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Abstract6

Understanding design processes and behaviors is important for building more7

effective design outcomes. During design tasks, teams exhibit sequences of actions8

that form strategies. This paper investigates patterns of design actions in a9

paired parameter design experiment to discover design strategies that influence10

outcomes. The analysis uses secondary data from a design experiment in which11

each pair completes a series of simplified cooperative parameter design tasks to12

minimize completion time. Analysis of 192 task observations uses exploratory13

factor analysis to identify design strategies and regression analysis to evaluate14

their impacts on performance outcomes. The paper finds large actions and high15

action size variability significantly increase completion times, leading to poor16

performance outcomes. Whereas results show that frequently changing input17

controllers within and among designers significantly reduces completion times,18

leading to higher performance outcomes. Discussion states that larger actions19

can introduce unexpected errors, while smaller and consistent actions enhance20

designers’ understanding of the effects of each action, aiding in better planning for21

subsequent steps. Frequent controller switching reflects effective communication22

and understanding within design teams, which is crucial for cooperative tasks.23

1 Introduction24

In today’s world, engineering design teams deal with complex problems. Design behaviors25

and strategies shape design outcomes, making design processes vital to achieving desired out-26

comes. During design processes, teams explore, communicate, and conduct decision-making27

processes that determine their actions and strategies. Understanding design behaviors and28

identifying strategies that lead to desired outcomes can create more efficient design processes.29
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Designers exhibit different actions based on their experience level and the complexity30

of design tasks [1]. Within a narrowly-scoped design task, micro strategies are defined as31

sequences of actions that designers perform to reach expected outcomes in a design process32

[1]. Identifying successful design strategies by grouping observed actions during a design33

task would help to inform future studies and industries to enhance their design processes.34

Complex collaborative engineering systems, such as an aircraft or spacecraft design, con-35

sist of multiple interdependent subsystems. Changes made in one subsystem interact with36

the other subsystems, and all subsystems need to be in harmony for the entire design to work37

once integrated. For instance, in the case of an aircraft, if the wings and fuselage subsystems38

do not meet each other’s requirements, the aircraft would not be able to function.39

As an example of system design activities during preliminary concept selection, archi-40

tectural trade space exploration searches for efficient solutions within large set of alterna-41

tives [2,3]. Typically, a morphological matrix identifies a set of design features (parameters)42

and their possible values, producing a large combinatorial trade space of alternatives [3].43

Evaluating a preference for each alternative can be practically difficult or computationally44

time-intensive, limiting direct use of design optimization methods [3]. Instead, interactive45

trade space exploration uses humans to “steer” evaluations towards efficient solutions [4–6].46

Furthermore, complex systems may require multiple participants to work together in a shared47

trade space exploration activity. Multi-stakeholder trade space exploration assigns control48

over design parameters or preference attributes among multiple decision-makers [7, 8].49

Trade space exploration can viewed as an instance of a parameter design task that searches50

a well-defined parameterized design space for a preferred solution [9]. Research using abstract51

parameter design tasks can eliminate domain-specific complexities and focus on general de-52

sign parameters and designer behaviors. Using parameter design tasks as an experimental53

procedure gives the control of varying the technical complexity of tasks [10] and reduces54

external complexities [9,11]. These features of parameter design experiments provide a more55

concentrated way to investigate specific research purposes in design settings.56
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For instance, Thekinen and Grogan introduce a domain-specific parameter design exper-57

iment for an aircraft design problem [12]. Aircraft design is a complex process with inter-58

connected subsystems that require careful coordination among all subsystems. For example,59

the propulsion subsystem’s thrust requirements depend on the aerodynamic properties of60

the fuselage and airfoils. Aircraft design involves three phases: conceptual, preliminary, and61

detailed design focusing here on the preliminary phase, which involves selecting design pa-62

rameters for a chosen concept through an iterative process. Thekinen and Grogan developed63

a parameter aircraft design task with four participants working on different subsystems as64

fuselage, payload (battery), propulsion (motor and propeller), and airfoil (wing and tail),65

and 12 design parameters. The integrated system only works if every design parameter meets66

the requirements for all subsystems.67

This paper uses a parameter design problem with the same logic, but eliminates the68

domain specificity and reduces the number of participants to two to decrease social and69

technical complexity and have a more concentrated way to investigate the specific research70

purpose. In the experimental procedure, each participant can be considered to be dealing71

with a different subsystem, with N number of design parameters, trying to meet the system-72

level requirements working with their pair.73

This paper studies design processes in an abstract parameter design problem that en-74

ables the identification of design strategies, which can be applied to a wide range of design75

problems. Identifying design strategies in abstract design problems can bring interventions76

enhancing design processes that are not specific to any particular design problem or domain.77

