

we encounter several challenges that require further investigation. These challenges present us 672

with valuable opportunities to enrich our understanding and develop frameworks that help 673

sustain collaboration among operationally and managerially independent actors in the design of 674

engineering systems. This framework could serve as a foundation for developing practical 675

incentive mechanisms and network interventions in future work. This direction aims to facilitate 676

the emergence of more favorable strategy dynamics within engineering systems. By 677

understanding the nuances of individual and collective strategic behaviors, researchers and 678

practitioners can identify opportunities to guide actors toward more mutually beneficial and 679

sustainable strategies subtly. For instance, tailored incentives can help align individual 680

motivations with broader system goals, thus encouraging cooperative behaviors that positively 681

contribute to the overall health and efficiency of the system. 682

Network interventions can also help rectify interactions and dependencies between blocs and 683

coalitions of actors whose strategies significantly influence the strategic hindrance of a specific 684

decision-maker. These interventions could include adjusting communication channels and 685

redefining linked incentives to enhance collaboration and reduce friction in decision-making 686

processes. Applying and refining these approaches within the framework’s structure can help 687

steer engineering systems toward more efficient and harmonious operations. Extending this 688

framework in such practical directions can unlock a more grounded and realistic understanding 689

of how strategic decisions play out in complex engineering environments. Ultimately, this could 690

lead to more resilient and adaptive engineering systems capable of navigating the challenges of 691

evolving socio-technical landscapes. We hope this line of work helps unlock new strategies and 692

frameworks that propel engineering systems design to tackle increasingly complex 693

socio-technical challenges. 694
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Appendix 699

A.1 Pure-strategy Nash equilibria in normal-form games 700

Definition A.1 Let GN = (N ,(Si)i∈N ,(Ui)i∈N ) be a normal-form game. A collective strategy 701

s⋆ = ⟨s⋆i ,s
⋆
9i⟩ ∈ S is a pure-strategy Nash equilibrium (PNE) if for each player i ∈N and each 702

si ∈ Si the following inequality is satisfied: 703

Ui(s
⋆
i ,s

⋆
9i)−Ui(si,s

⋆
9i)≥ 0.

704

We now provide an equivalent definition of PNE for binary normal-form games. 705

Definition A.2 Let GN be a n×2 game, and let Si = {si,s
⋆
i }. A collective strategy 706

s⋆ = ⟨s⋆i ,s
⋆
9i⟩ ∈ S is a PNE in GN if 707

min
i∈N

[

Ui(s
⋆
i ,s9i)−Ui(si,s9i)

]

≥ 0.

708

We can also characterize PNE in n×2 games in terms of the rescaled deviation losses ℓi in 709

Definition 1. From Eq. (4), we know that 710

Ui(s
⋆
i ,s9i)−Ui(si,s

⋆
9i) ∝ ℓi(s

⋆
i ,s

⋆
9i).

We can use this relationship to restate Definition A.2 as follows 711

Definition A.2a Let GN be a n×2 game, and let si,s
⋆
i ∈ Si = {ϕi,ψi}, where si ̸= s⋆i . A 712

collective strategy s⋆ = ⟨s⋆i ,s
⋆
9i⟩ ∈ S is a PNE in GN if 713

min
i∈N

ℓi(s
⋆
i ,s

⋆
9i)≥ 0.

714

A.2 Types and number of player-reduced binary games 715

Definition 2 in Section 3 describes the notion of a player-reduced binary game as an event in 716

which a standpoint player i in the normal-form game GN makes early conjectures about the 717

strategic behavior of a subset of players K ⊂N \{i}. We express this as 718

GN\K =
(

N\K,
(

Si

)

i∈N\K
,
(

Ui( · ,sK)
)

i∈N\K

)

. (13)

where sK is the collective action by the players in K. Player i would move on to making 719

conjectures about the strategic behavior of the remaining players in the non-empty subset 720

J =N\(K∪{i}). We then characterize structural fear and greed in Definition 3 under two 721

premises: 1) that the players in J would align their strategies, moving collectively from a status 722

quo sJ = ϕJ towards the alternative sJ = ψJ ; and 2) that the actions of those in K would 723

remain fixed at sK = σK. 724

We refer to the first and second premises as aligned J -players and stationary K-players, 725

respectively, and we label the player-reduced binary games that meet both conditions as type I. 726

Relaxing the second premise allows us to elicit other types of player-reduced binary games that 727

could be observed by player i in GN . In particular, for n > 2, there are games Type II GN\K 728

where one or more players k ∈ K whom player i expects will not commit to individual actions 729

sk = σk ∈ σK. We call these player-reduced binary games type II, and we refer to the alternative 730

premise associated with it as reversing K-players. We respectively denote by g(n) and g∗(n) the 731

numbers of possible type I and type II player-reduced games observed by a player i in GN , 732

explain their derivation, and provide multiple analytic expressions to calculate them. 733
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Number of player-reduced binary games of type I: stationary K -players 734

