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Is It Feasible to Reconstruct

Aortic Pressure Waveform

Based on a One-Dimensional

Uniform Model of the Arterial

Tree?

Based on a one-dimensional (1D) uniform model of the arterial tree, various machine-learning
techniques have been explored to reconstruct aortic pressure waveform (APW) from peripheral
pressure waveform (PPW). This study aims to examine the feasibility of such reconstruction.
Based on a 1D uniform vibrating-string model, transfer function (TF) of PPW to APW contains
four harmonics-dependent parameters: value and phase of reflection coefficient (i.e., load
impedance) at periphery and transmission parameter and transmission loss in the aorta-
periphery section. Pressure waveforms and blood velocity waveforms at the ascending aorta
(AA), the carotid artery (CA), and the radial artery (RA) of virtual health subjects at different
ages in a prevalidated database are analyzed to calculate (1) reflection coefficient at theCAand
the RA as two peripheries, (2) TF for the AA-CA and AA-RA sections, and (3) transmission
parameter and transmission loss in the two sections. Harmonics-dependence of the four
parameters varieswith aging inboth sections, andarterial nonuniformitymakes it unpractical to
configure any mathematical model for their harmonics-dependence. Instead of fluid-loading,
arterial nonuniformity greatly affects transmission loss. Compared with higher harmonics,
transmission loss dramatically alters reconstructed APW. A 1D uniformmodel allows accurate
reconstruction of APW from PPW, with a caveat that baseline values of the four parameters at
different harmonics under different cardiovascular (CV) conditions need to be established a
priori. Alternatively, based on the baseline values, PPWcan be directly utilized for inferringCV
conditions. [DOI: 10.1115/1.4062468]

Keywords: aortic pressure waveform, peripheral pressure waveform, transfer function, 1D
uniform model, arterial non-uniformity, harmonics-dependence

1 Introduction

Compared with peripheral pressure waveform (PPW), aortic
pressure waveform (APW) carries more physiological and patho-
logical information for the cardiovascular (CV) system but is
difficult to measure noninvasively [1–3]. Therefore, transfer
function (TF) has been pursued to reconstruct APW from PPW
[2–5]. Compared with arterial stiffness, three clinical indices:
reflection magnitude, return time, and augmentation index (AI),
derived from APW have been found to carry independent clinical
values and rely on the details (i.e., morphology) on APW [6–9].
Generalized transfer function (GTF, i.e., averaged over different
groups of subjects) is incapable of fully reproducing the details on
APW of individuals from the measured PPW [2–5]. As such,
individualized TF has been pursued for reconstructed APWwith the
details on the measured one. In the early days of reconstruction of
APW, Hope et al. [8] pointed out that individualized TF does not
permit reconstruction of APW from the measured PPW for accurate

estimation ofAI, and the reconstructed APW is simply themeasured
PPW passing through a single mathematical transformation. It was
debated [9] that an error in the phase of higher harmonics causes
inaccurate estimation of AI from the reconstructed APW, which is
consistent with a related finding that AI is more dependent on higher
harmonics of APW [10]. Later on, Westerhof et al. [7] found
that individualized TF is only slightly better than GTF for
reconstruction of APW of patients at rest, but remains insufficient
to fully reproduce the details ofAPW.Furthermore, it was found that
whether individualized TF improves reconstructed APW depends
on CV conditions [11], implying the variations of TF with CV
conditions.
Over the past decade, advancement in machine-learning techni-

ques has prompted significant interest in individualizing the TF
[5,12–15]. The majority of the studies on individualizing the TF has
based on a one-dimensional (1D) uniform lossless tube-load model
[3–5], in which the tube represents the uniform aorta-periphery
section (i.e., the same physical properties and geometries along its
length) and the load manifests wave reflection at periphery as load
impedance. Based on this tube-load model, the TF contains three
parameters: transmission parameter (or pulse transit time, PTT) in
the aorta-periphery section, and value and phase of reflection
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coefficient (i.e., load impedance) at periphery [5]. It should be noted
that transmission loss is mostly neglected, since it is commonly
considered to be insignificant. Individualizing the TF is about
identifying the values for these three parameters. A pulse signal in
the arterial tree is a collection of harmonics of the heart rate and at
least the first ten harmonics are needed to accurately represent APW
[16,17]. Yet, since the three parameters all vary with harmonics,
they translate to a total of 30 values. Currently, various machine-
learning techniques have been applied to the measured pressure
waveforms at the aorta and periphery of different groups of subjects
for identifying the 30 values in the TF for an individual. Du et al. [5]
has recently provided a good summary of different machine-
learning techniques for such efforts.
Most of these machine-learning techniques have focused on

tailoring harmonics-dependence of the value and phase of load
impedance, since harmonics-dependence of load impedance plays the
most critical role in better matching the reconstructed APW to the
measured one, comparedwith transmission parameter [3,5]. Different
models of the load have been utilized to adjust harmonics-dependence
of load impedance. For instance, a three-element Windkessel model
and a four-elementWindkessel model have been examined [3,5], and
the same three-elementWindkessel model with two sets of values for
lower harmonics and higher harmonics, respectively, has also been
investigated [13].Thesemachine-learning techniqueshave achieveda
moderate amount of success, in the sense that, as comparedwithGTF,
APW reconstructed from the individualized TF is closer to the
measured one, but it remains insufficient to fully reproduce the details
on the measured APW [5]. Yet, it is the details on APW that
determines those clinical indices based onAPW [6–9], and the details
on APW vary with CV conditions [11].
Given all the efforts on machine-leaning techniques for

