Identification of Design Strategies and Their Effects on Performance Outcomes in Pair Parameter Design Tasks

Alkım Z. Avşar and Paul T. Grogan

School of Systems and Enterprises Stevens Institute of Technology

6 Abstract

Understanding design processes and behaviors is important for building more effective design outcomes. During design tasks, teams exhibit sequences of actions that form strategies. This paper investigates patterns of design actions in a paired parameter design experiment to discover design strategies that influence outcomes. The analysis uses secondary data from a design experiment in which each pair completes a series of simplified cooperative parameter design tasks to minimize completion time. Analysis of 192 task observations uses exploratory factor analysis to identify design strategies and regression analysis to evaluate their impacts on performance outcomes. The paper finds large actions and high action size variability significantly increase completion times, leading to poor performance outcomes. Whereas results show that frequently changing input controllers within and among designers significantly reduces completion times, leading to higher performance outcomes. Discussion states that larger actions can introduce unexpected errors, while smaller and consistent actions enhance designers' understanding of the effects of each action, aiding in better planning for subsequent steps. Frequent controller switching reflects effective communication and understanding within design teams, which is crucial for cooperative tasks.

1 Introduction

3

5

10

11

12

13

14

15

16

17

18

19

20

21

22

- 25 In today's world, engineering design teams deal with complex problems. Design behaviors
- 26 and strategies shape design outcomes, making design processes vital to achieving desired out-
- 27 comes. During design processes, teams explore, communicate, and conduct decision-making
- ²⁸ processes that determine their actions and strategies. Understanding design behaviors and
- 29 identifying strategies that lead to desired outcomes can create more efficient design processes.

Designers exhibit different actions based on their experience level and the complexity of design tasks [1]. Within a narrowly-scoped design task, *micro strategies* are defined as sequences of actions that designers perform to reach expected outcomes in a design process [1]. Identifying successful design strategies by grouping observed actions during a design task would help to inform future studies and industries to enhance their design processes.

Complex collaborative engineering systems, such as an aircraft or spacecraft design, consist of multiple interdependent subsystems. Changes made in one subsystem interact with the other subsystems, and all subsystems need to be in harmony for the entire design to work once integrated. For instance, in the case of an aircraft, if the wings and fuselage subsystems do not meet each other's requirements, the aircraft would not be able to function.

As an example of system design activities during preliminary concept selection, architectural trade space exploration searches for efficient solutions within large set of alternatives [2,3]. Typically, a morphological matrix identifies a set of design features (parameters) and their possible values, producing a large combinatorial trade space of alternatives [3]. Evaluating a preference for each alternative can be practically difficult or computationally time-intensive, limiting direct use of design optimization methods [3]. Instead, interactive trade space exploration uses humans to "steer" evaluations towards efficient solutions [4–6]. Furthermore, complex systems may require multiple participants to work together in a shared trade space exploration activity. Multi-stakeholder trade space exploration assigns control over design parameters or preference attributes among multiple decision-makers [7,8].

Trade space exploration can viewed as an instance of a parameter design task that searches
a well-defined parameterized design space for a preferred solution [9]. Research using abstract
parameter design tasks can eliminate domain-specific complexities and focus on general design parameters and designer behaviors. Using parameter design tasks as an experimental
procedure gives the control of varying the technical complexity of tasks [10] and reduces
external complexities [9,11]. These features of parameter design experiments provide a more
concentrated way to investigate specific research purposes in design settings.

For instance, Thekinen and Grogan introduce a domain-specific parameter design experiment for an aircraft design problem [12]. Aircraft design is a complex process with interconnected subsystems that require careful coordination among all subsystems. For example, the propulsion subsystem's thrust requirements depend on the aerodynamic properties of the fuselage and airfoils. Aircraft design involves three phases: conceptual, preliminary, and detailed design focusing here on the preliminary phase, which involves selecting design parameters for a chosen concept through an iterative process. Thekinen and Grogan developed a parameter aircraft design task with four participants working on different subsystems as fuselage, payload (battery), propulsion (motor and propeller), and airfoil (wing and tail), and 12 design parameters. The integrated system only works if every design parameter meets the requirements for all subsystems.

This paper uses a parameter design problem with the same logic, but eliminates the domain specificity and reduces the number of participants to two to decrease social and technical complexity and have a more concentrated way to investigate the specific research purpose. In the experimental procedure, each participant can be considered to be dealing with a different subsystem, with N number of design parameters, trying to meet the system-level requirements working with their pair.

This paper studies design processes in an abstract parameter design problem that enables the identification of design strategies, which can be applied to a wide range of design
problems. Identifying design strategies in abstract design problems can bring interventions
enhancing design processes that are not specific to any particular design problem or domain.
The paper defines design strategy as a similar set of actions designers follow that are generalizable over broad design problems and investigates how groups of designer actions form
strategies to understand better the design process and its effects on performance outcomes
in paired parameter design tasks.

The analysis uses secondary data from a human parameter design experiment consisting of tasks with different levels of complexity, yielding a total of 192 activity logs. The experi-

ment consisted of 48 participants and 24 pair teams. The analysis first identifies observable design actions from the experimental log, next performs Exploratory Factor Analysis (EFA) to identify design strategies exhibited during the experiment, and finally performs regression analysis to evaluate the significance of design strategies on performance. Results show that a design strategy with large-magnitude and variably-sized changes to design parameters increases completion times. In contrast, a strategy with frequent parameter and designer switching reduces completion times in the parameter design experiment.

₉₁ 2 Literature Review

2.1 Design Actions and Strategies

Gero defines design as a goal-oriented, constrained, exploration, decision-making, and learning activity [13] with sequences of actions where designers perform micro strategies [1]. Micro strategies are self-sustaining actions focusing on the current state of the design process.

Identifying similar actions observed in the design process and then following and grouping
them will provide specific micro strategies that designers choose. Gero also notes that the
designer's experience level and the complexity level of the task impact number of different
micro strategies found in the design process [1]. From the stated definition, this paper focuses
on the designer's decision-making and the strategy-building process by identifying designers' actions and grouping similar actions to differentiate some successful and unsuccessful
strategies in paired parameter design tasks.

