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A B S T R A C T   

Air pollution is the major environmental risk to human health. Road transport is one of the major 
sources for air pollution, particularly nitrogen dioxide, in urban areas, and hence traffic control is 
an important measure in air quality management. A street-scale air quality model, ADMS-Urban, 
was configured for a case study of the West Midlands, UK to represent a baseline year (2019). 
Model outputs were evaluated using hourly air pollutant measurement data, and the model 
demonstrates good performance overall. This modelling tool was then used to explore the effect of 
five hypothetical traffic reduction scenarios, ranging from 10% to 90% reduction in traffic ac
tivity; scenario impacts were analysed over a range of spatial resolutions. The impacts of traffic 
reduction are highly dependent on spatial resolution (i.e. street scale, electoral ward level and 
local authority level), which has to be taken into account when formulating policies for managing 
air quality on local and city-wide scales. There was an almost linear relationship between the 
predicted annual concentration and traffic reduction for both NO2 and PM2.5. Traffic reduction 
would principally reduce NO2 concentrations, with even very substantial changes in traffic having 
more limited effects on reducing PM2.5 concentrations reflecting the importance of regional and 
non-traffic PM2.5 sources.   

1. Introduction 

Air pollution is a substantial environmental issue that causes risk to human health (WHO, 2022). Air pollutants such as nitrogen 
dioxide (NO2) and particulate matter particles (PM2.5 with an aerodynamic diameter smaller than 2.5 μm) are associated with a range 
of diseases, e.g. respiratory disease, lung cancer, heart disease and stroke (Hu and Guo, 2021). It was estimated by the World Health 
Organisation (WHO) that poor ambient air quality caused 4.2 million premature deaths globally in 2019 (WHO, 2022). There were 
29,000–43,000 estimated premature deaths annually attributable to long term exposure to air pollution in the UK (COMEAP, 2018). 
The WHO released an update for its Global Air Quality Guidelines in September 2021 (WHO, 2021), which identify potential health 
risks from exposures at very low levels of air pollution. 99% of the world’s population in 2019 was exposed to air pollution levels 
exceeding the 2021 WHO air quality guidelines (WHO, 2021). 
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Air quality monitoring provides direct and continuous information relating to ambient air pollution levels. There are a range of air 
quality monitoring options, such as the UK’s Automatic Urban and Rural Network (AURN) (Defra, 2019), low-cost sensors (Wesseling 
et al., 2019), and mobile monitoring (Matthaios et al., 2023; Samad and Vogt, 2021). To complement air quality monitoring, air quality 
modelling has been widely used to reproduce and predict air pollution levels at high spatial and temporal scales (Feng et al., 2021). Air 
quality modelling adopts mathematical equations to capture the interaction of emissions, chemistry and physical processes in the 
atmosphere (Lamb and Seinfeld, 1973). Air quality monitoring generates valuable datasets which can be used to validate air quality 
models. In addition, models commonly use measurement datasets as input, for example as boundary conditions (Simpson et al., 2012), 
or for calibration purposes (Brookes et al., 2021). The European Directive on Ambient Air Quality and Cleaner Air for Europe en
courages the use of air quality modelling in the assessment of emission reduction interventions and air quality forecasting (EUR-Lex, 
2015). 

Road transport is one of the major sources for air pollution in urban areas. It was estimated that 35% of nitrogen oxide (NOx) 
emissions and 13% of PM2.5 emissions were generated by the transport sector in the UK (OS, 2021). Traffic control is an important 
measure in air quality management, particularly during air pollution episodes (Shahbazi et al., 2017). There are a number of studies 
attempting to investigate the effect of traffic restrictions on air quality, especially during the Covid-19 period with lockdown measures, 
which serves as a large, if impromptu (and tragic), experimental case study. Xu et al. (2023) explored the air quality changes due to 
traffic restrictions for four cities in Spain and United States. They found that there was a decrease in NO2 concentrations by about 50% 
and an increase in O3 concentrations by about 40% in response to a traffic volume reduction of 60–90%. Lin et al. (2022) found traffic 
flow on a motorway in the UK decreased by 7–39% due to the Covid-19 outbreak, and corresponding total non-exhaust PM emissions 
also reduced by the similar percentage. It was also found that resuspension of road dust was the largest contribution to the non-exhaust 
emissions (rather than road wear, tyre wear, and brake wear) for the motorway during the studied period. Hwang and Lee (2022) 
showed that a 1% traffic reduction would lead to 0.94% reduction in PM2.5 and 0.74% reduction in NO2 for Seoul, South Korea. 
Jephcote et al. (2021) demonstrated that there was a reduction of 69% in the UK monthly average traffic flow in April 2020 (compared 
with the previous year). Associated air pollution reduction was 38.3% for NO2 and 16.5% for PM2.5. Sánchez et al. (2021) found that 
the reductions in air pollution concentrations (for NOx and PM) were around 45% for a 5% traffic reduction scenario and up to 53% for 
a 20% traffic reduction scenario for Madrid, Spain. Feng et al. (2021) found that removing traffic emissions completely (i.e. 100% 
traffic reduction) was estimated to cause a decrease in modelled NO2 and PM2.5 concentrations by 18.4% and 9.7%, respectively, for 
Wuhan, China. These reductions were much less compared with the scenario of removing industrial emissions which led to 65.6% and 
48.5% reductions in modelled NO2 and PM2.5 concentrations, respectively. Tanzer-Gruener et al. (2020) used a network of low-cost 
sensor packages to quantify the impact of traffic activity on air quality in real time in Pittsburgh, USA. They found that the reduc
tion in NO2 concentration (50%) during the morning peak was consistent with the commuter traffic activity reduction (also 50%) at 
high traffic-density locations. Kerr et al. (2022) adopted a semi-empirical method (combining measurement and models) to estimate 
the changes of NO2 concentrations during the COVID-19 pandemic in 2020 for European cities. They demonstrated a linear regression 
fit between the change of NO2 and diesel vehicle shares, reflecting the strong impact of fuel type on NO2 concentrations. Kumar et al. 
(2020) investigated the impact of COVID-19 on PM2.5 concentrations in five Indian cities using measurement datasets from 2015 to 
2020. Their data analysis found a linear correlation between the traffic volume and PM2.5 concentrations, although other sector 
sources may be also impactful. Wang et al. (2021) used ground and satellite observations during the COVID-19 pandemic in 2020 to 
constrain predictions of a regional chemistry transport model, and found a near-linear relationship between the traffic reduction and 
NO2 and PM2.5 concentrations for most cities in China. They further built a near-linear model between the traffic reduction and 
concentration reductions, and extrapolated this model to predict the impact of complete electrification on air quality.Bigazzi and 
Rouleau (2017) carried out a systematic literature review on the effectiveness of traffic management strategies for improving urban air 
quality. Traffic management strategies were classified into 5 categories, i.e. traffic flow control, operating restrictions and pricing, lane 
management, speed management and trip reduction strategies. There was limited evidence for the effects of traffic management 
strategies on emissions and air quality. 

