

solar radiation drives the crop photosynthesis and a higher Leaf Area Index (LAI) in July ensures better light interception and photosynthetic efficiency, crucial for the plant's vegetative growth phase. Enhanced Vegetation Index (EVI) in July indicates healthier, more vigorous plant growth, and contribute to higher biomass and yield potential.

IV. DISCUSSION

This study employs a random forest model designed with changes in only one standard deviation to simulate impacts on predicted corn yield. Research indicates that extreme weather events, although infrequent, can have significant effects on crop production, and often more severe than average weather conditions [22]. We have excluded all outliers for each input. However, the sensitivity test (one standard deviation) primarily assesses how sensitive the model's predictions are to errors in the input variables. All observations and measurements contain errors. Small errors in very sensitive input variables can cause significant errors in predicted yield. While we cannot control the weather, but we use weather

combinations, we identified the key environmental factors impacting yield. From the results, we found that higher solar radiation and vegetation indices (VIs) often correlate with higher yields. Also, errors in solar radiation and vegetation indices can lead to significant inaccuracies and biases in yield predictions. These findings emphasize the importance of solar radiation and vegetation indices during critical growth periods to corn yield, and accurate measurement of the two types of inputs in the yield prediction. This study faces limitations include using changes in only one standard deviation and excluding outliers, which may restrict our understanding of the full impact range. Future research should incorporate multiple standard deviations and outliers to better capture weather variability and extreme impacts on crop yields. High-resolution weather datasets are essential for providing accurate input data, and their integration could enhance model performance. This study provides a framework for forecasting corn yield, and potential for improving crop yield predictions amid climate challenges. More importantly,

Authorized licensed use limited to: George Mason University. Downloaded on October 07, 2024 at 17:01:40 UTC from IEEE Xplore. Restrictions apply.

when certain other inputs are missing, we can use the relationship between solar radiation, LAI, and EVI to reasonably predict corn yield.

ACKNOWLEDGMENT

This study was supported by grants from NSF (Grant #: 2228000 and 2345039, PI: Dr. Liping Di)

REFERENCES

- [1] P. Smith *et al.*, "How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?", *Glob. Change Biol.*, vol. 19, no. 8, pp. 2285–2302, Aug. 2013, doi: 10.1111/gcb.12160.
- [2] D. B. Lobell, D. Thau, C. Seifert, E. Engle, and B. Little, "A scalable satellite-based crop yield mapper," *Remote Sens. Environ.*, vol. 164, pp. 324–333, Jul. 2015, doi: 10.1016/j.rse.2015.04.021.
- [3] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, "Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data," *IEEE Geosci. Remote Sens. Lett.*, vol. 14, no. 5, pp. 778–782, May 2017, doi: 10.1109/LGRS.2017.2681128.
- [4] J. Sun, L. Di, Z. Sun, Y. Shen, and Z. Lai, "County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model," *Sensors*, vol. 19, no. 20, p. 4363, Oct. 2019, doi: 10.3390/s19204363.
- [5] J. Sun, Z. Lai, L. Di, Z. Sun, J. Tao, and Y. Shen, "Multilevel Deep Learning Network for County-Level Corn Yield Estimation in the U.S. Corn Belt," *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, vol. 13, pp. 5048–5060, 2020, doi: 10.1109/JSTARS.2020.3019046.
- [6] L. Li, Q. Zhang, and D. Huang, "A Review of Imaging Techniques for Plant Phenotyping," *Sensors*, vol. 14, no. 11, pp. 20078–20111, Oct. 2014, doi: 10.3390/s141120078.
- [7] A. Mishra *et al.*, "Sorghum yield prediction from seasonal rainfall forecasts in Burkina Faso," *Agric. For. Meteorol.*, vol. 148, no. 11, pp. 1798–1814, Oct. 2008, doi: 10.1016/j.agrformet.2008.06.007.
- [8] D. A. Hastings and L. Di, "Modeling of global change phenomena with GIS using the global change data base I: Modeling with GIS," *Remote Sens. Environ.*, vol. 49, no. 1, pp. 1–12, Jul. 1994, doi: 10.1016/0034-4257(94)90054-X.
- [9] D. A. Hastings and L. Di, "Modeling of global change phenomena with GIS using the global change data base. II: Prototype synthesis of
- [12] Y. Saeyns, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," *Bioinformatics*, vol. 23, no. 19, pp. 2507–2517, Oct. 2007, doi: 10.1093/bioinformatics/btm344.
- [13] J. R. Vergara and P. A. Estévez, "A Review of Feature Selection Methods Based on Mutual Information," *Neural Comput. Appl.*, vol. 24, no. 1, pp. 175–186, Jan. 2014, doi: 10.1007/s00521-013-1368-0.
- [14] W. H. Maes and K. Steppe, "Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture," *Trends Plant Sci.*, vol. 24, no. 2, pp. 152–164, Feb. 2019, doi: 10.1016/j.tplants.2018.11.007.
- [15] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, "Conditional variable importance for random forests," *BMC Bioinformatics*, vol. 9, no. 1, p. 307, Dec. 2008, doi: 10.1186/1471-2105-9-307.
- [16] M. B. Kurusa and W. R. Rudnicki, "Feature Selection with the Boruta Package," *J. Stat. Softw.*, vol. 36, no. 11, 2010, doi: 10.18637/jss.v036.i11.
- [17] K. K. Nicodemus, J. D. Malley, C. Strobl, and A. Ziegler, "The behaviour of random forest permutation-based variable importance measures under predictor correlation," *BMC Bioinformatics*, vol. 11, no. 1, p. 110, Dec. 2010, doi: 10.1186/1471-2105-11-110.
- [18] C. B. Moss and J. S. Shonkwiler, "Estimating Yield Distributions with a Stochastic Trend and Nonnormal Errors," *Am. J. Agric. Econ.*, vol. 75, no. 4, pp. 1056–1062, Nov. 1993, doi: 10.2307/1243993.
- [19] A. Harri, C. Erdem, K. H. Coble, and T. O. Knight, "Crop Yield Distributions: A Reconciliation of Previous Research and Statistical Tests for Normality," *Rev. Agric. Econ.*, vol. 31, no. 1, pp. 163–182, 2009.
- [20] Y. Zhu, B. K. Goodwin, and S. K. Ghosh, "Modeling Yield Risk Under Technological Change: Dynamic Yield Distributions and the U.S. Crop Insurance Program," 2011, doi: 10.22004/AG.ECON.105549.
- [21] D. B. Lobell and M. B. Burke, "On the use of statistical models to predict crop yield responses to climate change," *Agric. For. Meteorol.*, vol. 150, no. 11, pp. 1443–1452, Oct. 2010, doi: 10.1016/j.agrformet.2010.07.008.
- [22] M. Moriondo, C. Giannakopoulos, and M. Bindi, "Climate change impact assessment: the role of climate extremes in crop yield simulation," *Clim. Change*, vol. 104, no. 3–4, pp. 679–701, Feb. 2011, doi: 10.1007/s10584-010-9871-0.
- [23] J. Vogel *et al.*, "Identifying meteorological drivers of extreme impacts: an application to simulated crop yields," *Earth Syst. Dyn.*, vol. 12, no. 1, pp. 151–172, Feb. 2021, doi: 10.5194/esd-12-151-