The paper defines design strategy as a similar set of actions designers follow that are gen-78

eralizable over broad design problems and investigates how groups of designer actions form79

strategies to understand better the design process and its effects on performance outcomes80

in paired parameter design tasks.81

The analysis uses secondary data from a human parameter design experiment consisting82

of tasks with different levels of complexity, yielding a total of 192 activity logs. The experi-83
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ment consisted of 48 participants and 24 pair teams. The analysis first identifies observable84

design actions from the experimental log, next performs Exploratory Factor Analysis (EFA)85

to identify design strategies exhibited during the experiment, and finally performs regres-86

sion analysis to evaluate the significance of design strategies on performance. Results show87

that a design strategy with large-magnitude and variably-sized changes to design parameters88

increases completion times. In contrast, a strategy with frequent parameter and designer89

switching reduces completion times in the parameter design experiment.90

2 Literature Review91

2.1 Design Actions and Strategies92

Gero defines design as a goal-oriented, constrained, exploration, decision-making, and learn-93

ing activity [13] with sequences of actions where designers perform micro strategies [1]. Mi-94

cro strategies are self-sustaining actions focusing on the current state of the design process.95

Identifying similar actions observed in the design process and then following and grouping96

them will provide specific micro strategies that designers choose. Gero also notes that the97

designer’s experience level and the complexity level of the task impact number of different98

micro strategies found in the design process [1]. From the stated definition, this paper focuses99

on the designer’s decision-making and the strategy-building process by identifying design-100

ers’ actions and grouping similar actions to differentiate some successful and unsuccessful101

strategies in paired parameter design tasks.102

Literature includes various studies that identify relationships between the design process103

and different focuses. McComb et al. conducted a human experiment with a truss design104

problem to identify successful problem-solving strategies [14]. Their findings indicate that105

proficient teams employ distinct problem-solving methods, opting for simpler designs and106

concentrating their search efforts on specific regions within the design space. In a later107

study, McComb et al. employ data-mining techniques to quantitatively analyze the problem-108
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solving processes utilized by designers when addressing configuration design problems [15].109

The findings reveal that designers progress through four distinct procedural stages while110

working on configuration design problems, transitioning from topology design to shape and111

parameter design. High-performing designers stand out due to their adeptness at adjusting112

parameters early in the process, facilitating a more effective and nuanced search for solutions.113

Raina et al. use the term design strategy as a designer’s approach, plan, or heuristic114

process for ordering the steps involved in solving a design problem [16]. They investigate the115

significance of design strategies in guiding the resolution of configuration design problems,116

employing a team of cognitive agents that mimic human behavior. Results indicate that117

human design heuristics were successfully represented through probabilistic models, estab-118

lishing a common foundation between human designers and computational agents for rep-119

resenting design strategies. Later, Raina et al. introduced Design Strategy Network (DSN),120

a data-driven method that learns from historical trajectory data and swiftly generates an121

action probability distribution based on the input state [17].122

Rahman et al. develop a framework for clustering designers with similar sequential design123

patterns by characterizing designers’ action sequences [18]. They identify a network-based124

clustering approach for identifying behavioral design patterns. Jablokow et al. investigate125

whether cognitive styles and team interaction behaviors affect team design outcomes [19].126

Their results indicate that certain team interaction behaviors are associated with generating127

more unique and varied ideas, which vary significantly across different teams. Additionally,128

their findings reveal that interaction sequences tended to be diverse rather than following129

specific patterns. Mirabito and Goucher-Lambert refer to performance as idea fluency and130

the overall output of exceptional ideas. They investigate factors that predict improved131

performance during concept generation in early-stage design settings [20].132

Austin-Breneman et al. studied team behavior in distributed complex system design133

tasks to identify factors affecting subsystem decision-making processes and their influence134

on the overall system [21]. Their findings conclude that design teams prefer global rather135
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than local searches, optimizing individual design parameters separately and sequential rather136

than concurrent optimization strategies.137

2.2 Parameter Design Problems138

Parameter design tasks present a set of input variables (design parameters) to designers that139

influence a set of output variables [22]. Parameter design generalizes the trade space explo-140

ration activities performed during early-stage system concept selection. Gero and Yu define141

parametric design as a dynamic, rule-based process controlled by variations and parameters,142

in which multiple design solutions can be developed in parallel [23]. Using parameter de-143

sign tasks to study designer behaviors helps control external factors’ effects, such as domain144

knowledge [11]. Using parameter design tasks supports the creation and organization of com-145

plex digital models [24]. Parameter tasks can have coupled and uncoupled characteristics.146

Uncoupled parameter design tasks include a one-to-one mapping between input and outputs147

whereas, where this condition is lacking, the parameter design tasks would be coupled [22].148

Hirschi and Frey conduct one of the first parameter design experiments on human sub-149

jects [22]. They used a computer user interface and assigned participants tasks ranging150

from 2-input, 2-output parameters to 5-input, 5-output parameters. Results show the task151

completion time grows linearly with the number of parameters for uncoupled tasks but ge-152

ometrically for coupled tasks. Later, Grogan and de Weck performed a human parameter153

design experiment by following the principles introduced by Hirschi and Frey but adding154

collaborative tasks [10]. They gave participants coupled and uncoupled parameter design155

tasks with varying technical and social complexity levels. Their results show that increasing156

technical complexity negatively impacts performance outcomes meaning that as the number157

of variables (parameters) increase in a task, the completion times increase with a power-158

law relationship. Their other significant conclusion was that as the team size grows, the159

completion times of design teams increase significantly due to increased social complexity.160