To determine the expression for g(n), we note that 735

• The value of g(n) is also the number of ways in which we can partition set N\{i} into 736

one non-proper subset (J ) and one proper subset (K). 737

• We must count all possible σK in Eq. (17) for every K ⊂N\{i}. Let Q be a subset of K 738

and let its complement be Qc =K\Q. We can use Q and Qc to identify the players in K 739

who presumably committed to ϕk and ψk, respectively Ð that is, σK = ⟨ϕQ,ψQc⟩. It 740

follows that, since either Q or Qc can be empty, the set of possible σK has the same 741

cardinality as P(K), the set of all subsets (or power set) of K: 2|K|. 742

• Every possible K contains between zero and n−2 players taken from N\{i}. Also, the 743

number of K of the same size is the number of |K|-combinations of elements in N\{i}. 744

Then, the value of g(n) can be expressed as the sum of all the products between C(n−1,k) 745

Ð the binomial coefficient Ð and the total number of possible σK, which we know is 2|K|. 746

These give us our first formula for the number of player-reduced games: 747

g(n) = |{GN\K}|= ∑
K⊂N\{i}

|P (K)|=
n−2

∑
|K|=0

2|K| ·
(

n−1
|K|

)

; (A.1)

adding and subtracting the (n−1)-th term gives: 748

g(n) =−2n−1·
�
��

(

n−1
n−1

)

1

+
n−1

∑
|K|=0

2|K| · (1|K|) ·
(

n−1
|K|

)

;

which by means of the binomial identity simplifies to 749

g(n) = 3n−1 −2n−1, ∀n ≥ 1. (18)

Starting with g(1) = 0 (no game), Eq (18) returns the Lucas sequence 750

0,1,5,19,65,211,665,2059,6305,19171, . . .

listed as sequence A001047 in Sloane’s Encyclopedia [51]. 751

The value of g(n) can also be expressed in terms of Stirling numbers of the second kind,
{

n
k

}

, 752

which count the number of ways to partition a set of n elements into k non-empty subsets, as 753

follows [52]: 754

g(n) = 2

{

n

3

}

+

{

n

2

}

;

where
{

n
3

}

= 1
2
(1+3n−1)−2n−1 and

{

n
2

}

= 2n−1 −1. For instance, if N = {i, j,k}, 755

{

3
3

}

= 1 ∵N = {i}∪{ j}∪{k};

and
{

3
2

}

= 3 ∵N = {i}∪{ j,k}= {i, j}∪{k}= {i,k}∪{ j}.

So g(3) = 2(1)+3 = 5. In the context of the static games with n > 2 treated in this work, the 756

term
{

n
3

}

is associated with the number of player-reduced games where the individual strategies 757

of at least two players other than i differ, i.e. s j ̸= sk, where j,k ∈N\{i}; and the term
{

n
2

}

is 758

associated with the player-reduced games GN\K whose strategy profiles include the diagonal 759

collective strategy s9i ∈ {ϕ9i,ψ9i}, i.e. s1 = · · ·= si−1 = si+1 = · · ·= sn. 760

The directed graphs in Fig A.1 describe the player-reduced binary games with fixed 761

sK = σK, K ⊂N\{i}, for 2 ≤ n ≤ 4. The vertices represent the possible collective strategies 762

s9i =∈ Sn−1
i that the standpoint player i faces. Each arc represents one player-reduced game; the 763

source and target vertices are associated with structural fear and structural greed, respectively. 764
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Fig A.1. Type I player-reduced normal-form games GN\K observed by each player in n×2 games for 2 < n < 4. Every player-reduced

game is formed by the actions of standpoint player i = 1, the coordinated actions of the players in set J =N\(K∪{i}), and the

presumably set in stone action σK by all players in K. On the right, we create directed graphs made of 2n−1 vertices, one for every

collective strategy s9i = ⟨sJ , sK⟩, and connect them according to the possible deviations under the premises of aligned J -players and

stationary K-players. Then, each edge represents a possible player-reduced game (listed from A to Y); and the source and target vertices

respectively represent the components of s9i in ℓi(s9i) needed to compute the values of Fi and Gi per Eqs. (15) and (16).

Number of player-reduced binary games of type II: reversing K -players 765

We derive g∗(n) by analyzing the discrete geometry of all possible transitions between two 766

different collective strategies s9i and s∗
9i that can be observed by player i. Either action can be 767

equal to any possible combinations of n−1 individual strategies s j ∈ S j = {ϕ j,ψ j}. So, the 768

total number of possible transitions is 769

|Sn−1
j ×Sn−1

j |− |Sn−1
j |= (2n−1) · (2n−1)−2n−1 = 4n−1 −2n−1.

In calculating the number of type I player-reduced binary games g(n) = 3n−1 −2n−1, we 770

assumed the collective action sJ by the aligned J -players moved in the direction ϕJ → ψJ . 771

Asserting the premise of reversing K-players, we note type I player-reduced binary games also 772

extend to sJ moving in the opposite direction, namely ψJ → ϕJ . This means that the total 773

number of type II player-reduced binary games must be equal to 774

g∗(n) = 4n−1 −2n−1 −2 ·g(n) (A.2)

= 4n−1 −2(3n−1)+2n−1.