The paper describes the configuration and evaluation of a street-scale air quality model, accounting for dispersion and chemical 
reactions associated with emissions from major road at high resolution for an approximately 900 km2 domain covering the West 
Midlands, UK, and the application of the modelling tool to explore the effect of traffic reduction scenarios, spanning a large dynamic 
range, on air quality in this region. Section 2 presents the street-scale modelling approach, model configuration and traffic reduction 
scenarios. Section 3 reports the evaluation of the baseline model and the results of modelling scenarios. Section 4 discusses the 
modelling results. Section 5 provides brief conclusions. 

2. Methods 

2.1. Street-scale modelling: ADMS-Urban 

ADMS-Urban is an Atmospheric Dispersion Modelling System, which is based on a quasi-Gaussian plume air dispersion model 
(Carruthers et al., 1994). ADMS-Urban has been widely used to simulate air quality with application of assessing emission-reduction 
scenarios and interventions (Zhong et al., 2023; Zhang et al., 2022). The dispersion characteristics of the atmospheric boundary layer 
are governed by a range of meteorological parameters, such as Monin–Obukhov length, boundary layer height, wind speed and wind 
direction. Hourly meteorological data (wind speed and direction, temperature, cloud cover etc) are processed to generate vertical 
atmospheric boundary layer profiles which are used to drive dispersion processes within the model. Air flow is inhomogeneous within 
urban areas, since the upwind flow is displaced by buildings; in-canopy wind speeds are correspondingly reduced. The ADMS-Urban 
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model represents this through use of an ‘urban canopy’ module (Hood et al., 2014), which calculates turbulence and wind speed 
profiles that relate to the spatially varying building density at the neighbourhood scale, parameterised via the surface roughness length 
(e.g. at a resolution of 1 km × 1 km). For local street canyons, the model has an advanced street canyon module to capture the street 
canyon (both asymmetric and symmetric) effect on in-canyon dispersion, and the channelling and circulation of the in-canyon flow 
(Hood et al., 2021). 

ADMS-Urban can capture the dispersion of a range of emission sources that occur in urban areas, from explicit major road and 
industrial point emissions to grid-averaged emissions. The model resolves concentration gradients near the local dispersion region of 
emission sources. The NOx-O3-VOC chemistry is captured by the Generic Reaction Set (GRS) chemistry scheme (Venkatram et al., 
1994) and the formation of secondary particular matter is represented by sulphate chemistry (CERC, 2021a). 

2.2. Model configuration for West Midlands 

The West Midlands, UK region (shown as Fig. 1) was used as a case study for this air quality modelling study. West Midlands covers 
7 local authorities (Birmingham, Coventry, Dudley, Sandwell, Solihull, Walsall and Wolverhampton) with a total area of 902 km2 and a 
population of 2.9 million. ADMS-Urban requires a range of model input data (such as emissions, background, meteorological data, 
urban canopy and street canyon data) prior to the running of the model. The model included emissions from explicit point and major 
road sources, and grid sources for the West Midlands (Fig. 1) for the baseline year of 2019 (the last typical year prior to the Covid 19 
pandemic) in this study, which is an update for the modelling year of 2016 presented in Zhong et al. (2021). The EMIT Emissions 
Inventory Toolkit (CERC, 2021b) was used to pre-process emissions data from all source types and for all scenarios, allowing direct 
import into the ADMS-Urban model. 

