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1. Introduction

While Hochschild introduced his cohomology theory for algebras in the mid 1940s
(cf. [14]), it was around 1970 that this theory started to be adapted and systematically
studied in operator algebras framework (see the series of papers by Johnson, Kadison
and Ringrose [16], [21], [18]). However, problems related to derivations of an operator
algebra M with values in special M-bimodules, such as M itself, which amounts to the
1-cohomology group of M with coefficients in M, started to be investigated several years
earlier, triggered by Kaplanski’s interest in such problems (see e.g. [23] or the footnote
in [34]). In a pioneering result in this direction, it is shown in [34]) that any derivation
of a commutative Banach algebra must be equal to zero, while in ([20], [33]) is it shown
that all derivations of a von Neumann algebra are inner. More general M-bimodules
B were soon considered, such as algebras B that contain M, notably M C B = B(H)
(see e.g. [4]), or classical ideals in B(#), like the Schatten-von Neumann p-class ¢,(H),
1 <p< oo ([19], [16], [15]), or the ideal of compact operators ([19]).

Most of the early results in this direction aimed at proving that all derivations of
an algebra M into an M-bimodule B are inner, and more generally on showing that all
cohomology groups of M with coefficients in B vanish, H"(M, B) = 0, Vn. But starting
with the work of Johnson in ([16], [17]), an interest towards using the cohomology groups
H"(M, B) as effective invariants for a von Neumann algebra M has emerged. However,
while the amenable-nonamenable dichotomy could soon be established this way, by show-
ing that a tracial von Neumann algebra M is amenable if and only if H'(M,B) = 0 for
any normal dual Banach M-bimodule B (cf [16], [6], [7], [11]), by early 1980s all efforts
in this direction have stalled. At the “Operator Algebra Summer School” in Kingston
1980, where the main directions of research in this area were presented, two cohomol-
ogy problems were particularly emphasized: (1) whether H*(M, M) = 0, Vn, for any
IT; factor M; (2) whether any derivation of a II; factor M into B(H) is inner when
M C B(H) has infinite coupling constant (the case when dimyH < oo had been settled
in the affirmative in [4]).

These problems are still open, but there has been progress on both. On the one
hand, problem (2) was shown to be equivalent to the similarity problem, asking whether
any bounded representation of any C*-algebra A, m : A — B(H), is similar to a
*_representation (i.e., 3S € B(#H) invertible such that A > x — S~ !7(z)S is a *-
representation), see [27] for several equivalent formulations and a deep analysis of this
problem. On the other hand, it was shown that H*(M, M) = 0, Vn, for many classes
of II; factors with “good decomposability” features, such as the property Gamma of
Murray and von Neumann, existence of Cartan subalgebras, and more generally exis-
tence of a “thin decomposition” of M with respect to a pair of amenable subalgebras
(see [5]). But the perception on these problems has changed: one now expects that there
do exist II; factors M for which H2(M, M) # 0 and H'(M,B(L*M ® (*N)) # 0, and
that in fact this should be the case for the free group factors M = LF,,2 < n < oc.
However, these cohomology spaces are expected to be difficult to calculate, and to not be
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able to make “fine distinctions”, such as to differentiate between the free group factors
LF,,2 <n < oo, or show that LF., cannot be finitely generated.

A big impetus towards finding a different cohomology theory for II; factors, one
that would be non-vanishing and calculable, providing an efficient invariant that would
reflect fine structural properties of the algebras involved, came in 2001, triggered by
Gaboriau’s successful generalization to orbit equivalence relations Rr arising from ac-
tions of countable groups by measure preserving transformations I' ~ X of Atyiah’s
and Cheeger-Gromov notion of L2-cohomology of groups, leading to his notion of L?-
Betti numbers for Rr satisfying B2 (Rr) = 22)(I‘), with the striking consequence that
free groups of different rank cannot be orbit equivalent ([12]). Since Gaboriau’s L?-
cohomology for Rr can be viewed as a cohomology theory for the corresponding Cartan
inclusion A = L*>°(X) C L(Rr) = M, of the group measure space II; factor associated
with the orbit equivalence relation Rr, it is an invariant for factors M with unique
Cartan decomposition (see [29]), for which one can simply define associated L?-Betti
numbers as B,@(M) = T(LQ)(RF).

But a more interesting “wishful” L2-cohomology theory along these lines would be for
group factors M = LT arising from ICC groups I, typically without Cartan subalgebras,
for which one would like to have an identification between the L2-cohomology of LT" and
the L?-cohomology of the group I', with the corresponding L?-Betti number ﬂ,@(Ll")
coinciding with Atyiah’s L2-Betti number of the group, ﬂ,(f) (T"). This problem was much
emphasized by Connes in his talk at MSRI in the Spring of 2001 ([g]).

Several attempts were made in this direction: (a) Connes-Shlyakhtenko proposed in [9)]
an “everywhere defined” cohomology of M with coefficients in the Murray-von Neumann
algebra Aff(M ®M°P) of operators affiliated with M &M °P; (b) Peterson considered in [26]
a “densely defined” L2-cohomology theory for II; factors; (¢) Galatan-Popa considered
in [13] a generalized version of the 1-cohomology with coefficients in K(L?M) in ([19],
[28]), based on the larger class of smooth bimodules, trying this way to avoid being always
equal to 0, while still vanishing in “amenable directions”.

All these attempts have shortcomings: [26] encountered the difficulty of having to
prove the independence of the cohomology on the dense domain of the derivations; [9]
had to be adjusted with some continuity conditions in [35], and that modified version
was shown in [31] to always be equal to 0 (this was previously shown in [2] and [1] to hold
in certain cases, such as for free group factors); of the two classes of smooth bimodules
proposed in [13], one was shown to produce a cohomology that’s always 0 and the other
one has not led so far to non-vanishing examples.

Our work in this paper represents a new effort towards identifying a class of M-
bimodules B that would allow defining a viable cohomology theory, an effective isomor-
phism invariant, for the II; factors M. To begin with, since our approach is somewhat
inspired by the L?-cohomology of groups, one expects B to depend canonically on M
and be related in some ways to the Hilbert space L?M and the space of linear bounded
operators acting on it B(L?M).
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Beyond that, a first priority for us was that the 1-cohomology with coefficients in B
should not always vanish, i.e., that there should exist II; factors M that admit non-
inner derivations into B, especially in the case M = LI' with ﬁ@(r) # 0, like I' = F,,
2 < n < co. Another consideration was that B should host the derivations 4. : LT' — B
coming from 1-cocycles ¢ : I' — ¢2T, which on the group algebra CI' = span{ug}4
are of the form d0.(uy) = [Tf,uy], where Ty is the diagonal operator implemented by
f € £>T, obtained by “integrating” ¢ over the Cayley graph of I" (note that one can
just take f(g9) = —cq4(9), Vg € T'). This implicitly means that derivations of M into B
should be uniquely determined by their values on weakly dense *-subalgebras. At the
same time, one would like B to have an M °P-bimodule structure as well, commuting with
its M-bimodule structure, potentially leading to a right M®M °P-module structure on
B. One would further hope that whenever (uy)j}_; C U(M) is a finite set of unitaries
generating M as a von Neumann algebra, the map § — (d(ux))r gives an injective
right-M ®M°P-modular map from the space of derivations Z!(M, B) into B", that would
behave well to the quotient by the space of inner derivations BY(M, B), or by its closure
B! under a suitable topology. If such requirements are met, this would allow associating
a first L2-Betti number for M, ,6’§2)(M ), as the Murray-von Neumann-Lueck dimension
of Izll(M7 B) :=7(M, B)/E viewed as a right M®M °P-module.

These considerations force B to be somewhat related to K(L2M), the space where
[My,uy] takes values. So having all this in mind, we consider here the following spaces.

For each p > 2, we consider the Banach space of “compact-like operators” K(p) defined
as follows. We first let B*(p) be the space of functionals ¢ on B(L?M) with the property
that

el (p) = sup{|p(zY2)| | Y € (B)1,z,y € M N (LPM):1} < oo.

We then let B(p) denote the completion of B(L?>M) in the norm

Ty := sup{[o(T) | ¢ € (B* ()1}

Finally, we denote by K(p) C B(p) the closure in B(p) of the space of compact operators
K(L?M). It is immediate to see that (K(p), ||| - ||l,) is both a Banach M-bimodule and
a Banach M°P-bimodule. It is also easy to see that for each X € K(p) the left-right
multiplications by elements in the unit ball of M is ||-||2—]|| - |||, continuous (smoothness).