Literature includes various studies that identify relationships between the design process and different focuses. McComb et al. conducted a human experiment with a truss design problem to identify successful problem-solving strategies [14]. Their findings indicate that proficient teams employ distinct problem-solving methods, opting for simpler designs and concentrating their search efforts on specific regions within the design space. In a later study, McComb et al. employ data-mining techniques to quantitatively analyze the problem-

solving processes utilized by designers when addressing configuration design problems [15]. The findings reveal that designers progress through four distinct procedural stages while working on configuration design problems, transitioning from topology design to shape and 111 parameter design. High-performing designers stand out due to their adeptness at adjusting 112 parameters early in the process, facilitating a more effective and nuanced search for solutions. 113 Raina et al. use the term design strategy as a designer's approach, plan, or heuristic 114 process for ordering the steps involved in solving a design problem [16]. They investigate the 115 significance of design strategies in guiding the resolution of configuration design problems, 116 employing a team of cognitive agents that mimic human behavior. Results indicate that 117 human design heuristics were successfully represented through probabilistic models, estab-118 lishing a common foundation between human designers and computational agents for rep-119 resenting design strategies. Later, Raina et al. introduced Design Strategy Network (DSN), 120 a data-driven method that learns from historical trajectory data and swiftly generates an 121

Rahman et al. develop a framework for clustering designers with similar sequential design 123 patterns by characterizing designers' action sequences [18]. They identify a network-based 124 clustering approach for identifying behavioral design patterns. Jablokow et al. investigate 125 whether cognitive styles and team interaction behaviors affect team design outcomes [19]. Their results indicate that certain team interaction behaviors are associated with generating 127 more unique and varied ideas, which vary significantly across different teams. Additionally, 128 their findings reveal that interaction sequences tended to be diverse rather than following 120 specific patterns. Mirabito and Goucher-Lambert refer to performance as idea fluency and 130 the overall output of exceptional ideas. They investigate factors that predict improved 131 performance during concept generation in early-stage design settings [20]. 132

action probability distribution based on the input state [17].

122

Austin-Breneman et al. studied team behavior in distributed complex system design tasks to identify factors affecting subsystem decision-making processes and their influence on the overall system [21]. Their findings conclude that design teams prefer global rather than local searches, optimizing individual design parameters separately and sequential rather than concurrent optimization strategies.

¹³⁸ 2.2 Parameter Design Problems

161

Parameter design tasks present a set of input variables (design parameters) to designers that 139 influence a set of output variables [22]. Parameter design generalizes the trade space explo-140 ration activities performed during early-stage system concept selection. Gero and Yu define 141 parametric design as a dynamic, rule-based process controlled by variations and parameters. in which multiple design solutions can be developed in parallel [23]. Using parameter de-143 sign tasks to study designer behaviors helps control external factors' effects, such as domain knowledge [11]. Using parameter design tasks supports the creation and organization of complex digital models [24]. Parameter tasks can have coupled and uncoupled characteristics. Uncoupled parameter design tasks include a one-to-one mapping between input and outputs 147 whereas, where this condition is lacking, the parameter design tasks would be coupled [22]. 148 Hirschi and Frey conduct one of the first parameter design experiments on human sub-149 jects [22]. They used a computer user interface and assigned participants tasks ranging 150 from 2-input, 2-output parameters to 5-input, 5-output parameters. Results show the task 151 completion time grows linearly with the number of parameters for uncoupled tasks but ge-152 ometrically for coupled tasks. Later, Grogan and de Weck performed a human parameter 153 design experiment by following the principles introduced by Hirschi and Frey but adding 154 collaborative tasks [10]. They gave participants coupled and uncoupled parameter design 155 tasks with varying technical and social complexity levels. Their results show that increasing 156 technical complexity negatively impacts performance outcomes meaning that as the number 157 of variables (parameters) increase in a task, the completion times increase with a power-158 law relationship. Their other significant conclusion was that as the team size grows, the 159 completion times of design teams increase significantly due to increased social complexity. 160

Alelyani et al. use secondary data from Grogan and de Weck [10] to investigate factors

contributing to designers' behavior for parameter design tasks [11]. To quantify the relationship among design features, they identified three behavioral characteristics as the number of
design actions, performance outcomes, and experienced error. Yu et al. conducted a human
parameter design experiment where participants engaged with simulated design processes
involving seawater reverse osmosis plants [9]. Their goal was to investigate the relationship
between behavior and performance. Their findings showed that the best strategy was simulated annealing optimization algorithm for higher performance outcomes, and the worst
strategy was pseudo random-search strategy with lower performance outcomes.

Avsar and Grogan adopt the parameter design problem experiment from Grogan and de
Weck [10] to investigate the effects of Locus of Control (LOC) personality trait on performance outcomes [25]. Their findings show statistically significant relationship between LOC
and performance of pairs in parameter design tasks.

Wohr et al. build on the parameter design framework from Grogan and de Weck [26].

They conduct a human parameter design experiment to investigate the effect of the varying time interval between each integration and verification. Their findings show that varying the frequency of integration and verification significantly impacts performance outcomes. They show shorter time intervals between each integration, and verification improves designer performance outcomes by decreasing the completion times of tasks.

2.3 Teamwork and Design Process

Teamwork has been the subject of extensive study in various fields because of its wide usage and advantages. Teamwork can provide greater productivity and competitiveness [27], and literature shows that design teams can achieve higher quality than individuals in product development [28]. Teamwork brings a wider range of knowledge and expertise [29], enabling decomposition and allocation of design decisions and actions among team members to apply specialized knowledge [30]. However, interactions between design actors generate iteration loops and rework that may outweigh potential benefits [31].

By cooperation, teams can achieve better productivity and performance outcomes, but having distributed cognition and communication among different members makes the process challenging [32]. As team effectiveness impact outcomes in design settings and team effectiveness depend on various factors [33–35], this paper focuses on how design team processes affect design outcomes.

193 2.4 Literature Gap

Literature offers various insights investigating design behaviors and strategies with different 194 focuses. This paper aims to contribute to design strategy literature by studying the effects 195 of different design strategies in parameter design tasks. Although identifying specific design 196 strategies in parameter design settings does not provide certain recipes for domain-specific design problems, it enables identifying more generalizable strategies that can be implemented across different domains of design problems. This paper aims to identify generalizable strate-199 gies that can be applied to various design problems and situations instead of recommending 200 specific behaviors or strategies for selected design problems. Accordingly, the paper defines 201 design strategy as a similar set of actions designers follow that are generalizable over broad 202 design problems. 203

Literature shows that parameter design tasks provide a controlled environment to study
design processes [10,22–24]. Parameter design problems involve abstract design activities and
eliminate domain-specific complexity, providing complete control over technical variables. As
a result, they offer a suitable environment for investigating more broadly applicable design
strategies. This paper aims to conduct an initial study toward identifying design strategies
that can be applied to engineering design tasks across multiple domains. These strategies
should be broadly applicable and not specific to any particular domain.