Alelyani et al. use secondary data from Grogan and de Weck [10] to investigate factors161
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contributing to designers’ behavior for parameter design tasks [11]. To quantify the relation-162

ship among design features, they identified three behavioral characteristics as the number of163

design actions, performance outcomes, and experienced error. Yu et al. conducted a human164

parameter design experiment where participants engaged with simulated design processes165

involving seawater reverse osmosis plants [9]. Their goal was to investigate the relationship166

between behavior and performance. Their findings showed that the best strategy was sim-167

ulated annealing optimization algorithm for higher performance outcomes, and the worst168

strategy was pseudo random-search strategy with lower performance outcomes.169

Avsar and Grogan adopt the parameter design problem experiment from Grogan and de170

Weck [10] to investigate the effects of Locus of Control (LOC) personality trait on perfor-171

mance outcomes [25]. Their findings show statistically significant relationship between LOC172

and performance of pairs in parameter design tasks.173

Wohr et al. build on the parameter design framework from Grogan and de Weck [26].174

They conduct a human parameter design experiment to investigate the effect of the varying175

time interval between each integration and verification. Their findings show that varying the176

frequency of integration and verification significantly impacts performance outcomes. They177

show shorter time intervals between each integration, and verification improves designer178

performance outcomes by decreasing the completion times of tasks.179

2.3 Teamwork and Design Process180

Teamwork has been the subject of extensive study in various fields because of its wide usage181

and advantages. Teamwork can provide greater productivity and competitiveness [27], and182

literature shows that design teams can achieve higher quality than individuals in product183

development [28]. Teamwork brings a wider range of knowledge and expertise [29], enabling184

decomposition and allocation of design decisions and actions among team members to apply185

specialized knowledge [30]. However, interactions between design actors generate iteration186

loops and rework that may outweigh potential benefits [31].187
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By cooperation, teams can achieve better productivity and performance outcomes, but188

having distributed cognition and communication among different members makes the process189

challenging [32]. As team effectiveness impact outcomes in design settings and team effec-190

tiveness depend on various factors [33–35], this paper focuses on how design team processes191

affect design outcomes.192

2.4 Literature Gap193

Literature offers various insights investigating design behaviors and strategies with different194

focuses. This paper aims to contribute to design strategy literature by studying the effects195

of different design strategies in parameter design tasks. Although identifying specific design196

strategies in parameter design settings does not provide certain recipes for domain-specific197

design problems, it enables identifying more generalizable strategies that can be implemented198

across different domains of design problems. This paper aims to identify generalizable strate-199

gies that can be applied to various design problems and situations instead of recommending200

specific behaviors or strategies for selected design problems. Accordingly, the paper defines201

design strategy as a similar set of actions designers follow that are generalizable over broad202

design problems.203

Literature shows that parameter design tasks provide a controlled environment to study204

design processes [10,22–24]. Parameter design problems involve abstract design activities and205

eliminate domain-specific complexity, providing complete control over technical variables. As206

a result, they offer a suitable environment for investigating more broadly applicable design207

strategies. This paper aims to conduct an initial study toward identifying design strategies208

that can be applied to engineering design tasks across multiple domains. These strategies209

should be broadly applicable and not specific to any particular domain.210
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2.5 Research Objective211

The objective of the paper is to fill the literature gap by studying design strategies in a212

parameter design problem to identify generalizable successful and unsuccessful strategies.213

Identifying and differentiating some successful and unsuccessful strategies that design teams214

use in parameter design tasks can help future studies and industries to bring interventions215

to design teams to direct them through using successful design strategies.216

This paper uses secondary data from a human parameter design experiment originally217

adapted from Grogan and de Weck’s parameter design work to explore the effects of per-218

sonality traits on team performance outcomes in design tasks [25]. The human experiment219

consists of cooperative paired parameter design tasks. The parameter design problem in the220

experiment represents an abstract level collaborative design problem without any domain-221

specific knowledge. During the design tasks, each designer in a pair can be thought of as222

representing a subsystem of a complex collaborative engineering design product.223

This paper investigates the relationship between process variables and task outcomes, the224

experiment design process illustrated in Fig. 1. The analysis seeks to identify successful and225

unsuccessful design team design strategies by identifying action types and grouping them226

by exploratory factor analysis (EFA) technique to differentiate strategies. For this purpose,227

the paper investigates the following hypothesis: Teams follow distinct design strategies that228

affect their performance outcomes in parameter design tasks.229

3 Methodology230

This paper analyzes secondary data from a parameter design experiment that originally stud-231

ied the effect of LOC on design behavior described in Ref. [25]. Secondary analysis further232

investigates how designer behaviors influence outcomes for cooperative pair design tasks ir-233

respective of LOC. The design experiment uses the same parameter design features from the234
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Designer 1 Designer 2

Interaction and Communication

Action Action

Design Strategy

{Feedback Feedback

Inputs: Social and Demographic Factors 

Outputs: Task Efficiency

Figure 1: The design system consists of the parameter design task with two designers who
iteratively make actions following a revealed design strategy. Inputs include social and
demographic factors. Outputs measure performance via task efficiency.