Emission rates for point sources (larger industrial sources) for the year of 2019 were obtained from the UK National Atmospheric 
Emissions Inventory (NAEI, Tsagatakis et al., 2021). Stack parameters (such as stack height and diameter, efflux temperature and exit 
velocity) for point sources were derived from the Airviro model (Airviro, 2018) through Birmingham City Council (BCC). Major road 
traffic data combined Transport for West Midlands’ PRISM (PRISM, 2019) and BCC’s SATURN (BCC, 2018) traffic models, which was 
used in Zhong et al. (2021). The bus timetable (Remix, 2019) was used to estimate the traffic activity for buses. Traffic fleet 
composition and emission factors with real-world adjustments (Hood et al., 2018) were derived from the EMIT dataset for the year of 
2019. The emission rates for major road sources for 2019 were then automatically calculated in EMIT. Grid emissions for all SNAP 
(Selected Nomenclature for Air Pollution) sectors at 1 km resolution for the year of 2019 were derived from NAEI (Tsagatakis et al., 
2021). For SNAP07 Road Transport sector, the residual between the NAEI derived emissions and explicit major road emissions 
(aggregated to the 1 km resolution) was taken as unresolved Minor Road emissions, and included in the model as gridded emissions. 
Table 1 shows a summary of different types of emission sources over the West Midlands computational model domain for the year 

Fig. 1. Emission sources (Point, Road and Grid sources for the year of 2019) and spatial splitting implemented in the model.  
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2019. The Road Transport sector (SNAP07) is the dominant source for NO2 and NOx (Table 1). The Combustion in Commercial, In
dustrial, Residential and Agriculture (SNAP02) sector is the dominant source for PM10, PM2.5, and SO2, and the Solvent Use (SNAP06) 
sector is the dominant source for VOCs. 

Time varying profiles were also applied to scale annual emissions to hourly emissions. For grid sources, the time varying factors for 
SNAP sectors were derived from those used in the EMEP model (Simpson et al., 2012). For road sources, the time varying factors were 
derived from local traffic flows (supplied by Transport for West Midlands). Hourly background data for rural background sites sur
rounding the West Midlands for the year of 2019 was derived from the Automatic Urban and Rural Network (AURN) (Defra, 2019), and 
the selection of the upwind sites is dependent on the monitored wind direction at each hour, following the method in Zhong et al. 
(2021). Hourly meteorological data at Birmingham Airport for 2019 (Met_Office, 2019) was used as a synoptic driver of the dispersion 
(see the details in Zhong et al. (2021)). The urban canopy parameters (at a resolution of 1 km × 1 km) and street canyon parameters 
were derived from the local building data and the road network data using an ArcGIS tool (Jackson et al., 2016) developed by 
Cambridge Environmental Research Consultants. For model evaluation, where model output was required at a limited number of 
receptor locations (monitors), the Windows version of the ADMS-Urban model (v5.0.0.1) was run in a desktop environment due to the 
relatively minimal computational resources required for this application. There are 10 air quality sites used for model evaluation, 
including eight sites from the Defra’s Automatic Urban and Rural Network (AURN), one airport site from Air Quality England and one 
supersite (air pollution research observatory packed with state-of-the-art technology to measure air quality in the atmosphere) located 
at the University of Birmingham campus (i.e. Birmingham Air Quality Supersite). These sites are classified into three types, i.e. six 
urban background sites, three roadside sites and one airport site (shown as Fig. 2 and more details are shown in Table S1). It is also 
noted that not all of these sites have compete datasets available for all pollutants. In order to generate pollution maps for the West 
Midlands domain, a Linux version of the ADMS-Urban model (v5.0.0.1) was run on the University of Birmingham’s BlueBEAR High 
Performance Computer (HPC). A task farming approach (Zhong et al., 2021) was applied to spatially split the computational domain 
into 540 sub-domains with varying sizes of 2 km, 1 km and 500 m (Fig. 1). Each sub-domain was computed on a separate core of the 
HPC, and 540 cores were run in parallel, thus optimising overall model run time. 

2.3. Modelling scenarios 

In this study, we focus on modelling traffic reduction scenarios and investigate how traffic reductions could influence air quality in 
the West Midlands region. We used the 2019 model configuration as the baseline/reference case (denoted by Case 2019 BAU). In order 
to cover the wide range of traffic reduction cases, we further configured five modelling scenarios each with hypothetical traffic re
ductions of 10% (Case Re0.1), 30% (Case Re0.3), 50% (Case Re0.5), 70% (Case Re0.7) and 90% (Case Re0.9), respectively, which were 
applied equally across all vehicle types. The lower traffic reduction could represent the near future target of traffic mode changes, such 
as the use of more public transport rather than cars. The higher traffic reduction could represent the long-term goal towards Net Zero or 
mode shift. 

3. Results 

3.1. Model evaluation for the 2019 baseline case 

To evaluate the performance of the ADMS-Urban model, a run was configured to include receptor locations corresponding to the air 
quality measurement recorded during the baseline year of 2019. The computational time for the whole year simulation with hourly 
outputs of key air pollutants (i.e. NOx, NO2, O3, PM10 and PM2.5) for these receptors was about 4.6 h. The Model Evaluation Toolkit 
(Stidworthy et al., 2018) was applied to evaluate the model performance by automatically generating model evaluation statistics and 
plots. 

Table 1 
Summary of different type of emission sources (in tonnes/year) over the West Midlands computational domain in the model for the year of 2019. 
Major Roads represent these explicit roads as resolved by the traffic models, while Minor Roads are unresolved roads represented by the residual 
between the NAEI derived emissions and explicit major road emissions (aggregated to 1 km resolution).  