reconstruction of APW with accurate details, this study aims to
investigate the feasibility of such reconstruction based on a 1D
uniform model of the arterial tree. Recently, the author [6]
developed a 1D uniform vibrating-string model for examining
wave transmission and reflection between the ascending aorta (AA)
and periphery, in which load impedance is found to determine input
impedance, with the latter determining wave reflection at the AA
and thus the details onAPW.This vibrating-stringmodel leads to the
TF from PPW to APW, which is identical to the one from the 1D
uniform tube-load lossless model, except that transmission loss due
to fluid-loading is also included. Similar to the tube-load model,
arterial nonuniformity (i.e., axially varying physical properties and
geometries in an arterial segment and branching sites in the arterial
tree) is neglected [5,6]. In this study, based on this vibrating-string
model, pressure waveforms and blood velocity waveforms at the
AA, the CA, and the radial artery (RA) of virtual healthy subjects at
different ages in a prevalidated database [18] are analyzed to
calculate reflection coefficient at the CA and the RA as two
peripheries in the TF for the uniform AA-CA section and the
uniform AA-RA section, respectively. By substituting the corre-
sponding APW and PPW into the TF, transmission parameter and
transmission loss in the two sections are calculated. Based on the
calculated results, harmonics-dependence of the four parameters at
different ages and the influence of transmission loss and higher
harmonics on reconstructed APW are examined. For the first time,
significant influence of arterial nonuniformity on transmission loss is
revealed. Arterial nonuniformity makes it unpractical to configure any
mathematicalmodel for harmonics-dependence of the four parameters.
Finally, the feasibility of reconstruction of APWwith the details on the
measured one based on a 1D uniform model is discussed.

2 Methods

2.1 Theory

2.1.1 One-Dimensional Uniform Vibrating-String Model of the
Arterial Tree. Based on the 1D pulse wave propagation theory,
pulsatile pressure Dp(x, t) at position x along the arterial tree is a
collection of harmonics of the heartbeat

Dpðx, tÞ ¼
X

n

ðAne
�iknx þ Bne

iknxÞeinxt (1)

where An and Bn denote the forward and reflected pressure wave
amplitudes of the nth harmonic, respectively, at the AA, with x as
the fundamental angular frequency of the heart rate (HR) and
kn¼ nx/cn being the nth wave number. Note that cn is the nth wave
velocity [6]

cn ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� F10ð Þ
p

¼ vne
idn with c0 ¼ PWV ¼

ffiffiffiffiffiffiffiffiffiffi

Eh

2qba

s

(2)

where E, h, and a denote the circumferential elasticity, thickness,
and inner radius of the arterial wall, respectively; and qb denotes
blood density. The nth phase velocity is vn= cosðdnÞ. Equation (2) is
only valid for calculating wave velocity at a position in an arterial
segment and does not account for arterial nonuniformity. Note that
c0 is pulse wave velocity (PWV) commonly measured in clinical
studies, and F10 is a fluid-loading term, which is harmonics-
dependent and takes complex values

F10 ¼
2J1 a0ð Þ

a0J0 a0ð Þ
harmonics�dependent, complexð Þ (3)

where a20 ¼ i3a2, and a ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qbnx=l
p

is the Womersley number
with l being blood viscosity.
Pulsatile pressure causes radial displacement g(x, t) of the arterial

wall and blood velocity u(x, t) (averaged across the lumen) in blood
flow [6]

g x, tð Þ ¼
a2

Eh

X

n

Ane
�iknx þ Bne

iknx
� �

einxt (4a)

u x, tð Þ ¼
1

qb

X

n

1� F10

cn
Ane

�iknx � Bne
iknx

� �

einxt (4b)

Equations (1) and (4) indicate that pulsatile pressure and radial wall
displacement have identical waveforms. Based on Eq. (4), pulse
wave propagation in the arterial tree is governed by

qbpa
2 @

2g

@t2
¼

Ehpa

2
1� F10ð Þ

@2g

@x2
(5)

The standard 1D wave equation for a vibrating string is [19]

qL
@2g

@t2
¼ T

@2g

@x2
with c ¼

ffiffiffiffiffiffiffiffiffiffiffi

T=qL
p

wave velocityð Þ (6)

whereqL andT denote linear density and tension, respectively, of the
string. Comparison of Eq. (5) with (6) shows that the arterial tree can
be treated as a vibrating string with its equivalent linear density and
tension

qL ¼ qbpa
2 and T ¼

pEh

2
a 1� F10ð Þ (7)

While linear density does not vary with harmonics, tension is
harmonics-dependent and takes complex values.

2.1.2 Reconstruction of Aortic Pressure Waveform From
Peripheral Pressure Waveform. It should be pointed out that
Eq. (6) is also applicable to pulsatile pressure and blood velocity.
Being more aligned with transverse displacement of a vibrating
string, radial wall displacement is chosen for analysis here. Since
radial wall displacement and pulsatile pressure have identical
waveforms, radial wall displacement waveform can represent
pressure waveform. As shown in Fig. 1(a), the arterial tree from
the AA to periphery can be treated as a 1D uniform vibrating-string
model, with the AA at x¼ 0 and periphery at x¼ L. The nth wave
velocity in the uniform aorta-periphery section is defined as
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ctn ¼ vtne
idtn (8)

where vtn and dtn are the value and the phase, respectively, of the nth
wave velocity in the section, accounting for fluid loading and arterial
nonuniformity. Accordingly, the nth phase velocity in the section is
vtn= cosðdtnÞ. Thus, wave transmission from the AA to position x is
characterized by transmission parameter knx and transmission loss
cnx [6]

e�iknxe�cnx with kn ¼
nx

vtn= cos dtnð Þ
and cn ¼

nx

vtn= sin dtnð Þ

(9)