framework of Ref. [10] with an updated software platform1. The following sections review235

the methodology (design task, protocol, instruments, and data) of the source experiment.236

3.1 Design Task237

The underlying parameter design task defines a column vector of N scalar input variables238

(design parameters) x = [x1, . . . , xN ]
T each taking values on the interval xi ∈ [−1, 1] and239

a column vector of N scalar output variables (performance attributes) y = [y1, . . . , yN ]
T

240

associated with functional requirements. Although abstracted from this experiment, example241

inputs in an aircraft design task include wingspan and mean chord length; example outputs242

include lift and drag. An N × N system matrix M = [mij] relates inputs to outputs as a243

linear system of equations y = Mx where element mij represents the sensitivity of output244

yj on input xi. In other words, M is the system model that evaluates the multi-dimensional245

performance of a given design configuration given by selected parameter values. Starting246

from an initial zero input vector (xi = 0 ∀ i), the task objective is to choose input variables247

x to achieve a target output vector y⋆ with a maximum allowable error |yi−y⋆i | < ε = 0.05 in248

each output variable. The task duration measures the time required to meet all requirements.249

1Available under an open-source license at https://github.com/code-lab-org/collab-web
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Coupled task instances with mij ̸= 0 ∀ i, j are generated as follows to achieve certain250

invariant conditions. First, generate M as the orthonormal basis of a random N ×N matrix251

with elements sampled from a uniform (0,1) distribution. Next, generate a candidate y⋆252

as the orthonormal basis of a random N × 1 column vector with elements sampled from a253

uniform (-1,1) distribution. Compute the task solution as x⋆ = MTy⋆ and, if any solution254

variables are close to the initial design point with xi = 0 (∃ i : |x⋆
i − xi| f 0.2), generate a255

new target (repeat as necessary). Resulting tasks preserve identical unit Euclidian distance256

from initial to final inputs/outputs irrespective of N , i.e. ||x⋆|| = ||y⋆|| = 1, to control for257

distance scales in larger design problems.258

The design tasks are adapted to collaborative design problems by assigning control over259

input variables and visibility over output variables to n individual design actors. A binary260

control matrix n × N control matrix C = [cij] assigns designer i to have control of input261

variable j. A binary n×N visibility matrix V = [vij] assigns designer i to have visibility of262

output variable j. Each input and output variable is assigned to only one designer.263

Designers interact with design tasks in a graphical, rather than numerical, format. The264

browser-based user interface in Fig. 2 illustrates the user interface from each of two designer’s265

perspective. Vertical sliders ranging between −1 and 1 represent controlled input variables266

(xi) and horizontal sliders with target regions between black bars display output variables (yi)267

and target requirements (y⋆i ±ε). Quantitative information is hidden to prevent mathematical268

solutions. Designers are limited to visual feedback on their own interface and face-to-face269

communication with teammates. Designers modify inputs by dragging the slider thumb up270

and down (using the touch-pad or touchscreen) and inputs update once released. Designers271

may also use arrow keys on the vertical sliders to change the input by 0.1 or 0.01 units.272

Designers attempt to finish each task as quickly as possible. A timer visible in the inter-273

face counts down from a maximum duration allowed for each task. Individual tasks require274

the designer to meet the target region of all horizontal sliders, changing the signal icon from275

a red cross to green check mark. Pair tasks require both partners to meet the target region276
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Figure 2: Example interfaces for a N = 3 design task with two inputs/outputs assigned to
designer 1 (left) and one input/output for designer 2 (right). Input parameters appear as
editable vertical sliders and output requirements appear as uneditable horizontal sliders with
black bars marking the target region. Red exes mark unsatisfied requirements while green
checks mark satisfied requirements. Outputs update in response to input changes by either
designer. A timer counts down from a maximum duration allowed for each task.

of all horizontal sliders at the same time. Completed tasks award points to all participat-277

ing designers based on the relative efficiency (one point per second remaining). Cumulative278

points earned throughout an experiment determine rankings for monetary incentives.279

3.2 Experiment Protocol280

The source experiment follows a between-subjects design with replication at group and task281

units to study the effect of Locus of Control (LOC) on design processes. LOC is a personality282

trait that characterizes an individual’s perception of control on two extremes: internal and283

external [36]. Individuals with external LOC believe their life is guided by fate, luck or other284

external circumstances they cannot control. In contrast, people with internal LOC believe285

their decisions and efforts influence the events around them and create their own outcomes.286

The experiment controls group factors pairing LOC types (I: internal or E: external) in287

design pairs as I-I, I-E, or E-E. Each pair works on a sequence of design tasks of varying size288

to yield multiple observations of process and outcome variables. The protocol was approved289

by the Institutional Review Board at Stevens Institute of Technology (#2019-025).290

The study includes two distinct cohorts, each consisting of four replications of each group291
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Table 1: Training and experimental design tasks for Cohort 1 and Cohort 2

Training Tasks (Fixed Order) Cohort 1 Tasks (Fixed Order) Cohort 2 Tasks (Random Order‡)
Type Size Repl. Time (s) Type Size Repl. Time (s) Type Size Repl. Time (s)

