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Identification of Design Strategies and Their Effects on
Performance Outcomes in Pair Parameter Design Tasks

Alkim Z. Avsar and Paul T. Grogan

School of Systems and Enterprises
Stevens Institute of Technology

Abstract

Understanding design processes and behaviors is important for building more
effective design outcomes. During design tasks, teams exhibit sequences of actions
that form strategies. This paper investigates patterns of design actions in a
paired parameter design experiment to discover design strategies that influence
outcomes. The analysis uses secondary data from a design experiment in which
each pair completes a series of simplified cooperative parameter design tasks to
minimize completion time. Analysis of 192 task observations uses exploratory
factor analysis to identify design strategies and regression analysis to evaluate
their impacts on performance outcomes. The paper finds large actions and high
action size variability significantly increase completion times, leading to poor
performance outcomes. Whereas results show that frequently changing input
controllers within and among designers significantly reduces completion times,
leading to higher performance outcomes. Discussion states that larger actions
can introduce unexpected errors, while smaller and consistent actions enhance
designers’ understanding of the effects of each action, aiding in better planning for
subsequent steps. Frequent controller switching reflects effective communication
and understanding within design teams, which is crucial for cooperative tasks.

1 Introduction

In today’s world, engineering design teams deal with complex problems. Design behaviors
and strategies shape design outcomes, making design processes vital to achieving desired out-
comes. During design processes, teams explore, communicate, and conduct decision-making
processes that determine their actions and strategies. Understanding design behaviors and

identifying strategies that lead to desired outcomes can create more efficient design processes.
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Designers exhibit different actions based on their experience level and the complexity
of design tasks [1]. Within a narrowly-scoped design task, micro strategies are defined as
sequences of actions that designers perform to reach expected outcomes in a design process
[1]. Identifying successful design strategies by grouping observed actions during a design
task would help to inform future studies and industries to enhance their design processes.

Complex collaborative engineering systems, such as an aircraft or spacecraft design, con-
sist of multiple interdependent subsystems. Changes made in one subsystem interact with
the other subsystems, and all subsystems need to be in harmony for the entire design to work
once integrated. For instance, in the case of an aircraft, if the wings and fuselage subsystems
do not meet each other’s requirements, the aircraft would not be able to function.

As an example of system design activities during preliminary concept selection, archi-
tectural trade space exploration searches for efficient solutions within large set of alterna-
tives [2,3]. Typically, a morphological matrix identifies a set of design features (parameters)
and their possible values, producing a large combinatorial trade space of alternatives [3].
Evaluating a preference for each alternative can be practically difficult or computationally
time-intensive, limiting direct use of design optimization methods [3]. Instead, interactive
trade space exploration uses humans to “steer” evaluations towards efficient solutions [4-6].
Furthermore, complex systems may require multiple participants to work together in a shared
trade space exploration activity. Multi-stakeholder trade space exploration assigns control
over design parameters or preference attributes among multiple decision-makers [7,8].

Trade space exploration can viewed as an instance of a parameter design task that searches
a well-defined parameterized design space for a preferred solution [9]. Research using abstract
parameter design tasks can eliminate domain-specific complexities and focus on general de-
sign parameters and designer behaviors. Using parameter design tasks as an experimental
procedure gives the control of varying the technical complexity of tasks [10] and reduces
external complexities [9,11]. These features of parameter design experiments provide a more

concentrated way to investigate specific research purposes in design settings.
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For instance, Thekinen and Grogan introduce a domain-specific parameter design exper-
iment for an aircraft design problem [12]. Aircraft design is a complex process with inter-
connected subsystems that require careful coordination among all subsystems. For example,
the propulsion subsystem’s thrust requirements depend on the aerodynamic properties of
the fuselage and airfoils. Aircraft design involves three phases: conceptual, preliminary, and
detailed design focusing here on the preliminary phase, which involves selecting design pa-
rameters for a chosen concept through an iterative process. Thekinen and Grogan developed
a parameter aircraft design task with four participants working on different subsystems as
fuselage, payload (battery), propulsion (motor and propeller), and airfoil (wing and tail),
and 12 design parameters. The integrated system only works if every design parameter meets
the requirements for all subsystems.

This paper uses a parameter design problem with the same logic, but eliminates the
domain specificity and reduces the number of participants to two to decrease social and
technical complexity and have a more concentrated way to investigate the specific research
purpose. In the experimental procedure, each participant can be considered to be dealing
with a different subsystem, with N number of design parameters, trying to meet the system-
level requirements working with their pair.

This paper studies design processes in an abstract parameter design problem that en-
ables the identification of design strategies, which can be applied to a wide range of design
problems. Identifying design strategies in abstract design problems can bring interventions
enhancing design processes that are not specific to any particular design problem or domain.
The paper defines design strategy as a similar set of actions designers follow that are gen-
eralizable over broad design problems and investigates how groups of designer actions form
strategies to understand better the design process and its effects on performance outcomes
in paired parameter design tasks.