Since the derivations of M = LI' arising from cocycles ¢ : I' — (T are often
implemented by bounded operators M; € B(L?>M), we in fact expect that the M-
bimodules of interest for us consist of bounded operators. We thus also consider the
spaces K, := K(p) N B(L2M), p > 2. We prove that in fact all K,, 2 < p < oo,
“collapse” to just one space, which we show to coincide with the closure in B(L?M)
of K(L?M) in the so-called 7-rank metric q,;, given by its M-bimodule structure,
au (S, T) = mf{r(1 —p) + [p(T — S)p|l | p € PM)}.
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Theorem 1.1. For each p > 2 denote by K, the space of operators T € B(L*M) for which
there exists a sequence K,, € KK(L2M) such that sup,, | K,| < oo and lim,, ||T — K, ||, =
0. Then K, coincides with the T-rank-completion qKns of K(L?M) in B(L?*M).

We note that the 7-rank-completion gk, also coincides with the strong M-M-
completion of K(L?M) in the sense of [24], although we do not take this perspective
here.

Any derivation of M into q/Cy; is indeed determined by its values on any weakly-dense
*-subalgebra of M. In fact, any derivation of M into q/Cps is continuous from the unit
ball of M with the || - ||2-topology to q/Cps with its q,,-metric. Also, Ky is both a
Banach M and M°P-bimodule and all derivations arising from non-vanishing 1-cocyles
c of " into /2I" described above give rise to non-inner derivations of M = LT into qKyy.
But in fact any separable II; factor M (so including the hyperfinite II; factor) admits
non-inner derivations into the M-bimodule q/Cx:

Theorem 1.2. Given any separable diffuse tracial von Nuemann algebra M, there exist
non-inner derivations of M into q/Cps.

Thus, while our primary objective of getting a non-vanishing 1-cohomology is in-
deed being met by the M-bimodules q/Cys, the above result shows that the associated
(classic Hochschild) 1-cohomology space H!(M,qk ), obtained as the quotient of the
space of derivations Z' (M, qKyr) by the space of inner derivations B* (M, qKy), becomes
too “wild”, certainly un-calculable. This means one has to take instead the quotient of
Z (M, qK ) by a closure BY (M, qK ;) with respect to some suitable topology on the
space of derivations, like one does for the L2-cohomology of groups. This should however
take into consideration that the closure of B! in the || |2 — q,,; pointwise convergence
on the unit ball of M is too weak for this purpose, as one has the following:

Theorem 1.3. Let § : M — qKy be a derivation implemented by T € B(L?>M). Then
there exists a net of finite-rank operators K, with ||K,|| < ||T|| such that

lim q,,(6(x), [K,,z]) =0,Vz € M.
Moreover, if L>M is separable, then the net can be taken a sequence.

Thus, one has to strengthen the topology on Z'(M,qK ;) so that the correspond-
ing closure B! of the space of inner derivations gives all Z'(M,qKy;) in case M is
amenable, and more generally when M satisfies various “good decomposition” proper-
ties with respect to its amenable subalgebras (like existence of Cartan subalgebras), but
is not the entire Z'(M, qKys) in general, notably for M = LF,,. The resulting relevant
1-cohomology space would then be defined as ﬁl(M, aKar) == ZY(M,qKy)/B*. An al-
ternative, but closely related strategy is to slightly modify the “target” M-bimodule
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qK s to a bimodule B that would still host outer derivations ¢, arising from non-inner
1-cocycles of I' when M = LT, but would in turn lead to vanishing cohomology when
M is amenable, and more generally when M satisfies various “good decomposition”
properties as above. For instance, by taking B to be a suitable quotient of q/Cys, or of
some modified version of this space. We will investigate all these possibilities in a future
work.

The paper is organized as follows. In Section 2 we recall some basic definitions about
M-bimodules and LP-spaces associated with a tracial von Neumann algebra M. In Sec-
tion 3 we define for each p > 2 the space B*(p) of functionals ¢ on B := B(L?M) with
the property that

el py = sup{|p(xY 2)| < 1,¥Y € (B)1,z,y € M N (LPM);} < oo.

In Section 4 we consider its predual, B(p), obtained as the completion of B in the norm
TN, == sup{le(T)| | ¢ € (B*(p))1}- In Section 5 we define the subspace K(p) C B(p),
obtained as the closure in B(p) of the space of compact operators K(L?M), whose dual
identifies naturally to the “normal part” B (p) of B*(p). In Section 6 we define the space
K, C B of operators that are ||| - ||| ,-limits of bounded sequences of operators in K(L2M),
define the 7-rank topology on M-bimodules, and prove Theorem 1.1, showing that all
K, coincide with the closure qiCps of K(L2M) in B(L?M), in the 7-rank topology (see
Theorem 6.5). Then in Section 7 we consider the space of derivations of M into q/Cps
and prove Theorems 1.2 and 1.3 (see 7.3 and 7.7).

2. Preliminaries
2.1. Banach bimodules

Given a unital Banach algebra M (which will typically be a tracial von Neumann
algebra in this paper), a Banach M-bimodule B is a Banach space with left and right
multiplication operations M x B 3 (z,T) — 2T € B, Bx M > (T,z) — Tz € B
(i.e., bilinear maps satisfying x(yT") = (zy)T, (Tx)y = T(zy), and 13T = Ty = T,
Vz,y € M,T € B) that satisfy the conditions ||2T||z < ||z||sm|| T8, Tzl < |T||5llz|lr,
Vee M, T € B.

If in addition B is the dual of a Banach space B, and for each x € M the maps
B>Tw— 2T € B, B> T +— Tx € B are continuous with respect to the o(B, B)
topology (also called weak*-topology), then B is called a dual M -bimodule. Finally, if
M is a von Neumann algebra, B is a dual M-bimodule, and for each 7" € B the maps
M>zw— 2T € B,M >T — Tz € B are continuous from (M); with the o(M, M,)-
topology to B with the o(B, B.)-topology, then we say that the dual M-bimodule B is
normal.
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2.2. Ezxamples

A typical example of a Banach M-bimodule that we will consider here is when B is
a larger unital Banach algebra that contains M (with 15, = 15), with the left and right
products T, Tx for x € M, T € B, being the restrictions of the product in the larger
algebra B. Note that in case M C B is an inclusion of von Neumann algebras, p/Bj; is
in fact a normal dual M-bimodule.

These examples entail two more classes of examples of Banach M-bimodules.

On the one hand, one can take a norm-closed two sided ideal 7 in the Banach algebra
B, which will have a natural M-bimodule structure by restriction from B.

On the other hand, one can take the dual B* of B with the M-bimodule structure given
by B*3 p— x-¢-y € B*,Va,y € M, which for T € B is defined by z-¢-y(T) = ¢(yTx).
This is easily seen to implement a Banach dual M-bimodule structure on B*.

A particular case of this latter type of examples will be of interest to us. Thus, we
fix a tracial von Neumann algebra (M,7) (so 7 is a normal faithful trace state on M)
and let M C B = B(L?M) be its standard representation, where L2M is the Hilbert
space obtained by completing M in the norm |z||2 = 7(z*z)'/2, € M, and M acts on
it by left multiplication. This makes B into a dual normal M-bimodule. Moreover, since
MP°P acts on L2M as well, by right multiplication, B also has dual normal M°P-bimodule
structure. Since M, M°P commute (in fact M’ N B = M°P, (M°P) N B = M), the two
bimodule structures commute, in other words they implement a M ®,1, M °P-bimodule
structure on B.

From the preceding remarks, these two bimodules structures on B entail dual Banach
M-bimodule and M °P-bimodule structures on B*.

2.3. Non-commutative LP-spaces

Recall that |Jy||, = 7(|y|?)"/?, y € M, defines a norm on M, with ||y||, being increasing
in p and the limit lim,_, ||y||, equal to the operator norm ||y||s = ||y||. The completion
of M in the norm |-||, is denoted by LP M. One has L? M > LP M whenever p’ > p. Also,
LP M identifies naturally with the space of densely defined closed operators Y on L?M
that are affiliated with M and have the property that |Y| has spectral decomposition
Y| = [ Adey satisfying [ APd7(ey) < oo.

If 1 < p < oo, then (LPM); is closed in LP'M, for any 1 < p/ < p. Moreover, all
of the || - ||/-topologies on the unit ball (M), of M for 1 < p’ < oo coincide with the
so-topology on (M), and if p < oo, then all || - ||,/-topologies on (LPM);, 1 < p' <p
coincide with the || - ||,-topology.

Recall that if 1 < p < oo, then (LPM)* ~ LM, where ¢ = ﬁ (with the usual
convention 1/0 = 00), the duality being given by (&, () +— 7((*€) for £ € LPM, ¢ € LIM,
viewed as operators affiliated with M. This also shows that if y € M and 1 < p,q < o0
with ]—1J + % =1, then ||ly||, = sup{|7(yz)| | z € (LIM ), }.
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Note also that if z,y € M, { € LPM, then ||z€y|l, < |z||||€]/pllyll, making LPM
into a Banach M-bimodule, which is dual and normal if 1 < p < oo. Note that if

¢ € LPM,n € L' M, then &) € LIM where g = L2

2.4. Smooth bimodules

Recall from [13] that a Banach M-bimodule B is smooth, if for any T € B the maps
z — 2T and x — Tz are continuous from the unit ball of M with its || - ||2-topology to
B with its Banach norm topology.

