
1.  Introduction
Linking disparate spatial and temporal scales of biogeochemical cycles and ecosystem function is the next frontier 
of environmental science (Körner, 2014; National Research Council, 2001). Microbially mediated methane (CH4) 
cycling, which integrates processes from microbes to ecosystems, presents an avenue to explore this frontier. Iden-
tifying appropriate scales to measure CH4 cycling that both capture drivers of microbial production and represent 
ecosystem heterogeneity is critical to understanding ecosystem atmospheric fluxes. At the plant community level, 
the variability of important CH4 drivers including anoxia and organic matter (OM) is constrained by stabilizing 
feedbacks between plants and soil and the adaptation of plant species to certain conditions (Cottenie,  2005; 
Donohue et al., 2013; Metcalfe et al., 2011). This reinforcing stability can lead to plant communities with discrete 
borders and a predictable range of local conditions (Bertness & Leonard, 1997; Wilson & Agnew, 1992). Thus, 
understanding what drives CH4 production, consumption, and transport at plant community or local patch scales 
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CH4 to the atmosphere), and plant litter quality which impacted soil respiration and production of CO2 in the 
porewater. We attribute the importance of CO2 to the dominant methanogenic pathway we identified, which 
uses CO2 as a terminal electron acceptor. We propose a mechanistic relationship between PFT patches and 
porewater CH4 dynamics which, when combined with sources of CH4 loss including methanotrophy, oxidation, 
or plant-mediated transport, can provide patch-scale estimates of CH4 flux. Combining these estimates with the 
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Plain Language Summary  Methane is a potent greenhouse gas and understanding what controls 
methane production from microbes to plant communities can improve our estimates of wetland fluxes and 
global methane budgets. We propose characterizing methane dynamics in herbaceous wetlands at the scale of 
plant patches as patches integrate multiple local properties, are generally discrete, and relatively easy to map 
and measure. To characterize common wetland patch types, we investigate patterns of dissolved methane, 
soil biogeochemistry, and plant properties in 4 vegetated (submerged vegetation, forb, grass, and sedge) and 
1 unvegetated wetland patch types in a temperate, freshwater, herbaceous wetland. We found that methane 
production differs significantly across patches and is largely correlated with each plant's capacity to transport 
gas to and from the soil, the quality of plant litter, and the properties of dissolved organic carbon in each 
patch. This work improves our understanding of how patches uniquely influence methane and by mapping the 
distribution of these patches we can improve our estimates of wetland methane fluxes.
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could help us build bottom-up models that integrate heterogeneous wetlands to better manage or anticipate CH4 
emissions in the future.

As microbially mediated CH4 production occurs almost exclusively under anoxic conditions (Reddy & 
DeLaune, 2008), wetland ecosystems characterized by anoxia are hotspots for CH4 production contributing up 
to 31% to global CH4 budgets (Saunois et al., 2020). Methane cycling in wetlands is influenced by many envi-
ronmental drivers, each operating at different temporal and spatial scales. At small scales and faster rates, bioge-
ochemical and microbial dynamics dominate. OM is also necessary as a substrate for methanogenesis, and the 
amount and composition of OM affect rates of CH4 production (Berberich et al., 2020). Variables that control 
anoxia (e.g., hydrology) and OM (e.g., vegetation) within these ecosystems are thus important drivers of CH4 
production. Other controls on CH4 production range from simple thermodynamic relationships (e.g., tempera-
ture; Inglett et al., 2012) to microbial community composition and structure (e.g., resource competition and CH4 
consumption; Bridgham et al., 2013) and ecosystem dynamics (e.g., exogeneous inputs and influences of other 
biota; Silvey et al., 2019).

Plants are also known to influence soil CH4 cycling and contribute variability to ecosystem-scale estimates of 
CH4 flux (Joabsson et al., 1999). Plant physiology (e.g., belowground and aboveground tissue chemistry, litter 
quality, and canopy height) and phenology (e.g., annual productivity, timing of spring emergence, and fall senes-
cence) play critical roles in modulating ecosystem properties and soil CH4 dynamics (Moor et al., 2017; Mueller 
et al., 2020). Plant rooting zones are biogeochemically active and spatially heterogeneous areas. Roots simulta-
neously exude simple organic compounds that fuel CH4 production and supply oxygen that supports CH4 oxida-
tion and consumption (Waldo et al., 2019). Plant traits like rooting depth and specific root length determine the 
contact area between roots and the surrounding soil, the volume of rhizosphere, and the potential for both trans-
porting CH4 from, and oxygen to the soil (Butterbach-Bahl et al., 1997; Gerard & Chanton, 1993; Von Fischer 
et al., 2010). Aboveground, canopy height can influence CH4 through the amount of leaf tissue above the water 
surface and the density of gas-conducting stomata (Morrissey et al., 1993). Gas transport rates are also controlled 
by the density of porous aerenchyma tissue which acts as a plant's gas conduit (Butterbach-Bahl et al., 1997). 
Further, plants provide OM to soil for microbial oxidation through litter deposition and organic root exudates 
(Valentine et al., 1994; Waldo et al., 2019). Though vegetation is known to influence CH4 flux in wetlands, few 
have linked vegetation to dynamics in dissolved CH4 in porewater or CH4 production in the soil (but see Bansal 
et al., 2020; Noyce & Megonigal, 2021).

Herbaceous wetlands, characterized by a mosaic of discrete plant communities or patches, can exhibit high vari-
ability in soil anoxia and OM. Assigning single CH4 flux values or parameters to whole wetlands fails to capture 
important spatial heterogeneity, resulting in estimates of ecosystem CH4 fluxes that can differ by more than 50% 
(Schrier-Uijl et al., 2010). The distribution of patches often results from species sorting through environmental 
filters, expansion via clonal or vegetative reproduction, and reinforcing feedbacks (Lozada-Gobilard et al., 2019; 
Weiher & Keddy,  1995). Incorporating plant patches into flux estimates should account for the heterogene-
ity of both plants and the environmental conditions plant communities naturally integrate, like hydrology and 
anoxia. By leveraging this organization, we can attempt to identify common patch properties known to influence 
CH4 cycling, better model CH4 production at community scales, and attempt to control CH4 through vegetation 
management.