Group NO2 NOx VOC PM10 PM2.5 SO2 

Major Roads 1959 9605 374 892 371 22 
Point Sources 152 3040 1974 356 244 179 
SNAP01 Combustion in Energy Production and Transformation 1 10 2 5 5 71 
SNAP02 Combustion in Commercial, Industrial, Residential and Agriculture 152 3030 2014 1977 1923 1691 
SNAP03 Combustion in Industry 166 3313 138 339 334 495 
SNAP04 Production Processes 10 203 1140 2020 321 564 
SNAP05 Extraction and Distribution of Fossil Fuels 0 0 1555 0 0 0 
SNAP06 Solvent Use 0 3 16,900 137 88 2 
SNAP07 Road Transport (Minor Roads) 1464 7305 1396 456 390 54 
SNAP08 Other Transport and Mobile Machinery 250 5001 2300 363 362 93 
SNAP09 Waste Treatment and Disposal 1 18 250 121 112 3 
SNAP10 Agriculture, Forestry and Landuse Change 21 417 983 194 30 0 
SNAP11 Nature (Other) 1 20 671 87 80 0  
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Fig. 3 shows scatter plots of daily averages (annual averages shown in Fig. S1a-c) of NOx, NO2 and O3 comparing modelled and 
measured data for three types of sites (airport, roadside and urban background) for the baseline year of 2019. For NOx and NO2, the 
model has a small overestimation for the airport site, a slight tendency to underestimate at roadside sites; agreement is good on average 
at the urban background sites. For O3, the model performs well for all three types of sites, although this relates in part to that O3 is not a 
primary pollutant and the background measurements of O3 were used to represent the long-range pollutant transport. Fig. 4 shows the 
corresponding comparisons of modelled and observed daily averages (annual averages shown in Fig. S1d-e) of PM10 and PM2.5. For 
PM10, there is a good agreement for the airport site between the model and the measurement. The model performs well for all site 
types, with a slight overestimation at urban background. The model takes air quality measurements as model inputs for background to 
represent the long-range pollutant transport for PM10 and PM2.5, which influences model performance. 

The model performance has been also assessed using evaluation statistics calculated based on full year hourly time series of 
modelled and measured data for different types of sites, as shown in Table 2. The measured average (Obs) and modelled average (Mod) 
of NOx, NO2, O3, PM10 and PM2.5 for each type of sites reflect the results shown in the scatter plots in Figs. 3 and 4. Fb (Fractional bias) 
measures the mean difference of the modelled and measured data. Fb (ideal value is 0) varies within (−0.25, 0.29) for NOx, (−0.08, 
0.21) for NO2, (−0.05, 0.09) for O3, (0.01, 0.08) for PM10, and (0.06, 0.13) for PM2.5. Fac2 reflects the fraction of modelling data within 
a factor of 2 of measured data. Fac2 (ideal value is 1.0) shows that 66%–76% of modelled NOx, 78%–82% of modelled NO2, 72%–81% 
of modelled O3, 82%–83% of modelled PM10, 79%–80% of modelled PM2.5 are within a factor of 2 of measured data. NMSE (nor
malised mean square error) measures normalised mean difference between the modelled and measured data. NMSE (ideal value is 0) 
varies within (1.05, 1.40) for NOx, (0.28, 0.41) for NO2, (0.12, 0.19) for O3, (0.35, 0.43) for PM10, and (0.43, 0.47) for PM2.5. R 
(correlation coefficient) measures the correlation between the modelled and measured data. R (ideal value is 1.0) varies within (0.49, 
0.54) for NOx, (0.63, 0.66) for NO2, (0.77, 0.79) for O3, (0.61, 0.65) for PM10, and 0.72 for PM2.5. 

Fig. 5 shows time variation of modelled and measured NO2 (See Fig. S2 for other pollutants) at a selected site, i.e. Birmingham 
A4540 Roadside site, for the baseline year of 2019. The diurnal cycle of NO2 reflects the morning and evening traffic related peaks, 
generally captured by the model. There is a smaller peak of NO2 around midday, which is possibly driven by the stronger photo
chemistry at this time. The model slightly overestimates the evening peaks, possibly because the potential evening congestions and 
urban heat islands (Biggart et al., 2020) are not well captured. The model generally captures the monthly variation and there is a good 
agreement of overall annual average between the model and measurement. The day of the week profile between the model and 
measurement matches very well, and the typical traffic pattern (weekday tends to have more traffic than Saturday and Sunday) is 
captured by the model. 

Fig. 2. Different types of monitoring sites (i.e., six urban background sites, three roadside sites and one airport site) in the West Midland for the 
model evaluation of the 2019 baseline model configuration. It is also noted that not all of these sites have compete datasets available for 
all pollutants. 
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3.2. Effect of traffic reduction scenarios on air quality 

To generate air quality maps for the region, the ADMS-Urban model was then configured and run to generate air pollutant con
centration maps with dense output points (~0.61 million) covering the West Midlands using the method described previously. The 
computational domain was split into 540 subdomains (Fig. 1) using a task farming approach (Zhong et al., 2021). We executed the 
Linux version of the ADMS-Urban model in parallel with 540 cores on the University of Birmingham’s HPC. The overall computational 
time for a typical whole year simulation with hourly outputs was about 34 h. ADMS-Urban model utilities (CERC, 2021a) were used to 
combine and interpolate the netcdf files output from each core. Another utility facilitated the post-processing of hourly outputs to 
generate annual averages. Air quality map data was created using Surfer (GoldenSoftware, 2023) and then visualised in ArcGIS (ESRI, 
2023). Pollution maps were generated for the 2019 baseline model (Case 2019 BAU) in addition to the five hypothetical traffic 
reduction scenarios (i.e. Case Re0.1, Case Re0.3, Case Re0.5, Case Re0.7 and Case Re0.9 with corresponding traffic reductions of 10%, 
30%, 50%, 70%, and 90% respectively). In this study, we focus on the analysis of legally regulated air pollutants in the UK, i.e. NO2 and 
PM2.5, at different spatial resolutions (i.e. street scale, electoral ward level and local authority level). 