A typical example much emphasized in [28], [13] is when B is the ideal of compact
operators K(L?M) C B(L>*M), with its M-bimodule structure inherited from the M-
bimodule B(L?M).

Another example, studied in [30], is when M is contained (as a von Neumann subal-
gebra) in a Il factor M with a normal semifinite faithful trace T'r and B is the norm
closed *-ideal of “compact operators” J(M) C M, consisting of T' € M with the prop-
erty that all spectral projections e )(7*T') corresponding to ¢t > 0 have finite trace,
vt > 0.

Indeed, in both these cases, it is shown in [28], respectively [30], that the Banach
M-bimodule B, endowed with its corresponding operator norm, is smooth in this sense.

One should mention that in both these examples, the norm || - || on the M-bimodule
B satisfies a certain operatorial condition (see [13]), requiring that if T' € B, then ||[pTp+
(1=p)T(1—p)|| = max{||pTp|, [|(1 —p)T (1 —p)||}. However, in the examples of Banach
M-bimodules that we will consider in this paper, this property doesn’t hold true in
general.

3. The dual Banach M-bimodules B*(p), 2 < p < oo

We now fix a tracial von Neumann algebra (M, 7) and we set B = B(L2M). We first
consider a one parameter family of M sub-bimodules B*(p) C B*, 2 < p < oo, defined
as spaces of functionals on B that are “LP-smooth relative to M”.

Definition 3.1. Let 2 < p < co. We denote by B*(p) the subspace of functionals ¢ € B* =
B(L?>M)* with the property that

ells= ) = sup{lp(=zTy)| | T € (B)r, 2,y € M, [|2[p, [[yllp <1}

is finite. Note right away that B*(p) is a vector subspace of B* and that || - [|z-(,) is a
norm on it that majorizes the usual norm of functionals in B*.

Proposition 3.2.

1° The space B*(p) is a Banach space with respect to the norm || - || 5= (p)-
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2 If2 <p < p < oo, then B*(p') C B*(p). Moreover, for any ¢ € B* we have
lell < llells ) < el Thus, lim fl@lls-g) = mf llells-@) = el

Proof. (1) It remains to check that B*(p) is complete with respect to the | - |
So take a Cauchy sequence (p,,) in (B*(p), || - |

B+ (p)-NOTM.

B*(p))- Since the norm || - |[g+(,y majorizes

the norm || - || 5+, the sequence (p,,) is also Cauchy in B*. Let ¢ be its || - || g«-norm limit in
B*. We claim first that ¢ € B*(p). Take any T € (B); and z,y € M with ||z||,, |[yll, < 1.
Since ¢, — ¢ with respect to the || - [[g«-norm, we can find an m such that

e = emlls- < 2Tyl ="

In particular, we see that

lp(xTy)| < [p(xTy) — om(@Ty)| + [om(xTy)|
< |zTyllll¢ — omll + sup lon(xTy)|

< 1+ sup [[on | B+ (p)-
n>1

This last quantity is finite since (y,) was assumed to be Cauchy in B*(p). It follows
then that |p(2Ty)| is uniformly bounded over all T' € (B)1 and |z, |lyll, < 1, and so
¢ € B*(p).

It remains to check that ¢, — ¢ with respect to the || - [|g+(,) norm. To do this,
let S be the set of elements X in B of the form zTy with T € (B); and z,y € M,
llzllp, lyllp < 1. Then we have

B+(p) = lm sup |p(X) — ¢, (X))

Xes

= lim sup lm |pm(X) — @, (X)]

n—oo XeS m— 00

< lim lim sup |@m(X) — @n(X)|

= lim ||<Pm_90n||8*(p)-

n,m— 0o

Since (p,) was Cauchy with respect to the || - |

B*(p) norm, it follows that (y,) also
converge to ¢ with respect to the ||-||z-(,) norm. This shows B*(p) is complete, and thus
is a Banach space.

(2) Now suppose 2 < p’ < p < oo. For any x € M we have that ||z|, < | z||,, so the
set {zTy | T € (B)1,z,y € M, ||z|p,lyllp < 1} is a subset of {aTy | T € (B)1,z,y €

M, ||z||y, [|yll,y < 1}. Taking supremums in the definition of || - ||g«(), we conclude
lolls= @) < llel

B+(p')- The rest of the statement follows immediately. O



10 P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452

Proposition 3.3.

1° Let2<p<oo. Ifx,y € M and ¢ € B*(p), then

2 - yllsp < lzllllyllllels-@), 127 @ yPls-m < 1=y llels @)
Thus, the M and M°P bimodule structures on B* leave B*(p) invariant and implement
Banach M-bimodule and M°P-bimodule structures on (B*(p), || - ||8+(p))-

2° The unit ball (B*(p))1 is compact in the o(B*,B) topology.

3° The unit ball (B*(p))1 is norm closed in B*.

4° For each x,y € M, the map B*(p) 2 ¢ — x - ¢ -y € B*(p) is continuous with respect

to the o(B*, B)-topology.

Proof. 1° Take some 2 < p < oo. Fix elements z,y € M and a functional ¢ € B*(p). Let
T € (B); and o',y € M with ||2'||p, |¢|l, < 1. Then, if we apply = - ¢ - y to 'Ty’, we
get

[z - ¢ yl(@'Ty)| = [p(ya'Ty'z)| = ||z Iyll‘ (Ily :ﬁ)‘

A

1 and ||y'z/||z|||l, < 1. It follows by

Notice that we have the bounds ||yz'/||y|ll»
definition then that

o ¢ )@ Ty)| = |z ||||y|\ (” ” ﬁ’f)\<

Taking the supremum over all T' € (B); and all 2,y € M with [|2/||,, ||y/]|, < 1 gives

the bound ||z - ¢ - B*(p) as desired.
Let us now fix 2°P,y°? € M. Take T € (B); and 2/,y' € M with ||z/|,, ||v/[l, < 1.

As we did before, if we apply z°P - ¢ - y°P to 2'Ty’, we get
op op
i)
llyrll ™ [lzor|

Here this operator y°PT'z°P /||z°P||||y°P|| has norm at most 1, so by definition we get

[z @ - yP) (@' Ty )| = |y ' Ty'z)| = =P ||[ly*" |

B - oy Ty < |l el

B*(p)

Taking supremums over all T, z’, " will give |2 - o - y°P|g+ () < [|[2P|||ly°P ||| ¢l 5+ (p)-
2° For z,y € M, let S, C B* be the set of all functionals ¢ € B* such that
|z ¢ -yl <1.Itis clear from the definitions that

B@r= () Sew

lzllp:lyllp<1
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Now each of these sets Sy, is closed in the o(B*, B) topology so (B*(p)) is also closed in

this topology. Furthermore, notice since the norm || - ||z ;) majorizes the operator norm
on B* that (B*(p))1 C (B*)1. The Banach-Alaoglu theorem then gives us that (B8*(p))1
is compact.

3° This is just a consequence of 2°.

4° Fix elements x,y € M. From 1°, we know that the map ¢ — z - ¢ -y is a well
defined linear map from B*(p) to itself. It is also a o(B*, B) continuous map on the whole
space B*, so restricting to B*(p) proves the claim. O

Lemma 3.4. Let 2 < p < oo and ¢ € B*. Assume ¢ = we,, for some £,n € L?M. Then
© € B*(p) if and only if £, € LIM, where ¢ = 22, with the conventions + = ooc.

p—27 0
Moreover, if this is the case, then ||we ,||3+p) = I€llqlnllq-

Proof. Take elements z,y € M with ||z||,, |lyll, < 1 and an operator T € (B);. By
Cauchy-Schwartz, we have a bound

|wen(zTy)| = [2Tys, m| = (Ty&, =™ m| < [Tysll2llz"nll2 < [ly&ll2llz"nll2.

This gives a bound

B < sup [[y€lla sup [[z"nlla = sup [y&ll2 sup [znl2.
llyll,<1 llel,<1 lyll,<1 llell, <1

e

Notice that the reverse inequality also holds. For if x,y € M are fixed with ||z]|,, [|y|l, <

lwéll

1, consider the rank-one partial isometry T, € (B); that maps y¢ to Tzl

x*n. Then

[y€llzllz™nlle = |we.n (@ Te,yy)| < llwenllse )-

Taking the supremum over = and y gives us the reverse inequality.
So far we have that

B = sup [[y€llz sup [lan|2.
lyllp<1 llell,<1

lwen |

If we now use the non-commutative version of Holder’s inequality, then

sup [y¢ll2 = [€]lq,
lyll<1

where 1/p+1/¢g=1/2,0r ¢ = z%' Similarly,

sup lznll2 = [[nllq-

lzll,<1

This gives the desired result ||we || 5+p) = llqlnlle- O
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A version of the previous lemma actually works for arbitrary positive finite-rank func-
tionals ¢ € B*(p).