We sought to identify patterns in CH4 production by investigating dissolved CH4 concentrations in soil porewater—
where CH4 is primarily produced in our system—within discrete patches defined by dominant plant functional 
types (PFTs; Woodward & Cramer,  1996). Using measurements of biotic and abiotic conditions, we aim to 
describe wetland plant communities as suites of co-occurring CH4 drivers. Our goal was to determine if there 
were differences in these conditions among patch types and if so, which conditions best predict CH4 dynamics. 
Specifically, we hypothesized that (a) biomass and physiology (e.g., stem height) of PFTs would correlate with 
porewater DOC, (b) DOC quality (e.g., aromaticity) would modulate CH4 production and reflect inputs of each 
patch PFT, and (c) the conditions that control porewater CH4 would change over time with seasonal shifts in the 
soil environment and the specific phenology of each PFT.

Our findings demonstrate strong interpatch variability and identify key mechanisms controlling CH4 production 
that plant patches integrate. Since discrete plant communities can be mapped with ground surveys and remote 
sensing, using their combined contribution to CH4 cycling has the potential to refine estimates of ecosystem CH4 
flux.
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2.  Materials and Methods
2.1.  Study Site

For this study we investigated soil CH4 production within patches of an isolated, herbaceous 1.33 ha wetland on 
the Delmarva Peninsula, Maryland, USA (Figure 1; 39.054 N 75.753 W). The wetland is nested within a conser-
vation area, surrounded by forest and agricultural land. Based on hydrology and water chemistry data, including 
conductivity and nutrient concentrations, farms have little influence or input into our study wetland (i.e., the study 
wetland had low nutrient concentrations and rarely has overland hydrological connections to water channels) 
allowing us to characterize nutrient and OM inputs as primarily autochthonous. Our study site is equipped with an 
eddy-covariance flux tower allowing us to monitor a suite of environmental variables, including air temperature, 
precipitation, and ecosystem greenhouse gas (CO2 and CH4) fluxes using Licor LI-7500 and LI-7700 open patch 
sensors. Although the 10-year average annual rainfall for this area is approximately 1,100 mm y −1, our study in 
2021 was wet with an annual total of 1,555 mm resulting in standing water throughout much of the study (Figure 
S1 in Supporting Information S1).

2.2.  Vegetation Patches

Within the study site, we chose five patches anticipated to have distinct influences on soil biogeochemistry and 
CH4 dynamics (Figure 2b). Of these patch types, four were colonized by different plant functional types (PFT): 
sedges (Carex striata, SEG), grasses (Panicum hemitomon, GRA), forbs (emergent Persicaria hydropiperoides, 
FORB), and a mix of submerged aquatic vegetation including Proserpinica spp. and Juncus repens (SAV). The 
fifth patch represented unvegetated open water (OPW) and remained uncolonized throughout the year. Each of 
our PFTs are common and widespread across eastern North America (https://plants.usda.gov, see Figure  2c, 
Table 1, and Boutin & Keddy, 1993 for details about each PFT). One PVC well outfitted with a pressure trans-
ducer (HOBO U20-001-04) was installed in each patch type, referenced to the soil surface and corrected for baro-
metric pressure to monitor water level throughout the study. Within each of the patch types and several months 
before sampling, we established 3 replicate plots surrounded by a >2 m buffer of the dominant vegetation for 

Figure 1.  Location of study wetland and inset of distribution of patches representing four Plant Functional Types and on unvegetated open water in the wetland.
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instrumentation and monitoring (5 patch types ×x 3 replicate plots = 15 total plots). Although we only investi-
gate a single species from each PFT, we attempt to overcome this shortcoming through high sampling resolution 
(n = 75 porewater samples per patch over 5 campaigns) and robust analysis intended to infer mechanistic rela-
tionships between PFTs and porewater CH4.

2.3.  Porewater Sampling and Laboratory Analyses

In each of the 3 replicate plots per patch type we installed Rhizon porous porewater samplers (Rhizosphere 
Research Products) with 0.15 μm pore size several months before our first sampling (n = 75). We dug soil pits 
>40 cm deep and inserted Rhizons horizontally into the side wall at 10 cm depth increments starting just under 
the litter layer (designated “0 cm”) to 40 cm deep (5 total Rhizon depths). We then ran 100 cm of gas imper-
meable tubing from the Rhizon to a sampling port at the surface fitted with a stopcock to prevent gas exchange 
with the surrounding soil. Two months before our first sampling campaign, we installed an elevated boardwalk to 
minimize disturbance to surface water and soils during sampling. We chose 5 sampling campaign dates to capture 
seasonal shifts in organic matter inputs, hydrology, plant phenology, and weather: 23 June, 25 July, 14 September, 
1 November 2021, and 11 April 2022.