775
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Fig A.2. Transitions between non-diagonal collective strategies representing the number of

player-reduced games with anti-coordination for n = 3 and n = 4. Let J ⊂N\{i} and

K=N\(J ∪{i}); and let Q be a subset of K, with complement Qc =K\Q. As all players in J
deviate from ϕJ → ψJ , all players in Q deviate from ψQ → ϕQ while the players in Qc, if any,

keep their strategies fixed. The number of player-reduced games following the aforementioned

description of anti-coordination is 4n−1 −2(3n−1)−2n−1. This figure complements Fig A.1.

Fig A.2 shows the directed graphs describing the associations between collective strategies 776

that result in type II player-reduced games and that complement the type I games presented in 777

Fig A.1 for n = 3 and n = 4 Ð note that g∗(2) = 0 consistent with K = /0. Combined, the total 778

number of player-reduced binary games with stationary and reversing K-players assuming the 779

aligned J -players move from ϕJ towards → ψJ is 780

g(n)+g∗(n) = 4n−1 −3n−1.

We can also count g(n) and g∗(n) by breaking apart the transition between any two collective 781

strategies into the moves by each player and labeling the number of existing intersecting 782

collective actions transitioning in the same direction. This approach is demonstrated using 783

square grids in Fig A.3 for n ∈ [2 . . 4]. The result shows the number g(n) emerge as the number 784

of states in the Hanoi graph analog of the SierpiÂnski triangle Ð from the Tower of Hanoi puzzle 785

with 3 towers and n−1 disks Ð minus the 2n−1 states along the diagonal s j = s∗j ; while the 786

number g∗(n), counting all type II player-reduced binary games, emerge as two times the 787

number of even values in Pascal’s triangle up to row 2n−1. 788

A.3 Distribution of deviation losses in strategic hin- 789

drance spaces 790

We characterize the incidence of the rescaled deviation losses ℓ∗i (s9i) on H
(n)
i (ϕ,ψ), player i’s 791

strategic hindrance in Definition 4, across observed type I player-reduced games. Let us set 792

• Nϕ and Nψ as the subsets of players in N that play ϕ and ψ , respectively; 793

• nϕ = |Nϕ | and nψ = |Nψ | as the numbers of players that adopt such strategies; and 794

• nϕ\i = |Nϕ \{i}| and nψ\i = |Nψ \{i}|, so nϕ\i +nψ\i = n−1. 795
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Fig A.3. Alternative approach to counting the number of player-reduced binary games observed

by one player (viz. i = 1) in an n×2 game, for n ∈ [2 . . 4]. Each grid on the rightmost column

shows all possible transitions from s9i and s∗
9i; these grids are broken apart into individual

transitions from s j and s∗j ∈ S j Ð ϕ j → ψ j in yellow/light gray and ψ j → ϕ j in dark blue/gray,

going from row to column; and either null transitions of stationary K-players Ð blank cells, if

any, with ªno changesº Ð or reversed transition of reversing K-players Ð marked with an ×.

Recall that J =N\(K∪{i}) and |J | ∈ [1 . . n−1]. Replacing k = |K|= n−1−|J | in 796

Eq. (A.1), gives us an expression for g(n) in terms of J : 797

g(n) =
n−1

∑
|J |=1

2n−1−|J | ·
(

n−1
n−1−|J |

)

=
n−1

∑
|J |=1

(2|J |−1) ·
(

n−1
|J |

)

= ∑
J⊆N\{i}

|P+(J )|, (A.3)

where P+(J ) is the set of all non-empty subsets of J . From the definition of strategic hindrance 798

in Eq. (17), we know dimR(⟨Fi⟩) = dimR(⟨Gi⟩) = g(n) and all players in J would coordinate 799

on either ϕJ or ψJ . Let |J |= nϕ\i if sJ = ϕJ and |J |= nψ\i if sJ = ψJ . We can write 800

g(n) =
1

2

[

dimR (⟨Fi⟩)+dimR (⟨Gi⟩)
]

(A.4)

=
1

2





n−1

∑
nϕ\i=0

(2nϕ\i −1) ·
(

n−1
nϕ\i

)



+
1

2





n−1

∑
nψ\i=0

(2nψ\i −1) ·
(

n−1
nψ\i

)





after adding and subtracting the 0-th term to the summation (without affecting the interpretation 801

of g(n) using Eq. (A.3), as 20 −1 = 0). 802
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Fig A.4. Number of reduced-player games, g(n) from Eq. (A.1), and values of γ(k, n−1− k), k ∈ {nϕ\i,nψ\i}, from Eq. (A.5) observed

by each player in games with up to n = 12 players. The subscripts denote the occurrences of each γ and are equal to C(n−1,k). For every

integer n ≥ 1, the sum of the γ(k, n−1− k) ·C(n−1,k) products equal 2g(n) per Eq. (20). For n = 3, notice that the deviation losses

ℓ∗i (ϕ2,ψ3) and ℓ∗i (ψ2,ϕ3) would be weighted twice (k = 1); this is consistent with the directed graph representation of the player-reduced

games for n = 3, in Fig A.1, where both vertices ⟨ϕ2,ψ3⟩ and ⟨ψ2,ϕ3⟩ are once a source and once a target.