2.1 2.5 Research Objective

The objective of the paper is to fill the literature gap by studying design strategies in a parameter design problem to identify generalizable successful and unsuccessful strategies.

Identifying and differentiating some successful and unsuccessful strategies that design teams use in parameter design tasks can help future studies and industries to bring interventions to design teams to direct them through using successful design strategies.

This paper uses secondary data from a human parameter design experiment originally adapted from Grogan and de Weck's parameter design work to explore the effects of personality traits on team performance outcomes in design tasks [25]. The human experiment consists of cooperative paired parameter design tasks. The parameter design problem in the experiment represents an abstract level collaborative design problem without any domain-specific knowledge. During the design tasks, each designer in a pair can be thought of as representing a subsystem of a complex collaborative engineering design product.

This paper investigates the relationship between process variables and task outcomes, the
experiment design process illustrated in Fig. 1. The analysis seeks to identify successful and
unsuccessful design team design strategies by identifying action types and grouping them
by exploratory factor analysis (EFA) technique to differentiate strategies. For this purpose,
the paper investigates the following hypothesis: Teams follow distinct design strategies that
affect their performance outcomes in parameter design tasks.

3 Methodology

This paper analyzes secondary data from a parameter design experiment that originally studied the effect of LOC on design behavior described in Ref. [25]. Secondary analysis further investigates how designer behaviors influence outcomes for cooperative pair design tasks irrespective of LOC. The design experiment uses the same parameter design features from the

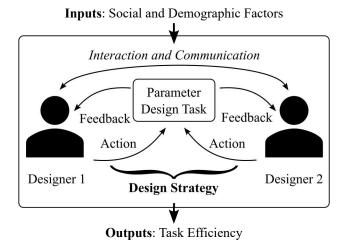


Figure 1: The design system consists of the parameter design task with two designers who iteratively make actions following a revealed design strategy. Inputs include social and demographic factors. Outputs measure performance via task efficiency.

framework of Ref. [10] with an updated software platform¹. The following sections review the methodology (design task, protocol, instruments, and data) of the source experiment.

3.1 Design Task

The underlying parameter design task defines a column vector of N scalar input variables 238 (design parameters) $x = [x_1, \dots, x_N]^T$ each taking values on the interval $x_i \in [-1, 1]$ and 230 a column vector of N scalar output variables (performance attributes) $y = [y_1, \dots, y_N]^T$ 240 associated with functional requirements. Although abstracted from this experiment, example 241 inputs in an aircraft design task include wingspan and mean chord length; example outputs 242 include lift and drag. An $N \times N$ system matrix $M = [m_{ij}]$ relates inputs to outputs as a 243 linear system of equations y = Mx where element m_{ij} represents the sensitivity of output 244 y_j on input x_i . In other words, M is the system model that evaluates the multi-dimensional 245 performance of a given design configuration given by selected parameter values. Starting 246 from an initial zero input vector $(x_i = 0 \ \forall i)$, the task objective is to choose input variables 247 x to achieve a target output vector y^* with a maximum allowable error $|y_i - y_i^*| < \varepsilon = 0.05$ in each output variable. The task duration measures the time required to meet all requirements. 249

¹Available under an open-source license at https://github.com/code-lab-org/collab-web

Coupled task instances with $m_{ij} \neq 0 \, \forall i,j$ are generated as follows to achieve certain 250 invariant conditions. First, generate M as the orthonormal basis of a random $N \times N$ matrix 251 with elements sampled from a uniform (0,1) distribution. Next, generate a candidate y^* 252 as the orthonormal basis of a random $N \times 1$ column vector with elements sampled from a 253 uniform (-1,1) distribution. Compute the task solution as $x^* = M^T y^*$ and, if any solution 254 variables are close to the initial design point with $x_i = 0$ ($\exists i : |x_i^* - x_i| \le 0.2$), generate a 255 new target (repeat as necessary). Resulting tasks preserve identical unit Euclidian distance 256 from initial to final inputs/outputs irrespective of N, i.e. $||x^*|| = ||y^*|| = 1$, to control for 257 distance scales in larger design problems. 258

The design tasks are adapted to collaborative design problems by assigning control over input variables and visibility over output variables to n individual design actors. A binary control matrix $n \times N$ control matrix $C = [c_{ij}]$ assigns designer i to have control of input variable j. A binary $n \times N$ visibility matrix $V = [v_{ij}]$ assigns designer i to have visibility of output variable j. Each input and output variable is assigned to only one designer.

Designers interact with design tasks in a graphical, rather than numerical, format. The 264 browser-based user interface in Fig. 2 illustrates the user interface from each of two designer's 265 perspective. Vertical sliders ranging between -1 and 1 represent controlled input variables 266 (x_i) and horizontal sliders with target regions between black bars display output variables (y_i) 267 and target requirements $(y_i^* \pm \varepsilon)$. Quantitative information is hidden to prevent mathematical 268 solutions. Designers are limited to visual feedback on their own interface and face-to-face 269 communication with teammates. Designers modify inputs by dragging the slider thumb up 270 and down (using the touch-pad or touchscreen) and inputs update once released. Designers 271 may also use arrow keys on the vertical sliders to change the input by 0.1 or 0.01 units. 272

Designers attempt to finish each task as quickly as possible. A timer visible in the interface counts down from a maximum duration allowed for each task. Individual tasks require the designer to meet the target region of all horizontal sliders, changing the signal icon from a red cross to green check mark. Pair tasks require both partners to meet the target region

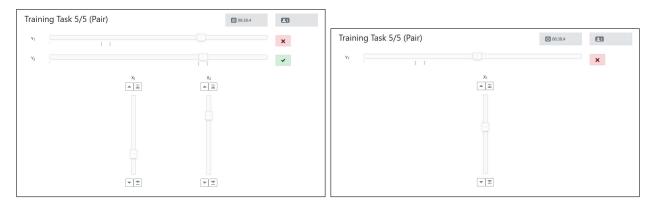


Figure 2: Example interfaces for a N=3 design task with two inputs/outputs assigned to designer 1 (left) and one input/output for designer 2 (right). Input parameters appear as editable vertical sliders and output requirements appear as uneditable horizontal sliders with black bars marking the target region. Red exes mark unsatisfied requirements while green checks mark satisfied requirements. Outputs update in response to input changes by either designer. A timer counts down from a maximum duration allowed for each task.

of all horizontal sliders at the same time. Completed tasks award points to all participating designers based on the relative efficiency (one point per second remaining). Cumulative points earned throughout an experiment determine rankings for monetary incentives.

