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Leaf Area Index (LAT) in July ensures better light interception
and photosynthetic  efficiency, crucial for the plant's
vegetative growth phase. Enhanced Vegetation Index (EVI) in
July indicates healthier, more vigorous plant growth, and
contribute to higher biomass and yield potential.

IV, Discussion

This study employs a random forest model designed with
changes in only one standard deviation to simulate impacts on
predicted corn yield. Research indicates that extreme weather
events, although infrequent, can have significant effects on
erop production, and often more severe than average weather
conditions [22]. We have excluded all outliers for each input.
However, the sensitivity test (one standard deviation)
primatily assesses how sensitive the model’s predictions are
to errors in the input wvariables. All observations and
measurements contain errors. Small errors in very sensitive
input variables can cause significant errors in predicted yield.
While we cannot control the weather, but we use weather
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combinations, we identified the key emvironmental factors
impacting yield. From the results, we found that higher solar
radiation and vegetation indices (VIs) often correlate with
higher yields. Alse, errors in solar radiation and vegetation
indices can lead to significant inaccuracies and biases in yield
predictions.. These findings emphasize the importance of
solar radiation and vegetation indices during critical growth
petiods to com yield, and aceurate measurement of the two
types of inputs in the yield prediction. This study faces
limitations include wsing changes in only one standard
deviation and excluding outliers, which may restriet our
understanding of the full impact range. Future research should
incorporate multiple standard deviations and outliers to better
capture weather variability and extreme impacts on crop
yields. High-resolution weather datasets are essential for
providing accurate input data, and their integration could
enhance model performance. This study provides a framework
for forecasting corn yield, and potential for improving crop
yield predictions amid climsate challenges. More importantly,
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when certain other inputs are missing, we can use the
relationship between solar radiation, LAI, and EVI to
reasonably predict com yield.
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