Radial wall displacement at position x is given by

gnðx, tÞ ¼ ðAne
�iknxe�cnx þ Bne

iknxecnxÞeinxt (10)

where An and Bn denote the amplitudes of the nth forward and
reflectedwaves at theAA, respectively. Thenth driving forceFn(x, t)
is written as

Fnðx, tÞ ¼ �T@gn=@x ¼ qLctninxðAne
�iknxe�cnx � Bne

iknxecnxÞeinxt

(11)

The nth mechanical impedance Zn is defined as [19]

Zn xð Þ ¼
Fn

@gn=@t
¼ qLctn

Ane
�iknxe�cnx � Bne

iknxecnxð Þ

Ane�iknxe�cnx þ Bneiknxecnxð Þ
(12)

Removing wave reflection in Eq. (12) leads to the nth characteristic
impedance Zcn [19]

Zcn ¼ qbpa
2ctn ¼ qbpa

2vtne
idtn (13)

According to Eq. (10), the nth peripheral radial wall displacement
gpn(t) becomes

gpnðtÞ ¼ gnðL, tÞ ¼ ðAne
�iknLe�cnL þ Bne

iknLecnLÞeinxt

¼ ðgpfn þ gpbnÞe
inxt (14)

where gpfn and gpbn denote the amplitudes of the nth forward and
reflected waves at periphery, respectively, and their ratio represents
the nth reflection coefficient Cn at x¼ L

gpbn

gpfn
¼ CLn ¼ XLn � e

ihLn hLn < 0ð Þ (15)

whereXLn is a real number, and hLn<0, because gpfn is ahead of gpbn.
According to Eq. (12), the nth load impedance ZLn at position x is
related to CLn by

ZLn ¼ ZLcn
1� CLn

1þ CLn

or CLn ¼
1� ZLn=ZLcn
1þ ZLn=ZLcn

(16)

where ZLcn denotes local characteristic impedance at periphery,
which can be obtained by replacing ctnwith cn in Eq. (13). As shown
in Fig. 1(b), due to arterial nonuniformity,wave reflection at position
x is determined by local characteristic impedance and load
impedance at the position [17].
By substituting Eq. (15) into Eq. (14), the nth radial wall

displacement gan(t) at the AA can be reconstructed from gpn(t)

gan tð Þ ¼ An þ Bnð Þeinxt ¼
eiknLecnL þ CLne

�iknLe�cnL

1þ CLnð Þ
gpn tð Þ (17)

Reconstruction of gan(t) from gpn(t) is all about identifying the
values for four parameters: transmission parameter and transmission
loss in the aorta-periphery section and reflection coefficient at
periphery.

2.1.3 Transmission Parameter and Transmission Loss. Arterial
nonuniformity causes unknown influence on transmission param-
eter knL and transmission loss cnL in the aorta-periphery section.
Yet, their values can be obtained from Eq. (17), if APW, PPW, and
reflection coefficient at periphery are all known. The nth transfer
function Hn between the AA and periphery is defined as [5,20]

Hn ¼
gpn tð Þ

gan tð Þ
¼

1þ CLn

eiknLecnL þ CLne�iknLe�cnL
(18)

The above equation can be rewritten as a quadratic equation of knL
and cnL

eiknLecnLð Þ2 �
1þ CLn

Hn

eiknLecnL þ CLn ¼ 0 (19)

Consequently, knL and cnL can be obtained from the transfer
function and reflection coefficient at periphery

eiknLecnL ¼
1þ CLnð Þ

2Hn

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ CLn

2Hn

� �2

� CLn

s

(20)

2.1.4 Wave Reflection at the Ascending Aorta Is Determined by
Load Impedance. As shown in Eq. (17), wave reflection at the AA
affects APW. Based on Eq. (12), the nth input impedance at the AA
is [6]

Z0n ¼ Z0cn
An�Bn

AnþBn

¼ Z0cnG
�1
n e�i/n with

An�Bn

AnþBn

¼G�1
n e�i/n

(21)

where Z0cn denotes local characteristic impedance at the AA, as
shown in Fig. 1(b), and G�1

n e�i/n is measurable at the AA and

Fig. 1 Schematics of 1D pulsewave propagation in the arterial tree for wave transmission and reflection between
the aorta and periphery: (a) a 1D uniform vibrating-string model (b) a 1D vibrating-string model accounting for
arterial nonuniformity
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periphery, albeit technical challenges involved in its measurement
[1]. Based on Eq. (14), input impedance is related to load impedance
(or reflection coefficient) at periphery by

Z0n ¼ Z0cn
An � Bn

An þ Bn

¼ Z0cn
e2iknLe2cnL � CLn

e2iknLe2cnL þ CLn

¼ Z0cn
ZLcn e2iknLe2cnL � 1ð Þ þ ZLn e2iknLe2cnL þ 1ð Þ

ZLcn e2iknLe2cnL þ 1ð Þ þ ZLn e2iknLe2cnL � 1ð Þ
(22)

Input impedance is determined by reflection coefficient (i.e., load
impedance) at periphery. This explains the reason why load
impedance is so critical for reconstruction of APW [5]. Now, the
question arises: based on Eq. (22), can those models for harmonic-
dependent load impedance used in machine-learning techniques
[3,5] translate to the true harmonics-dependent input impedance?
Other thanAI, reflectionmagnitude and phase (i.e., return time) at

the AA are two clinical indices derived from APW [1]. Reflection
coefficient at the AA is related to G�1

n e�i/n by

C0n ¼
Bn

An

¼ X0n � e
ih0n ¼

Gne
i/n � 1

Gnei/n þ 1
with

X0n ¼
Gne

i/n � 1

Gnei/n þ 1

�

�

�

�

�

�

�

�

and h0n ¼ �a tan
2Gn sin/n

G2
n � 1

(23)

Based on the measured data G�1
n e�i/n in clinical studies [6],

reflection magnitude X0n and phase h0n vary with harmonics.
Similar to AI, reflection magnitude and phase derived from APW
depend on the details on APW [6].