Redefining g(n) in terms of nϕ\i and nψ\i allows us to count the number of player-reduced 803

games where a specific number of players in N \{i} select one strategy or the other. Adding 804

one to nϕ\i means subtracting one from nψ\i, and vice versa. Let nϕ\i = k and nψ\i = n−1− k; 805

we can rewrite Eq. (A.4) as 806

g(n) =
1

2

[

n−1

∑
k=0

(2k −1) ·
(

n−1
k

)

]

+
1

2

[

n−1

∑
k=0

(2n−1−k −1) ·
(

n−1
n−1−k

)

]

g(n) =
1

2

[

n−1

∑
k=0

γ(k, n−1− k) ·C(n−1, k)

]

(20)

where C(n−1,k) =
(

n−1
k

)

=
(

n−1
n−1−k

)

and the function 807

γ(k, n−1− k) = 2k +2n−1−k −2, (A.5)

or 808

γ(nϕ\i, nψ\i) = 2nϕ\i +2nψ\i −2, (19)

counts how many entries of each individual strategic hindrance space of size g(n)×2 are equal 809

to ℓ∗i (s9i) based solely on the number of players in N \{i} that play ϕ and those that play ψ . 810

Values of γ(k, n−1− k) and their occurrences for games with up to n = 12 players are provided 811

in Fig A.4. The triangular arrays arising from the computation of γ(n−1− k,k) and the product 812

γ(n−1− k,k) ·C(n−1,k) can be found in Sloane’s Encyclopedia [51] under the catalog 813

numbers A350770 and A350771, respectively. 814
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A.4 Strategy dynamics of 3×2 social dilemma games 815

This section calculates the strategic hindrance spaces of nine social dilemmas in normal form 816

and n = 3. The strategic hindrance of every player in each game are the same; thus, their 817

strategy dynamics can be considered symmetrical. All of the strategic hindrance spaces are 818

compiled in Fig A.5. 819

Volunteer’s dilemma 820

Each player can either volunteer for the common good (ψ) or do nothing and possibly benefit 821

from the contributions of others (ϕ) Ð helping maintain the status quo. Player i’s payoff in this 822

game is defined as 823

Ui(si,sJ ,sK) =











0 if si = ψi

a if si = ϕi ∧ sJ = ψJ

−b otherwise,

(A.6)

where a and b are both positive real numbers. Each player in the volunteer’s dilemma in 824

Eq. (A.6) has one perfectly limited strategy, viz. ψi, which yields constant Ui(ψi,s9i) for any 825

s9i ∈ Sn−1
i (i.e. the payoff of volunteering does not depend on whether others also volunteer or 826

not) restricting interactive effects [35]. There are exactly n PNE in this game, each of them equal 827

to s⋆ = ⟨ψi,ϕ9i⟩ for every i ∈N : every time one and only one player has volunteered. 828

Incentives modeled after a volunteer’s dilemma can lead to maintaining the status quo 829

becoming the dominant strategy. After one actor has chosen a cooperative strategy, such as 830

investing in integrability in the context of the urban transit system, others, acting economically 831

rational, may decide to seize such opportunity and take advantage of the volunteer’s contribution 832

without reciprocating. As all actors would prefer to keep their systems closed to avoid the 833

disadvantages of being the only one to open their system, integration could fail due to collective 834

inaction. Defection dynamics are anticipated to emerge and dominate the conflict as the number 835

of players increases. 836

Using Eqs. (14)±(16) to obtain the rescaled deviation losses in this game for every player 837

i ∈N Ð with the help of Table 1: 838

ℓ∗i (ϕ j,ϕk) = A91
i ·

(

Ui(ϕi,ϕ j,ϕk)−Ui(ψi,ϕ j,ϕk)
)

=
(

−b − 0
)

/Ai = −b/Ai,

ℓ∗i (ϕ j,ψk) = A91
i ·

(

Ui(ϕi,ϕ j,ψk)−Ui(ψi,ϕ j,ψk)
)

=
(

a − 0
)

/Ai = a/Ai,

ℓ∗i (ψ j,ϕk) = A91
i ·

(

Ui(ϕi,ψ j,ϕk)−Ui(ψi,ψ j,ϕk)
)

=
(

a − 0
)

/Ai = a/Ai,

ℓ∗i (ψ j,ψk) = A91
i ·

(

Ui(ϕi,ψ j,ψk)−Ui(ψi,ψ j,ψk)
)

=
(

a − 0
)

/Ai = a/Ai.

where Ai = maxUi −minUi = a+b. Using Eq. (21), the strategic hindrance is: 839

H
(3)
i (ϕ,ψ) =

1

a+b

[

−b +a −b +a −b

+a +a +a +a +a

]T

. (A.7)

Three of the g(3) = 5 player-reduced binary games exhibit coexistence while the remaining two 840

exhibit defection. Fig A.5 shows the strategic hindrance space of the 3×2 volunteer’s dilemma 841

for a = 1 and b = 2. 842

Diner’s dilemma 843

Three graduate students go for lunch and agree to split the bill equally before ordering. When 844

the menu arrives, they choose individually between ordering the combo plate with extra protein 845