280 3.2 Experiment Protocol

291

The source experiment follows a between-subjects design with replication at group and task 281 units to study the effect of Locus of Control (LOC) on design processes. LOC is a personality 282 trait that characterizes an individual's perception of control on two extremes: internal and 283 external [36]. Individuals with external LOC believe their life is guided by fate, luck or other 284 external circumstances they cannot control. In contrast, people with internal LOC believe 285 their decisions and efforts influence the events around them and create their own outcomes. 286 The experiment controls group factors pairing LOC types (I: internal or E: external) in 287 design pairs as I-I, I-E, or E-E. Each pair works on a sequence of design tasks of varying size 288 to yield multiple observations of process and outcome variables. The protocol was approved 289 by the Institutional Review Board at Stevens Institute of Technology (#2019-025). 290

The study includes two distinct cohorts, each consisting of four replications of each group

Table 1: Training and experimental design tasks for Cohort 1 and Cohort 2

Training Tasks (Fixed Order)			Cohort 1 Tasks (Fixed Order)			Cohort 2 Tasks (Random Order [‡])					
Type	Size	Repl.	Time (s)	Type	Size	Repl.	Time (s)	Type	Size	Repl.	Time (s)
Indiv.	1	1	90	Indiv.	2	2	120	Pair	2	4	180
Indiv.	2	1	120	Indiv.	3	2	240	Pair	3	4	360
Pair	2^{\dagger}	1	270	Pair	2	3	180	Pair	4	2	720
Pair	2	1	270	Pair	3	3	360				
Pair	3	1	540					1			

 $[\]dagger$: uses an identity coupling matrix M to simplify training.

factor (I-I, I-E, and E-E) across six sessions (total: 24 pairs). The cohorts were separated in time by several months and followed different task sequences described below; however, both cohorts used the same experiment rooms, computers, instructions, and overall procedures. Participants were recruited from adult on-campus student populations via email and flyers. All sessions were conducted in university classrooms using a standard room layout with 296 assigned seats. Paired participants sit face-to-face with each team at a separate table. Tables 297 are arranged such that each computer display is only visible to the seated individual. Pairs 298 may communicate face-to-face but not share any computer displays. Each session evaluates 299 two pairs in parallel, both working on equivalent tasks and scheduled based on mutual 300 availability. The two teams in each session may not communicate with each other. 301

Sessions consist of five training tasks and ten experimental tasks described in Table 1.
Training tasks introduce the task objectives and computer interface and take about 20 minutes to complete. The remaining ten experimental tasks take about 40 minutes to complete.
Sessions in Cohort 1 include both individual and pair tasks administered in fixed order, of
which this paper only considers the six pair tasks. Sessions in Cohort 2 include ten pair tasks
administered in randomized order subject to the constraint that tasks with four variables
must take place in the second half of the experiment.

To incentivize efficiency, participants earn 1 point per second a task is finished ahead of
the maximum time and 0 points for an incomplete task. At the end of a session, participants
are ranked based on total accumulated points and privately paid in gift cards ranging from

^{‡:} size 4 tasks cannot appear within first five tasks.

minimum of \$8 to maximum of \$15 based on their successive ranks. Aggregated scores are only released at the end of a session to limit strategic behavior including end-of-session boundary effects.

3.3 Experiment Instruments

Prior to working on tasks, participants complete a demographic survey with six items 316 including age (years), gender (male, female, or other), post-secondary education (years), 317 professional work experience (years), native language, and English proficiency. English pro-318 ficiency is measured on a scale with five levels: Fluent/Native, High (TOEFL \geq 95 or IELTS 319 > 7), Medium-High (TOEFL 85-94 or IELTS 6.5-7), Medium-Low (TOEFL 60-84 or IELTS 6), or Low (TOEFL < 60 or IELTS < 6). Analysis assigns numerical values from 1 to 5 scale 321 to English language ability (1: Low; 5: Fluent/Native). During a design task, an automated log records all design actions (i.e., input slider 323 movements) as time-stamped events. Post-processing computes the time to complete each 324 task (task efficiency) as the the timestamp difference of the first and last design action. 325 Each design task requires the input sliders to move a total of 1.0 units from the initial state 326 to reach the target solution, regardless of problem size N; however, design strategies may 327 produce different patterns of size, timing, and sequence of design actions. 328

329 3.4 Experiment Data

A total of 48 subjects (20 women and 28 men) participated in the experiment. Subjects ranged from 20 to 40 years of age with a mean of 26.7. All participants either previously completed or were in their last year of STEM undergraduate studies, and more than half were currently pursuing a graduate engineering degree, the mean value of educational experience is 6.7. 39 participants listed one of 19 different languages other than English as their native language. 21 subjects claimed to be fluent English speakers, 19 reported TOEFL scores equal or above 95 (IELTS > 7.0), 6 between 85-94 (IELTS 6.5-7.0) and 2 between 60-84

Table 2: Summary of design completion time by task size

Task	Num	Num	Median Completion	1^{st} Quartile	3 rd Quartile	
Size	Samples	Incomplete	Time (s)	Completion Time (s)	Completion Time (s)	
(N)		Tasks	(\widetilde{T})	$Q_1(T)$	$Q_3(T)$	
2	84	5	46.5	29.3	86.9	
3	84	18	160.7	76.1	310.7	
4	24	9	492.1	202.6	720.0	
All	192	32	220.4	44.8	220.4	

(IELTS 6.0) prior to starting their studies.

The experimental design yields observations from 192 design tasks ($12 \times 6 = 72$ from Cohort 1 and $12 \times 10 = 120$ from Cohort 2) summarized in Table 2 by task size and median, first, and third quartile task completion times. Approximately 17% (32/192) of the tasks were not solved in the given maximum time limit and were assigned the maximum completion time in Table 1 as a conservative assumption for subsequent analysis. Here, conservative is used in a statistical sense (rather than related to task efficiency) in that it reduces apparent differences between conditions.