Fig. 6a presents an annual air quality map of NO2 at 10 m × 10 m resolution for the baseline scenario (Case 2019 BAU). The annual 
NO2 concentrations are higher than the UK objective value of 40 μg m−3 (Defra, 2023c) are indicated by the legend in red. The ex
ceedance of 40 μg m−3 mostly occurred in regions close to motorways and in city centre areas with more traffic (especially in Bir
mingham). The highest value (up to 97 μg m−3) of modelled annual NO2 concentration for Case 2019 BAU was smaller than that (up to 
139 μg m−3) in 2016 modelling for the same region (Zhong et al., 2021). The influence of traffic emissions was reflected in the spatial 
pattern of annual NO2 concentrations with a larger gradient near road sources. In rural areas (with less influence from road sources), 
there were lower annual NO2 concentrations (11–15 μg m−3). Fig. 6b-f depicts the predicted annual NO2 concentrations for different 
hypothetical traffic reduction scenarios at 10 m × 10 m resolution (percentage reductions compared to Case 2019 BAU were shown in 
Fig. S4). It was found that the more the traffic activity was reduced, the more the annual NO2 concentration decreased. With 90% 
traffic reduction (Case Re0.9), the annual NO2 concentration in the West Midlands region decreased by up to 54–74% for regions near 
the motorway and city centre areas. With less traffic reduction, the pattern observed for Case Re0.9 gradually faded out. With 10% 
traffic reduction (Case Re0.1), the annual NO2 concentration decreased by up to 8%. A near-linear relationship between the annual 
NO2 concentration and the traffic reduction (Fig. S5) was found for these 10 m × 10 m grids averages where selected roadside and 
urban background sites were located (in Fig. 2). The spatial distribution of O3 concentrations (Fig. S3) shows that O3 concentrations 
have a smaller response in the modelling scenarios (as the same amount of background including O3 was adopted). The generation of 
NO2 is determined by primary emissions, and titration of O3 by NO, limited by overall NOx emissions. 

Fig. 7a shows an annual air quality map of PM2.5 at 10 m × 10 m resolution for Case 2019 BAU. Areas where the annual PM2.5 

Fig. 3. Scatter plots of daily averages between the modelled and measured data for 3 types of sites (airport, roadside and urban background): (a) for 
NOx (in μg m−3), (b) for NO2 (in μg m−3) and (c) for O3 (in μg m−3) for the baseline year of 2019. These dashed lines represent the slopes of 0.5 and 2 
respectively (indicating a factor of 2 between the modelled and measured data). 
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concentrations were modelled to be higher than the (England) annual mean concentration target of 10 μg m−3 for PM2.5 (to be 
achieved by 2040, Defra (2023c)) are indicated by the legend in orange and red. Similar to NO2, there were some exceedances of 10 μg 
m−3 PM2.5 occurring in the vicinity of the motorways and in city centre areas. This was due to the exhaust and non-exhaust PM2.5 
emissions from traffic (Defra, 2023b). Higher PM2.5 concentrations were also found in the vicinity of industrial areas. In rural areas, 
there were lower annual PM2.5 concentration (8.1–8.9 μg m−3). Figs. 7b-f shows the predicted annual PM2.5 concentrations for 
different hypothetical traffic reduction scenarios at 10 m × 10 m resolution (percentage reductions compared to Case 2019 BAU were 
shown in Fig. S6). With 90% traffic reduction (Case Re0.9), the annual PM2.5 concentration decreased by up to 25–45% in the vicinity 
of motorways and major roads with relatively more traffic, which reflected the non-negligible contribution from traffic emissions for 

Fig. 4. Scatter plots of daily averages between the modelled and measured data for 3 types of sites (airport, roadside and urban background): (a) for 
PM10 (in μg m−3) and (b) for PM2.5 (in μg m−3). These dashed lines represent the slopes of 0.5 and 2 respectively (indicating a factor of 2 between 
the modelled and measured data). 

Table 2 
Model evaluation statistics calculate based on annual hourly series of modelled and measured data (for the period both the model and measurement 
have data) for different types of sites. It is noted that not all of these sites have compete datasets available for all pollutants. Obs: measured average; 
Mod: modelled average; Fb: fraction bias; Fac2: proportion of modelling data within a factor of 2 of measured data; NMSE: normalised mean square 
error; R: correlation coefficient.  