Lemma 3.5. Fiz 2 < p < oo, and let ¢ = -5 be as in the last lemma. Let o € B*(p) be
of the form ¢ = > | we, ¢, where &1, &, . ..,fn are in LYM. Then

el =

> &g
=1

q/2

Proof. First we derive a lower bound for |||z« ()
over the values |p(zTy)|, where z,y € M are such that ||z|,, |y, <1 and T € B(L*M)
is such that ||T]| < 1. In particular, if we make T the identity on B(L?>M),

n
lells-) > sup  |p(zy)l = sup > (xy&i. &)

lzllp.llyllp<1 lzllp.llyll,<1 | =

= sup > T(aylE))
=1

lzllp:lyllo<1|;

n
= sup |r|ay)y && ||
lelp-llyllo<t Pt

As x and y range over all elements with p norm at most 1, zy can be any ele-
ment of M with p/2 norm at most 1. By density, the above supremum is equal to
SUD, e (Lo/2), T (122121 &i&F), which by duality is the same as [[372; &&F|l,, where 7 is
the Holder conjugate of p/2. A quick calculation gives

So we get a lower bound |[357, &&7l, /5 for ¢]ls-(p)-
Now we prove the reverse inequality. By definition, ||¢|

B*(p) is the supremum over all
sums

p(aTy) = _Z 2Ty€, &) = > (Ty&i, a*&),

=1

where ||z||,, [|y|l, < 1 and ||T|| < 1. By Cauchy Schwartz, any one of the inner products
(T'y&;, z*&;) is bounded by

(TySi, 2" &) < [l2"&ill2l| TySilla < ll2"&ll2]|w&ill2-

Thus, we get the upper bound
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lellB=p) < sup lel‘ Sill2lly€illa = sup lel‘&H [ly&ill2-

llzllpsllyllp<1 i=1 lzllps llyllp <1 i=1

If we use Holder’s inequality, then

el

12 , . 1/2
Br(p) < Sup (Z ||9C§z||2> <Z ||y§i|§>
i=1

zllp,llyll,<1

< sup Z |3 ]3-

l=llp<

Now, we can write ||2&;]|3 in terms of 7 so that

llellp) < sup Z T(z*x&€l) < sup T <x xZ@ )

lzllp <1324 llzll,<1

By the same duality argument, this is equal to ||> i, &&F| This completes the

q/2°
proof. O

We remark that one can calculate an upper bound for ||| g« () for an arbitrary finite-
rank functional ¢ € B*(p) by using the polarization identity combined with Lemma 3.5.
For a general, not necessarily finite-rank, ¢ one has the following.

Proposition 3.6. Let 2 < p < co and ¢ € B*.

1° If ¢ € B*(p), then ¢* € B*(p) and ||¢* |5+ = Il
and |Rel[ 5+ ), [1S@lls<p) < [l0ll5(p)-

2° If ¢ € B*(p), then its normal and singular parts (as functionals in B*) @n, s,
belong to B*(p), with |[¢ulls=(p), 1@slB= ) < @B p)-

B+(p)- Thus, Rp,Sp € B*(p)

Proof. 1° By the definitions, one obviously have ||p|

B+(p) = 0" ||+ (p) for each o € B*.
Thus, ¢ € B*(p) implies ¢* € B*(p), and hence also the real and imaginary parts of any
such ¢, lie in B*(p). The given upper bounds then follow from the triangle inequality.
2° Let ¢ be any element of B*(p), and let ¢, and @5 be the normal and singular parts
of ¢ respectively. Recalling the construction of these functionals, let py; be the central
projection in B** such that ¢, = payr - ¢ and s = (1 — par) - . If © and y are any
elements of M such that ||z||,, ||yll, < 1, then by using the fact that py; commutes with

M we get

z-on-y=2-(pp-@)-y=pvm(T-@-Y).

If we then apply the usual norm from B* we have that

2 - on-yll = llpm(z- -yl < llz-@-yll < [l
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Taking the supremum over all  and y with ||z, [|y[|, < 1, gives us then that ||y 5= () <

ll¢ll B+ (p)- The same argument with 1 — pas shows that [|os]|g«(p) < [|@llB=(p). O

Corollary 3.7. Let 2 < p < oo and denote BX(p) = {p € B*(p) | ¢ = ¢n}. Then B (p) is
norm closed and o(B*, B)-dense in (B*(p), || - |8+ p))-

Proof. Take any 2 < p < oo. Since the space (BX)* = B, the space is B} is o(B*,B)
dense in B*. Moreover, the space £ C B} obtained as the span of functionals of the form
weq With £,m € M C L2M is clearly dense in B} with respect to the usual norm in B*.
Since L is contained in B*(p), this implies that B} (p) is o(B*, B) dense in B*(p).

Next, consider a Cauchy sequence {p,} in B} (p). Since B*(p) is complete, the sequence
converges to some ¢ € B*(p). But for all p, the || -|

B*(p) norm dominates the usual norm
of functionals in B*. Thus, ¢ is the usual norm limit in B* of the normal functionals ¢,
and hence it is normal itself, ¢ € B}, showing that BZ(p) is norm closed. O

We end this section by noticing that the norm || - ||z«(,) on the M-bimodules B*(p)
satisfies an interesting property with respect to direct sums, which we will however not
use in this paper.

Proposition 3.8. Let (M, 1) be a tracial von Neumann algebras and 2 < p < oo. Assume
©1,p2 € B*(p) are supported by mutually orthogonal projections in Z(M), i.e., there
exist z1,z0 € P(Z(M)) such that ¢; = i(z; - 2;), i = 1,2. Then for p = 2 we have
[e1+@2ll5(2) = max{|[o1ll5-(2), [l 2ll-(2)} and for2 < p < oo we have |[p1+p2|5-(p) =

(H(P1| qB*(p) + H(PlHq*(p))l/q; where q = L.

p—2

Proof. Let ¢ = ¢1+¢o. By definition, |||« (p) is the supremum of |p(xTy)| for z,y € M
with p-norm at most 1 and T' € B(L?>M) with norm at most 1. Since ¢ is supported on
21 + 22, we can restrict the values of x and y we take to only those in M(z; + z2), and
operators T we take to those supported on (21 + z2)L?M. With this in mind, consider
such a triple x, y, and T. We can decompose x = x7 + o where 1 = zx2; and
To = zaxz2. Similarly, we can decompose y = y; + y2 where y; and ys are defined in the
same manner. We then define the operator

Ty Tho
T =
<T21 T22> ’
where here T;; = z;T%;. Under this decomposition, we have

lo(@Ty)| = le1(x1T11yr) + @a(w2Tooy2)|.

We now wish to maximize this quantity given ||T|| < 1 and |z|,,|y|, < 1. First, it
is clear that it is optimal make the off diagonal terms of T equal to 0, and have the
diagonal terms 777 and Tbs have norm 1. Next, we see by properties of the p-norm in M
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that |z1[5 + |z2]) = |z[) and |y1[b + [y2[b = |y[b. While varying the x;,y;, Ti; under these
constraints, we calculate the norm ||¢||g-(,) to be the supremum of

a1 1l etll B p) + 28211l B+ ()

where the «; and j3; are in [0, 1] and satisfy of + o =1 and g} + 85 = 1. Now let ¢ be
such that 1/q+ 2/p = 1, i.e. the Holder conjugate of p/2. Then the discrete version of
Holder’s inequality gives us

5 () < (0 + D) P(8 + B P (ol ) + o2l )

I v,

a1B1lle1ll B+ p) + 2Bzl

I

= ([l - T l[p2

*(p))
(5)

Moreover, equality is guaranteed to be achieved for some values of «; and ;. This gives
us

1/q

lells=m) = (1] qg*(p) + [[p2] qB*(p))

Raising both sides to the ¢ power then completes the proof. 0O

4. The Banach bimodules B(p), 2 < p < oo

We now consider the natural preduals of the spaces B*(p) introduced in the previous
section.

Definition 4.1. Let 2 < p < oo. For each T' € B = B(L?>M), denote ||T|||, = sup{|o(T)]| |
¢ € (B*(p))1}. Noticing that ||| - |||, is a norm on B, we denote by B(p) the completion
of B in this norm.