Figure 2.  Soil CH4 diagram (a) showing predicted drivers and pathways of porewater CH4 (orange circle) imposed on 4 vegetated and 1 unvegetated wetland patch 
types (b) in our study wetland near Goldsboro, MD, USA. In (a), red arrows indicate negative effects, black arrows positive effects, and dashed arrows indicate 
indirect effects. Plant morphology sketch (c) reflects aboveground biomass and rooting density and depth (not to scale). Gray boxes and arrows in (a) indicate known 
direct and indirect influences on CH4 that we did not measure in this study. DOC = Dissolved Organic Carbon, TEAs = terminal electron acceptors, SEG = sedges, 
GRA = grasses, FORB = forbs, SAV = submerged aquatic vegetation, OPW = open water.
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We sampled porewater by attaching 60  ml Luer-Lock syringes to each Rhizon port (n  =  75) and extending 
plungers to create a vacuum in the syringe barrel. Syringes were left undisturbed for up to 2 hr until at least 
35 ml of porewater was extracted. An aliquot of porewater was used to measure Fe 2+, an indicator of soil redox 
conditions, using the ferrozine method (see supplement for methods). Dissolved gases were extracted from pore-
water samples within 24 hr using the headspace equilibrium method (Kling et al., 1991). Equilibrated syringe 
headspace was then transferred into evacuated 12 ml vials for laboratory analysis of CH4 and CO2 concentrations. 
Remaining porewater samples were then stored at 4°C and later analyzed for DOC concentrations, DOC optical 
properties (SUVA254, and Spectral Slope Ratio, SR), and alternative terminal electron acceptors 𝐴𝐴 Fe

2+
Fe

3+ , 𝐴𝐴 NH
+

4
 /

𝐴𝐴 NO
−

3
 , and 𝐴𝐴 SO

2−

4
 (see supplement for methods). [𝐴𝐴 SO

2−

4
 ], [𝐴𝐴 NH

+

4
 ], and [𝐴𝐴 NO

−

3
 ] concentrations were only measured 

during the June campaign.

2.4.  Plant Biomass

To determine if aboveground plant biomass is related to CH4 porewater concentrations, we counted live plant 
stems and measured the height of the 5 tallest stems within 0.5 × 0.5 m quadrats adjacent to Rhizon sampling ports 
in SEG, GRA, and FORB plots. We also estimated percent cover of live and dead vegetation and measured water 
and soil temperatures at each Rhizon depth (0–40 cm). For SAV plots, we could not count or measure heights of 
stems and thus used percent live cover and water depth. Plant metrics were used to estimate aboveground biomass 
at each sampling campaign (Equation 1 below). During peak plant growth (July), we harvested plant tissue above 
the soil surface from 3–0.5 × 0.5 m quadrats in each vegetated patch type, counted and measured stem heights, 
dried at 65°C for 48 hr, and weighed for dry biomass. To estimate aboveground biomass nondestructively for 
each sampling campaign we parameterized a linear allometric equation (Equation 1) for SEG (R 2 = 0.98), GRA 
(R 2 = 0.95), and FORB (R 2 = 0.68) patch types by fitting dried biomass to stem count and canopy height values

𝛽𝛽1 ∗ StemCount + 𝛽𝛽2 ∗ CanopyHeight + 𝛼𝛼 = AbovegroundBiomass
(

dryweight gm−2
)

� (1)

Duplicate soil cores to 40 cm depth were collected from each plot (n = 30 cores) at the end of the study (Summer 
2022) using 4 cm diameter stainless steel, beveled-edge corers. One core was used to determine root biomass; 
cores were divided into 4 depth increments corresponding generally to horizons, 0–10, 11–20, 21–30, and 
31–40 cm and wet sieved through 2 mm sieves, then the roots picked out by hand. Roots from deeper soil hori-
zons (>11 cm) were aggregated due to diminishing biomass within this soil range. Sorted roots were dried for 
48 hr at 65°C and weighed. Belowground biomass (g/m 3) was calculated by dividing dry root weight by sample 
depth × core surface area.

Sedges Grasses Forbs Submerged aquatic vegetation Open water

ID SEG GRA FORB SAV OPW

Dominant species Carex striata Panicum hemitomon Persicaria hydropiperoides Proserpinica spp. --

Juncus repens

P hydropiperoides (submerged)

Photosynthetic pathway C3 C3 C3 C3/4 --

Peak aboveground biomass (g/m 2) 80.1 ± 10.2 141 ± 10.8 127 ± 16.4 34.9 ± 6.9 0.00

Root biomass 0–10 cm (g/m 2) 55.4 ± 4 25.7 ± 12 2.9 ± 1 1.8 ± 0.0 0.00

Root biomass >10 cm (g/m 2) 36.9 ± 12 37.0 ± 28 1.75 ± 0.0 8.6 ± 0.0 1.5 ± 0.0

Indicator OBL OBL OBL OBL --

Growth type Clumping Lateral spreader Seeder Seeder --

C:N ratio 58.48 a 90.4 b 9.46–16.47 c 10.78 c --

Aerenchyma tissue Y Y Y Y --

Water depth (m) 0.23 ± 0.06 0.29 ± 0.06 0.39 ± 0.07 0.46 ± 0.06 0.49 ± 0.06

Note. Numeric values in mean ± S.E.
 aBurrow and Maerz (2021).  bMoran et al. (1989).  cRen et al. (2022).

Table 1 
Patch Characteristics of 4 Plant Functional Types and Unvegetated Open Water
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2.5.  Soil Properties

To measure soil organic carbon (SOC) and particle size distribution, soil from the second core was again divided 
into 10 cm depth increments (0–10, 11–20, 21–30, and 31–40), air dried for at least 48 hr, ground, and passed 
through a 2 mm mesh sieve. Subsamples of 50 g from each depth increment of 3 patches (GRA, SAV, and OPW, 
n = 12) were sent to Brookside Laboratories (Bremen, OH, USA) for particle size analysis. For estimating SOC, 
5 g subsamples of each core section (n = 60) were combusted at 550°C for 2 hours and weighed to calculate Loss 
on Ignition (LOI). Of the 60 core sections, a subset of 20 representing all patches and a span of depth increments 
was selected to measure SOC using an elemental CHN analyzer (LECO CHN-2000 Analyzer). These values were 
then regressed with their matching LOI values (R 2 = 0.84) to estimate SOC from all soil core sections (Figure S2 
in Supporting Information S1; Craft et al., 1991).