Pollutants Site Type nSites Obs (μg m−3) Mod (μg m−3) Fb Fac2 NMSE R 

NOx urban background 5 27.7 27.4 −0.01 0.76 1.40 0.54 
NOx roadside 3 71.8 56.0 −0.25 0.72 1.05 0.54 
NOx Airport 1 28.5 38.3 0.29 0.66 1.32 0.49 
NO2 urban background 5 18.4 19.0 0.03 0.80 0.41 0.65 
NO2 roadside 3 32.1 29.5 −0.08 0.82 0.28 0.63 
NO2 Airport 1 18.6 22.9 0.21 0.78 0.37 0.66 
O3 urban background 5 47.5 45.0 −0.05 0.81 0.12 0.79 
O3 roadside 1 34.7 37.8 0.09 0.72 0.19 0.77 
O3 Airport 1 42.8 41.8 −0.02 0.78 0.14 0.77 
PM10 urban background 4 13.0 14.1 0.08 0.82 0.43 0.61 
PM10 roadside 2 17.4 17.6 0.01 0.83 0.38 0.63 
PM10 Airport 1 13.9 14.0 0.01 0.83 0.35 0.65 
PM2.5 urban background 4 9.3 9.9 0.06 0.79 0.47 0.72 
PM2.5 roadside 1 9.8 11.1 0.13 0.80 0.43 0.72  
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roadside locations. With less traffic reduction, the annual PM2.5 concentration decreased less. There was a decrease of PM2.5 of up to 
4% for the 10% traffic reduction scenario (Case Re0.1). A nearly linear relationship between the annual PM2.5 concentration and the 
traffic reduction (Fig. S7) was also found for these 10 m × 10 m grids averages where selected roadside and urban background sites 
were located (in Fig. 2). 

Apart from the high spatial resolution maps (Figs. 6 and 7), the electoral ward level (spatially aggregated based on 10 m × 10 m 
resolution map) maps are also of interest, which can be linked to socio-demographic data for the health assessment of clean air in
terventions (Hall et al., 2023). Fig. 8a shows an annual air quality map of NO2 at the electoral ward level for Case 2019 BAU. There are 
higher concentrations for wards close to city centre areas and lower concentrations for wards in rural areas. Fig. 8b-f shows the impact 
of different hypothetical traffic reduction scenarios on annual NO2 concentration at the ward level (percentage reductions compared to 
Case 2019 BAU were shown in Fig. S8). Similarly, the annual NO2 concentration would decrease more with the decrease in the traffic 
activity. The range of the predicted percentage change (reduction in %) of annual NO2 concentration for all scenarios at the ward level 
is 2–43%, which is smaller and narrower than that (8–74%) at the 10 m × 10 m resolution. 

Fig. 9a shows an annual air quality map of PM2.5 at the ward level for Case 2019 BAU. Most of the ward averages across the West 
Midlands region (indicated by the light green to red colour range) are above the England annual mean concentration target of 10 μg 
m−3 for PM2.5. Fig. 9b-f shows the impact of different hypothetical traffic reduction scenarios on annual PM2.5 concentration at the 
ward level (percentage reductions compared to Case 2019 BAU were shown in Fig. S9). The annual PM2.5 concentration at the ward 
level would slightly decrease with the reduction in traffic activity. The range of the predicted percentage change (reduction in %) of 
annual PM2.5 concentration for all scenarios at the ward level is 0.2–10%, which is smaller and narrower than that (1–45%) at the 10 m 
× 10 m resolution. 

Fig. 10 shows predicted annual NO2 and PM2.5 concentrations for different hypothetical traffic reduction scenarios compared to 
Case 2019 BAU (percentage reductions were shown in Fig. S10) at the local authority level. For NO2, with 90% traffic reduction (Case 
Re0.9), predicted relative concentration reductions were in the range of 25–32% (Sandwell and Walsall would benefit the most with up 
to a reduction of up to 6.8 μg m−3). With 10% traffic reduction (Case Re0.1), the annual NO2 concentrations reduced by 2.7–3.3%. 
There was a near-linear relationship between the predicted annual NO2 concentration and traffic reduction for the studied scenarios, 
but with the response of the NO2 concentrations much lower than the (proportional) change in traffic levels. For PM2.5, with 90% 
traffic reduction (Case Re0.9), there would be a reduction of 3.6–5.4% in annual concentrations. With 10% traffic reduction (Case 
Re0.1), the annual PM2.5 concentrations only decreased by 0.41–0.60%. A close linear relationship between predicted annual PM2.5 
concentration and traffic reduction was also found. The results clearly show that traffic reduction would have a limited effect on 
controlling PM2.5 concentrations (with a reduction up to 0.6 μg m−3 or 5.4% compared to the baseline levels), in the absence of any 
other changes. 

Fig. 5. Time variation of modelled and measured NO2 at Birmingham A4540 Roadside site for the baseline year of 2019. The shading areas indicate 
the 95% confidence intervals of the mean (plus and minus the variation). Plots were generated using the timeVariation function of the Openair 
package in R (Carslaw and Ropkins, 2012). 
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Fig. 6. Annual air quality map of NO2 (in μg m−3) at 10 m × 10 m resolution for (a) Case 2019 BAU, and percentage change (reduction in %) of NO2 
for (b) Case Re0.1, (c) Case Re0.3, (d) Case Re0.5, (e)Case Re0.7, and (f) Case Re0.9, relative to Case 2019 BAU. 
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Fig. 7. Annual air quality map of PM2.5 (in μg m−3) at 10 m × 10 m resolution for (a) Case 2019 BAU, and percentage change (reduction in %) of 
PM2.5 for (b) Case Re0.1, (c) Case Re0.3, (d) Case Re0.5, (e)Case Re0.7, and (f) Case Re0.9, relative to Case 2019 BAU. 
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Fig. 8. Annual air quality map of NO2 (in μg m−3) at the ward level for (a) Case 2019 BAU, and percentage change (reduction in %) of NO2 for (b) 
Case Re0.1, (c) Case Re0.3, (d) Case Re0.5, (e)Case Re0.7, and (f) Case Re0.9, relative to Case 2019 BAU. 
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Fig. 9. Annual air quality map of PM2.5 (in μg m−3) at the ward level for (a) Case 2019 BAU, and percentage change (reduction in %) of PM2.5 for (b) 
Case Re0.1, (c) Case Re0.3, (d) Case Re0.5, (e)Case Re0.7, and (f) Case Re0.9, relative to Case 2019 BAU. 
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4. Discussion 