Lemma 4.2. 1° For each T € B, the norms ||T|||, are increasing in p and magjorized by
the operator norm ||T||, with lim [|T|||, = sup, [T, = |T'||.
p—y00

2° If T € Band xz,y € M, then

=Tyl < <l THYllps NleTylll, < /T,
=Ty lllp < Pl 1y I

Proof. 1° Take 2 <p <p' < oo and T € B. Since (B*(p))1 C (B*(p'))1 we have that

Ty = sup{le(T)] [ € (B*(p)1}
< sup{lp(T)| [ € (B*()n} (6)
= [Tl
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So the norms ||| - |||, are increasing as p increases. For any finite 2 < p < 0o, we also have
a bound ||T|||, < ||T|, since the unit ball (B*(p)); is a subset of (B*);. So it follows that
IT|ll, converges as p tends to infinity.

To find the limit of these norms, take x and y any elements of M. Let & and ¢ be the
associated elements of L2M. By Lemma 3.4 we have

(T2, 9)] = wag (D) < T Nllpllwe,nlls=) = NI Tllplllqllylq:

where ¢ = z%' Letting p tend to infinity gives us the bound

.0 < i .
(T2,9)] < 2yl Tim 1T,

If we take the supremum over all z,y € M with ||z||2, lyllz < 1, we get that ||T|| <

lim [||7|||,- The result then follows.
p—00

2° First consider when 2 < p < co. Fix z,y € M and T € B. If ¢ is an element of
B*(p), then we have a bound

X T y
le(@Ty)| = [|z||,yl ||T||~'<,0 (—__)‘
me 1=l 177 Toll,

B*(p)-

(7)

< llzllpllyllo 171 - [l

If we take the supremum over all ¢ with |||

B*(p) < 1, this gives the

lzTyll, = sup  |o@Ty)| < [Tyl
llells* (py <1

which is the first desired inequality. On the other hand, one could also note that

[l=Tyll, = sup  |p(@Ty)|= sup |[(y-¢-z)(T)|.
lells*py <1 lells*py <1

From Proposition 3.3, we know that ||y - ¢ - x|
that

5(p) < llzll[yllllll 5 (p)- Thus, it follows

=Tyl < sup —Jp(T)| = (=[5 ]ly]-
lels= g <lalll]

This gives the second desired inequality. The case when = and y are elements of M°P
follows by the exact same reasoning. O

Proposition 4.3. Let ¢ = 1% as before, and let ¢ = 1% be the Hélder conjugate of q.
If T € B(L>M) satisfies ||T|l, < 1, then T takes the unit ball of LYIM into the unit
ball of LY M, thus defining an element T € (B(LYM, LY M));. The map T — T extends
uniquely to a contractive linear map from B(p) into B(LYM, LY M), which is injective

when restricted to B(L*M).
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Proof. Noticing that for any 2 < p < oo one has ¢ < 2 < ¢, if T € B(L>*M), then for
any vector £ € LIM C L?M we have

1Tl < IT€l2 < ITMIEl2 < Tl

Hence, T restricts to a bounded operator T’ € B(LIM, LM ). Moreover, we notice by
Lemma 3.4 that if &, i are vectors in LM, then

{TE M| = wen(T)] < [lwen]

=) I Tl = [I€llllnlla Tl

Thus, the bilinear form u : L2M x L>M — C given by u(&,n) = (T€, n) restricts to a bi-
linear form on LIM x L?M with norm at most ||T'|||,. But notice by the noncommutative
version of Holder’s inequality

sup KTEm)| = ”T”L‘IMAL‘J']\/I
[1€llgslInllg<1

where here, this norm represents the operator norm in B(LIM, LY M ). Thus we conclude
that |7l pans e ar < IIT|lp- By the ||| - |||[,-density of B(L2M) in B(p), it follows that
the map T — T extends uniquely to a contractive linear map on all B(p). O

Proposition 4.4. 1° The restriction of the norm ||| - |||, to M C B is equal to the norm
|- 1lp/2 for LEM.

2° If M is assumed to be a factor, then the restriction of the norm ||| - |||, to M°? C B
is equal to the operator norm || - || on M°P.

3° If M°P is viewed as a subset of B(L1M, Lq/M), then the restriction of the norm
|- | pans—s o’ ar to MOP is equal to the norm || - ||, /2.

Proof. 1° Fix an element of x € M. Let = u|z| be the polar decomposition of z. Let
15 be identity operator in B. Then for any ¢ € B*(p)

()] = lo(ulz|'215]2|?)]

< llulzY2ll, - a2l - 1151 - llo]
= [l "2113 - llel

B*(p)

B*(p)

= lllps2 - el -

Taking the supremum over all ¢ in (B*(p))1) gives the inequality |||z|], < [|z][,/2-

Now we prove the reverse inequality. Let ¢ = 172%’2, as in Lemma 3.4. Then note that

if ¢ and n are vectors in L2M such that |||, = [Inll; = 1, Lemma 3.4 implies that
[{z&,m)| < ||lz]l|p. Thus, we have that

llzll, >  sup (@&, n)].
" elo=lnll=1 )
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If we choose ¢’ such that % + % = 1 and choose r such that % + % = i, then by duality

we have

sup  [(z§,m)| = sup [[zgly = ||z,
lella=lmllg=1 lellg=1

so we have a bound ||z||, < ||z]||,. Now by our chosen definition of  we check that

So indeed, we have r = p/2, and the reverse inequality ||z[/,/;2 < [||z|[[, holds. This
completes the proof.

2° Assume that M is a factor, and take an element z°? € M°. By Lemma 4.2, we
already know that |||z°P|||, < ||z°?|, so it suffices to check that |||z°P|||, > ||z°P|. To do
this, we will construct a family of functionals ¢ € B*(p) such that [p(zP)|/|l¢ B« (p)
can come arbitrarily close to [|z°P|. From here the result will follow since [||z°P|||, >

[p(zP)[/ Nl (p) for all ¢ € B*(p)
With this in mind, let’s say we choose a self adjoint element m € M and a finite list

of unitaries uy,ug, ..., u, € M. Then we can define a linear functional ¢ € B*(p) by

By Lemma 3.5, we know that

> () wan)”

i=1

el ) =

q/2

If we apply this ¢ to x°P, we get

= % i ,u;my = 711 Z(uimx, u;m).

Using that this inner product comes from the trace 7, we can simplify this to be

3
3

n n
1 1 )
—ETulmxum —ngm (x, m*).
i=1 i=1

Now, using that |||z|||l, > |¢(z°P) we get the following lower bound

-1

2Pl > |z, m? |H Zwmu
q/2
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Note that this holds for any self adjoint m € M and any choice of unitaries uy, ug, - - , Uy,.
But by Diximier’s averaging property, we know the | - ||-norm closure of the convex hull
of the set {um?u* : u € U(M)} intersects the center of M. In this case, since M was
assumed to be a factor, the center of M is trivial. In particular, since the trace of any
element in {um?u* : v € U(M)} is 7(m?), it follows that 7(m?) is in the || - [|-norm
closure of the convex hull of this set. Now the operator norm || - || majorizes the norm
| - [[¢/2 norm, so the same averaging result is true in the space L2 M. Tt follows then
from the above lower bound that

1
a2l 2 1@, m?) = = [z,

where m? can be an arbitrary positive element of M. Thus, we conclude that

lzlllp = sup —[{z,m)],
m20, ||m/<1

where here this supremum runs over all positive m € M with ||m||; = 7(m) < 1.

Now if z was assumed to be positive, duality would force this supremum to be ||z|],
which would give us the desired reverse inequality [|z°P|] < [||z°P|||,. In general, we
can write 2°? = u|xz°P| to be the polar decomposition of xz°P. Note by part 1° of
Proposition 3.3, that the map T +— u°PT is an isometry on B(p) with respect to the
l - lllp-norm. In particular, it follows from the positive case that

My = =Pl = I 2P = [l27]],

so the reverse inequality holds for a general z°P, which completes the proof of the first
claim.

3° We see by Holder’s inequality that ||2°P|| 4 1o’ 2 18 €qual to ||z°P]|,, where r is
the solution to the equation ¢=! 4+ r~! = (¢’)~!. Using the definition of ¢ and ¢’, one
gets r = p/2, as desired. O

Corollary 4.5. If M is a 11, factor, then the map B(p) > T — T € B(LIM, Lq/M) is not

a homeomorphism of Banach spaces.