2.6.  Soil Microbial Community Analysis

To characterize the microbial community, duplicate soil cores were collected from each plot in April and July 2021 
using a 30.5 cm soil probe. Each core was visually divided into three master horizons, O (“top”), A (“middle”), 
and B (“bottom”) to represent varying microbial activity. To compare microbial communities from each horizon 
to porewater characteristics measured from Rhizons and our other cores, we matched SOC content of O, A, and 
B horizons to that of each 10 cm subdivision and binned those values (porewater and soil) into one of the three 
horizons. Duplicate sections were placed into a sterile sampling bag, where all excess air was removed prior to 
sealing, and gently homogenized into a single representative sample. Soil samples were immediately placed in 
a cooler containing dry ice and then transferred to a −80°C freezer upon returning from the field. A total of 90 
soil samples were collected across the spring and summer field campaigns (5 patches × 3 replicate plots × 3 
horizons × 2 campaigns). Due to budget constraints, we collected samples from 3 of 5 patches that we anticipated 
would have significant differences, GRA, FORB, and OPW, representing emergent graminoid vegetation, a forb, 
and unvegetated control, respectively. In our previous research, we found DNA yields from lower clay-rich hori-
zons (i.e., B horizons) were not sufficient for sequencing; therefore, we proceeded with only the top two horizons 
(O and A). A total of 36 samples were sent on dry ice for DNA/RNA extraction and DNA sequencing (Microbi-
ome Service Laboratory, Baltimore, Maryland). We then calculated the relative abundance by dividing the total 
number of identified microbial OTUs present in each sample by the total number of OTUs observed in each 
sample × 100. We then binned OTUs into methanogens, anaerobic methanotrophs, and aerobic methanotrophs.

2.7.  Statistical Analysis

All statistical analyses were conducted in R v 4.2.2 (R Core Team, 2019). To determine the relationship between 
potential drivers of porewater CH4, we employed a suite of analyses that account for both categorial and continuous 
variables and are capable of handling missing data or hierarchical data structure (e.g., depth nested within patch). 
We first z-transformed all data to allow comparison of standardized effect sizes. Porewater CH4, aboveground 
biomass, and relative abundance of methanogens were log-transformed to meet assumptions of normality.

2.7.1.  Differences Across Vegetation Patches

To identify potential differences among patch types in porewater terminal electron acceptors and dissolved 
CH4, as well as CH4 cycling microbes, we used a repeated measure Two-way Analysis of Variance (ANOVA, 
Patch × Horizon) with plot assigned as a random effect (these plots were measured repeatedly at each campaign).

To explore correlations between patch characteristics and relative abundance (RA) of CH4 cycling microbes, 
we used linear mixed-effects models to compare RA with soil [CH4], [CO2], [DOC], SUVA, Sr, [𝐴𝐴 NH

+

4
 ], [𝐴𝐴 NO

−

3
 ], 

[𝐴𝐴 SO
2−

4
 ], and [SOC] and plant (biomass and canopy height) variables during the time of microbial sampling 

(April–July 2021). We only compared CH4 producers (methanogens), and CH4 consumers (aerobic and anaerobic 
methanotrophs) that would have direct effects on CH4 cycling. As we found no significant difference in microbial 
abundance over time, we did not consider campaign date as a predictor variable but included it and plot as random 
effects.

2.7.2.  Predictors of Porewater Methane

To explore potential drivers of CH4 concentrations, we completed two analyses. First, we built a classification 
and regression tree that split predictor variables based on their correlation with porewater CH4. This was done 
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using the ANOVA method of recursive partitioning, which iteratively splits the data into partitions that minimize 
the sum of squared deviations from the response variable mean (CH4) in each of the two parts. We chose 0.08 
as the complexity parameter, a relatively conservative value that defines the minimum improvement to the R 2 
value necessary to create a split in the tree, and a 10-fold cross-validation using the rpart R package (Therneau & 
Atkinson, 2017). We used patch, canopy height, aboveground biomass, SUVA254, SR, [DOC], SOC, soil tempera-
ture, Fe 2+, dissolved [CO2], and Julian date as predictor variables for our regression tree. Second, to determine the 
combination of variables that best predicted [CH4], we created generalized linear mixed-effects models (GLMM) 
of all variable combinations using lme4 R package and then ranked best model fit by Akaike Information Crite-
rion (AIC) values (Bates et al., 2015). For this study, we only considered linear relationships.

2.7.3.  Relative Strength of Predictors

To quantify the direct and indirect effects of patch characteristics on porewater CH4, we constructed structural 
equation models using the R package piecewiseSEM, a form of confirmatory path analysis (Lefcheck, 2016). As 
piecewiseSEM requires relatively large data sets we were limited to using complete data sets collected over the 
campaigns and excluded variables measured infrequently ([𝐴𝐴 NH

+

4
 ], [𝐴𝐴 NO

−

3
 ], [𝐴𝐴 SO

2−

4
 ], SOC, belowground biomass, 

and microbial abundance). We first constructed an a priori causal diagram using important predictors found in our 
previous models (Figure 2a). To account for categorical variables in the SEM, standard estimates and pairwise 
contrasts of patches were calculated using the emmeans R package (Lenth, 2023). To identify potential multicol-
linearity among variables before constructing SEMs, we calculated Variable Inflation Factors (VIFs). After initial 
pathways were identified and input into the SEM, we used tests of directed separation to find missing pathways 
(deemed important at P < 0.05) or removed pathways that had little explanatory power (high P-value and/or low 
R 2) and whose removal improved overall model fit. Finally, we evaluated global goodness-of-fit using Fisher's C 
value with a higher P-value indicating a better fit (i.e., closer approximation of observed and modeled data). We 
used plot as a random effect in LMR and SEM to account for repeated measures in plots over time.

3.  Results
We found significant differences in porewater variables including CH4 concentrations and those hypothesized as 
predictors of [CH4] between patches, across soil depth, and over time.

3.1.  Porewater

Among patches, OPW and SAV generally had the highest average porewater [CH4] and highest SUVA254—an 
indication of higher molecular aromaticity (Figures 3 and 4). OPW also had relatively high [DOC] and low pore-
water CO2 concentrations ([CO2]; Figure 5; Figure S3 in Supporting Information S1). Emergent patches SEG 
and GRA had relatively low [CH4] while SEG and FORB had low SUVA254. Like OPW, GRA had relatively low 
porewater [CO2], while FORB generally had the most [CO2].