The analysis uses secondary data from a human parameter design experiment consisting

of tasks with different levels of complexity, yielding a total of 192 activity logs. The experi-
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ment consisted of 48 participants and 24 pair teams. The analysis first identifies observable
design actions from the experimental log, next performs Exploratory Factor Analysis (EFA)
to identify design strategies exhibited during the experiment, and finally performs regres-
sion analysis to evaluate the significance of design strategies on performance. Results show
that a design strategy with large-magnitude and variably-sized changes to design parameters
increases completion times. In contrast, a strategy with frequent parameter and designer

switching reduces completion times in the parameter design experiment.

2 Literature Review

2.1 Design Actions and Strategies

Gero defines design as a goal-oriented, constrained, exploration, decision-making, and learn-
ing activity [13] with sequences of actions where designers perform micro strategies [1]. Mi-
cro strategies are self-sustaining actions focusing on the current state of the design process.
Identifying similar actions observed in the design process and then following and grouping
them will provide specific micro strategies that designers choose. Gero also notes that the
designer’s experience level and the complexity level of the task impact number of different
micro strategies found in the design process [1]. From the stated definition, this paper focuses
on the designer’s decision-making and the strategy-building process by identifying design-
ers’ actions and grouping similar actions to differentiate some successful and unsuccessful
strategies in paired parameter design tasks.

Literature includes various studies that identify relationships between the design process
and different focuses. McComb et al. conducted a human experiment with a truss design
problem to identify successful problem-solving strategies [14]. Their findings indicate that
proficient teams employ distinct problem-solving methods, opting for simpler designs and
concentrating their search efforts on specific regions within the design space. In a later

study, McComb et al. employ data-mining techniques to quantitatively analyze the problem-



109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

solving processes utilized by designers when addressing configuration design problems [15].
The findings reveal that designers progress through four distinct procedural stages while
working on configuration design problems, transitioning from topology design to shape and
parameter design. High-performing designers stand out due to their adeptness at adjusting
parameters early in the process, facilitating a more effective and nuanced search for solutions.

Raina et al. use the term design strategy as a designer’s approach, plan, or heuristic
process for ordering the steps involved in solving a design problem [16]. They investigate the
significance of design strategies in guiding the resolution of configuration design problems,
employing a team of cognitive agents that mimic human behavior. Results indicate that
human design heuristics were successfully represented through probabilistic models, estab-
lishing a common foundation between human designers and computational agents for rep-
resenting design strategies. Later, Raina et al. introduced Design Strategy Network (DSN),
a data-driven method that learns from historical trajectory data and swiftly generates an
action probability distribution based on the input state [17].

Rahman et al. develop a framework for clustering designers with similar sequential design
patterns by characterizing designers’ action sequences [18]. They identify a network-based
clustering approach for identifying behavioral design patterns. Jablokow et al. investigate
whether cognitive styles and team interaction behaviors affect team design outcomes [19].
Their results indicate that certain team interaction behaviors are associated with generating
more unique and varied ideas, which vary significantly across different teams. Additionally,
their findings reveal that interaction sequences tended to be diverse rather than following
specific patterns. Mirabito and Goucher-Lambert refer to performance as idea fluency and
the overall output of exceptional ideas. They investigate factors that predict improved
performance during concept generation in early-stage design settings [20)].

Austin-Breneman et al. studied team behavior in distributed complex system design
tasks to identify factors affecting subsystem decision-making processes and their influence

on the overall system [21]. Their findings conclude that design teams prefer global rather
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than local searches, optimizing individual design parameters separately and sequential rather

than concurrent optimization strategies.

2.2 Parameter Design Problems

Parameter design tasks present a set of input variables (design parameters) to designers that
influence a set of output variables [22]. Parameter design generalizes the trade space explo-
ration activities performed during early-stage system concept selection. Gero and Yu define
parametric design as a dynamic, rule-based process controlled by variations and parameters,
in which multiple design solutions can be developed in parallel [23]. Using parameter de-
sign tasks to study designer behaviors helps control external factors’ effects, such as domain
knowledge [11]. Using parameter design tasks supports the creation and organization of com-
plex digital models [24]. Parameter tasks can have coupled and uncoupled characteristics.
Uncoupled parameter design tasks include a one-to-one mapping between input and outputs
whereas, where this condition is lacking, the parameter design tasks would be coupled [22].
Hirschi and Frey conduct one of the first parameter design experiments on human sub-
jects [22]. They used a computer user interface and assigned participants tasks ranging
from 2-input, 2-output parameters to 5-input, 5-output parameters. Results show the task
completion time grows linearly with the number of parameters for uncoupled tasks but ge-
ometrically for coupled tasks. Later, Grogan and de Weck performed a human parameter
design experiment by following the principles introduced by Hirschi and Frey but adding
collaborative tasks [10]. They gave participants coupled and uncoupled parameter design
tasks with varying technical and social complexity levels. Their results show that increasing
technical complexity negatively impacts performance outcomes meaning that as the number
of variables (parameters) increase in a task, the completion times increase with a power-
law relationship. Their other significant conclusion was that as the team size grows, the
completion times of design teams increase significantly due to increased social complexity.