Proof. Let x,, € (M); be so that [|x,] = 1 but ||z,|,2 — 0. If we take T}, = a?,
then by Proposition 4.4.2° we have ||T,, ||, = ||| = ||zx|| = 1, while by 4.4.3° we have

1 Toll Lans—ra e = llznllp/2 = 0. O

The next result, which is crucial in proving Theorem 6.5 later in this paper (The-
orem 1.1 in the introduction) should be compared to [25] and Proposition 3.1 in [10]
where similar decompositions are considered. The previous corollary shows however that
the proof strategy employed there will not apply to our current situation.
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Lemma 4.6. For any T € B(L*M)
1l = inf{llall, | STIBllp - a,b € M, S € B(L*M),aSb =T}

Proof. Using Lemma 4.2, we have that for any decomposition T" = aSb with a,b € M
and S € B(L2M) that ||T|||, < |lall»||S]||b]|p- This shows at the very least that [|T']||, is
smaller than this infimum.

To obtain the reverse inequality, we use a convexity argument. To this end, for the
remainder of the proof we consider the following subsets of B(L?M). For any positive
number «, let C, be the set of operators T € B(L?M) such that we can find a decompo-
sition 7' = aSb with a,b € M and S € B(L?M) such that ||al|,||S|||[b]l, < . We claim
first that C, is convex.

For let’s say we have operators 71,1y € C,. Then by definition, we can find decom-
positions T7 = a1S1b; and Ty = a2S2by with the a;,b; € M and the S; € B(L2M) such
that [Ja;||||S:||||b:ll, < a. After rescaling, we may assume without loss of generality that
[1S:]l = 1 and ||a;|l, = ||b:]l, < /2. For any A € (0,1), we can form the decomposition
ATy + (1 — AT = aSb as follows. First, factor ATy + (1 — A\)T5 as a chain of operators
through L?M & L?M by noting

1/2 1/2 Sl O Al/le
)\&151()1 + (1 - /\)G,QSQbQ = ()\ ay (1 — )\) ag) 0 52 (1 . )\)1/21)2 .

Let au be the polar decomposition of (A'/2a; (1 — \)'/2ay), where a € M is positive,
/
and let ub be the polar decomposition of ((1 :\i\;%%), where here b € M is positive. If

we call S € B(L?M) the product
T
S=u < 0 52> .

We arrive at a decomposition 77 + To = aSbh.
Now we can calculate that

aa® = Aayai + (1 — Nagas.

So that
lall7 = llaa*[l,/2 < AMlaraillp/z + (1 = N)lazas ],z
= M|z + (1 = Nazll} (10)
< a.

max{||S1][, ||S2]|} = 1. Putting this together, we have then

By the same logic we also have ||b||> < «. Lastly, we see by inspection that ||S| =
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lallp I STHIbl, < o (11)

It follows then that AT} + (1 — A\)T» € Cq, so C, is convex.

Next, let’s say we have an operator T € B(L?M) with ||T|||, = a. We claim that T
is in the ||| - |||, norm closure of C,. For otherwise, since C, is convex, we can find using
Hahn-Banach a functional ¢ € B*(p) with ||¢]

B+(p) = 1 such that

Re(p(T)) > sup Re(p(9)).
SeCq

Now, by definition we have

Re(p(T)) < [ITlp = o

Moreover, since [|¢|| 3« (p) was equal to the supremum of all |¢(aSb)| where ||al|,, [|b]l, <1
and ||.S]] < 1, it follows that

sup Re(p(S)) = a.
SeCa

But this leads to a contradiction, so we must have T € Z”H”p.
On the other hand, we claim that the closure of C, in the o(B(L?M), B*(p)) topology
is Npsq Cp- For consider

p(T) =inf{B: T € Cs}

the seminorm corresponding to the convex sets Cg. Note that a linear functional ¢ on
B(L?M) will be bounded with respect to the seminorm p if and only if ¢ is bounded on
any set Cg. But as we observed already supgec, [¢(S)| = Bll¢lls+(p), so the only such
functional are in B*(p). It follows then that the o(B(L?M), B*(p)) topology and the
weak topology for (B(L?M),p) coincide. Hence, since C, was convex, the closure of C,
in the o(B(L?M), B*(p)) topology will be the same as the closure of C, with respect to
the seminorm p, which is indeed (4., Cs-

To complete the proof, we notice by convexity that the || - |||, norm closure and the
o(B(L*M), B*(p)) closure of C, are the same. Hence, for any T € B(L?>M) such that
17|, = o we have

. s 2 .
7 gl Z BB ) o
B>«

It follows the that we can find decomposition T = aSb with ||a||,||S|/||b||, arbitrarily
close to a, and the lemma follows immediately. O

Lemma 4.7. Assume {un}, C U(M) is a sequence of unitary elements in M with
T(uiuy) = 0 for all n # m. For each T € B(L*M) let E&(T) € B be the operator
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that acts as 0 on Hg, where Ho = 5p({@n}n) C L?M, and as the diagonal operator that
takes Uy to (T(Uy),Un)tn. Then |[|Eo(T)|lp < IT|l|p, for all 2 < p < co. Moreover, if
T € B(L?>M) is diagonal with respect to {i}n, i.e., E(T) =T, then ||T||, is equal to
the operator norm of T in B(L*M), Vp.

Proof. By Proposition 3.2, one has ||T||, < |7, VI' € B(L?*M). If in addition T is
diagonal with respect to {{i,}, and equal to 0 on Hg, then ||T|| = sup,, (T (1), @n)|-
But by Lemma 3.4 and the definition of ||T|||,, the right hand side is larger than or equal
to |||T||lp, showing that ||T|||, > ||T'|| as well, so altogether ||T||, = ||T||.

For an arbitrary T € B(L?M), by the definition of ||T|||, and Lemma 3.4 one
has Tl = [(T(a), @], Vo Thus, [ITll, = sup, (T(in)an)l = |€(T)| =

€ (D)lllp- O

Corollary 4.8. If M = LT and we denote D = (*°T' C B(¢*T") = B(L*M), C = ¢o(T') C
(>°T, then for each T € D we have ||T|||, = [|T||, Vp > 2. Thus, C C D are ||| - ||p-closed
in B(p).

Proof. Since for M = LT we have L?M = (T, with {u,}, as orthonormal basis, the
previous lemma implies that ||| - |||, restricted to D = ¢*°T" coincided with the operator
norm. [J

5. The Banach bimodules KC(p), 2 < p < o©

Since the ideal of compact operators K(L?M) is a Banach bimodule over both M, M°P,
its ||| - |||,-completions, 2 < p < oo, give rise to a one parameter family of bimodules that
we now consider.

Definition 5.1. For each 2 < p < oo, we denote by K(p) the closure of K = K(L?>M) in
B(p).

Lemma 5.2. Let 2 < p < oo and denote ¢ = 1)27172 and q = % as before. Following Propo-

sition /.4, for each K € B(p) we denote by K the element it induces in B(LIM, Lq/M).

1° If K € K(p), then K takes the unit ball (LYM); into a || - ||, -compact subset of
LY M.

2° If K € K(p), then for any sequence of unitary elements {un}n C M that converges
weakly to 0, one has || K (i) — 0.

Proof. 1° Note first that if K € K(p) is a finite-rank operator, then K is in
K(L1M, Lq,M). If K is a general element of IC(p), then we can find a sequence (K,,)
of finite-rank operators in B(p) such that KC,, — K with respect to the ||| - |||, norm.
Since the mapping K — K is contractive, we have K, — K in B(LIM, LY M). Since
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the space K(LIM, LY M) is closed in B(LIM, LY M), and each finite-rank K,, was in
K(LYM, LY M), it follows that K € (LM, LY M) as well.

2° As in part 1°, if K € K(p) is a assumed to be a finite-rank operator the claim
follows immediately. Let now K € KC(p) be arbitrary and let (K,), be a sequence of
finite-rank operators in B(p) such that K,, — K with respect to the ||| - |||, norm. Now
if € > 0 we can find an m such that

1K = Kol s ar < MK = Kol < €/2.

Now since K, is finite-rank, we can also find an N such that for all n > N we have
| K (G) || < €. Combining these we get for any n > N

HK(ﬁn)”q’ < ”(K - Km)(ﬂn)Hq’ + ”Km(ﬁn)llq’
<Nt llg[| K = Kl pans o ar +€/2 (12)
< €.

Thus we conclude || K (i,)|y — 0 as desired. O

Proposition 5.3. For each 2 < p < oo, K(p) endowed with the norm ||| - ||, is a Banach
M-bimodule and Banach M°P-bimodule.

Proof. The fact that K(p) is a Banach space is clear from the fact that it is a norm
closed subspace of B(p). The M-bimodule and M°P-bimodule structure also follows by
restricting from B(p), and by taking into account that the ||| - ||| ,-dense subset K(L?M)
of K(p) is invariant under left and right multiplication by elements of M, M°P. O

Recalling that C(L?M)* = B, we now prove the analogous result for the spaces K(p)
and B (p).

Theorem 5.4. For all p > 2, K(p)* = By(p). Also, for each 2 < p < oo, K(p) endowed
with its norm ||| - ||l is a smooth M-bimodule, in the sense of Definition 2.4.