[CH4] was always highest in the O horizon (0–20 cm) and lowest in the A and B horizons (21–40 cm) regardless 
of patch (Figure 3). However, SUVA254, an optical property of DOC whose higher values indicates plant-like, 
aromatic DOC and lower values more microbial-like DOC, interacted between horizons and patches and varied 
across campaigns (Figure 4). SUVA was consistently highest in OPW patches. Yet in November, OPW SUVA 
was highest in the O horizon, but lowest while GRA waws highest in the B horizon There was no interaction 
between depth and patch in June and July.

In SEG, FORB, and SAV patches, [CO2] and [DOC] strongly interacted with campaign. [CO2] was highest during 
summer campaigns (June-September) in FORB patches and highest in SEG in April and November (Figure 5). 
Compared to other patches, SEG had relatively low [DOC] in April and June yet relatively high in July, Septem-
ber, and November (Figure S3 in Supporting Information S1). SAV [DOC] patterns were the opposite (i.e., higher 
in April and June and lower the rest of the year).

𝐴𝐴 SO
2−

4
 concentrations ([𝐴𝐴 SO

2−

4
 ]) represent both the potential for energetically favorable sulfate-reducing microbes 

to outcompete methanogens and the redox condition of soil, with high [𝐴𝐴 SO
2−

4
 ] indicating frequent oxygenation of 

the soil (Wiessner et al., 2010). [𝐴𝐴 SO
2−

4
 ] was more than three times higher in FORB than GRA and SAV and higher 

at depth (B horizon, Table S1 in Supporting Information S1). Other porewater variables did not exhibit strong 
patterns and were unlikely to influence CH4 dynamics differently across patches.
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3.2.  Vegetation Biomass

Aboveground biomass was highest in GRA patches (Table 1) in summer (June, July, and September) but higher 
in SEG in fall (November) and FORB in spring (April). Belowground biomass was highest in SEG, followed by 
GRA and FORB, and was several orders of magnitude higher at 0–10 cm depth than 10–40 cm. OPW and SAV 
had negligible root biomass across all depths.

3.3.  Soil Properties

Soil organic carbon (SOC) increased in shallower horizons and was twice as high in O horizons than A and four 
times higher compared to B horizons (Table S1 in Supporting Information S1). SOC tended to be highest in 
OPW and lowest in SEG, though differences between patches were not significant. Particle size analysis showed 
that clay increased with depth similarly across the three patches, from ∼12–30%. Soil temperature ranged from 
10.0°C to 24.4°C, was cooler with depth and was warmer in OPW and SAV patches compared to emergent 
vegetation patches (SEG, GRA, and FORB; Figure S5 in Supporting Information S1). Water level was highest in 
OPW by an average of 26 cm compared to SEG and varied by 30+ cm between its low in July 2021 and high in 
April 2022 (Table 1; Figure S1 in Supporting Information S1).

Figure 3.  Dissolved porewater CH4 concentrations (mean ± SE) across soil depth taken during 5 sampling campaigns in 2021/2022 (Julian date). Colored bars indicate 
approximate soil horizons demarcated in the field (O, A, and B). Letters in superscript indicate significant differences between groups (patch types or soil horizon). 
SEG = sedges, GRA = grasses, FORB = forbs, SAV = submerged aquatic vegetation, OPW = open water.
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3.4.  Methane Cycling Microbes

The relative abundance (RA) of methanogens was significantly greater in OPW than GRA (Figure 6). Methano-
gen RA in FORB patches was similar to GRA in the O horizon, but between GRA and OPW in the A horizon. 
Methanogen RA in the A horizon exceeded that observed in the O horizon across all patch types.

Methanotrophs followed similar patterns as methanogens: Aerobic methanotrophs were greatest in OPW 
compared to other patch types and in O compared to A horizons. RA of anaerobic methanotrophs was greater 
in A horizon and generally increased from GRA to FORB to OPW patches but was not significant (Figure 6).

3.5.  Predictors of Porewater Methane

Regression tree analysis and GLMMs both revealed dissolved [CO2] to be the single most important predic-
tor associated with porewater dissolved [CH4]. In our regression tree analysis, [CO2], time of year, patch type, 
temperature, soil depth, and [DOC] were all important predictors of [CH4] under certain conditions (Figure S6 in 
Supporting Information S1; total tree R 2 = 0.64). When porewater [CO2] and soil temperature were higher, [CH4] 
was greatest (excluding SEG patches where later Julian date was more important than temperature). In deeper soil 
(≥30 cm) with low [DOC] and [CO2], [CH4] was lowest.

In the GLMM, we similarly found that [CO2], patch type, soil depth, soil temperature, and day of year, were 
important predictors of [CH4], with the best-fit model (lowest AIC) including all 5 of these variables (Table 2). 

Figure 4.  SUVA254 values (mean ± SE) across soil depth taken at 5 sampling campaigns in 2021/2022 (Julian date). Higher SUVA values indicate more aromatic or 
complex dissolved organic carbon. Colored bars indicate approximate soil horizons demarcated in the field (O, A, and B). Letters in superscript indicate significant 
differences between groups (patch types or soil horizon). SEG = sedges, GRA = grasses, FORB = forbs, SAV = submerged aquatic vegetation, OPW = open water.
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Surprisingly, aboveground biomass, microbes, and SUVA254 were poor predictors of porewater [CH4], individu-
ally or in combination with other variables. Water level was also a poor predictor of [CH4], but this was somewhat 
expected as patches were inundated for most of the study period.

Canopy height of plants explained 50% of the variance in methanogen abundance while SUVA254 explained 13% 
of the variance in aerobic methanotroph abundance (Figure S7 in Supporting Information S1).