2.2 Data-Processing Algorithms. Due to a lack of the related
measured data, simulated data for virtual healthy subjects at
different ages (25 year–75 year) in a prevalidated database [18] are
chosen for analysis and are referred to as measured data here.
Pressure waveforms and blood velocity waveforms in time domain
at theAA, theCA, and theRA at different ages are analyzed. TheCA
and the RA are treated as two peripheries. All the calculation is
conducted in MATLAB. First, fast Fourier transform (FFT) analysis is
conducted on pressure waveform and blood velocity waveform at
each artery for their first ten harmonics

DpðtÞ ¼
X

10

n¼1

Dpn cosðnxtþ anÞ (24a)

uðtÞ ¼
X

10

n¼1

un cosðnxtþ bnÞ (24b)

where Dpn and an denote the amplitude and phase of the nth
harmonic in pulsatile pressure, respectively, and un and bn denote
the amplitude and phase of the nth harmonic in blood velocity,
respectively. Based on the harmonics of pressure waveforms at the
three arteries, the transfer functions for the AA-CA section and the
AA-RA section are calculated.
Load impedance at periphery and input impedance at the AA are

both mechanical impedance. The nth measured load impedance at
the CA and the RA, and the nthmeasured input impedance at theAA
are then calculated as [6]

ZLn ¼
qbc0ð Þ

2pa2

Dpn
un

ei an�bnð Þ
CA andRAð Þ and Z0n ¼

qbc0ð Þ
2pa2

Dpn
un

ei an�bnð Þ
AAð Þ

(25)

Note that c0 and a in Eq. (25) take local values at each artery. Based
on Eq. (13), local characteristic impedance at each artery is
calculated. Consequently, reflection coefficient at each artery is
obtained fromEq. (16).Afterwards, the transfer function for theAA-

CA section and reflection coefficient at the CA are substituted into
Eq. (20). The solution with the positive value for knL is chosen as
transmission parameter and the accompanying cnL is chosen as
transmission loss for the AA-CA section. Similar, knL and cnL are
calculated for the AA-RA section.

3 Results

3.1 Harmonics of Pressure Waveforms and Transfer
Function. Figure 2 shows pressure waveforms and blood velocity
waveforms at the three arteries at different ages, which are
reconstructed from their first ten harmonics. Both waveforms vary
with aging and between the arteries. Figure 3 illustrates the first ten
harmonics of the pressure waveforms in Fig. 2. At all ages and the
three arteries, lower harmonics is dominant relative to higher
harmonics. With aging, lower harmonics become more dominant
relative to higher harmonics. From the AA, the CA, to the RA,
although lower harmonics become larger, they are less dominant
relative to higher harmonics. Meanwhile, the phases for the first
three harmonics vary moderately with aging at the three arteries. In
contrast, the phases for the rest harmonics swing dramatically with
harmonics. As shown in Fig. 4, the values and phases of transfer
function for all the harmonics vary with aging in both sections.
Noticeably, the values and phases of transfer function at all ages do
not show any clear mathematical relation to harmonics.

3.2 Wave Reflection and Wave Transmission. As shown in
Fig. 5, the values of input impedance and load impedance increase
with aging for all the harmonics. The values and phases of input
impedance and the values and phases of load impedance all vary
with harmonics at different ages, but their variations with harmonics
are quite different between different ages at each artery. Figure 6
shows the values and phases of local characteristic impedance at the
three arteries. Note that phase of local characteristic impedance is
the same as phase of wave velocity at each artery. Due to the large
size of the AA, the value of local characteristic impedance at the AA
does not vary with harmonics, and its phase is very small. While the
values of local characteristic impedance at the CA and the RA
increase with harmonics, the corresponding phases decrease with
harmonics. As compared with their counterparts at the CA, the
values at the RA show a larger increasing trend with harmonics and
the phases at the RA aremuch larger than those at theCA. Reflection
coefficient at each artery is plotted in Fig. 7. Similar to input
impedance at the AA and load impedance at the CA and the RA, the
values and phases of reflection coefficient vary with harmonics at
each artery and their variation with harmonics varies with aging.
Substituting the results in Figs. 4 and 7 into Eq. (20) leads to

calculation of transmission parameter and transmission loss in the
AA-CA section and the AA-RA section, respectively. The
calculated values of knL and cnL in the two sections account for
arterial nonuniformity. As shown in Fig. 8, in the AA-CA section,
knL varies moderately between different harmonics and between
different ages, except that knL becomes much larger for the 9th and
10th harmonics at 25 year, 35 year, and 45 year. Yet, cnL varies
significantly between different harmonics and between different
ages. The attenuation factor ecnL varies moderately with harmonics
and with aging. In the AA-RA section, knL, cnL, and ecnL all vary
moderately with harmonics. Overall, the calculated results of ecnL

indicate that transmission loss increases with aging in both sections,
with transmission loss in the AA-CA section beingmuch lower than
that in the AA-RA section.
The nth pulse transit time PTTn from the AA to periphery is

calculated as

PTTn ¼
knL

nx
(26)