Indiv. 1 1 90 Indiv. 2 2 120 Pair 2 4 180
Indiv. 2 1 120 Indiv. 3 2 240 Pair 3 4 360
Pair 2† 1 270 Pair 2 3 180 Pair 4 2 720
Pair 2 1 270 Pair 3 3 360
Pair 3 1 540

 : uses an identity coupling matrix M to simplify training.
!: size 4 tasks cannot appear within first five tasks.

factor (I-I, I-E, and E-E) across six sessions (total: 24 pairs). The cohorts were separated in292

time by several months and followed different task sequences described below; however, both293

cohorts used the same experiment rooms, computers, instructions, and overall procedures.294

Participants were recruited from adult on-campus student populations via email and flyers.295

All sessions were conducted in university classrooms using a standard room layout with296

assigned seats. Paired participants sit face-to-face with each team at a separate table. Tables297

are arranged such that each computer display is only visible to the seated individual. Pairs298

may communicate face-to-face but not share any computer displays. Each session evaluates299

two pairs in parallel, both working on equivalent tasks and scheduled based on mutual300

availability. The two teams in each session may not communicate with each other.301

Sessions consist of five training tasks and ten experimental tasks described in Table 1.302

Training tasks introduce the task objectives and computer interface and take about 20 min-303

utes to complete. The remaining ten experimental tasks take about 40 minutes to complete.304

Sessions in Cohort 1 include both individual and pair tasks administered in fixed order, of305

which this paper only considers the six pair tasks. Sessions in Cohort 2 include ten pair tasks306

administered in randomized order subject to the constraint that tasks with four variables307

must take place in the second half of the experiment.308

To incentivize efficiency, participants earn 1 point per second a task is finished ahead of309

the maximum time and 0 points for an incomplete task. At the end of a session, participants310

are ranked based on total accumulated points and privately paid in gift cards ranging from311
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minimum of $8 to maximum of $15 based on their successive ranks. Aggregated scores312

are only released at the end of a session to limit strategic behavior including end-of-session313

boundary effects.314

3.3 Experiment Instruments315

Prior to working on tasks, participants complete a demographics survey with six items316

including age (years), gender (male, female, or other), post-secondary education (years),317

professional work experience (years), native language, and English proficiency. English pro-318

ficiency is measured on a scale with five levels: Fluent/Native, High (TOEFL g 95 or IELTS319

> 7), Medium-High (TOEFL 85-94 or IELTS 6.5-7), Medium-Low (TOEFL 60-84 or IELTS320

6), or Low (TOEFL < 60 or IELTS < 6). Analysis assigns numerical values from 1 to 5 scale321

to English language ability (1: Low; 5: Fluent/Native).322

During a design task, an automated log records all design actions (i.e., input slider323

movements) as time-stamped events. Post-processing computes the time to complete each324

task (task efficiency) as the the timestamp difference of the first and last design action.325

Each design task requires the input sliders to move a total of 1.0 units from the initial state326

to reach the target solution, regardless of problem size N ; however, design strategies may327

produce different patterns of size, timing, and sequence of design actions.328

3.4 Experiment Data329

A total of 48 subjects (20 women and 28 men) participated in the experiment. Subjects330

ranged from 20 to 40 years of age with a mean of 26.7. All participants either previously331

completed or were in their last year of STEM undergraduate studies, and more than half were332

currently pursuing a graduate engineering degree, the mean value of educational experience333

is 6.7. 39 participants listed one of 19 different languages other than English as their native334

language. 21 subjects claimed to be fluent English speakers, 19 reported TOEFL scores335

equal or above 95 (IELTS > 7.0), 6 between 85-94 (IELTS 6.5–7.0) and 2 between 60-84336
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Table 2: Summary of design completion time by task size

Task Num Num Median Completion 1st Quartile 3rd Quartile
Size Samples Incomplete Time (s) Completion Time (s) Completion Time (s)

(N) Tasks (T̃ ) Q1(T ) Q3(T )

2 84 5 46.5 29.3 86.9
3 84 18 160.7 76.1 310.7
4 24 9 492.1 202.6 720.0
All 192 32 220.4 44.8 220.4

(IELTS 6.0) prior to starting their studies.337

The experimental design yields observations from 192 design tasks (12 × 6 = 72 from338

Cohort 1 and 12× 10 = 120 from Cohort 2) summarized in Table 2 by task size and median,339

first, and third quartile task completion times. Approximately 17% (32/192) of the tasks340

were not solved in the given maximum time limit and were assigned the maximum completion341

time in Table 1 as a conservative assumption for subsequent analysis. Here, conservative is342

used in a statistical sense (rather than related to task efficiency) in that it reduces apparent343

differences between conditions.344

4 Analysis and Results345

To address the hypothesis that differential design strategies affect performance outcomes346

in parameter design tasks, the analysis first performs Exploratory Factor Analysis (EFA)347

to reduce the dimensionality of process factors and identify the underlying relationships348