345 4 Analysis and Results

To address the hypothesis that differential design strategies affect performance outcomes in parameter design tasks, the analysis first performs Exploratory Factor Analysis (EFA) 347 to reduce the dimensionality of process factors and identify the underlying relationships 348 (strategies) between measured variables. Finally, regression analysis investigates whether 349 process factors (strategies) have a significant effect on task performance. While preliminary 350 analysis includes demographic factors, they are removed from further analysis because their 351 effects are not as practically significant as preserved factors and their impacts might be due 352 to other uncontrolled variables outside the scope of analysis relating design strategies to 353 outcomes.

55 4.1 Exploratory Factor Analysis for Process Variables

- Post-processing of the experimental log computes nine candidate process-oriented metrics in five categories described below based on samples from each design action. Action size and action time variables consider first (mean), second (standard deviation), and third (skew) moments to capture distribution shape.
- 1. Action size (mean, standard deviation, skew): distance traveled by the input slider for a single action. User interface buttons permit action sizes of 0.1 and 0.01 and moving the slider thumb permits arbitrary action sizes.
- 2. Action time (mean, standard deviation, skew): elapsed time between successive actions.
- 3. Input delta (mean): indicator variable for changes in input parameter modified between successive actions; each action (after the first) encodes a sample of 0 (same input parameter changed) or 1 (different input parameter changed). A mean value of 1.0 indicates a different parameter for each successive input and a value of 0.0 indicates all actions modify the same parameter.
 - 4. Designer delta (mean): indicator variable for changes in input controller (designer) between successive actions; each action (after the first) encodes a sample of 0 (same designer action) or 1 (different designer action). A mean value of 1.0 indicates alternating actions between designers and a mean value of 0.0 indicates sequential actions from only one designer.

369

370

371

372

- 5. Designer share (mean): indicator variable for the input controller (designer) for each action; each action encodes a sample of 0 (minority-acting designer) or 1 (majority-acting designer). A mean value of 0.5 indicates equal numbers of actions among both designers and a mean value of 1.0 indicates actions by only one designer.
- Figure 3 visualizes the Pearson correlation matrix (*p*-values in parentheses) to illustrate correlation and multicolinearity among process factors.

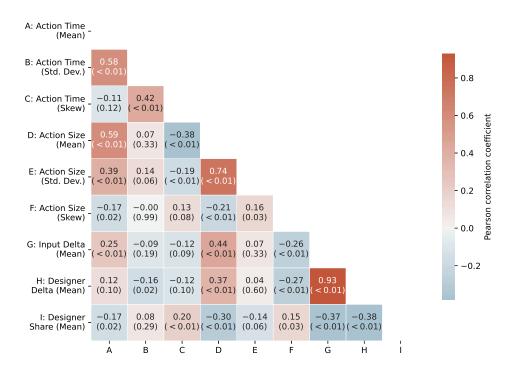


Figure 3: Pearson correlation matrix (p-values in parentheses) for nine identified design process features confirming the presence of significant multicolinearity.

Next, analysis uses the FactorAnalyzer function from the Python library factor_analyzer 380 (version 0.5.0) to run EFA on identified nine process factors. Bartlett's Test of Sphericity 381 confirms presence of significant correlation ($\chi^2 = 1026, p < 1 \cdot 10^{-100}$). The Kaiser-Meyer-382 Olkin Test suggests the data is marginally acceptable for factor analysis (KMO = 0.552). 383 The relatively low KMO score is not unexpected as a behavioral factor like design strategy 384 is not expected to exhibit high predictive power for recorded process metrics. EFA employs 385 a varimax factor rotation, minimum residual (minres) solution technique, and the Kaiser criterion that selects the number of factors based on eigenvalues greater than one (three in 387 this case). 388 The radar plot in Fig. 4 visualizes the resulting three process factors (PFs). Distinguish-389

1. PF1: High input delta mean and high designer delta mean (i.e. frequent switching between parameters and designers).

ing characteristics include:

390

391

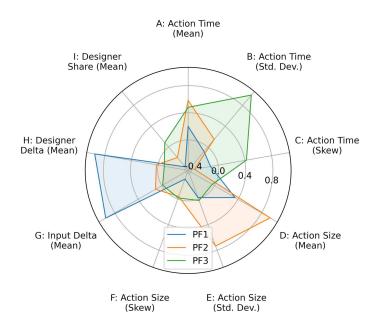


Figure 4: Exploratory factor analysis loadings of process variables. PF1 shows frequent switching of inputs and designers between actions. PF2 shows large average action size and variation in size. PF3 shows large variation and skew in action time.

Table 3: Summary of mean process factor values observed for tasks of variable size

Task Size (N)	Mean PF1	Mean PF2	Mean PF3
2	0.07	0.03	-0.16
3	-0.06	-0.03	-0.03
4	-0.05	0.01	0.83

2. PF2: High action size mean and standard deviation (large-magnitude and variably-sized parameter changes).

393

- 3. PF3: High action time standard deviation and skew (high variation in time in between actions with a long distribution "tail").
- Table 3 shows mean process factor values for each task size, reinforcing that PF3 is primarily associated with the most complex parameter design tasks.

99 4.2 Regression Analysis

418

419

420

The research question investigates the effect of the process variables (designer behavior) on task completion time while controlling for differences in LOC and task structure. The 401 analysis proposes a linear model with the same transformations used in Ref. [10]. Due to its 402 distribution (skewed distribution), task completion time has a logarithmic transformation 403 $(\ln T)$. Task size (N is the number of parameters in a task) is expected to have a power-law 404 relationship with task completion time ($\ln T \propto N^2$). Task order (O), the ordered task number 405 in a session (ranging between 1 and 10 for the 10-task sessions), quantifies learning effects 406 accumulated in sequential task ordering with a geometric relationship based on Henderson's 407 Law for learning curves $(\ln T \propto \ln O)$ [37]. 408 Analysis also considers an input factor for the experimentally-controlled conditions from 400 the primary source experiment. The categorical variable (LOC) denotes six levels of cohort-410 specific LOC: II1, II2, IE1, IE2, EE1, EE2. For example, II1 represent internal-internal pairs 411 from cohort 1. II1 serves as the reference condition against which others are evaluated. 412 Analysis constructs an ordinary least square regression model to investigate the effects 413 of the experimental control (LOC), all process variables (PF1, PF2, and PF3), task order 414 (O), and task size (N) on completion times. Summary results find PF1 (t(181) = -2.152, 415 p=0.033) and PF2 $(t(181)=4.575, p=8.81\cdot 10^{-6})$ have a significant effect on task comple-416 tion times, but PF3 has no significant effects on task completion times (t(181) = -0.897, p =

Equation (1) presents the resulting linear model with process factors as drivers of task completion time.

operator (LASSO) confirms significant factors.