Alelyani et al. use secondary data from Grogan and de Weck [10] to investigate factors
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contributing to designers’ behavior for parameter design tasks [11]. To quantify the relation-
ship among design features, they identified three behavioral characteristics as the number of
design actions, performance outcomes, and experienced error. Yu et al. conducted a human
parameter design experiment where participants engaged with simulated design processes
involving seawater reverse osmosis plants [9]. Their goal was to investigate the relationship
between behavior and performance. Their findings showed that the best strategy was sim-
ulated annealing optimization algorithm for higher performance outcomes, and the worst
strategy was pseudo random-search strategy with lower performance outcomes.

Avsar and Grogan adopt the parameter design problem experiment from Grogan and de
Weck [10] to investigate the effects of Locus of Control (LOC) personality trait on perfor-
mance outcomes [25]. Their findings show statistically significant relationship between LOC
and performance of pairs in parameter design tasks.

Wohr et al. build on the parameter design framework from Grogan and de Weck [26].
They conduct a human parameter design experiment to investigate the effect of the varying
time interval between each integration and verification. Their findings show that varying the
frequency of integration and verification significantly impacts performance outcomes. They
show shorter time intervals between each integration, and verification improves designer

performance outcomes by decreasing the completion times of tasks.

2.3 Teamwork and Design Process

Teamwork has been the subject of extensive study in various fields because of its wide usage
and advantages. Teamwork can provide greater productivity and competitiveness [27], and
literature shows that design teams can achieve higher quality than individuals in product
development [28]. Teamwork brings a wider range of knowledge and expertise [29], enabling
decomposition and allocation of design decisions and actions among team members to apply
specialized knowledge [30]. However, interactions between design actors generate iteration

loops and rework that may outweigh potential benefits [31].
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By cooperation, teams can achieve better productivity and performance outcomes, but
having distributed cognition and communication among different members makes the process
challenging [32]. As team effectiveness impact outcomes in design settings and team effec-
tiveness depend on various factors [33-35], this paper focuses on how design team processes

affect design outcomes.

2.4 Literature GGap

Literature offers various insights investigating design behaviors and strategies with different
focuses. This paper aims to contribute to design strategy literature by studying the effects
of different design strategies in parameter design tasks. Although identifying specific design
strategies in parameter design settings does not provide certain recipes for domain-specific
design problems, it enables identifying more generalizable strategies that can be implemented
across different domains of design problems. This paper aims to identify generalizable strate-
gies that can be applied to various design problems and situations instead of recommending
specific behaviors or strategies for selected design problems. Accordingly, the paper defines
design strategy as a similar set of actions designers follow that are generalizable over broad
design problems.

Literature shows that parameter design tasks provide a controlled environment to study
design processes [10,22-24]. Parameter design problems involve abstract design activities and
eliminate domain-specific complexity, providing complete control over technical variables. As
a result, they offer a suitable environment for investigating more broadly applicable design
strategies. This paper aims to conduct an initial study toward identifying design strategies
that can be applied to engineering design tasks across multiple domains. These strategies

should be broadly applicable and not specific to any particular domain.
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2.5 Research Objective

The objective of the paper is to fill the literature gap by studying design strategies in a
parameter design problem to identify generalizable successful and unsuccessful strategies.
Identifying and differentiating some successful and unsuccessful strategies that design teams
use in parameter design tasks can help future studies and industries to bring interventions
to design teams to direct them through using successful design strategies.

This paper uses secondary data from a human parameter design experiment originally
adapted from Grogan and de Weck’s parameter design work to explore the effects of per-
sonality traits on team performance outcomes in design tasks [25]. The human experiment
consists of cooperative paired parameter design tasks. The parameter design problem in the
experiment represents an abstract level collaborative design problem without any domain-
specific knowledge. During the design tasks, each designer in a pair can be thought of as
representing a subsystem of a complex collaborative engineering design product.

This paper investigates the relationship between process variables and task outcomes, the
experiment design process illustrated in Fig. 1. The analysis seeks to identify successful and
unsuccessful design team design strategies by identifying action types and grouping them
by exploratory factor analysis (EFA) technique to differentiate strategies. For this purpose,
the paper investigates the following hypothesis: Teams follow distinct design strategies that

affect their performance outcomes in parameter design tasks.

3 Methodology

This paper analyzes secondary data from a parameter design experiment that originally stud-
ied the effect of LOC on design behavior described in Ref. [25]. Secondary analysis further
investigates how designer behaviors influence outcomes for cooperative pair design tasks ir-

respective of LOC. The design experiment uses the same parameter design features from the
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Figure 1: The design system consists of the parameter design task with two designers who
iteratively make actions following a revealed design strategy. Inputs include social and
demographic factors. Outputs measure performance via task efficiency.