(strategies) between measured variables. Finally, regression analysis investigates whether349

process factors (strategies) have a significant effect on task performance. While preliminary350

analysis includes demographic factors, they are removed from further analysis because their351

effects are not as practically significant as preserved factors and their impacts might be due352

to other uncontrolled variables outside the scope of analysis relating design strategies to353

outcomes.354
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4.1 Exploratory Factor Analysis for Process Variables355

Post-processing of the experimental log computes nine candidate process-oriented metrics in356

five categories described below based on samples from each design action. Action size and357

action time variables consider first (mean), second (standard deviation), and third (skew)358

moments to capture distribution shape.359

1. Action size (mean, standard deviation, skew): distance traveled by the input slider for360

a single action. User interface buttons permit action sizes of 0.1 and 0.01 and moving361

the slider thumb permits arbitrary action sizes.362

2. Action time (mean, standard deviation, skew): elapsed time between successive actions.363

3. Input delta (mean): indicator variable for changes in input parameter modified between364

successive actions; each action (after the first) encodes a sample of 0 (same input365

parameter changed) or 1 (different input parameter changed). A mean value of 1.0366

indicates a different parameter for each successive input and a value of 0.0 indicates367

all actions modify the same parameter.368

4. Designer delta (mean): indicator variable for changes in input controller (designer)369

between successive actions; each action (after the first) encodes a sample of 0 (same370

designer action) or 1 (different designer action). A mean value of 1.0 indicates alter-371

nating actions between designers and a mean value of 0.0 indicates sequential actions372

from only one designer.373

5. Designer share (mean): indicator variable for the input controller (designer) for each374

action; each action encodes a sample of 0 (minority-acting designer) or 1 (majority-375

acting designer). A mean value of 0.5 indicates equal numbers of actions among both376

designers and a mean value of 1.0 indicates actions by only one designer.377

Figure 3 visualizes the Pearson correlation matrix (p-values in parentheses) to illustrate378

correlation and multicolinearity among process factors.379
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Figure 3: Pearson correlation matrix (p-values in parentheses) for nine identified design
process features confirming the presence of significant multicolinearity.

Next, analysis uses the FactorAnalyzer function from the Python library factor analyzer380

(version 0.5.0) to run EFA on identified nine process factors. Bartlett’s Test of Sphericity381

confirms presence of significant correlation (χ2 = 1026, p < 1 · 10−100). The Kaiser-Meyer-382

Olkin Test suggests the data is marginally acceptable for factor analysis (KMO = 0.552).383

The relatively low KMO score is not unexpected as a behavioral factor like design strategy384

is not expected to exhibit high predictive power for recorded process metrics. EFA employs385

a varimax factor rotation, minimum residual (minres) solution technique, and the Kaiser386

criterion that selects the number of factors based on eigenvalues greater than one (three in387

this case).388

The radar plot in Fig. 4 visualizes the resulting three process factors (PFs). Distinguish-389

ing characteristics include:390

1. PF1: High input delta mean and high designer delta mean (i.e. frequent switching391

between parameters and designers).392
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Figure 4: Exploratory factor analysis loadings of process variables. PF1 shows frequent
switching of inputs and designers between actions. PF2 shows large average action size and
variation in size. PF3 shows large variation and skew in action time.

Table 3: Summary of mean process factor values observed for tasks of variable size

Task Size (N) Mean PF1 Mean PF2 Mean PF3

2 0.07 0.03 −0.16
3 −0.06 −0.03 −0.03
4 −0.05 0.01 0.83

2. PF2: High action size mean and standard deviation (large-magnitude and variably-393

sized parameter changes).394

3. PF3: High action time standard deviation and skew (high variation in time in between395

actions with a long distribution “tail”).396

Table 3 shows mean process factor values for each task size, reinforcing that PF3 is primarily397

associated with the most complex parameter design tasks.398
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4.2 Regression Analysis399

The research question investigates the effect of the process variables (designer behavior)400

on task completion time while controlling for differences in LOC and task structure. The401

analysis proposes a linear model with the same transformations used in Ref. [10]. Due to its402

distribution (skewed distribution), task completion time has a logarithmic transformation403

(lnT ). Task size (N is the number of parameters in a task) is expected to have a power-law404

relationship with task completion time (lnT ∝ N2). Task order (O), the ordered task number405

in a session (ranging between 1 and 10 for the 10-task sessions), quantifies learning effects406

accumulated in sequential task ordering with a geometric relationship based on Henderson’s407

Law for learning curves (lnT ∝ lnO) [37].408

Analysis also considers an input factor for the experimentally-controlled conditions from409

the primary source experiment. The categorical variable (LOC) denotes six levels of cohort-410

specific LOC: II1, II2, IE1, IE2, EE1, EE2. For example, II1 represent internal-internal pairs411

from cohort 1. II1 serves as the reference condition against which others are evaluated.412

Analysis constructs an ordinary least square regression model to investigate the effects413

of the experimental control (LOC), all process variables (PF1, PF2, and PF3), task order414

(O), and task size (N) on completion times. Summary results find PF1 (t(181) = −2.152,415

p=0.033) and PF2 (t(181) = 4.575, p = 8.81 · 10−6) have a significant effect on task comple-416

tion times, but PF3 has no significant effects on task completion times (t(181) = −0.897, p =417