Based on Eq. (9), phase of the nth wave velocity in the aorta-
periphery section is calculated as

041005-4 / Vol. 6, NOVEMBER 2023 Transactions of the ASME



dtn ¼ a tan
cnL

knL

� �

(27)

It is assumed that phase velocity vtn=cosðdtnÞ in the section is equal
to local phase velocity vn=cosðdnÞ at periphery. Then, the value of
the nth wave velocity in the section can be obtained by

vtn ¼ vn
cos dtnð Þ

cos dnð Þ
(28)

Figure 9 plots PTTn and dtn versus harmonics in the AA-CA and
AA-RA sections. In the AA-CA section, PTT shows a decreasing
trend with harmonics, with PTT for the first harmonic being the

Fig. 3 First tenharmonicsofpressurewaveformsatdifferentages: (a) amplitude (d) phaseat theAA, (b) amplitude (e) phase
at the CA, (c) amplitude (f) phase at the RA (25year: , 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

Fig. 2 Pressure waveforms and blood velocity waveforms at different ages (a) Dp(t) (d) u(t) at the AA, (b) Dp(t) (e) u(t)
at the CA, (c) Dp(t) (f) u(t) at the RA (25year: 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

Journal of Engineering and Science
in Medical Diagnostics and Therapy

NOVEMBER 2023, Vol. 6 / 041005-5



largest. PTT varies slightly with ages, but it does not show a clear
changing trend with aging at different harmonics. Phase of wave
velocity in this section varies greatly between harmonics, and shows
an increasing trend with aging for the first and second harmonics. In

contrast, in the AA-RA section, PTT shows a clear decreasing trend
with both harmonics and aging. Phase of wave velocity in this
section shows a clear decreasing trend with harmonics and a clear
increasing trend with aging. As shown in Fig. 10, the difference

Fig. 4 Transfer function of pressure waveforms at different ages: (a) value (b) phase for the
AA-CA section, (c) value (d) phase for the AA-RA section (25 year: , 35 year: , 45 year: ,
55 year: , 65 year: , 75 year: )

Fig. 5 Load impedance at different ages: (a) value (d) phase at theAA, (b) value (e) phase at the CA, (c) value (f) phase at the
RA (25year: , 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

041005-6 / Vol. 6, NOVEMBER 2023 Transactions of the ASME



between vtn and vn in the AA-CA section is much less than that in the
AA-RA section. Comparison of dtn in Fig. 9 with dn in Fig. 6 reveals
that phase of wave velocity in the two sections is significantly
affected by arterial nonuniformity, relative to fluid loading.

3.3 Effect of Transmission Loss and Higher Harmonics on
Reconstructed Aortic Pressure Waveform. By substituting the
calculated values of the parameters: knL, cnL, and XLn � e

ihLn in
Figs. 7 and 8 into Eq. (17), the reconstructed APWwith the first ten

Fig. 6 Local characteristic impedance at different ages: (a) value (d) phase at the AA, (b) value (e) phase at the CA, (c) value
(f) phase at the RA (25year: , 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

Fig. 7 Reflection coefficient at different ages: (a) value (d) phase at the AA, (b) values (e) phase at theCA, (c) value (f) phase
at the RA (25year: , 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

Journal of Engineering and Science
in Medical Diagnostics and Therapy

NOVEMBER 2023, Vol. 6 / 041005-7



harmonics for two ages: 25 year and 75 year, is plotted in Fig. 11.
The reconstructed APW from the AA-CA and AA-RA sections at
both ages is identical to the original APW. At both ages, while
transmission loss moderately affects the reconstructed APW from

the AA-CA section, it significantly alters the reconstructed APW
from the AA-RA section. In Fig. 12, only the first five harmonics are
utilized to reconstruct APW.Evidently, the reconstructedAPWwith
the first five harmonics from both sections is sufficient to accurately

Fig. 8 Wave transmission at different ages: (a) knL (b) cnL (c) ecnL in the AA-CA section, (d) knL (e) cnL (f) ecnL in the AA-RA
section (25 year: , 35 year: , 45 year: , 55 year: , 65 year: , 75 year: )

Fig. 9 PTTand phase of wave velocity at different ages: (a) PTTn (b) dtn in the AA-CA section,
(c) PTTn (d)dtn in theAA-RAsection (25 year: , 35 year: , 45 year: , 55 year: , 65 year: ,
75 year: )

041005-8 / Vol. 6, NOVEMBER 2023 Transactions of the ASME



trace the amplitude ofAPWand closelymatch the originalAPW, but
is insufficient to fully reproduce the details on the original APW.
Interestingly, rather than higher harmonics, it is transmission loss for
the first five harmonics that causes significant difference between the
reconstructedAPWand the original one at both ages. The fifth–tenth
harmonics have less influence on accuracy of reconstructed APW at
old age than at young age, because of the first to fifth harmonics
being more dominant at old age. Since observations on the
reconstructed APW for the other ages are the same as these two
ages, their reconstructed APW are omitted.