ADMS-Urban applications commonly involve generating modelled pollutant concentration time series corresponding to air quality 
monitor locations prior to creating pollutant concentration maps over the whole area of interest (Zhong et al., 2021; Zhong et al., 
2023). An evaluated model configuration can be used as a robust baseline for modelling scenarios. Model evaluation is dependent on 
the number of available sites in the region, and ideally includes evaluation at a range of site types (e.g. urban background, roadside, 
industrial, airport etc). In this 2019 study, we used ten air quality measurement sites for evaluation, from the AURN and Birmingham 
University’s supersite. The Model Evaluation Toolkit (Stidworthy et al., 2018) has been specifically developed and designed for the 
evaluation of air quality model performance, especially for the ADMS-Urban model. The model evaluation results demonstrated 
overall good performance of the baseline model for the West Midlands. For NOx and NO2, the model can well capture annual averages 
well at the urban background sites, which indicates a good representation of local emissions sources. The overestimation for the airport 
site may be due to a complex traffic pattern near the airport and because the emissions from the airport were not explicitly resolved as 
elevated sources. The slight underestimation for roadside sites may be due to the challenges associated with vehicular emissions 
calculations, for instance in relation to real world traffic emission factor adjustments (Hood et al., 2018). The better agreement for 
annual O3 concentrations for all types of sites indicated good representation of the chemistry and local NOx emissions (contributing to 
NO titration). For PM10 and PM2.5, the model predicts concentrations that are similar to the measurements on average with a cor
relation coefficient between 0.61 and 0.72. It is noted that the increment (between the urban background and roadside sites) associated 
with local PM emission sources is much lower than the urban background levels. This indicates a limited effect (compared with the 
background contributions) of changing local PM emissions on PM levels. 

Generating of air quality maps over the region requires considerable resources. Street scale air quality maps at 10 m × 10 m 
resolution have been generated to capture the concentration gradient in the vicinity of road sources. The street scale resolution air 
quality maps can be further aggregated to population-related coarser resolutions (ward level and local authority level), potentially for 
the assessment of health impacts such as the ward-level Air Quality Life Assessment Tool (AQ-LAT, Hall et al., 2023; Hall et al., 2024). 
Coarser resolution air quality maps smooth out the local traffic induced hotspots, but may be useful to inform the local air quality 
action plans at the ward level and local authority level. Clean air actions have been undertaken at national, regional and local levels to 
improve air quality in the UK. In February 2023, a Defra air quality grant scheme (Defra, 2023a) has provided a share of £10.7 million 
to local councils across England to help improve air quality in local communities, while the West Midlands Combined Authority 
(including 7 constituent local authorities) was allocated almost £1 million (WMCA, 2023). At the local level, Birmingham has 
introduced the Brum Breathes Fund to help individual wards to improve air quality (BrumBreathes, 2023). 

We have simulated five hypothetical traffic reduction (from 10% to 90%) modelling scenarios to cover the widest range of possible 
situations, noting that at the higher levels, these changes are unlikely to be plausible. With the greatest modelled traffic reduction of 
90%, there was a decrease of 74% in annual NO2 concentrations (vs a maximum reduction of 50% for traffic reductions of 60–90% for 
four cities in Spain and United States as found by Xu et al. (2023)) and 45% in annual PM2.5 concentrations (vs a reduction of 16.5% for 
a traffic reduction of 69% as found by Jephcote et al. (2021)) at the street scale (10 m × 10 m) resolution for regions near motorway 
and city centre areas. This was due to the traffic activity on the motorways and in the city centre areas being higher, and hence 
dominating emissions / concentrations, and so the traffic reduction affected overall concentrations to a greater extent than other roads 
with less traffic, which is consistent with Tang et al. (2020). The exhaust and non-exhaust PM2.5 emissions from traffic also play a key 
role for street scale PM2.5 concentrations (Defra, 2023b). The concentration range derived at the ward level is narrower across the 