0.371). Subsequent analysis eliminates PF3 and only considers statistically significant pro-418

cess factors (PF1 and PF2). Additional analysis using least absolute shrinkage and selection419

operator (LASSO) confirms significant factors.420

Equation (1) presents the resulting linear model with process factors as drivers of task421

completion time.422

ln(T ) = B0 +B1N
2 +B2 ln(O) + B3PF1 + B4PF2+

B5LOCEE1 +B6LOCEE2 +B7LOCIE1 +B8LOCIE2 +B9LOCII2

(1)
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Table 4: Regression of the effect of process variables on time

Factor Coefficient Std. Err. t-stat. p-value

Intercept 3.490 0.237 14.727 7.80 · 10−33

ln(O) −0.359 0.095 −3.787 2.07 · 10−4

N2 0.177 0.014 12.527 2.30 · 10−26

PF1 −0.131 0.058 −2.261 0.025
PF2 0.233 0.051 4.576 8.76 · 10−6

LOCEE1 0.260 0.208 1.252 0.212
LOCEE2 0.201 0.194 1.034 0.302
LOCIE1 0.503 0.208 2.420 0.017
LOCIE2 0.308 0.196 1.568 0.119
LOCII2 0.661 0.202 3.274 0.001

Analysis of the Eq. (1) model performs both ordinary least squares (OLS) regression423

and mixed effects models (more suitable for repeated observations), finding that both yield424

substantially similar results with easier interpretation for OLS. Table 4 shows OLS regres-425

sion results using Python library statsmodels (version 0.12.2) function ols. Visualization426

of model residuals via a quartile-quartile plot verifies normality assumptions. Results in-427

dicate expression of PF1 behaviors significantly decrease task completion time (t(182) =428

−2.261, p = 0.025), and expression of PF2 significantly increases task completion times429

(t(182) = 4.576, p = 8.76·10−6). Aligning with literature, both task size (t(182) = 12.527, p =430

5.72 · 10−30) and task order (t(182) = −3.787, p = 1.29 · 10−5) are statistically significant431

factors for task completion times. Analysis also indicates a significant performance difference432

in IE1 and II2 pairs with reference to II1 pairs (p = 0.017 and p = 0.001, respectively).433

As this study uses secondary data that originally focused on investigating the effects of434

LOC on design team performance outcomes, analysis preserves LOC in the final regression435

model in Eq. (1). Table 4 indicates that that process factors have a significant effect on436

completion time after considering the previously controlled variable (LOC) in the analysis.437

4.3 Summary of Analysis Results438

Post-processing of event logs produces nine candidate process-oriented metrics in five cate-439

gories of process from the paired parameter design experiment: 1) action size as the distance440
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traveled by the input slider, 2) action time as the elapsed time between successive actions,441

3) input delta as the indicator variable for input slider changes between successive actions,442

4) designer delta as the indicator variable for input controller (designer) changes between443

successive actions, and 5) designer share as the indicator variable for input controller (de-444

signer) changes between successive actions. EFA combines co-observed process variables into445

three behavioral design strategies identified as PF1: frequent switching between inputs and446

designers, PF2: large average action size and variation, and PF3: long action time standard447

deviation and skew. PF3 is noted to only be associated with the most complex design tasks448

having four parameters. Analysis of the effects of these design strategies on pair performance449

outcomes in the parameter design experiment finds that PF1 significantly reduces completion450

times and PF2 significantly increases completion times.451

5 Discussion452

5.1 Research Reflection453

The hypothesis investigates the effects of design strategies on team performance outcomes in454

paired parameter design tasks. Results show that statistically significant variation in perfor-455

mance outcomes can be traced to differential designer behavior. Analysis indicates that the456

PF1 strategy, which describes frequent switching between inputs and designers (strategy of457

changing input parameters and changing control over inputs within a pair frequently), has458

a statistically significant effect on task completion times. As the PF1 strategy significantly459

lowers task completion times, this strategy significantly improves pair performance outcomes460

in the parameter design task. Frequently switching of the input parameter can help under-461

stand its effects on outputs, leading to more purposeful actions. Frequent switching between462

designers can indicate high levels of communication and shared understanding. As the ex-463

periment is a cooperative design task, inputs of each designer affect the outputs of their464

partner. Accordingly, designers not only need to understand the impacts of their actions465
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on outcomes but also need to understand the impacts of their actions on their partners’ to466

achieve high performance outcomes.467

The analysis also indicates that PF2 significantly increases completion times, meaning468

that the PF2 strategy significantly lowers pair performance outcomes in the parameter design469

experiment. The PF2 strategy refers to large action sizes and high variations in action sizes.470

The strategy of using large-sized actions can lead to unexpected errors and less understanding471

of the relationship between inputs and outputs. The PF2 strategy can also be associated472

with random actions because actors might not understand how inputs influence outputs.473