4 Discussion

The pressure waveforms and blood velocity waveforms analyzed
here were simulated from a 1D distributed model of a hierarchical
branching arterial network that consists of 116 arterial segments
with linearly tapered diameter and their branching sites [18]. These
simulated waveforms were validated by comparing with corre-
sponding in vivo data and well-reproduced age-related changes in
hemodynamic parameters [18]. As such, these waveforms encom-
pass the influence of arterial nonuniformity on wave transmission

Fig. 10 Value of local wave velocity at periphery and value of wave velocity in the aorta-
periphery section at different ages: (a) CA versus AA-CA section (b) RA versus AA-RA section
(marker: AA-CA section and AA-RA section, no marker: CA and RA; 25year: , 35 year: ,
45 year: , 55 year: , 65 year: , 75 year: )

Fig. 11 Effectof transmission lossonreconstructedAPWwith thefirst tenharmonics (a)AA-
CAsection (b)AA-RAsection for25year-olds, (c)AA-CAsection (d)AA-RAsectionfor75year-
olds (Note: AA: original APW, Loss: reconstructed APW with transmission loss, No loss:
reconstructed APWwith no transmission loss. CA: PPWat the CA; RA: PPW at the RA.)
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Fig. 12 Effect of transmission loss on reconstructed aortic pressure waveform with the
first five harmonics (a) AA-CAsection (b) AA-RAsection for 25 year-olds, (c) AA-CAsection
(d) AA-RA section for 75 year-olds (Note: AA: original APW, Loss: reconstructed APWwith
transmission loss, No loss: reconstructed APWwith no transmission loss. CA: PPWat the
CA; RA: PPW at the RA.)

Table 1 Physical properties and geometries and the first local wave velocity at the AA, the CA, and the RA at different ages, together
with the first wave velocity in the AA-CA and AA-RA sections

Age (year) 25 35 45 55 65 75

HR (bpm) 72.82 76.73 77.72 77.32 76.53 74.44

AA a (mm) 18.36 18.94 19.50 20.06 20.64 21.23
Eh (N/m) 1305.70 1629.00 2148.40 2770.40 3538.90 4523.70
PWV (m/s) 5.69 6.26 7.08 7.93 8.83 9.85

v1 /cos(d1) (m/s) 5.57 6.13 6.94 7.78 8.67 9.67
d1 (deg) 1.25 1.18 1.14 1.11 1.08 1.07

CA a (mm) 4.37 4.52 4.66 4.80 4.94 5.08

Eh (N/m) 329.67 411.52 543.47 700.51 896.00 1146.78
PWV (m/s) 5.86 6.44 7.29 8.15 9.09 10.13
d1 (deg) 5.63 5.27 5.07 4.92 4.80 4.72

v1 /cos(d1) (m/s) 5.38 5.94 6.74 7.56 8.44 9.42

AA-CA vt1(m/s) 3.14 3.49 3.83 4.22 4.66 5.09
dt1 (deg) 54.34 54.08 55.44 56.05 56.52 57.32

RA a (mm) 1.31 1.31 1.31 1.31 1.31 1.31
Eh (N/m) 180.12 200.37 233.70 272.53 319.12 376.69
PWV (m/s) 7.91 8.34 9.01 9.73 10.53 11.44
d1 (deg) 23.98 23.28 23.11 23.18 23.31 23.68

v1 /cos(d1) (m/s) 6.15 6.54 7.08 7.64 8.25 8.93

AA-RA vt1 (m/s) 3.50 3.29 2.98 2.69 2.49 2.43
dt1 (deg) 55.36 59.78 65.09 69.40 72.41 74.22
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and wave reflection in the arterial tree. Consequently, the above-
calculated results based on a 1D uniform model are believed to
account for arterial nonuniformity.

4.1 Influence of Arterial Non-Uniformity on Wave
Transmission. Table 1 summarizes physical properties and geo-
metries [18] and the first phase velocity and d1 at the three arteries.
For comparison, the values of dt1 and vt1 in the AA-CA and AA-RA
sections are also listed. While d1 is solely from fluid-loading, dt1
accounts for both fluid-loading and arterial nonuniformity in each
section. Despite the large variation of a and Eh between the three
arteries, PWV is similar at the AA and the CA at the same age. In
contrast, PWV at the RA is noticeably larger than its counterparts at
the AA and the CA. Interestingly, when fluid-loading is accounted
for, phase velocity becomes quite similar at the three arteries at the
same age. Arising solely from fluid loading, d1 increases from the
AA, the CA to the RA, because fluid loading becomes more
pronounced at small arteries.
Table 2 summarizes the influence of arterial nonuniformity on

wave transmission for the first harmonic in the AA-CA and the AA-
RA sections. While PTT1 decreases with aging until 65 year in the
AA-CA section, it decreases with aging from 25 year to 75 year in
the AA-RA section. The physical length L of the AA-CA and the
AA-RA sections is obtained from the arterial geometrical network
used in the database [18]. Based on this physical length, phase
velocity calculated as L/PTT1 does not show a changing trend with
aging in the AA-CA section. Although phase velocity in the AA-RA
section show a clear increasing trend with aging, its value is well
above local phase velocity at the AA and the RA in Table 1. As such,
an equivalent transmission length Leq1 for the first harmonic is
defined as