0.371). Subsequent analysis eliminates PF3 and only considers statistically significant pro-

cess factors (PF1 and PF2). Additional analysis using least absolute shrinkage and selection

$$\ln(T) = B_0 + B_1 N^2 + B_2 \ln(O) + B_3 PF1 + B_4 PF2 + B_5 LOC_{EE1} + B_6 LOC_{EE2} + B_7 LOC_{IE1} + B_8 LOC_{IE2} + B_9 LOC_{II2}$$
(1)

Table 4: Regression of the effect of process variables on time

Factor	Coefficient	Std. Err.	t-stat.	p-value
Intercept	3.490	0.237	14.727	$7.80 \cdot 10^{-33}$
ln(O)	-0.359	0.095	-3.787	$2.07 \cdot 10^{-4}$
N^2	0.177	0.014	12.527	$2.30 \cdot 10^{-26}$
PF1	-0.131	0.058	-2.261	0.025
PF2	0.233	0.051	4.576	$8.76 \cdot 10^{-6}$
LOC_{EE1}	0.260	0.208	1.252	0.212
LOC_{EE2}	0.201	0.194	1.034	0.302
LOC_{IE1}	0.503	0.208	2.420	0.017
LOC_{IE2}	0.308	0.196	1.568	0.119
LOC_{II2}	0.661	0.202	3.274	0.001

Analysis of the Eq. (1) model performs both ordinary least squares (OLS) regression 423 and mixed effects models (more suitable for repeated observations), finding that both yield 424 substantially similar results with easier interpretation for OLS. Table 4 shows OLS regres-425 sion results using Python library statsmodels (version 0.12.2) function ols. Visualization of model residuals via a quartile-quartile plot verifies normality assumptions. Results indicate expression of PF1 behaviors significantly decrease task completion time (t(182) =428 -2.261, p = 0.025), and expression of PF2 significantly increases task completion times 429 $(t(182) = 4.576, p = 8.76 \cdot 10^{-6})$. Aligning with literature, both task size (t(182) = 12.527, p = 12.527)430 $5.72 \cdot 10^{-30}$) and task order $(t(182) = -3.787, p = 1.29 \cdot 10^{-5})$ are statistically significant 431 factors for task completion times. Analysis also indicates a significant performance difference 432 in IE1 and II2 pairs with reference to II1 pairs (p = 0.017 and p = 0.001, respectively). 433 As this study uses secondary data that originally focused on investigating the effects of 434 LOC on design team performance outcomes, analysis preserves LOC in the final regression 435 model in Eq. (1). Table 4 indicates that that process factors have a significant effect on 436 completion time after considering the previously controlled variable (LOC) in the analysis.

Summary of Analysis Results 4.3

437

Post-processing of event logs produces nine candidate process-oriented metrics in five cate-439 gories of process from the paired parameter design experiment: 1) action size as the distance

traveled by the input slider, 2) action time as the elapsed time between successive actions, 3) input delta as the indicator variable for input slider changes between successive actions, 4) designer delta as the indicator variable for input controller (designer) changes between successive actions, and 5) designer share as the indicator variable for input controller (de-444 signer) changes between successive actions. EFA combines co-observed process variables into 445 three behavioral design strategies identified as PF1: frequent switching between inputs and 446 designers, PF2: large average action size and variation, and PF3: long action time standard 447 deviation and skew. PF3 is noted to only be associated with the most complex design tasks 448 having four parameters. Analysis of the effects of these design strategies on pair performance 449 outcomes in the parameter design experiment finds that PF1 significantly reduces completion 450 times and PF2 significantly increases completion times. 451

$_{452}$ 5 Discussion

5.1 Research Reflection

The hypothesis investigates the effects of design strategies on team performance outcomes in 454 paired parameter design tasks. Results show that statistically significant variation in perfor-455 mance outcomes can be traced to differential designer behavior. Analysis indicates that the PF1 strategy, which describes frequent switching between inputs and designers (strategy of 457 changing input parameters and changing control over inputs within a pair frequently), has 458 a statistically significant effect on task completion times. As the PF1 strategy significantly 459 lowers task completion times, this strategy significantly improves pair performance outcomes 460 in the parameter design task. Frequently switching of the input parameter can help under-461 stand its effects on outputs, leading to more purposeful actions. Frequent switching between 462 designers can indicate high levels of communication and shared understanding. As the ex-463 periment is a cooperative design task, inputs of each designer affect the outputs of their 464 partner. Accordingly, designers not only need to understand the impacts of their actions 465

on outcomes but also need to understand the impacts of their actions on their partners' to achieve high performance outcomes.

The analysis also indicates that PF2 significantly increases completion times, meaning 468 that the PF2 strategy significantly lowers pair performance outcomes in the parameter design 469 experiment. The PF2 strategy refers to large action sizes and high variations in action sizes. 470 The strategy of using large-sized actions can lead to unexpected errors and less understanding 471 of the relationship between inputs and outputs. The PF2 strategy can also be associated 472 with random actions because actors might not understand how inputs influence outputs. 473 This finding also suggests that shorter and more consistent design actions can significantly 474 reduce task completion times. Teams following the strategy of taking small actions with 475 lower variation in action size may have more informed next steps, leading to consistently 476 effective actions and successful design outcomes. 477

The analysis also shows that task order and the number of variables in a task significantly affect the completion times of pairs, aligning with existing literature [10]. Results
suggest that completion times decrease as the task order increases, an indication of learning
effects. Later in a task sequence, designers leverage their experience and understanding of
tasks, leading to better performance outcomes. Analysis also shows a significant super-linear
relationship between the number of variables in a task and designer completion times. This
paper supports the findings of Grogan and de Weck, suggesting that an increase in the number of variables in a task increases the technical complexity level of a task leading to lower
performance outcomes [10].

⁴⁸⁷ 5.2 Connecting Findings to Design Practice

As the given example of an aircraft design in Section 1, each designer can be considered as representing a different subsystem (e.g., fuselage) with different design parameters and requirements. Designers work with partners who represent a different subsystem (e.g., airfoil), to create a product that functions when every subsystem is integrated together. The results of this paper emphasize that, in real-world design problems, certain strategies can lead to more efficient design processes and higher performance outcomes. This paper identifies some generalizable design strategy recipes applicable over broad design practices:

- 1. Avoiding major/large changes in a design parameter to prevent unexpected errors.
- 2. Making small changes in the design parameters to understand the effects of each action and building efficient next steps.
- 3. Frequently switching among design parameters, rather than concentrating on one, to
 better understand how each design parameter impacts the other requirements.
- 4. Switching control frequently among team members to better understand the effects
 between actions and outcomes controlled by others to successfully integrate all design
 parameters and subsystems.