1

framework of Ref. [10] with an updated software platform'. The following sections review

the methodology (design task, protocol, instruments, and data) of the source experiment.

3.1 Design Task

The underlying parameter design task defines a column vector of N scalar input variables
(design parameters) x = [z1,...,2y] each taking values on the interval z; € [—1,1] and
a column vector of N scalar output variables (performance attributes) y = [y, ... ,yN]T
associated with functional requirements. Although abstracted from this experiment, example
inputs in an aircraft design task include wingspan and mean chord length; example outputs
include lift and drag. An N x N system matrix M = [m;;] relates inputs to outputs as a
linear system of equations y = Mz where element m,; represents the sensitivity of output
y; on input z;. In other words, M is the system model that evaluates the multi-dimensional
performance of a given design configuration given by selected parameter values. Starting
from an initial zero input vector (z; = 0V i), the task objective is to choose input variables
x to achieve a target output vector y* with a maximum allowable error |y; —y*| < € = 0.05 in

each output variable. The task duration measures the time required to meet all requirements.

! Available under an open-source license at https://github.com/code-lab-org/collab-web
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Coupled task instances with m;; # 0 V 4, j are generated as follows to achieve certain
invariant conditions. First, generate M as the orthonormal basis of a random N x N matrix
with elements sampled from a uniform (0,1) distribution. Next, generate a candidate y*
as the orthonormal basis of a random N x 1 column vector with elements sampled from a
uniform (-1,1) distribution. Compute the task solution as z* = M7Ty* and, if any solution
variables are close to the initial design point with z; =0 (37 : |z} — x;] < 0.2), generate a
new target (repeat as necessary). Resulting tasks preserve identical unit Euclidian distance
from initial to final inputs/outputs irrespective of N, i.e. |[z*|| = ||y*|| = 1, to control for
distance scales in larger design problems.

The design tasks are adapted to collaborative design problems by assigning control over
input variables and visibility over output variables to n individual design actors. A binary
control matrix n x N control matrix C' = [¢;;] assigns designer i to have control of input
variable j. A binary n x N visibility matrix V' = [v;;] assigns designer i to have visibility of
output variable 7. Each input and output variable is assigned to only one designer.

Designers interact with design tasks in a graphical, rather than numerical, format. The
browser-based user interface in Fig. 2 illustrates the user interface from each of two designer’s
perspective. Vertical sliders ranging between —1 and 1 represent controlled input variables
(x;) and horizontal sliders with target regions between black bars display output variables (y;)
and target requirements (y+¢). Quantitative information is hidden to prevent mathematical
solutions. Designers are limited to visual feedback on their own interface and face-to-face
communication with teammates. Designers modify inputs by dragging the slider thumb up
and down (using the touch-pad or touchscreen) and inputs update once released. Designers
may also use arrow keys on the vertical sliders to change the input by 0.1 or 0.01 units.

Designers attempt to finish each task as quickly as possible. A timer visible in the inter-
face counts down from a maximum duration allowed for each task. Individual tasks require
the designer to meet the target region of all horizontal sliders, changing the signal icon from

a red cross to green check mark. Pair tasks require both partners to meet the target region

11
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Figure 2: Example interfaces for a N = 3 design task with two inputs/outputs assigned to
designer 1 (left) and one input/output for designer 2 (right). Input parameters appear as
editable vertical sliders and output requirements appear as uneditable horizontal sliders with
black bars marking the target region. Red exes mark unsatisfied requirements while green
checks mark satisfied requirements. Outputs update in response to input changes by either
designer. A timer counts down from a maximum duration allowed for each task.

of all horizontal sliders at the same time. Completed tasks award points to all participat-
ing designers based on the relative efficiency (one point per second remaining). Cumulative

points earned throughout an experiment determine rankings for monetary incentives.

3.2 Experiment Protocol

The source experiment follows a between-subjects design with replication at group and task
units to study the effect of Locus of Control (LOC) on design processes. LOC is a personality
trait that characterizes an individual’s perception of control on two extremes: internal and
external [36]. Individuals with external LOC believe their life is guided by fate, luck or other
external circumstances they cannot control. In contrast, people with internal LOC believe
their decisions and efforts influence the events around them and create their own outcomes.
The experiment controls group factors pairing LOC types (I: internal or E: external) in
design pairs as I-I, I-E, or E-E. Each pair works on a sequence of design tasks of varying size
to yield multiple observations of process and outcome variables. The protocol was approved
by the Institutional Review Board at Stevens Institute of Technology (#2019-025).