3.6.  Relative Strength of Predictors

Our structural equation model (SEM) examining the response of porewater dissolved [CH4] which included patch 
type, soil depth, SUVA254, and dissolved porewater [CO2] as predictor variables was the best fit of all alternative 
models (AIC: 7,745, Fisher's C = 3.79, P = 0.44; Figure 7). We found that patch type was a significant predictor 
of [CH4] with OPW having the strongest positive correlation to [CH4]. [CO2] was the strongest single predictor 
and was positively correlated with [CH4] while soil depth was negatively correlated with [CH4]. SUVA254 had an 
indirect effect by modulating [CO2] and as an endogenous variable (i.e., a dependent variable in the model) was 
modulated by soil depth and patch type. Soil temperature, water level, campaign date, DOC, and plant metrics 
were included in alternative SEMs but all failed to improve our model fit.

Figure 5.  Dissolved porewater CO2 concentrations (mean ± SE) across soil depth taken at 5 sampling campaigns in 2021/2022 (Julian date). Colored bars indicate 
approximate soil horizons demarcated in the field (O, A, and B). Letters in superscript indicate significant differences between groups (patch types or soil horizon). 
SEG = sedges, GRA = grasses, FORB = forbs, SAV = submerged aquatic vegetation, OPW = open water.
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Figure 6.  Box plots showing relative abundance of microbes (Methanogens = anaerobic methanogens, 
Anaerobic = anaerobic methanotrophs, Aerobic = aerobic methanotrophs,) in soil from O and A horizons taken from 3 
wetland patches in April and July 2021. Different letters above boxes indicate significant differences between patches. 
GRA = grasses, FORB = forbs, OPW = open water.

Variable ID Fixed effects z-coeff R 2M R 2C AIC ΔAIC P

Null ∼ 0 0.14 1,026

a Water level 0.2 0.03 0.1 1,019 7 **

b Patch 0.11 0.15 1,016 10 ***

c CO2 μmol/l 0.79 0.40 0.70 785 241 ***

d Temp 0.31 0.09 0.20 993 33 ***

e Soil Depth −0.28 0.07 0.20 1,003 23 ***

f log(AG biomass) 0.06 0.00 0.16 1,028 −2 0.53

g DOC 0.38 0.12 0.27 982 44 ***

h SUVA −0.14 0.02 0.19 1,024 2 *

l Julian date 0.31 0.08 0.21 995 31 ***

Mixed models b + c + d + e + l 0.68 0.72 645 381 ***

b + c + d + e 0.67 0.71 655 371 ***

c + d + e + l 0.50 0.79 674 352 ***

b + c + d + l 0.59 0.63 740 286 ***

b + c + l 0.57 0.61 755 271 ***

a+b + c 0.57 0.61 753 269 ***

a+c 0.43 0.68 779 247 ***

c + g 0.41 0.69 782 244 ***

Note. Multivariate models consist of added individual fixed effects, represented by different letters. Higher ΔAIC indicated 
better fitting models. R 2M and R 2C indicate marginal and conditional R 2 values, respectively. *P  <  0.05, **P  <  0.01, 
***P < 0.001.

Table 2 
Results of Generalized Linear Mixed Models (GLMM) Compared Using AIC Values
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4.  Discussion
Porewater dissolved greenhouse gases, including CH4 and CO2, represent 
potential fluxes to the atmosphere and contributors to global warming. Under-
standing the dynamics of these gases at their source in the soil will help us 
better understand the connection between CH4 production, consumption, and 
flux from the soil or overlying water to the atmosphere. It is documented that 
plants help predict top-down environmental conditions, including understory 
community composition and soil properties (Chávez & Macdonald, 2010), 
while bottom-up environmental filtering can determine plant community 
assemblages (Lozada-Gobilard et al., 2019). Wetland plants are also known 
to strongly modulate CH4 flux to the atmosphere through stomatal conduct-
ance, aerenchyma tissue, and root-rhizome architecture (Hirota et al., 2004), 
but few have studied how plants affect porewater CH4 or directly meas-
ured net in situ CH4 production in wetland soils. We demonstrate that plant 
patches, a discrete level of ecological organization in herbaceous wetlands, 
dominated by common plant functional types (PFT) coalesce many biogeo-
chemical variables either through their co-occurring conditions or through 
their direct effects on soil properties, uniquely influencing porewater CH4.

4.1.  Patch Differences

We found that herbaceous wetland plant patches do not strongly influence 
porewater CH4 concentrations directly (R 2  =  0.11), but patches influence 
dissolved CO2, DOC quality, gas transport, and microbial communities to 
impose significant indirect control on porewater CH4 (R 2 = 0.68, Table 2, 
Figure  7). We found that porewater CO2 concentrations, [CO2], were the 
most important variable correlated with porewater [CH4], perhaps as a termi-
nal electron acceptor in hydrogenotrophic methanogenesis (Figure S8 in 
Supporting Information S1; Bridgham et al., 2013). Porewater [CO2] was in 

turn correlated with DOC quality, specifically SUVA254, an indicator of DOC origin and aromaticity. The two 
graminoid emergent vegetation patches, representing grass and sedge PFTs, corresponded to decreased porewater 
[CH4] and shifts in related soil and porewater biogeochemistry, though likely through different mechanisms as 
discussed below. Microbial relative abundance, although not directly related to [CH4] in our analysis, also varied 
among patches and was related to canopy height and DOC quality (SUVA254). Patterns of [CH4] changed over 
time and with soil depth, with highest [CH4] in September, when temperatures and water levels were high across 
the wetland, and in the O horizon where anaerobic methanotrophs were less abundant. This corresponds to other 
studies of CH4 emissions from inundated wetlands within our study area, showing high emissions during warm, 
wet periods suggesting factors controlling CH4 emissions and production may be related (Hondula, 2021).