503 5.3 Limitations

Results from this paper are subject to several limitations. First, it uses secondary data from an experiment on the effect of the LOC personality trait on team performance outcomes in parameter design tasks [25]. However, as the analysis preserves the controlled LOC factor and still shows significant impacts of process factors on the completion times, secondary data is suitable for the main investigation of this paper. Furthermore, no experimental control was exerted over the identified process factors, so it is possible that a confounding factor influences both the observed strategies and outcomes.

The experiment uses a highly simplified parameter design task representative of cooperative design only at an abstract level. Although using a parameter design framework helps understand the design process, it also greatly simplifies the design tasks by neglecting factors such as domain knowledge and creativity. The parameter design task should be considered a component of design, for example, searching over a trade space of alternatives in early-stage system concept selection rather than a holistic representation of end-to-end design.

Constraints on session duration limited the number of pair tasks to keep the total exper-517 iment time less than one hour and retain participant attention. Additionally, experimental 518 resources only allowed for twelve sessions, limiting the amount of data collected. Finally, 519 experimental tasks consider interactions between two participants at a time, take place over 520 a short time period (minutes), have a small number of design variables without any domain-521 specific design context, and incentivize behavior using a financial reward tied to relative 522 ranking in a design session. These limitations indicate results of this experiment might show 523 variations with a larger team size or with the application of domain-specific design tasks. 524

525 6 Conclusion

Identifying successful design strategies for design teams is important for creating more efficient design processes and achieving more successful design outcomes. This paper analyzes secondary data from a pair parameter design task experiment to find specific groups of actions that comprise design strategies which, in turn, are associated with performance outcomes. Results show that EFA can help identify specific design strategies on a design task by combining observed action groups during design processes.

Results show that design strategies with larger action sizes with higher variation in ac-532 tion size lead to higher completion times and worse performance outcomes. On the contrary, 533 smaller and consistent actions can lead to lower completion times and more successful design 534 outcomes. Analysis also shows that frequent switching of inputs by a designer and between designers within a team significantly lowers completion times and increases design team per-536 formance outcomes. The discussion explains that larger actions can cause unexpected errors. 537 In contrast, smaller and more consistent actions can lead to a better understanding of each 538 action's effects, helping designers have better-planned next steps. Also, frequent switching of 539 controllers can indicate frequent communication and better understanding between designers 540 in a team. In a cooperative task, it's crucial to comprehend how your teammate's actions influence the outcomes in order to build successful strategies. Findings also align with the literature that there is a negative relationship between the number of variables in a task and performance outcomes, whereas a positive relationship between task order and performance outcomes in parameter design tasks [10].

In summary, this paper recommends certain design strategy recipes: 1) Avoiding ma-546 jor/large changes in a design parameter to prevent unexpected errors, 2) Making small 547 changes in the design parameters to understand the effects of each action, 3) Not concen-548 trating on one parameter but making frequent switching among all design parameters to 549 understand better how each design parameter impacts the other requirements, 4) Switching 550 control frequently among team members to better understand the influence of actions on 551 outcomes controlled by others. The generalizable design strategy recipes this paper suggests 552 can help real-world design problems achieve more efficient design processes, higher design 553 team performance outcomes, and lower unexpected errors in the design integration part. 554 Future studies can bring interventions before the parameter design tasks to help designers 555 exhibit preferred design strategies. Future studies should also investigate how successful 556 design strategies for design teams would show variations in domain-specific tasks. 557

558 Acknowledgement

This work was supported in part by a Provost's Doctoral Fellowship from Stevens Institute of Technology and National Science Foundation Grant No. 1943433.

References

[1] Gero, J. S., and Mc Neill, T., 1998. "An approach to the analysis of design protocols".

Design Studies, 19(1), pp. 21–61.

- [2] Ross, A. M., Hastings, D. E., Warmkessel, J. M., and Diller, N. P., 2004. "Multiattribute tradespace exploration as front end for effective space systems design". *Journal* of Spacecraft and Rockets, 41(1), pp. 20–28.
- [3] Turner, C. J., Masoudi, N., Stewart, H., Daniels, J., Gorsich, D., Rizzo, D., Hartman,
 G., Agusti, R., Skowronska, A., Castanier, M., and Rapp, S. H., 2022. "A synthetic tradespace model for tradespace analysis and exploration". In *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, Vol. 2: 42nd Computers and Information in Engineering Conference. ASME.
 V002T02A080.
- [4] Wolf, D., Hyland, J., Simpson, T. W., and Zhang, X., 2011. "The importance of training
 for interactive trade space exploration: A study of novice and expert users". Journal of
 Computing and Information Science in Engineering, 11(3), pp. 1–11.
- [5] Simpson, T. W., Carlsen, D., Malone, M., and Kollat, J., 2011. "Trade space exploration: Assessing the benefits of putting designers "back-in-the-loop" during engineering optimization". In *Human-in-the-Loop Simulation*, L. Rothrock and S. Narayanan, eds. Springer, pp. 131–152.
- [6] Miller, S. W., Simpson, T. W., Yukish, M. A., Bennitt, L. A., Lego, S. E., and Stump,
 G. M., 2013. "Preference construction, sequential decision making, and trade space
 exploration". In *International Design Engineering Technical Conferences and Com-*puters and Information in Engineering Conference, Vol. 3A: 39th Design Automation
 Conference. ASME. V03AT03A014.
- [7] Ross, A. M., McManus, H. L., Rhodes, D. H., and Hastings, D. E., 2010. "Role for interactive tradespace exploration in multi-stakeholder negotiations". In AIAA SPACE