(ϕ) or just a fresh empanada (ψ). The difference in cost between dishes, c (in utility units), is 846
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believed to be greater than the difference in satisfaction, b; that is 0 < b < c. However, they 847

might be tempted to order the more satisfying combo plate if they suspect everyone else will 848

order empanadas, implying that b > c/n Ð which guarantees Ui(ϕi,s9i)>Ui(ψi,s9i), signaling 849

pure defection dynamics. Let Nϕ ⊆N be the subset of diners ordering the combo plate, 850

nϕ = |Nϕ |, and let nϕ\i = |Nϕ\{i}|; player i’s payoff is modeled as 851

Ui(si,s9i) =







b−nϕ

( c

n

)

if si = ϕi

−nϕ\i

( c

n

)

otherwise.
(A.8)

From Eq. (A.8), we notice that the difference in individual payoff between choosing si = ϕi and 852

choosing si = ψi for a given s9i ∈ Sn−1
i always equals maxUi = b− c/n > 0. This game has a 853

single PNE (viz. ϕ) for any n ≥ 2. The 3-player diner’s dilemma in Fig A.5 uses b = 1 and 854

c = 2. Using Eqs. (14)±(16) and Table 1: 855

ℓ∗i (ϕ j,ϕk) = A91
i ·

[(

1−3 · 2
3

)

−
(

−2 · 2
3

)]

=+(1/3)/Ai,

ℓ∗i (ϕ j,ψk) = A91
i ·

[(

1−2 · 2
3

)

−
(

−1 · 2
3

)]

=+(1/3)/Ai,

ℓ∗i (ψ j,ϕk) = A91
i ·

[(

1−2 · 2
3

)

−
(

−1 · 2
3

)]

=+(1/3)/Ai,

ℓ∗i (ψ j,ψk) = A91
i ·

[(

1−1 · 2
3

)

−
(

0 · 2
3

)]

=+(1/3)/Ai;

where Ai = maxUi −minUi = b+ c−2 · c/n = 5/3. All rescaled deviation losses are signed 856

positive; ordering the combo plate instead of just a pastry is always the dominant strategy. The 857

strategic hindrance is, using Eq. (21): 858

H
(3)
i (ϕ,ψ) =

1

5/3

[

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

]T

=
1

5

[

+1

+1

]T

×5

.

Glance and Huberman [53] introduced the diner’s dilemma as a potential extension of the PD 859

game to study the emergence of cooperation in settings with more than two players. A 860

player-reduced binary game is a classical 2×2 PD game if 861

Ui(ϕi,ψJ ,σK)>Ui(ψi,ψJ ,σK)>Ui(ϕi,ϕJ ,σK)>Ui(ψi,ϕJ ,σK), (A.9)

which is equivalent to the relationship T > R > P > S from Section 2.2 and Fig 1. Setting 862

1

n
<

b

c
<

n+1

2 ·n

guarantees that all player-reduced games in a diner’s dilemma are classical 2×2 PD games. 863

Public goods game (PGG) 864

The public goods game (PGG) with linear variable contributions is defined by 865

Ui(si,s9i) =







1+nψ\i

(ai

n

)

if si = ϕi

nψ

(ai

n

)

otherwise,
(A.10)

where nψ = |Nψ |, nψ\i = |Nψ\{i}|, and Nψ ⊆N is the subset of players that contribute one 866

token to the public pool (ψ). Not contributing to the public pool is represented by strategy ϕi. 867

Factor ai > 0 multiplies the tokens in the pool before dividing them evenly among all players. 868

Similar to Eq. (A.8), the image of Eq. (A.10) contains only two values per player, meaning the 869

absolute individual deviation losses are constant (and equal to 1−ai/n), and each player 870
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Fig A.5. A player fear and greed value space in seven 3×2 social dilemmas normal-form games.

Some fear and greed value pairs are repeated.

observes dominance strategy dynamics depending on the value of ai. For n = 3 and setting 871

ai = 2, Eq. (21) gives the strategic hindrance space 872

H
(3)
i (ϕ,ψ) =

1

5/3

[

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

]T

=
1

5

[

+1

+1

]T

×5

,

where Ai = maxUi −minUi = 1+ai −2 ·ai/n = 5/3, which exhibits the same pure defection 873

dynamics as those of the diner’s dilemma example above and whose strategic hindrance is 874

depicted in Fig A.5 using Eq. (A.8). 875

Similar to the diner’s dilemma, we can turn every player-reduced game in a PGG into a 876

classical 2×2 PD game if we set, ∀i ∈N : 877

n

2
< ai < n,

which ensures that every level of mutual cooperation between two or more players will always 878

yield a greater utility than mutual defection, yet guarantee that the temptation to defect 879

unilaterally remains higher, satisfying Eq. (A.9). Comparing Eqs. (A.8) and (A.10), we can 880

define any diner’s dilemma into a PGG by calculating 881

ai =
n−1

2 · (b/c)+1− (3/n)
.