The study includes two distinct cohorts, each consisting of four replications of each group

12
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Table 1: Training and experimental design tasks for Cohort 1 and Cohort 2

Training Tasks (Fixed Order) Cohort 1 Tasks (Fixed Order) Cohort 2 Tasks (Random Order)

Type Size Repl. Time (s) | Type Size Repl. Time (s) ‘ Type Size Repl. Time (s)
Indiv. 1 1 90 Indiv. 2 2 120 Pair 2 4 180
Indiv. 2 1 120 Indiv. 3 2 240 Pair 3 4 360
Pair  2f 1 270 Pair 2 3 180 Pair 4 2 720
Pair 2 1 270 Pair 3 3 360

Pair 3 1 540

t: uses an identity coupling matrix M to simplify training.

1: size 4 tasks cannot appear within first five tasks.

factor (I-1, I-E, and E-E) across six sessions (total: 24 pairs). The cohorts were separated in
time by several months and followed different task sequences described below; however, both
cohorts used the same experiment rooms, computers, instructions, and overall procedures.
Participants were recruited from adult on-campus student populations via email and flyers.

All sessions were conducted in university classrooms using a standard room layout with
assigned seats. Paired participants sit face-to-face with each team at a separate table. Tables
are arranged such that each computer display is only visible to the seated individual. Pairs
may communicate face-to-face but not share any computer displays. Each session evaluates
two pairs in parallel, both working on equivalent tasks and scheduled based on mutual
availability. The two teams in each session may not communicate with each other.

Sessions consist of five training tasks and ten experimental tasks described in Table 1.
Training tasks introduce the task objectives and computer interface and take about 20 min-
utes to complete. The remaining ten experimental tasks take about 40 minutes to complete.
Sessions in Cohort 1 include both individual and pair tasks administered in fixed order, of
which this paper only considers the six pair tasks. Sessions in Cohort 2 include ten pair tasks
administered in randomized order subject to the constraint that tasks with four variables
must take place in the second half of the experiment.

To incentivize efficiency, participants earn 1 point per second a task is finished ahead of
the maximum time and 0 points for an incomplete task. At the end of a session, participants

are ranked based on total accumulated points and privately paid in gift cards ranging from

13
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minimum of $8 to maximum of $15 based on their successive ranks. Aggregated scores
are only released at the end of a session to limit strategic behavior including end-of-session

boundary effects.

3.3 Experiment Instruments

Prior to working on tasks, participants complete a demographics survey with six items
including age (years), gender (male, female, or other), post-secondary education (years),
professional work experience (years), native language, and English proficiency. English pro-
ficiency is measured on a scale with five levels: Fluent/Native, High (TOEFL > 95 or IELTS
> 7), Medium-High (TOEFL 85-94 or IELTS 6.5-7), Medium-Low (TOEFL 60-84 or IELTS
6), or Low (TOEFL < 60 or IELTS < 6). Analysis assigns numerical values from 1 to 5 scale
to English language ability (1: Low; 5: Fluent/Native).

During a design task, an automated log records all design actions (i.e., input slider
movements) as time-stamped events. Post-processing computes the time to complete each
task (task efficiency) as the the timestamp difference of the first and last design action.
Each design task requires the input sliders to move a total of 1.0 units from the initial state
to reach the target solution, regardless of problem size N; however, design strategies may

produce different patterns of size, timing, and sequence of design actions.

3.4 Experiment Data

A total of 48 subjects (20 women and 28 men) participated in the experiment. Subjects
ranged from 20 to 40 years of age with a mean of 26.7. All participants either previously
completed or were in their last year of STEM undergraduate studies, and more than half were
currently pursuing a graduate engineering degree, the mean value of educational experience
is 6.7. 39 participants listed one of 19 different languages other than English as their native
language. 21 subjects claimed to be fluent English speakers, 19 reported TOEFL scores
equal or above 95 (IELTS > 7.0), 6 between 85-94 (IELTS 6.5-7.0) and 2 between 60-84

14
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Table 2: Summary of design completion time by task size

Task Num Num Median Completion 15t Quartile 37 Quartile
Size | Samples | Incomplete Time (s) Completion Time (s) | Completion Time (s)
() Tasks (@) Q\(T) Qu(T)

2 84 5 46.5 29.3 86.9

3 84 18 160.7 76.1 310.7

4 24 9 492.1 202.6 720.0

All 192 32 220.4 44.8 220.4

(IELTS 6.0) prior to starting their studies.

The experimental design yields observations from 192 design tasks (12 x 6 = 72 from
Cohort 1 and 12 x 10 = 120 from Cohort 2) summarized in Table 2 by task size and median,
first, and third quartile task completion times. Approximately 17% (32/192) of the tasks
were not solved in the given maximum time limit and were assigned the maximum completion
time in Table 1 as a conservative assumption for subsequent analysis. Here, conservative is
used in a statistical sense (rather than related to task efficiency) in that it reduces apparent

differences between conditions.