Proof. We use the description of preduals in [22] to prove the result. Note first that
the compact operators K(L2M), form a subspace of (B,(p))*. Furthermore, the space
K(L?M) separates points of By (p), i.e. for any distinct ¢, € B,(p) there is a K €
KC(L?M) such that ¢(K) # ¢'(K). This is because the space K(L?M), which is strictly
smaller than K(p), separates the points of its dual B(L?M),, which is strictly larger than
Bu(p).

Now we claim that the unit ball of B} (p) is compact in the (B} (p), K(L?M)) topology.
To see this, consider a net (¢,) in the unit ball (B} (p)):1. Recall that the norm || - || 3+ (p)
majorizes the usual norm on B* and that (B%(p))1 is a subset of (B);. Since the predual
of the space B} of normal linear functionals on B is K(L?M), we have that (B); is
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compact in the (B}, K(L?M)) topology. Thus, there exists a subnet (¢3) of our original
net that converges to some ¢ € (B}); in the o(B:, K(L?>M)) topology.

We claim further that this ¢ is actually in B (p). Let « and y be any elements of M.
Since the space B} is a dual normal Banach M-bimodule, it follows the net x - ¢g -y
converges to z - ¢ -y in the o(B}, K(L?M)) topology. Note that this implies ||z - ¢ - y|| <
supg ||z - g - yl|. In particular, notice that if x and y are chosen so that ||z||,, [|yll, < 1,
then, since the net () lies in (B;;(p))1, we would have [z - - y|| < supg ||z ps-y| < 1.
Varying over all x and y with p-norm less than 1, we gather that |||+, < 1, so indeed
our ¢ lies in (B (p))1. It follows then that the unit ball (B%(p)); is compact in the
(B (p), K(L*M)) topology. Using the description of preduals in [K77], we find that a
predual of B} (p) is the norm closure of K(L?M) in the dual space (B (p))*. By definition
this is IC(p).

It remains then to check that K(p) is a smooth bimodule. Note that if T € K(p) lies
in B(L2M), then by Lemma 4.2 the maps z + Tz and = — 2T are || - ||2 to ||| - |||,
continuous on the unit ball of M. If T € K(p) is an arbitrary element, then we for any
€ > 0 there exists S € K(p) N B(L2M) such that [|T — S|/, < e. But then for any net
(x,) in the unit ball of M such that ||z,|2 — 0 we have

1Tz lp < I(T = )zl + 15zl < €+ ISzl

Hence limsup, |||z, |||, < €. Since € was arbitrary, it follows ||T'z,||, tends to 0. Hence
the map x +— Tz is still || - ||2 to ||| - |||, continuous on the unit ball of M. A similar
argument shows the same for the map z — T It follows then that K(p) is smooth. O

6. The q,,-topology and the bimodule q/Cxr

In this section we consider a new topology on Banach bimodules over tracial von
Neumann algebras (M, 7), which we will denote q,;, that takes into consideration the
trace on M, and which we will refer to as the 7-rank topology (sometimes also called the
topology of convergence in measure). When applied to the Banach M-bimodule B(L2M),
the restriction of the q,;-topology to the unit ball (B(L2M)); is “almost the same” as
the topology given by ||| - [|,-norms, but finer. However, the q,,-closure in B(L*M) of
the unit ball of compact operators (K(L?M)); coincides with its || - |||,-closure, thus
giving rise to an interesting Banach M-bimodule of “almost-compact” operators denoted
qICM.

Definition 6.1. Let B be a Banach M-bimodule. We say that a net (1;); C B is q;-
convergent to T' € B if the following conditions are satisfied: sup; ||T;|| < oo; for any
e > 0, there exists iy such that for any ¢ > ig there exists a projection p € P(M) with
T(1=p) <e [Ip(Ti = T)p <e.

Note that if these conditions are satisfied, then ||T|| < limsup, ||7;]]. Thus, for any
finite 7 > 0, the q,,;-convergent nets in (B), define a topology on (B),, that we will
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also denote by q,,;. Note also that if ' > r > 0, then the restriction to (B), of the
q,s-topology on (B),, coincides with the q,,-topology on (B),.

Note that the q,,-topology on any bounded subset of B is implemented by the metric
given by (T, ) = inf{r(1 — p) + [p(T = S)p|| | p € P(M)}.

Given a linear subspace By C B, we denote By ™ the union over all 7 > 0 of the q,,-
closures of (By), in (B),. Equivalently, By "™ is the set of all scalar multiples of elements
in w%.

The q,,-topology on (B), is obviously weaker than the norm topology. A typical
example of a Banach M-bimodule B that we consider is the algebra B(H) of all linear
bounded operators on a Hilbert space H on which M acts normally and faithfully, with
the M-bimodule structure given by left-right multiplication by elements in M. More
generally, we consider (linear) subspaces B C B(H) with MBM C B, such as the space
of compact operators IC(H) on H. For this class of examples, another natural topology on
B is the s*-topology. If B = M, then this is easily seen to coincide with the q,,-topology
on bounded sets. But in general, the s*-topology is strictly weaker than the q,,-topology
on (B); (notably if B = K(H) and M is infinite dimensional, see below).

Proposition 6.2. Let B be a dual normal M-bimodule and By C B a norm closed sub-
bimodule.

1° For any T € B, the maps (M)y > x — 2T, Tx € B are || - |2 — qys continuous.
2° (B); is complete in the qy-metric (and thus so is (Bo)r ™ C (B)1).
3° Bo™ s a Banach M-bimodule.

4° Given any norm-separable subspace & C B_OqM, there exists an increasing sequence
of projections p, € M with p, — 1 such that p,Tp, € By, for all T € £.

Proof. 1° If ¢ > 0 and ||z|| < 1 satisfies ||z||2 < ¢, then the spectral projection p
of zx* corresponding to the interval [0,e] has trace at least 1 — &, or else we have
Iz]13 = llpzll3 + ||(1 —p)x||3 > ||(1 —p)z||3 > €2, a contradiction. Thus, we have ||pzT|| <
lpz|||T|| < € and 7(1 — p) < e. This shows that (M); > z — 2T € Bis | - |2 — au
continuous. The proof for (M); 3 x +— Tz € B is similar.

2° If T,, € (B)1 is qp,-Cauchy, then for any k > 1, there exists ny such that for any
n,m > ny there exists a projection py, € P(M) with the property that 7(1 — pg) +
|pe(Tm — Tn)pr|| < 27F. Thus, the sequence of projections P, = Ai>kpi, k > 1, is
increasing and satisfies 7(1 — Py) < 27%1 || Py (T}, — T)n) Pe|| < 27 for any n,m > ny.
By the inferior semicontinuity of the norm on B with respect to the w*-topology, it follows
that any w*-limit point T € (B); of the sequence {7}, },, satisfies || Py (T —Ty,) Pe|| < 2%
for any n > ny. This shows that {7}, is q,,-convergent to T.

3° If T,, is a sequence in B_OqM that converges in norm to some T € B, then T,, is
automatically bounded and by 2° we have T € By ™™ as well. The invariance of By ™ to
left-right multiplication by elements in M is obvious.
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4° Tt is sufficient to show the existence of such projections for a countable subset
{T;}; C (BT)lqM. For each i < n < k, there exists a projection p; , € M and S; x € (Bo)1
such that ||p; k(15 — Sik)pikl < 27% and 7(1 — p; &) < 27%/n. Thus, if we let P, =
Ni<nDik, then || Py x(Ti — Si k) Pokl| < 27F, Vi <n,and 7(1— P, k) < 2% If we now put
Py, = ANk>n Pk, then P, is increasing, 7(1—P,) < 27" and ||P,(T; — S; k) Pl <277,
Vi < n < k. For each fixed m, by applying this to k = n > m and taking into account that
P, P, = P, it follows that || P, (T; — Sin) Pl < 27", Vi < m. This shows in particular
that {Pp,Si nPmtn C (Bo)1 is norm-Cauchy and thus convergent to some X; ., € (Bp)1.
It also shows that X; ,,, satisfy P, T; Py = X; 1, while 7(1 — Py,) <27 Vi<m. 0O

Definition 6.3. Given a tracial von Neumann algebra (M, 7) in its standard representation
on L2M, we denote by qkys the q,,-closure of K(L2M) in B(L2M) and call its elements
q-compact operators.

Notice that besides its M-bimodule structure, the algebra B(L?M) also has an JM.J =
M’ bimodule structure, where J : L2M — L?M is the canonical conjugacy defined by
J(z) =2*, 2 € M C LM, and M’ denotes as usual the commutant of M in B(L2M).
The algebra JMJ = M’ can be naturally identified with the opposite algebra M°P of
M, and we will retain this notation for JMJ.