Fig. 10. (a)NO2 and (b)PM2.5 at local authority levels (averages calculated based on 10 m × 10 m resolution maps). “0%” represents the 2019 
baseline BAU case. Traffic reductions of “10%”, “30%”, “50%”, “70%”, and “90%” represent Case Re0.1, Case Re0.3, Case Re0.5, Case Re0.7 and 
Case Re0.9, respectively. 
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region compared with the 10 m × 10 m resolution map, since the highest concentrations in the vicinity of road sources and the lowest 
concentrations in rural areas are not represented (rather, are averaged out) at this lower spatial resolution. With the greatest traffic 
reduction of 90%, there was a decrease of 43% in annual NO2 concentrations and 10% in annual PM2.5 concentrations when averaged 
to ward level. At coarser resolution (local authority level), this decrease was up to 32% for annual NO2 concentrations and 5.4% for 
annual PM2.5 concentrations. Coarser spatial resolution leads to reduced detail in terms of the influence of local traffic on modelled 
concentrations. Regional air quality models are commonly run at coarse resolution (typically 1 km or larger grids), which do not 
resolve near-source dispersion of local traffic emissions. Regional modelling scenarios conducted by Feng et al. (2021) indicated a 
reduction of 18.4% in annual NO2 concentration and 9.7% in annual PM2.5 concentration while all traffic emissions were removed for 
Wuhan, China; part of the difference to our results may reflect these resolution differences. There was an almost linear relationship 
between the predicted annual concentration and traffic reduction for both NO2 and PM2.5 in this study, which is consistent with Kerr 
et al. (2022) for NO2, Kumar et al. (2020) for PM2.5, and Wang et al. (2021) for both NO2 and PM2.5. The ADMS-Urban applied a 
relatively simple chemistry, i.e. the Generic Reaction Set (GRS) chemistry scheme (Venkatram et al., 1994), to capture the interaction 
of NOx-O3-VOC chemistry. For NO2, near-source chemical reactions are important and non-linear. However, in the UK for most of time, 
photochemistry is insufficiently active to generate much NO2, beyond ozone titration reactions. All modelling scenarios assume the 
same amount of background (including O3), therefore a reduction in NOx results in a corresponding near-linear reduction in NO2, 
although there is a slight downward bend to the line for NO2. For PM2.5, regional background and residential combustion (both kept 
unchanged for modelling scenarios while only changing traffic emissions) have much greater contributions than the traffic emission 
sources. Therefore, we see the smaller changes in PM2.5 with nearly a linear relationship. The effects derived from the model simu
lations for PM2.5 are influenced by the model approach to deriving the background levels. As the incoming baseline does not change, 
only local emissions, the overall shift inferred might underestimate that obtained for a national (rather than regional) traffic reduction 
scenario. 

This modelling study required a range of model input data and model parameters, which may have uncertainties. The traffic ac
tivity and speed data were from the local traffic models, which would not well represent the real-world driving behaviour (Ghaf
farpasand et al., 2022). The time varying profiles for traffic were derived from the limited number of traffic flow measurement sites 
across the West Midlands, which may not fully capture the traffic characteristics (e.g. speed variations and changes in fleet during the 
day) for the whole region. The real-world emission factor adjustment (Hood et al., 2021) used in the study may be uncertain to fully 
reflect the local traffic fleet for the West Midlands and the wide range of Euro 6 vehicle standards was not captured by the current 
model. The modelling scenarios in this study were limited to five hypothetical traffic reductions with uniform values applied to the 
whole region and traffic fleet, which do not reflect the spatial variation and traffic redistribution, or differential changes between the 
various vehicle classes. The background inputs used in the baseline model were also kept unchanged for the traffic reduction scenarios 
modelling, in order to isolate the investigation of traffic reduction. However, the possible change to background concentrations as a 
result of potential wider traffic reduction measures was not captured. Regional O3 background concentrations tend to increase while 
NOx emissions decrease under traffic reduction scenarios. This is attributed to a weakened titration by NO (Zhong et al., 2023; Wang 
et al., 2022; Liu et al., 2023). 

5. Conclusions 

This study configured and evaluated a street-scale air quality model over the West Midlands, UK using the ADMS-Urban model. 
ADMS-Urban had an overall good performance for the West Midland baseline case. This modelling tool was then used to explore the 
effect of five hypothetical traffic reduction, ranging from 10% to 90% reduction in traffic activity. Scenario impacts were analysed over 
differing spatial resolution. Close to roads (within 10 m), the decrease in annual concentrations was up to 74% for NO2 and 45% for 
PM2.5 for near motorway and city centre areas for the largest traffic reduction scenario (90%). For the same case, this decrease was up 
to 43% for annual NO2 concentrations and 10% for annual PM2.5 concentrations at the ward level. At the local authority level, this 
reduction was in the range of 2.7–32% for NO2 and 0.41–5.4% for PM2.5 for all traffic reduction scenarios. The modelled impact of air 
pollution response to traffic reductions is heavily dependent on model spatial resolution. These results illustrate the dynamic range in 
response of city-wide air pollution exposure to different traffic changes, including extreme reductions, highlighting the contrast in 
responses for NO2 and PM2.5, the different and sub-unit response for both pollutants, and the impact of simulation resolution upon the 
changes predicted. This study also indicated that substantial traffic reductions alone, with no changes to other air pollution sources, 
would mainly reduce NO2 concentration with limited impact on reducing PM2.5 concentrations. If similar changes were applied also 
nationally, there would be reduced background aerosol (e.g. less NOx emissions forming nitrate). 

Future studies would be 1) to explore the impact of the real-world emission reduction scenarios on air quality, 2) to investigate 
other traffic management options (such as traffic speed limit, traffic fleet changes), 3) to explore the impact of the Covid-19 induced 
local traffic reductions on air quality, 4) to apply traffic demand model for the better spatial varying representation of traffic changes, 
and 5) to conduct the assessment of health impacts of traffic reduction scenarios using the AQ-LAT health tool. 
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