This finding also suggests that shorter and more consistent design actions can significantly474

reduce task completion times. Teams following the strategy of taking small actions with475

lower variation in action size may have more informed next steps, leading to consistently476

effective actions and successful design outcomes.477

The analysis also shows that task order and the number of variables in a task signifi-478

cantly affect the completion times of pairs, aligning with existing literature [10]. Results479

suggest that completion times decrease as the task order increases, an indication of learning480

effects. Later in a task sequence, designers leverage their experience and understanding of481

tasks, leading to better performance outcomes. Analysis also shows a significant super-linear482

relationship between the number of variables in a task and designer completion times. This483

paper supports the findings of Grogan and de Weck, suggesting that an increase in the num-484

ber of variables in a task increases the technical complexity level of a task leading to lower485

performance outcomes [10].486

5.2 Connecting Findings to Design Practice487

As the given example of an aircraft design in Section 1, each designer can be considered as488

representing a different subsystem (e.g., fuselage) with different design parameters and re-489

quirements. Designers work with partners who represent a different subsystem (e.g., airfoil),490

to create a product that functions when every subsystem is integrated together. The results491
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of this paper emphasize that, in real-world design problems, certain strategies can lead to492

more efficient design processes and higher performance outcomes. This paper identifies some493

generalizable design strategy recipes applicable over broad design practices:494

1. Avoiding major/large changes in a design parameter to prevent unexpected errors.495

2. Making small changes in the design parameters to understand the effects of each action496

and building efficient next steps.497

3. Frequently switching among design parameters, rather than concentrating on one, to498

better understand how each design parameter impacts the other requirements.499

4. Switching control frequently among team members to better understand the effects500

between actions and outcomes controlled by others to successfully integrate all design501

parameters and subsystems.502

5.3 Limitations503

Results from this paper are subject to several limitations. First, it uses secondary data from504

an experiment on the effect of the LOC personality trait on team performance outcomes in505

parameter design tasks [25]. However, as the analysis preserves the controlled LOC factor506

and still shows significant impacts of process factors on the completion times, secondary data507

is suitable for the main investigation of this paper. Furthermore, no experimental control508

was exerted over the identified process factors, so it is possible that a confounding factor509

influences both the observed strategies and outcomes.510

The experiment uses a highly simplified parameter design task representative of cooper-511

ative design only at an abstract level. Although using a parameter design framework helps512

understand the design process, it also greatly simplifies the design tasks by neglecting factors513

such as domain knowledge and creativity. The parameter design task should be considered a514

component of design, for example, searching over a trade space of alternatives in early-stage515

system concept selection rather than a holistic representation of end-to-end design.516
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Constraints on session duration limited the number of pair tasks to keep the total exper-517

iment time less than one hour and retain participant attention. Additionally, experimental518

resources only allowed for twelve sessions, limiting the amount of data collected. Finally,519

experimental tasks consider interactions between two participants at a time, take place over520

a short time period (minutes), have a small number of design variables without any domain-521

specific design context, and incentivize behavior using a financial reward tied to relative522

ranking in a design session. These limitations indicate results of this experiment might show523

variations with a larger team size or with the application of domain-specific design tasks.524

6 Conclusion525

Identifying successful design strategies for design teams is important for creating more effi-526

cient design processes and achieving more successful design outcomes. This paper analyzes527

secondary data from a pair parameter design task experiment to find specific groups of528

actions that comprise design strategies which, in turn, are associated with performance out-529

comes. Results show that EFA can help identify specific design strategies on a design task530

by combining observed action groups during design processes.531

Results show that design strategies with larger action sizes with higher variation in ac-532

tion size lead to higher completion times and worse performance outcomes. On the contrary,533

smaller and consistent actions can lead to lower completion times and more successful design534

outcomes. Analysis also shows that frequent switching of inputs by a designer and between535

designers within a team significantly lowers completion times and increases design team per-536

formance outcomes. The discussion explains that larger actions can cause unexpected errors.537

In contrast, smaller and more consistent actions can lead to a better understanding of each538

action’s effects, helping designers have better-planned next steps. Also, frequent switching of539

controllers can indicate frequent communication and better understanding between designers540

in a team. In a cooperative task, it’s crucial to comprehend how your teammate’s actions541
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influence the outcomes in order to build successful strategies. Findings also align with the542

literature that there is a negative relationship between the number of variables in a task and543

performance outcomes, whereas a positive relationship between task order and performance544

outcomes in parameter design tasks [10].545

In summary, this paper recommends certain design strategy recipes: 1) Avoiding ma-546

jor/large changes in a design parameter to prevent unexpected errors, 2) Making small547

changes in the design parameters to understand the effects of each action, 3) Not concen-548

trating on one parameter but making frequent switching among all design parameters to549

understand better how each design parameter impacts the other requirements, 4) Switching550

control frequently among team members to better understand the influence of actions on551

outcomes controlled by others. The generalizable design strategy recipes this paper suggests552

can help real-world design problems achieve more efficient design processes, higher design553

team performance outcomes, and lower unexpected errors in the design integration part.554

Future studies can bring interventions before the parameter design tasks to help designers555

exhibit preferred design strategies. Future studies should also investigate how successful556

design strategies for design teams would show variations in domain-specific tasks.557
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