For values of ai greater than n, the PGG yields harmony dynamics. Whenever ai ̸= n for every 882

i ∈N and n ≥ 2, the PGG has only one PNE, with each s⋆i equal to either ϕi if sgn(a−n) =−1 883

or ψi if sgn(a−n) = +1 Ð where sgn : R 7→ Z is the signum function which returns 1 if x > 0, 884

−1 if x < 0, and 0 if x = 0. If ai = n, the game is that of indifference (as nψ = 1+nψ\i), and S⋆
885

is trivially equal to 2n. 886
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A prisoner’s dilemma variant 887

Here, we introduce an alternative version of a PD game with increased incentives for defection. 888

Prosecutors separately promise three alleged co-conspirators in a crime a lighter treatment if 889

they snitch on their associates (ϕ) instead of remaining silent (ψ). All three suspects will face a 890

minimum sentence if they keep quiet. If some snitch while others refuse to talk, the tipsters will 891

be acquitted, while the quiet ones will face a combined sentence of c times the minimum. But if 892

they all confess, they will all face b times the minimum sentence. Let 1 < b < c; player i’s 893

payoff in this game is defined as 894

Ui(si,sJ ,sK) =



















0 if si = ϕi ∧ sJ = ψJ

−1 if ⟨si,sJ ,sK⟩= ψ

−b if ⟨si,sJ ,sK⟩= ϕ

−c/nψ otherwise.

The rescaled deviation losses in the 3×2 version of this game are 895

ℓ∗i (ϕ j,ϕk) = A91
i ·

(

Ui(ϕi,ϕ j,ϕk)−Ui(ψi,ϕ j,ϕk)
)

=
(

−b + c
)

/Ai = (c−b)/Ai,

ℓ∗i (ϕ j,ψk) = A91
i ·

(

Ui(ϕi,ϕ j,ψk)−Ui(ψi,ϕ j,ψk)
)

=
(

0 + c/2
)

/Ai = +(c/2)/Ai,

ℓ∗i (ψ j,ϕk) = A91
i ·

(

Ui(ϕi,ψ j,ϕk)−Ui(ψi,ψ j,ϕk)
)

=
(

0 + c/2
)

/Ai = +(c/2)/Ai,

ℓ∗i (ψ j,ψk) = A91
i ·

(

Ui(ϕi,ψ j,ψk)−Ui(ψi,ψ j,ψk)
)

=
(

0 + 1
)

/Ai = +1/Ai.

where Ai = c. Fig A.5 shows the individual strategic hindrance in a three-person prisoner’s 896

dilemma, with b = 2 and c = 6, calculated via Eq. (21): 897

H
(3)
i (ϕ,ψ) =

1

c

[

c−b c/2 c−b c/2 c−b

c/2 +1 c/2 +1 +1

]T

=
1

6

[

+4 +3 +4 +3 +4

+3 +1 +3 +1 +1

]T

.

This take on the n-player prisoner’s dilemma game is a simplification of Weil’s [54] 898

description with a stronger condition on the payoff dominance of defection modeled after the 899

original, classical interpretation for two actors by Merrill Flood and Melvin Dresher, and 900

contextualized by Albert W. Tucker [55]. Condition b < c guarantees that unanimous defection 901

(ϕ) is always the only PNE and that it is suboptimal regardless of the number of players. And 902

setting b > 1 guarantees that unanimous cooperation (ψ) is always preferred over ϕ . However, 903

in contrast with the diner’s dilemma and the PGG Ð in which every player-reduced game can be 904

turned into a classical 2×2 PD game Ð the reward of staying silent in this model is lower than 905

the punishment from defecting any time at least one suspect confesses. These characteristics 906

also differ from alternative generalizations of the prisoner’s dilemma such as those in the works 907

by Goehring and Kahan [56] and Diekmann [57] that reduce the problem to an n-player 908

volunteer’s dilemma, which has n PNE rather than only one. 909

Fated truel 910

Consider three mutual paintball adversaries, Blondie, Angel Eyes, and Tuco, each with one 911

paintball left, holding their markers at point-blank. Each of them must decide which of the other 912

two rivals to fire at, the one on their left (ϕi) or the one on their right (ψi). To make it out clean, 913

a standpoint player must first coincide with a second player on targetting their remaining rival 914

and pray for the latter to target the second player. When two players target the same rival, they 915
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Fig A.6. Possible outcomes and individual payoffs in a fated truel game (player i’s standpoint) per Eq. (A.11). Each arrow points at the

players’ targets.

are anti-coordinating their strategies in opposite directions to shooting each other. Specifically, 916

two consecutive players Tuco (i) and Blondie (i+1), the former on the left and the latter on the 917

right, must play ϕi and ψi+1 to shoot Angel Eyes (i−1). Angel Eyes might still manage to mark 918

one of them, albeit with less effectiveness. For Tuco to come out of the standoff clean, Angel 919

Eyes must target Blondie by playing (ϕi−1). Let a be the expected payoff for making it out clean, 920

b the expected payoff for firing at the same target as another player with the risk of being hit by 921

that target, and c the expected payoff of being shot at; it follows that a > b ≥ c ∈ R. Player i’s 922

payoff contingent on actions by the players on their left (i−1) and right (i+1) is defined as 923

Ui(si,si+1,si−1) =











a if si+1 = ψi+1 ∧ si−1 = ϕi−1

b if si ̸= si+1 = si−1

c otherwise.