4 Analysis and Results

To address the hypothesis that differential design strategies affect performance outcomes
in parameter design tasks, the analysis first performs Exploratory Factor Analysis (EFA)
to reduce the dimensionality of process factors and identify the underlying relationships
(strategies) between measured variables. Finally, regression analysis investigates whether
process factors (strategies) have a significant effect on task performance. While preliminary
analysis includes demographic factors, they are removed from further analysis because their
effects are not as practically significant as preserved factors and their impacts might be due
to other uncontrolled variables outside the scope of analysis relating design strategies to

outcomes.
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4.1 Exploratory Factor Analysis for Process Variables

Post-processing of the experimental log computes nine candidate process-oriented metrics in
five categories described below based on samples from each design action. Action size and
action time variables consider first (mean), second (standard deviation), and third (skew)

moments to capture distribution shape.

1. Action size (mean, standard deviation, skew): distance traveled by the input slider for
a single action. User interface buttons permit action sizes of 0.1 and 0.01 and moving

the slider thumb permits arbitrary action sizes.
2. Action time (mean, standard deviation, skew): elapsed time between successive actions.

3. Input delta (mean): indicator variable for changes in input parameter modified between
successive actions; each action (after the first) encodes a sample of 0 (same input
parameter changed) or 1 (different input parameter changed). A mean value of 1.0
indicates a different parameter for each successive input and a value of 0.0 indicates

all actions modify the same parameter.

4. Designer delta (mean): indicator variable for changes in input controller (designer)
between successive actions; each action (after the first) encodes a sample of 0 (same
designer action) or 1 (different designer action). A mean value of 1.0 indicates alter-
nating actions between designers and a mean value of 0.0 indicates sequential actions

from only one designer.

5. Designer share (mean): indicator variable for the input controller (designer) for each
action; each action encodes a sample of 0 (minority-acting designer) or 1 (majority-
acting designer). A mean value of 0.5 indicates equal numbers of actions among both

designers and a mean value of 1.0 indicates actions by only one designer.

Figure 3 visualizes the Pearson correlation matrix (p-values in parentheses) to illustrate

correlation and multicolinearity among process factors.
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Figure 3: Pearson correlation matrix (p-values in parentheses) for nine identified design
process features confirming the presence of significant multicolinearity.

Next, analysis uses the FactorAnalyzer function from the Python library factor_analyzer
(version 0.5.0) to run EFA on identified nine process factors. Bartlett’s Test of Sphericity
confirms presence of significant correlation (x? = 1026,p < 1-1071%). The Kaiser-Meyer-
Olkin Test suggests the data is marginally acceptable for factor analysis (KMO = 0.552).
The relatively low KMO score is not unexpected as a behavioral factor like design strategy
is not expected to exhibit high predictive power for recorded process metrics. EFA employs
a varimax factor rotation, minimum residual (minres) solution technique, and the Kaiser
criterion that selects the number of factors based on eigenvalues greater than one (three in
this case).

The radar plot in Fig. 4 visualizes the resulting three process factors (PFs). Distinguish-

ing characteristics include:

1. PF1: High input delta mean and high designer delta mean (i.e. frequent switching

between parameters and designers).
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Figure 4: Exploratory factor analysis loadings of process variables. PF1 shows frequent
switching of inputs and designers between actions. PF2 shows large average action size and
variation in size. PF3 shows large variation and skew in action time.

Table 3: Summary of mean process factor values observed for tasks of variable size

Task Size (N) | Mean PF1 | Mean PF2 | Mean PF3

2 0.07 0.03 —0.16

3 —0.06 —-0.03 —-0.03

4 —0.05 0.01 0.83
303 2. PF2: High action size mean and standard deviation (large-magnitude and variably-
304 sized parameter changes).
305 3. PF3: High action time standard deviation and skew (high variation in time in between
396 actions with a long distribution “tail”).

s07 Table 3 shows mean process factor values for each task size, reinforcing that PF3 is primarily

3

©

s associated with the most complex parameter design tasks.
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4.2 Regression Analysis

The research question investigates the effect of the process variables (designer behavior)
on task completion time while controlling for differences in LOC and task structure. The
analysis proposes a linear model with the same transformations used in Ref. [10]. Due to its
distribution (skewed distribution), task completion time has a logarithmic transformation
(InT'). Task size (IV is the number of parameters in a task) is expected to have a power-law
relationship with task completion time (In7" oc N2). Task order (O), the ordered task number
in a session (ranging between 1 and 10 for the 10-task sessions), quantifies learning effects
accumulated in sequential task ordering with a geometric relationship based on Henderson’s
Law for learning curves (In7" o In O) [37].

Analysis also considers an input factor for the experimentally-controlled conditions from
the primary source experiment. The categorical variable (LOC') denotes six levels of cohort-
specific LOC: 111, 112, IE1, IE2, EE1, EE2. For example, II1 represent internal-internal pairs
from cohort 1. II1 serves as the reference condition against which others are evaluated.