Leq1 ¼ PTT1 � v1= cosðd1Þ (29)

where the first local phase velocity v1/cos(d1) at theCAand theRA is
utilized for the AA-CA and AA-RA sections, respectively. It is
worth mentioning that this local phase velocity increases with aging
at each artery and is similar between the three arteries.While Leq1for
the AA-CA section is close to its physical length and increases with
aging, Leq1 for the AA-RA section is well below its physical length
and decreases with aging. As shown in Table 1, vt1 in the two
sections follows the same changing trend with aging as Leq1 in their
respective sections.
Comparison of dtn in the two sections in Fig. 9 with dn at the CA

and the AA in Fig. 6 reveals that arterial nonuniformity significantly
alters transmission loss in both sections, as compared with fluid-

loading. Moreover, the influence of arterial nonuniformity on
transmission loss varies with harmonics. As shown in Table 2, the
attenuation factor ec1L in both sections shows a decreasing trendwith
aging. Given the dominant influence of arterial nonuniformity on
transmission loss, it might be concluded that transmission loss
caused by arterial nonuniformity varies with aging.
Taken together, arterial nonuniformity alters the equivalent

transmission length and causes significant harmonics-dependent
transmission loss, relative to fluid-loading. The influence of arterial
nonuniformity on transmission parameter and transmission loss is
not only harmonics-dependent, but also varies with aging. In other
words, when physical properties and geometries in the three arteries
vary with aging, so does the influence of arterial nonuniformity on
transmission parameter and transmission loss. It is worth mention-
ing that, by analyzing the influence ofwave reflection onAPWalong
the aorta length, a clinical study also revealed harmonics-dependent
wave transmission [21].
To improve reconstructed APW based on the uniform tube-load

model, an exponentially tapered tube-load model was proposed to
account for arterial nonuniformity [15]. Yet, it was found that the
obtained values are not physiologically consistent with the aortic
tapering, and the improvement on reconstructed APW is only
marginal, as compared with the uniform tube-load model. While an
exponentially tapered tube may account for the tapered geometry in
an arterial segment, but it does not account for multiple branching
sites from the aorta to periphery. As shown here, the influence of
arterial nonuniformity on transmission parameter is significant, in
terms of altering the equivalent transmission path. Efforts were also
taken to add transmission loss to the tube-load model for improving
reconstructedAPW [22]. It was found that the lossy tube-loadmodel
in general outperforms the lossless tube-load model. Yet, trans-
mission loss and transmission parameter in the model were related
by a simple mathematical relation, which was derived from
characteristic impedance and load impedance without considering
arterial nonuniformity. As shown in Fig. 8, it does not seem like that
influence of arterial nonuniformity on transmission parameter and
transmission loss can be related by a simple mathematical model.

4.2 Influence of Arterial Non-Uniformity on Wave Reflec-
tion at Periphery. Given the observedwave reflection at periphery,
the arterial tree has a finite length and thus a termination. Then, load
impedance at the two arteries is affected by termination impedance
[6]. It has been well established that a tapered geometry causes
harmonics-dependent boundary conditions, leading to harmonics-
dependence of termination impedance [19]. However, due to
mathematical complexity, a mathematical relation of termination

Table 2 Influence of arterial nonuniformity on wave transmission for the first harmonic: (a) AA-CA section (b) AA-RA section

(a) AA-CA section

Age (year) 25 35 45 55 65 75
L (m) 0.188 0.189 0.19 0.19 0.191 0.192
PTT1 (s) 0.0269 0.0275 0.0275 0.0289 0.0298 0.0273

L/PTT1 (m/s) 6.98 6.88 6.92 6.57 6.41 7.03
Leq1 (m) 0.1450 0.1633 0.1852 0.2186 0.2514 0.2574
k1L (no unit) 0.2058 0.2206 0.2234 0.2334 0.2380 0.2129
c1L (no unit) �0.2870 �0.3047 �0.3244 �0.3470 �0.3600 �0.3321
ec1L ( no unit) 0.7505 0.7373 0.7230 0.7068 0.6977 0.7174

(b) AA-RA section

Age (year) 25 35 45 55 65 75
L (m) 0.785 0.785 0.785 0.785 0.785 0.785
PTT1 (s) 0.0689 0.0582 0.0480 0.0404 0.0360 0.0341
L/PTT1 (m/s) 11.39 13.49 16.37 19.45 21.82 23.00
Leq1 (m) 0.4240 0.3806 0.3395 0.3082 0.2968 0.3046

k1L (no unit) 0.5267 0.4673 0.3902 0.3258 0.2874 0.2658
c1L (no unit) �0.7628 �0.8027 �0.8405 �0.8674 �0.9069 �0.9415
ec1L (no unit) 0.4663 0.4481 0.4315 0.4201 0.4038 0.3900
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impedance to harmonics does not exist [19]. Arterial nonuniformity
further alters the relation of termination impedance to harmonics,
making harmonics-dependence of termination impedance theoret-
ically unpredictable. Consequently, it is unpractical, if not
impossible, to configure any mathematical model for harmonics-
dependence of load impedance. This explains why all the Wind-
kessel models in various forms are incapable of capturing the true
harmonics-dependence of load impedance for reconstructing APW
with the details on the measured one [3,5].