 2010 Conference & Exposition. AIAA.

- [8] Fitzgerald, M. E., and Ross, A. M., 2015. "Effects of enhanced multi-party tradespace visualization on a two-person negotiation". In *Procedia Computer Science*, Vol. 44. pp. 466–475.
- [9] Yu, B. Y., Honda, T., Sharqawy, M., and Yang, M., 2016. "Human behavior and domain knowledge in parameter design of complex systems". *Design Studies*, **45**, pp. 242–267.
- [10] Grogan, P. T., and de Weck, O. L., 2016. "Collaboration and complexity: an experiment on the effect of multi-actor coupled design". Research in Engineering Design, 27(3), pp. 221–235.
- [11] Alelyani, T., Yang, Y., and Grogan, P. T., 2017. "Understanding designers behavior in parameter design activities". In *International Design Engineering Technical Conferences* and Computers and Information in Engineering Conference, Vol. 7: 29th International
 Conference on Design Theory and Methodology. ASME. V007T06A030.
- [12] Thekinen, J., and Grogan, P. T., 2021. "Information exchange patterns in digital
 engineering: An observational study using web-based virtual design studio". Journal of
 Computing and Information Science in Engineering, 21(4), pp. 041012-1-14.
- [13] Gero, J. S., 1990. "Design prototypes: A knowledge representation schema for design".
 AI Magazine, 11(4), pp. 26–26.
- [14] McComb, C., Cagan, J., and Kotovsky, K., 2015. "Studying Human Design Teams via
 Computational Teams of Simulated Annealing Agents". In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7: 27th International Conference on Design Theory and Methodology. ASME.
 V007T06A030.
- [15] McComb, C., Cagan, J., and Kotovsky, K., 2017. "Mining process heuristics from designer action data via hidden markov models". Journal of Mechanical Design, 139(11),
 pp. 111412-1-12.

- [16] Raina, A., Cagan, J., and McComb, C., 2019. "Transferring design strategies from human to computer and across design problems". *Journal of Mechanical Design*, **141**(11), pp. 114501–1–7.
- [17] Raina, A., Cagan, J., and McComb, C., 2022. "Design strategy network: a deep hier archical framework to represent generative design strategies in complex action spaces".
 Journal of Mechanical Design, 144(2), pp. 021404-1-12.
- [18] Rahman, M. H., Gashler, M., Xie, C., and Sha, Z., 2018. "Automatic clustering of sequential design behaviors". In *International Design Engineering Technical Conferences*and Computers and Information in Engineering Conference, Vol. 1B: 38th Computers
 and Information in Engineering Conference. ASME. V01BT02A041.
- [19] Jablokow, K. W., Sonalkar, N., Edelman, J., Mabogunje, A., and Leifer, L., 2019. "Investigating the influence of designers' cognitive characteristics and interaction behaviors in design concept generation". *Journal of Mechanical Design*, **141**(9), pp. 091101–1–12.
- [20] Mirabito, Y., and Goucher-Lambert, K., 2022. "Factors impacting highly innovative designs: Idea fluency, timing, and order". *Journal of Mechanical Design*, **144**(1), pp. 011401–1–9.
- [21] Austin-Breneman, J., Honda, T., and Yang, M. C., 2012. "A study of student design team behaviors in complex system design". *Journal of Mechanical Design*, 134(12),
 pp. 124504-1-7.
- [22] Hirschi, N., and Frey, D., 2002. "Cognition and complexity: an experiment on the effect
 of coupling in parameter design". Research in Engineering Design, 13(3), pp. 123–131.
- Yu, R., and Gero, J., 2015. "An empirical foundation for design patterns in parametric design". In Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Y. Ikeda, C. M. Herr, D. Holzer,
 S. Kaijima, M. J. Kim, and M. A. Schnabel, eds. CAADRIA, pp. 551–560.

- [24] Woodbury, R., 2010. Elements of Parametric Design. Taylor and Francis.
- 639 [25] Avşar, A. Z., and Grogan, P. T., 2020. "Effects of locus of control personality trait 640 on team performance in cooperative engineering design tasks". In *International De-*641 sign Engineering Technical Conferences and Computers and Information in Engineering 642 Conference, Vol. 8: 32nd International Conference on Design Theory and Methodology 643 (DTM). ASME. V008T08A036.
- [26] Wöhr, F., Uhri, E., Königs, S., Trauer, J., Stanglmeier, M., and Zimmermann, M.,

 2023. "Coordination and complexity: an experiment on the effect of integration and
 verification in distributed design processes". *Design Science*, **9**(e1), pp. 1–31.
- [27] Hackman, J. R., and Morris, C. G., 1975. "Group tasks, group interaction process, and
 group performance effectiveness: A review and proposed integration". In Advances in
 Experimental Social Psychology, Vol. 8. Elsevier, pp. 45–99.
- [28] Gibbs, G., 1995. Assessing Student Centred Courses. Oxford Centre for Staff Development.
- [29] Dunne, E., and Rawlins, M., 2000. "Bridging the gap between industry and higher education: Training academics to promote student teamwork". *Innovations in Education* and Training International, 37(4), pp. 361–371.
- [30] Smith, R. P., and Eppinger, S. D., 1998. "Deciding between sequential and concurrent tasks in engineering design". Concurrent Engineering, 6(1), pp. 15–25.
- [31] Smith, R. P., and Eppinger, S. D., 1997. "Identifying controlling features of engineering
 design iteration". Management Science, 43(3), pp. 257–402.
- [32] Steen, M., 2013. "Co-design as a process of joint inquiry and imagination". *Design*Issues, **29**(2), pp. 16–28.

- [33] Thurston, D. L., 2001. "Real and misconceived limitations to decision based design
 with utility analysis". Journal of Mechanical Design, 123(2), pp. 176–182.
- [34] Tucker, R., Abbasi, N., Thorpe, G., Ostwald, M., Williams, A., and Wallis, L., 2014.
 Enhancing and assessing group and team learning in architecture and related design
 contexts. Final report, Office for Learning and Teching, Department of Education,
 Sydney, Australia.
- [35] Takai, S., and Esterman, M., 2017. "Towards a better design team formation: A
 review of team effectiveness models and possible measurements of design-team inputs,
 processes, and outputs". In International Design Engineering Technical Conferences
 and Computers and Information in Engineering Conference, Vol. 3: 19th International
 Conference on Advanced Vehicle Technologies; 14th International Conference on Design
 Education; 10th Frontiers in Biomedical Devices. ASME. V003T04A018.
- [36] Fournier, G., and Jeanrie, C., 2003. "Locus of control: Back to basics". In Positive
 Psychological Assessment: A Handbook of Models and Measures, S. J. Lopez and C. R.
 Snyder, eds. American Psychological Association, pp. 139–154.
- [37] Boston Consulting Group, 1968. Perspectives on Experience. The Boston Consulting
 Group, Inc., Boston.