(A.11)

The eight possible outcomes in this game are depicted in Fig A.6. Two possible outcomes could 924

see all players defeated in the standoff: ϕ (everyone targets their rival on their right) and ψ (their 925

rival on their left). The generic individual strategic hindrance in a fated truel game is provided in 926

Fig A.5 using a = 2, b = 1, and c =−3. The deviation losses in this game are: 927

ℓ∗i (ϕi+1,ϕi−1) = A91
i ·

[

c − b
]

= A91
i ·

[

−3 − 1
]

= −4/Ai

ℓ∗i (ϕi+1,ψi−1) = A91
i ·

[

c − c
]

= A91
i ·

[

−3 − (−3)
]

= 0

ℓ∗i (ψi+1,ϕi−1) = A91
i ·

[

a − a
]

= A91
i ·

[

2 − 2
]

= 0

ℓ∗i (ψi+1,ψi−1) = A91
i ·

[

b − c
]

= A91
i ·

[

1 − (−3)
]

= +4/Ai

While Ai = a− c = 2− (−3) = 5. The space of fear and greed values is: 928

H
(3)
i (ϕ,ψ) =

1

5

[

−4 0 −4 0 −4

0 +4 0 +4 +4

]T

.

Since the payoff that player i would obtain from choosing ϕi or ψi depends not only on the 929

strategies of the other players but also their identities (i.e. indices or positions), the fated truel 930

cannot be considered a symmetric game in the classical sense, even though the resulting strategy 931

dynamics are symmetrical. Also, notice that the fated truel game exhibits 2×2 indifference 932

dynamics anytime b = c (all values of structural fear and greed are zero) resulting in S⋆ = S . 933

When a > b > c, this game exhibits pure 2×2 coexistence and S⋆ = S \{ϕ,ψ}. 934

El Farol bar 935

Three groups of friends decide independently whether to have fun at the small and only bar in 936

Santa Fé (ψ), unaware of how crowded it is. Neither group wants to be at a bar packed beyond 937

February 29, 2024 34/40



its limits; if they find the bar to be more than 2/3 full, they will regret not having stayed (at 938

someone’s) home (ϕ). So, although they would love to meet another group there, they prefer not 939

all groups to show up, which requires anti-coordination. For any a > b ≥ 0, player i’s payoff in 940

this game is defined as 941

Ui(si,s j,sk) =



















0 if ⟨si,s j,sk⟩= ψ

a if si = ψi ∧ s9i = ϕ9i

b if si = ψi ∧ s j ̸= sk

c otherwise.

(A.12)

For n = 3, this game has 3 PNE each of them equal to s⋆ = ⟨ϕi,ψ9i⟩ for every i ∈N . In Fig A.5, 942

a = 100% fun, b = 25% fun, and c = 10% fun. The individual strategic hindrance is: 943

H
(3)
i (ϕ,ψ) =

1

100

[

−90 −15 −90 −15 −90

−15 +10 −15 +10 +10

]T

.

Simple majority game 944

A player only benefits when they are one of the ⌈n/2⌉ or more members of N who choose the 945

same strategy (ϕ or ψ). Those who are part of a minority receive nothing. When n is even, a 946

stalemate could result in penalties for all players. They payoff function is given by 947

Ui(si,s j,sk) =



















1/nϕ if si = ϕi ∧ nϕ > n/2

1/nψ if si = ψi ∧ nψ > n/2

−c if nϕ = nψ = n/2

0 otherwise,

(A.13)

where c ≥ 0 is the associated penalty for failing to form a simple majority. The set of PNE in 948

this game is S⋆ = {ϕ,ψ}. For n = 3 and c = 0, the individual strategic hindrance is: 949

H
(3)
i (ϕ,ψ) =

1

1/2

[

+ 1
3

0 + 1
3

0 + 1
3

0 − 1
3

0 − 1
3

− 1
3

]T

.

Matching pennies with more than 2 players 950

Matching pennies are zero-sum variants of simple majority games. In these games, the sum of 951

the benefits received by the players who form a majority must equal the sum of the absolute 952

losses that minority players incur. The payoff function in a symmetric version of these games is 953

Ui(si,s j,sk) =



















0 if nϕ ∈ {0,n/2,n}

−nψ/nϕ if si = ϕi ∧ nϕ ∈ [1 . . n/2)

−nϕ/nψ if si = ψi ∧ nψ ∈ [1 . . n/2)

1 otherwise,

(A.14)

The individual payoff matrix for a three-player version of this game is provided in Table A.7. 954

The corresponding strategic hindrance space is 955

H
(3)
i (ϕ,ψ) =

1

3

[

+2 0 +2 0 +2

0 −2 0 −2 −2

]T

,

same as that of the three-player simple majority game in Fig A.5 using Eq. (A.13) with c = 0. 956

While S⋆ = {ϕ,ψ} for n > 2, the classical 2-player game version of this game in Eq. (12), 957

characterized by sgn(Ui(si,s j)) =−sgn(U j(s j,si)) ̸= 0, has no PNE. 958
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Fig A.7. Individual payoff matrix in a three-player matching pennies game, a zero-sum variant

of a majority game. The peak-to-peak payoff amplitude is Ai = 3. The assigning of ϕ or ψ as

ªheadsº or ªtailsº can be done arbitrarily. The resulting structural fear and greed value space is

the same as the one for the majority game in Fig A.5.