4.3 Influence of Branching Sites on Endothelial Function.
The arterial tree contains a hierarchical branching arterial network.
When pressurewavesmove from large arteries to small arteries, they
need to pass through multiple branching sites. The obtained values
of transmission parameter and transmission loss in the AA-CA and
the AA-RA sections account for branching sites. As shown in
Fig. 13, there is significant difference in harmonics of pressure
waveform between the three arteries. Since tapered geometry of an
arterial segment is not expected to cause such difference, it might be

inferred that branching sites are behind rearrangement of
harmonics of pressure waveform at different arteries, through
mode-coupling (energy transfer between different harmonics).
Difference in harmonics of pressure waveform between the
three arteries leads to their difference in harmonics of
wall shear stress (WSS) and WSS waveform sw(t), as shown in
Fig. 13.
Endothelial cells (EC) lining the inner surface of the arterial wall

play a critical role in vascular growth, remodeling, and homeostasis
[23]. EC are exposed to WSS, and are sensitive to both WSS
amplitude and waveform (or harmonics of WSS) [23,24].
Changes in WSS amplitude and waveform are thought to
undermine regulation behavior of EC and ultimately lead to
endothelial dysfunction, which precedes arterial stiffening [23].
As such, WSS amplitude and waveform have been utilized as an
indicator of endothelial function. Besides WSS, EC are exposed to
circumferential strain (CS) e(t)¼ g(t)/a in the arterial wall.
Synergistic effects of WSS and CS on endothelial function were
also reported [25].

Fig. 13 First ten harmonics of pressurewaveforms, first ten harmonics ofWSSwaveforms, andWSSwaveforms at the AA,
the CA, and the RA (a) Dpn (b) swn (c) sw(t) for 25 year-olds, (d) Dpn, (e) swn, and (f) sw(t) for 75 year-olds

Fig. 14 WSS-CS loop (or sw(t)� e(t) loop) at different ages: (a) the AA, (b) the CA, and (c) the RA (25year: , 35 year: ,
45 year: , 55 year: , 65 year: , 75 year: )
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Based on the calculated values in Sec. 3, WSS-CS loops at the
three arteries are plotted in Fig. 14. Although the shape of WSS-CS
loop at each artery does not vary with aging, its size decreases with
aging. Given that these WSS-CS loops are from healthy subjects, it
might be concluded that the shape of WSS-CS loop is more
important to endothelial function, relative to its size. The shape of
WSS-CS loop varies between the three arteries. As shown in Fig. 15,
as the artery size decreases, the size and length of WSS-CS loop
increase. Given that physiological function of an artery is to deliver
nutrients and oxygen to the body, small arteries might demand an
increased size and length of WSS-CS loop for achieving its
physiological function. As such, by rearranging harmonics of
pressure waveform from large arteries to small arteries, branching
sites facilitate endothelial function in arteries of different sizes.

4.4 Feasibility of a One-Dimensional Uniform Model for
Reconstruction of Aortic Pressure Waveform From Peripheral
Pressure Waveform. Despite its dramatic physical and geometri-
cal complexity, the arterial tree has been treated as a 1D uniform
model, which is widely used in understanding CV physiology and
interpreting measured arterial pulse signals for CV disease
detection. As the gold standard for assessment of global arterial
stiffness in clinical studies, carotid-femoral pulse wave velocity
(cfPWV) is based on the 1D uniform model and its clinical values
have been well established [1].
As shown in Sec. 3, a 1D uniformmodel of the arterial tree allows

reconstruction of APW to PPWwith exactly the same details on the
original APW. However, the values of the four parameters involved
in such reconstructionmust account for physiological realities. First,
transmission loss significantly alters the reconstructed APW and
must be included in reconstruction of APW. Second, arterial
nonuniformity causes extremely complicated harmonics-
dependence of the four parameters, which can not be captured by
rather simplified mathematical relations, such as those used in the
tube-load model [5,21]. The variation of harmonics-dependence of
the four parameters with CV conditions further exacerbates the
efforts on identifying such mathematical relations. As such,
although it is feasible to reconstruct APW from PPW based on a
1D uniform model, the baseline values of the four parameters at
different harmonics under different CV conditions must be
established a priori. Since establishing the baseline values allows
relating clinical values of APW to PPW, PPW might be directly
utilized for inferring CV conditions.

4.5 Study Limitations. Although the values of the four
parameters at different harmonics in reconstruction of APW from
PPWat different ages are obtained here, they are calculated from the
simulated data on virtual healthy subjects. Then, accuracy of the

obtained results depends on accuracy of the simulated data.
Although the simulated data was validated by corresponding
in vivo data and age-related changes in hemodynamic parameters
[18], they may not be identical to the measured data, given
individual variations. It is expected that the values of the four
parameters and their harmonics-dependencemight be different from
the actual measured data on healthy subjects at different ages.
Nevertheless, the findings on the influence of arterial nonuniformity
on wave transmission and wave reflection at different ages are
expected to remain valid. In addition, only the effect of aging on
harmonics-dependence of the four parameters is considered. It is
expected that harmonics-dependence of the four parameters varies
with CV conditions [11], similar to the effect of CV conditions on
harmonics of PPW [26–28]. Finally, it is worth noting that fluid
loading in Eq. (3) results from a rather simplified blood velocity
profile in an artery [29,30]. Given their geometrical complexity,
fluid loading at branching sites is expected to greatly differ from
Eq. (3). Complex fluid flow is believed to contribute to mode-
coupling and transmission loss happening at branching sites.

5 Conclusion

By applying a 1D uniform vibrating-string model of the arterial
tree to analyze pressurewaveforms and blood velocitywaveforms at
theAA, theCAand theRAof virtual health subjects at different ages
in a prevalidated database, the feasibility of reconstruction of APW
from PPW based on a 1D uniform model is validated. As compared
with fluid-loading, arterial nonuniformity is found to dramatically
affect transmission loss, which further greatly alters the recon-
structed APW. Arterial nonuniformity causes complicated
harmonics-dependence of the four parameters involved in recon-
struction of APW. As such, baseline values of the four parameters at
different harmonics under different CV conditions need to be
established a priori. Alternatively, based on the baseline values,
PPW can be directly utilized for inferring CV conditions.
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