Relative elevation and water level likely determine some aspects of soil biogeochemistry at our site via influences 
on redox conditions that change with the water table (Kottkamp et al., 2022). Likewise, it has been shown that 
plant patch distributions are driven by hydrology. Panicum hemitomon (GRA) can elongate stems in response 
to increased flooding depth (Kirkman & Sharitz,  1993) while Carex striata (SEG) is more tolerant of water 
drawdown than other species in our study (Laidig, 2012). Carex was dominant along the higher edges of the 
depressional wetland while Panicum was found in deeper water less likely of drawdown (Figure 1). Persicaria 
hydropiperoides (FORB), prefers water depth 0–20 cm (Roznere & Titus, 2017), and submerged aquatic vegeta-
tion needs a minimum water depth to be erect. However, many variables were better explained by variations in 
plant physiology and function than water depth.

Dissolved [CH4] roughly followed a gradient of water depth from lowest in SEG to highest in OPW, though 
vegetation phenology and physiology affected this relationship. CH4 produced in the soil must diffuse across 
the sediment-water interface and through the water column to reach the atmosphere, but plants can bypass this 
slow diffusion step and emit CH4 directly to the atmosphere (Bansal et  al.,  2020; Ström et  al.,  2003). This 
could explain the low concentrations of CH4 we found in patches with emergent vegetation and similarly high 

Figure 7.  Structural equation model (SEM) showing direct and indirect 
effects of wetland patch characteristics on the response variable, porewater 
CH4 concentrations. Gray boxes indicate exogenous (independent) variables, 
yellow boxes endogenous (dependent) variables, and orange box the response 
variable. SUVA represents SUVA254 an optical DOC property where higher 
values indicate more aromatic, plant-like DOC. Arrow size corresponds 
to z-transformed effect size, labeled above each arrow, with * indicating 
P-value (***<0.001). Black and red arrows indicate positive and negative 
relationships, respectively. R 2M and R 2C indicate marginal and conditional 
R 2 values, respectively. The effect of patch, a factorial variable, is shown 
with marginal means and superscript letters indicate significant difference of 
effect size between patches (SEG = sedges, GRA = grasses, FORB = forbs, 
SAV = submerged aquatic vegetation, OPW = open water).
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concentrations in OPW and SAV patches under flooded conditions. Soil temperature was consistently lower in 
emergent patches (SEG, GRA, and FORB), though only by 1–2°C, likely via shading from standing vegeta-
tion. However, this subtle difference may lead to a divergence in patch-scale functioning when nonlinear soil 
temperature thresholds  are reached (20°C), particularly those related to the activity of methane cycling microbes 
(Bansal et al., 2023; Chadburn et al., 2020; Updegraff et al., 1998). Dissolved organic carbon (DOC), the primary 
substrate for methanogenesis, exhibited seasonal patterns likely related to the PFT in each patch. In SEG, for 
example, DOC was lowest early in the growing season (April and June) but rapidly increased likely because of 
root exudation and litter inputs (Uselman et al., 2007).

[CO2], an important predictor of porewater [CH4] in our study, was highest in FORB patches and often lowest in 
OPW, SAV, and GRA patches. Low [CO2] in OPW and SAV is likely due to low redox potential in deeper water 
and subsequent decreased rates of soil aerobic respiration (Mitsch & Gosselink, 2000). The low [CO2] in GRA 
patches, however, was surprising as these plants are highly productive, can oxygenate the soil through rhizosphere 
diffusion, and provide ample organic carbon substrate via litter. The accumulation of litter we observed, however, 
may indicate poor quality and slow decomposition, which is supported by its high litter C:N ratio and decompo-
sition rate compared to other wetland graminoids (Moran et al., 1989). High [CO2] in FORB patches may also be 
related to litter quality as similar species have very low C:N (Ren et al., 2022).

SUVA254 values strongly differed across patches which also interacted with depth. OPW patches generally 
decreased with depth, indicating less aromaticity and age (Weishaar et  al.,  2003) in deeper soil and for the 
wetlands in our study site, a less plant-like, more microbial-like origin (Hosen et al., 2018). Such a depth related 
decrease has also been shown in other wetlands in our study site (Wardinski et al., 2022). In emergent patches 
(SEG and FORB and GRA), we found that SUVA254 in shallow porewater was often lower than OPW and SAV 
patches, suggesting DOC origins here are more microbial-like. However, deeper porewater (B horizon) SUVA254 
in GRA patches specifically were higher compared to all other patches, suggesting a plant-like origin. This may 
reflect unique chemical properties of GRA compared to other vegetated patches allowing it to persist in the soil 
and perhaps demonstrates low palatability for decomposing or methanogenic microbes (Qualls, 2005).

4.2.  Links to Methane Dynamics

Our different modeling approaches mostly agreed on the best predictors of observed CH4 patterns, and particu-
larly on the strong effect of porewater [CO2], a terminal electron acceptor in hydrogenotrophic methanogene-
sis. While we did not measure other potential precursors (e.g., acetate), the most abundant methanogen family 
in our samples was Methanoflorens, which predominantly uses hydrogenotrophic methanogenesis (Figure S8 
in Supporting Information S1; Mondav et al., 2014). Furthermore, our SEM suggests that [CO2] is negatively 
correlated with SUVA254, an indicator of DOC origin and aromaticity. Lower SUVA254 values are linked to more 
microbial than plant-like origins and the correlation of porewater CO2 and low SUVA254 could reflect a greater 
abundance of CO2-respiring microbes. Alternatively, as DOC is a substrate for CO2-respiring decomposers, more 
aromatic DOC with high SUVA254 values may be harder to break down (Qualls, 2005), thus slowing decompo-
sition and the release of [CO2]. Therefore, SUVA254 may indirectly control [CH4] in our soils by modulating the 
production of the terminal electron acceptor CO2. This is especially likely in patches dominated by Panicum 
hemitomon (GRA), which produces low quality litter and DOC (Moran et al., 1989).