Analysis constructs an ordinary least square regression model to investigate the effects
of the experimental control (LOC'), all process variables (PF'1, PF2, and PF3), task order
(O), and task size (N) on completion times. Summary results find PF1 (#(181) = —2.152,
p=0.033) and PF2 (#(181) = 4.575,p = 8.81 - 107%) have a significant effect on task comple-
tion times, but PF3 has no significant effects on task completion times (#(181) = —0.897,p =
0.371). Subsequent analysis eliminates PF3 and only considers statistically significant pro-
cess factors (PF1 and PF2). Additional analysis using least absolute shrinkage and selection
operator (LASSO) confirms significant factors.

Equation (1) presents the resulting linear model with process factors as drivers of task

completion time.

In(T) = By + BN + B,In(O) + BsPF1 + B,PF2+

B5LOCEE1 + B6LOCEE2 + B7LOC[E1 + BgLOC]EQ + BQLOC][2
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Table 4: Regression of the effect of process variables on time

Factor  Coefficient Std. Err.  t¢-stat. p-value
Intercept 3.490 0.237  14.727 7.80-10~%
In(0) —0.359 0.095  —3.787 2.07-107*
N? 0.177 0.014 12.527 2.30-10726
PF1 —0.131 0.058  —2.261 0.025
PF2 0.233 0.051 4576  8.76-1076
LOCEm 0.260 0.208 1.252 0.212
LOCEgg» 0.201 0.194 1.034 0.302
LOCrm 0.503 0.208 2.420 0.017
LOC1Es 0.308 0.196 1.568 0.119
LOCqrs 0.661 0.202 3.274 0.001

Analysis of the Eq. (1) model performs both ordinary least squares (OLS) regression
and mixed effects models (more suitable for repeated observations), finding that both yield
substantially similar results with easier interpretation for OLS. Table 4 shows OLS regres-
sion results using Python library statsmodels (version 0.12.2) function ols. Visualization
of model residuals via a quartile-quartile plot verifies normality assumptions. Results in-
dicate expression of PF1 behaviors significantly decrease task completion time (¢(182) =
—2.261,p = 0.025), and expression of PF2 significantly increases task completion times
(t(182) = 4.576,p = 8.76-107%). Aligning with literature, both task size (¢(182) = 12.527,p =
5.72 - 1073%) and task order (¢(182) = —3.787,p = 1.29 - 107°) are statistically significant
factors for task completion times. Analysis also indicates a significant performance difference
in TE1 and II2 pairs with reference to II1 pairs (p = 0.017 and p = 0.001, respectively).

As this study uses secondary data that originally focused on investigating the effects of
LOC on design team performance outcomes, analysis preserves LOC' in the final regression
model in Eq. (1). Table 4 indicates that that process factors have a significant effect on

completion time after considering the previously controlled variable (LOC) in the analysis.

4.3 Summary of Analysis Results

Post-processing of event logs produces nine candidate process-oriented metrics in five cate-

gories of process from the paired parameter design experiment: 1) action size as the distance
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traveled by the input slider, 2) action time as the elapsed time between successive actions,
3) input delta as the indicator variable for input slider changes between successive actions,
4) designer delta as the indicator variable for input controller (designer) changes between
successive actions, and 5) designer share as the indicator variable for input controller (de-
signer) changes between successive actions. EFA combines co-observed process variables into
three behavioral design strategies identified as PF1: frequent switching between inputs and
designers, PF2: large average action size and variation, and PF3: long action time standard
deviation and skew. PF3 is noted to only be associated with the most complex design tasks
having four parameters. Analysis of the effects of these design strategies on pair performance
outcomes in the parameter design experiment finds that PF1 significantly reduces completion

times and PF2 significantly increases completion times.

5 Discussion

5.1 Research Reflection

The hypothesis investigates the effects of design strategies on team performance outcomes in
paired parameter design tasks. Results show that statistically significant variation in perfor-
mance outcomes can be traced to differential designer behavior. Analysis indicates that the
PF1 strategy, which describes frequent switching between inputs and designers (strategy of
changing input parameters and changing control over inputs within a pair frequently), has
a statistically significant effect on task completion times. As the PF1 strategy significantly
lowers task completion times, this strategy significantly improves pair performance outcomes
in the parameter design task. Frequently switching of the input parameter can help under-
stand its effects on outputs, leading to more purposeful actions. Frequent switching between
designers can indicate high levels of communication and shared understanding. As the ex-
periment is a cooperative design task, inputs of each designer affect the outputs of their

partner. Accordingly, designers not only need to understand the impacts of their actions
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on outcomes but also need to understand the impacts of their actions on their partners’ to
achieve high performance outcomes.

The analysis also indicates that PF2 significantly increases completion times, meaning
that the PF2 strategy significantly lowers pair performance outcomes in the parameter design
experiment. The PF2 strategy refers to large action sizes and high variations in action sizes.
The strategy of using large-sized actions can lead to unexpected errors and less understanding
of the relationship between inputs and outputs. The PF2 strategy can also be associated
with random actions because actors might not understand how inputs influence outputs.
This finding also suggests that shorter and more consistent design actions can significantly
reduce task completion times. Teams following the strategy of taking small actions with
lower variation in action size may have more informed next steps, leading to consistently
effective actions and successful design outcomes.