Unanimity game 959

All players in N must choose the same strategy (ϕ or ψ) to reap a benefit b > 0: 960

Ui(si,s9i) =

{

b if s1 = · · ·= si−1 = si = si+1 = · · ·= sn

0 otherwise.

For N = {i, j,k}, the deviation losses in this game are: ℓ∗i (ϕ9i) =−ℓ∗i (ψ9i) = b/Ai = 1 and 961

ℓ∗i (ϕ j,ψk) = ℓ∗i (ψ j,ϕk) = 0. The individual strategic hindrance is: 962

H
(3)
i (ϕ,ψ) =

1

b

[

+b 0 +b 0 +b

0 −b 0 −b −b

]T

.

All type I player-reduced binary games in a n×2 unanimity game are 2×2 bistability games. 963

Under these dynamics, stable rational collective action requires that every player belongs to a 964

(sub-) coalition with at least one other player willing to choose the same strategy. With n = 3, 965

only two of such coalitions can be formed: ⟨ϕ1,ϕ2,ϕ3⟩ and ⟨ψ1,ψ2,ψ3⟩. With n = 4, there are 966

eight ways in which rational players would align their strategies: two instances in which all 967

players choose the same strategy (i.e. ϕ and ψ) plus six instances in which two of them play ϕi 968

and the other two play ψi. We can obtain the number of PNE as |S⋆|= max{2, 2n −2n} for 969

n ≥ 2, which adds the two collective diagonal strategies, ϕ and ψ , and every possible binary 970

sequence of length n = nϕ +nψ where nϕ > 1 and nψ > 1 (sequence A052515 in Sloane’s 971

Encyclopedia [51]). 972

A n×2 game with no PNE 973

After characterizing the relationship between deviation losses, the emergence of strategy 974

dynamics, and equilibria conditions in several classical n×2 social dilemmas, we conclude with 975

a formula that recursively constructs a binary game with no PNE for n > 2. Building on the 976

bimatrix game in Eq. (11) and Definition A.2a, the following formula allocates a balanced 977

ternary payoff vector U ∈ {−1, 0,+1}n
to every s ∈ S such that mini∈N ℓi(si,s9i)< 0; by 978

assigning a strict cyclic order to N , e.g. [1, 2, . . . , n−1, n ]⇒ [ i, i+1, . . . , i−2, i−1 ], the 979

perfectly limited individual payoff function 980

Ui(si,sJ ,sK) =











0 if si = ϕi

+1 if sJ = ⟨ϕi+1,ϕi−1⟩ ∨ sJ = ⟨ψi+1,ϕi+2⟩

−1 otherwise,

(A.15)

where i ∈ [1 . . n], guarantees that there is at least one player in N and no more than n−1 that 981

would be better off deviating away from any s ∈ S . For instance, if n = 3, the rescaled deviation 982
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losses for player i = 1 are 983

ℓ∗i (ϕi+1,ϕi−1) = A91
i ·

(

Ui(ϕi,ϕi+1,ϕi−1)−Ui(ψi,ϕi+1,ϕi−1)
)

=
(

0 − 1
)

/Ai = −b/Ai,

ℓ∗i (ϕi+1,ψi−1) = A91
i ·

(

Ui(ϕi,ϕi+1,ψi−1)−Ui(ψi,ϕi+1,ψi−1)
)

=
(

0 + 1
)

/Ai = +b/Ai,

ℓ∗i (ψi+1,ϕi−1) = A91
i ·

(

Ui(ϕi,ψi+1,ϕi−1)−Ui(ψi,ψi+1,ϕi−1)
)

=
(

0 − 1
)

/Ai = −b/Ai,

ℓ∗i (ψi+1,ψi−1) = A91
i ·

(

Ui(ϕi,ψi+1,ψi−1)−Ui(ψi,ψi+1,ψi−1)
)

=
(

0 + 1
)

/Ai = +b/Ai;

where Ai = 2. The individual strategic hindrance is: 984

H
(3)
i (ϕ,ψ) =

1

Ai

[

ℓ∗i (ϕi+1,ϕi−1) ℓ∗i (ϕi+1,ψi−1) ℓ∗i (ϕi+1,ϕi−1) ℓ∗i (ψi+1,ϕi−1) ℓ∗i (ϕi+1,ϕi−1)

ℓ∗i (ψi+1,ϕi−1) ℓ∗i (ψi+1,ψi−1) ℓ∗i (ϕi+1,ψi−1) ℓ∗i (ψi+1,ψi−1) ℓ∗i (ψi+1,ψi−1)

]T

=
1

2

[

−1 +1 −1 −1 −1

−1 +1 +1 +1 +1

]T

.
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