Soil depth was also a significant predictor according to our models, with [CH4] generally highest in the O hori-
zon. The greater relative abundance of anaerobic methanotrophs in the A horizon may correspond to more active 
methanotrophs consuming CH4 produced under these anoxic conditions. Likewise, fewer anaerobic methano-
trophs present in the O horizon may result in a net gain in CH4 production, causing it to accumulate in this hori-
zon. The resulting reservoirs of CH4 in the shallow O horizon could be vulnerable to surface disturbance, leading 
to ebullitive pulses of CH4 that rapidly bubble to the atmosphere (Sachs et al., 2008).

Patches with dominant PFTs exert unique influences on CH4 production that can be broadly applied to plant 
species with similar traits. Both SEG and GRA are functionally similar, large-stature emergent plants yet had 
very different influences on soil biogeochemistry and CH4 dynamics. GRA patches produce low quality litter, 
constraining soil respiration and the production of [CO2], a key component of hydrogenotrophic methanogenesis 
(Table 1). SEG patches had low SUVA254, DOC, and high porewater [CO2] that could support high rates of CH4 
production. Yet Carex striata is also known to have highly conductive aerenchyma tissue capable of transporting 

 21698961, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007814, W
iley O

nline Library on [28/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Biogeosciences

SHARP ET AL.

10.1029/2023JG007814

14 of 17

oxygen to, and CH4 from the rhizosphere, suppressing methanogenesis or facilitating atmospheric CH4 flux, 
respectively (Visser et  al., 2000). Carex striata litter also has a low C:N ratios, facilitating high rates of soil 
respiration, especially when supported by rhizosphere oxygenation (Burrow & Maerz, 2021). Conditions were 
also ideal for methanogenesis in FORB porewater, which had high porewater [CO2] and less gas-conductive 
aboveground biomass compared to graminoid emergent species.

Counter to our model results, OPW had high [CH4] in July and September despite low [CO2] and high SUVA254 
values. We suggest that although rates of CH4 production may be low due to low [CO2], CH4 still accumulates 
during warmer months by outpacing CH4 consumption and transport. In unvegetated OPW patches of this study, 
methanogens are more abundant compared to other patches, soil is more consistently anaerobic, and there is no 
plant-mediated soil oxygenation to stimulate aerobic oxidation of CH4. Combined with the lack of plant-mediated 
gas transport to the surface, the consistent CH4 production and low rates of consumption and diffusion likely 
allowed soil CH4 to accumulate. Previous studies have found similar “reservoirs” of CH4 in unvegetated soils that 
were attributed to the lack of plant-mediated fluxes (Bansal et al., 2020; Tokida et al., 2005). SAV patches had 
the highest [CH4] in all but July, corresponding with high porewater [CO2]. Although [DOC] was relatively low 
and aromatic in SAV, the lack of plant-mediated gas transport and perhaps lateral transport of dissolved CH4 from 
nearby sources (e.g., FORB patches) through the soil (something we did not measure) may facilitate accumula-
tion of dissolved CH4 in shallow soil similar to OPW (Hondula et al., 2021). Although Theus et al. (2023) found 
fresh plant detritus from SAV, an OM source that may not be well reflected in porewater samples, to be a strong 
contribution to CH4 production.

Our analysis of microbial communities suggests a link between porewater [CH4] and production and consump-
tion rates in the soil, helping to isolate the role of transport in [CH4] dynamics. Surprisingly, relative abundance 
of microbes from the three communities we sampled had no relationship with porewater [CH4]. This could be 
due to our measure of relative abundance, which tracks the microbial presence rather than activity, and may not 
reveal differences caused by seasonal shifts in CH4 production. We also found a negative correlation between 
canopy cover and methanogen abundance in our study (Figure S4 in Supporting Information S1). This rela-
tionship suggests low CH4 levels in patches like SEG may be due to a lack of production rather than increased 
transport, as large stature plants like Carex striata can deliver significant amounts of oxygen to rhizosphere 
and soil, inhibiting the establishment of anaerobic methanogen communities (Armstrong et al., 2006). We also 
observed relatively high levels of 𝐴𝐴 SO

2−

4
 in SEG patches, suggesting that oxidizing conditions are prevalent. 

High oxygen exposure can be lethal to hydrogenotrophic methanogens (Meegoda et al., 2018), the dominant 
CH4-producing microbe in our soils. However, as microbial communities are known to vary among species 
within the same site, we cannot directly infer if the microbial communities between GRA and SEG are similar 
(Clairmont et al., 2019).

5.  Conclusions
Porewater CH4 represents an important source of atmospheric greenhouse gases and linking it to patch scale 
drivers can help us understand and predict ecosystem fluxes across herbaceous wetlands. For example, leveraging 
drivers of CH4 dynamics (e.g., canopy height, C:N ratio) that are common to patches with a shared PFT allows us 
to predict patch-scale CH4 flux without direct measurements now and under future climate scenarios. By mapping 
PFT distribution in wetlands with field surveys or remote sensing technology we can then aggregate patch-scale 
estimates of CH4 to entire wetlands (Cunnick et al., 2023; Niculescu et al., 2020). Although our study was during 
an unusually wet year, it may foreshadow a typical future year in the mid-Atlantic region of the USA as the 
climate is predicted to become wetter. Warmer forecasts for the region under future climates could also emphasize 
the role of shade-providing vegetation as nonlinear temperature thresholds on microbial activity are crossed more 
frequently or for longer periods (Bansal et al., 2023). Furthermore, shifts in the composition  and distribution of 
vegetation likely to occur with the encroachment of invasive species and changes in climate regimes highlight 
the need to understand plant influences on soil carbon dynamics. By combining anticipated future vegetation 
composition in heterogenous herbaceous wetlands with our understanding of how plants mediate CH4 dynamics, 
we can greatly improve our accuracy in predicting ecosystem CH4 fluxes. These estimates can be used to improve 
global CH4 budgets or inform conservation and management strategies in herbaceous wetlands to better mitigate 
greenhouse gas emissions.
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