The analysis also shows that task order and the number of variables in a task signifi-
cantly affect the completion times of pairs, aligning with existing literature [10]. Results
suggest that completion times decrease as the task order increases, an indication of learning
effects. Later in a task sequence, designers leverage their experience and understanding of
tasks, leading to better performance outcomes. Analysis also shows a significant super-linear
relationship between the number of variables in a task and designer completion times. This
paper supports the findings of Grogan and de Weck, suggesting that an increase in the num-
ber of variables in a task increases the technical complexity level of a task leading to lower

performance outcomes [10].

5.2 Connecting Findings to Design Practice

As the given example of an aircraft design in Section 1, each designer can be considered as
representing a different subsystem (e.g., fuselage) with different design parameters and re-
quirements. Designers work with partners who represent a different subsystem (e.g., airfoil),

to create a product that functions when every subsystem is integrated together. The results
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of this paper emphasize that, in real-world design problems, certain strategies can lead to
more efficient design processes and higher performance outcomes. This paper identifies some

generalizable design strategy recipes applicable over broad design practices:
1. Avoiding major/large changes in a design parameter to prevent unexpected errors.

2. Making small changes in the design parameters to understand the effects of each action

and building efficient next steps.

3. Frequently switching among design parameters, rather than concentrating on one, to

better understand how each design parameter impacts the other requirements.

4. Switching control frequently among team members to better understand the effects
between actions and outcomes controlled by others to successfully integrate all design

parameters and subsystems.

5.3 Limitations

Results from this paper are subject to several limitations. First, it uses secondary data from
an experiment on the effect of the LOC personality trait on team performance outcomes in
parameter design tasks [25]. However, as the analysis preserves the controlled LOC factor
and still shows significant impacts of process factors on the completion times, secondary data
is suitable for the main investigation of this paper. Furthermore, no experimental control
was exerted over the identified process factors, so it is possible that a confounding factor
influences both the observed strategies and outcomes.

The experiment uses a highly simplified parameter design task representative of cooper-
ative design only at an abstract level. Although using a parameter design framework helps
understand the design process, it also greatly simplifies the design tasks by neglecting factors
such as domain knowledge and creativity. The parameter design task should be considered a
component of design, for example, searching over a trade space of alternatives in early-stage

system concept selection rather than a holistic representation of end-to-end design.
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Constraints on session duration limited the number of pair tasks to keep the total exper-
iment time less than one hour and retain participant attention. Additionally, experimental
resources only allowed for twelve sessions, limiting the amount of data collected. Finally,
experimental tasks consider interactions between two participants at a time, take place over
a short time period (minutes), have a small number of design variables without any domain-
specific design context, and incentivize behavior using a financial reward tied to relative
ranking in a design session. These limitations indicate results of this experiment might show

variations with a larger team size or with the application of domain-specific design tasks.

6 Conclusion

Identifying successful design strategies for design teams is important for creating more effi-
cient design processes and achieving more successful design outcomes. This paper analyzes
secondary data from a pair parameter design task experiment to find specific groups of
actions that comprise design strategies which, in turn, are associated with performance out-
comes. Results show that EFA can help identify specific design strategies on a design task
by combining observed action groups during design processes.

Results show that design strategies with larger action sizes with higher variation in ac-
tion size lead to higher completion times and worse performance outcomes. On the contrary,
smaller and consistent actions can lead to lower completion times and more successful design
outcomes. Analysis also shows that frequent switching of inputs by a designer and between
designers within a team significantly lowers completion times and increases design team per-
formance outcomes. The discussion explains that larger actions can cause unexpected errors.
In contrast, smaller and more consistent actions can lead to a better understanding of each
action’s effects, helping designers have better-planned next steps. Also, frequent switching of
controllers can indicate frequent communication and better understanding between designers

in a team. In a cooperative task, it’s crucial to comprehend how your teammate’s actions
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influence the outcomes in order to build successful strategies. Findings also align with the
literature that there is a negative relationship between the number of variables in a task and
performance outcomes, whereas a positive relationship between task order and performance
outcomes in parameter design tasks [10].

In summary, this paper recommends certain design strategy recipes: 1) Avoiding ma-
jor/large changes in a design parameter to prevent unexpected errors, 2) Making small
changes in the design parameters to understand the effects of each action, 3) Not concen-
trating on one parameter but making frequent switching among all design parameters to
understand better how each design parameter impacts the other requirements, 4) Switching
control frequently among team members to better understand the influence of actions on
outcomes controlled by others. The generalizable design strategy recipes this paper suggests
can help real-world design problems achieve more efficient design processes, higher design
team performance outcomes, and lower unexpected errors in the design integration part.
Future studies can bring interventions before the parameter design tasks to help designers
exhibit preferred design strategies. Future studies should also investigate how successful

design strategies for design teams would show variations in domain-specific tasks.
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