Proposition 6.4. The space qKys is a norm closed *-subspace of B(L?M), which is both
an M -bimodule and an M°P-bimodule.

Proof. By applying Proposition 6.2 to By = K(L?M) C B(L?>M) = B, it follows that
dps is a norm closed M-bimodule. It is clearly an M°P-bimodule and closed under the
*-operation. O

Theorem 6.5. For each 2 < p < oo denote by IC, the space of all operators T € B =
B(L?>M) with the property that there exists a sequence of compact operators K, € Ky
such that sup,, | K,| < co and lim, ||T — K,|||, = 0. Then K, = qKp.

Proof. To see that gy C K, let us show that the qj,-topology on the unit ball of
B(L*M) is stronger than the ||| - |||,-topology, ¥2 < p < oco. Indeed, by Lemma 4.2, if
T € B(L?*M) and P € P(M), then we have

Tl < IPTPlp + I1PT = Pl + [I(1 = P)T,
< |PTP|| +2[1 = Pl,||T|| = |[PTP| +2(7(1 — P))/*|T].

This shows that [|T||, < 2inf{||PTP| + (r(1 — P))Y/?||T||}, implying that the
d-topology on (B(L?>M)); is stronger than the || - ||[,-topology.
To show that IC, C qxs, let T" be an operator in Kj,. Then we can find a sequence of

uniformly bounded compact operators K,, € K(L*M) such ||T — K,|||, tends to 0. Since
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T — K, is still in B(L?M), Lemma 4.6 says we can find a,,b, € M and S,, € B(L*M)
such that T'— K,, = 4,550, and ||ay||p||Sn||||bn]lp tends to 0. Taking spectral projections
of |a,| and |b%| we can find a sequence of projections p, with ||p,||, tending to 1 such
that

[Pn (T = Kn)pnll = [PnanSnbnpnl| — 0
Thus, K, C g, which combined with the first part shows that K, = qp. O

It is useful to note that due to their “compact nature”, elements in the spaces q/Cps
cannot intertwine diffuse subalgebras of M. This fact will be used later to deduce that an
operator in B(L?M) that commutes with M modulo qK; and commutes with a diffuse
subalgebra of M, must in fact commute with all of M.

Lemma 6.6. Let B C eMe be a diffuse von Neumann subalgebra and o : B — fMf be
a unital faithful *-homomorphism, for some non-zero projections e, f € M. If K € qps
satisfies Kb=o(b)K, Vb€ B, then K = (1 — f)K(1 —e).

Proof. Note that fK(1—e) =0and (1—f)Ke = 0. By replacing K by K—(1—f)K(1—e),
we may also assume (1 — f)K(1 —e) = 0. So we have to prove that if K satisfies the
condition in the hypothesis and K = fKe, then K = 0.

Let u be a Haar unitary in B and « € eM. Since u™z tends weakly to 0 and |[v(§)|: =
|€l1 for any unitary v € fM f and & € LY(fM), we get

—_—
n

0 = lim [| K (u"z) [l = lim [|o (u") (K (2)) [l = [K(@)],

where the first equality follows easily from the definition of q/Cj;. This shows that K =
fKe satisfies K(eM) =0, thus K =0. O

7. Derivations of M into q/Cps

Recall that if M is a Banach algebra (always assumed unital) and B is a Banach
M-bimodule, then a derivation of M into B is a linear map ¢ : M — B satisfying the
property 0(zy) = zd(y) + o(x)y, for all x,y € M.

It is immediate to check that if T" € B, then the map adT : M — B defined by
adT(z) = [T, z] :=Tx — 2T, x € B, is a derivation. Such derivations are called inner.

It is useful to note that if ' C M is a set, then 6 determines the values of § on all
the algebra Alg(F') generated by F.

Recall from [32] that a derivation is automatically norm-continuous. Moreover, if M
is a von Neumann algebra and B is a dual normal M-bimodule, then any derivation is
automatically continuous from M with the ultra-weak topology to B with its o (B, By)
topology.
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Thus, if FF = F* C M is a set that generates M as a von Neumann algebra and M
is the norm closure of the *-algebra generated by F', then any derivation § of M into a
Banach M-bimodule is uniquely determined on My by the values it takes on F, §|p. If
in addition B is a dual normal Banach bimodule, then all of § is uniquely determined by
O p-

Let us first notice an automatic continuity (smoothness) result for derivations, with
respect to the q,,-metric and the ||| - |||, norms.

Theorem 7.1. Let (M, 7) be a tracial von Neumann algebra, B a Banach M -bimodule
and § : M — B a derivation. Then 6 is automatically || - ||2-q,, continuous on (M);.
More precisely, if € > 0, then given any x € (M); with ||z||z < (£/2)3/2, there exists
p € P(M) such that 7(1 — p) < e and |[pé(x)p| < ¢||d].

In particular, if B = qpr, then § is automatically continuous from (M), with the
I - [|2-topology to qkps with the topology given by the q,,-metric.

Proof. By [R72], ¢ is automatically norm continuous and without loss of generality we
may assume ||6]] = 1. Let € > 0. Let = € (M); be so that ||z||z < (¢/2)3/2. Denote by
e the spectral projection of zz* corresponding to [0,£2/4]. Then e satisfies |ex| < /2
and (1 —e)zz* > (¢/2)?(1 — e). Thus we have:

(¢/2)° > ||l = llell3 + 11 — e)z 13
> |1 = e)al3 = 7((1 = e)az®) > (¢/2)*7(1 — e).

This implies that 7(1 — e) < £/2. Similarly, if ¢’ denotes the spectral projection of z*x
corresponding to [0,2/4], we have 7(1 — €’) < ¢/2 and ||z€/|| < /2. Thus, if we denote
p=eA¢, then 7(1 —p) < e and [|pd(z)p|| = |6(p2)p — d(p)zp|| <e. D

Lemma 7.2. Assume T € B(L?M) is so that [T, My] C qKu for some weakly dense
*-subalgebra My C M. Then we have:

1° [T, M} C qICM.

2° If, in addition, T = e is a projection and there exists a Haar unitary uw € M
such that [e,u] € K(L?M) with eue having Fredholm index # 0 in B(e(L?*M)), then
[T, M] C akn, and the derivation 0. : M — gy defined by d.(x) = [e,z],x € M, is
not inner, i.e., there exists no K € qKps such that §, = adK.

Proof. 1° By Theorem 7.1, the derivation § = adT : M — B(L*M) is | - |l2 — qu,
continuous. Since My is || - ||2-dense in M, [T, My] C qKu and gk is qp-closed in
B(L?M), it follows that [T, M] C qfs.

2° Let A = {u}”. Since u is a Haar unitary, one can view the restriction of the action
of u on L?A as the bilateral shift on ¢?Z. Denote u = v & w where v is the restriction of
u to L2A = (*7 and w its restriction to L?M © L?A. By [BDF73], there exist compact
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operators Ko, K1 € K(L?>M) such that (u+ Ko, e + K1) are unitary conjugate to (u, f),
where f is the orthogonal projection of L?M onto (27 C (*Z = L*A.

Thus, if 6. = adK for some K € K(M,L'M), then §; = adf = ad(e + K1) = ad(K’)
with K’ = K + K; € K(M,L'M). This implies f — K’ € M’ = M°P, so there must
exist g € M such that f(§) = K'(§) + y&o, for all y € M. Since lim,|_oc K’ (u") = 0
and f(u") is equal to u™ for n > 0 and is equal to 0 for n < 0, this shows on the
one hand that 0 = lim,_o || f(u=")|l2 = [lu""zoll2 = ||x0||2, on the other hand 1 =
lim,, o0 || f(u™)]|2 = [[u™@ol|2 = ||70]|2, & contradiction. O

Theorem 7.3. For any separable diffuse finite von Neumann algebra M, there exists a
non inner derivations of M into qKyy.

Proof. Since M is separable, we can fix a weakly dense sequence of x,, in M. By [3],
the closed ideal K(L?M) of B(L?M) has a quasicentral approximate unit. In particular,
for any € > 0 and any operators Ty,T1,...,T, € B(L?*M), we can find an operator
K € K(L?*M), from such a quasicentral approximate unit such that ||K| < 1 and
I[K,T;]|| < eforall 1 < < k. Moreover, since such a quasicentral approximate unit
weakly tends to the identity, for any 0 < o < 1 such an operator K can be chosen to
satisfy (Ki, i> > «a. Thus, we can find a sequence of operators K, in K(L?M) with
| K,|| <1 for all n > 1 such that ||[K,,,z;]|| < 27" forall 1 <k <n and (K,1,1) > 1/2
for all n > 1.

Now fix a sequence of unitaries u,, in M that are weakly tending to 0. We claim there
exists a subsequence (uy, )52, such that

(1) |32 Jun, JKJu,, J|| < 2 for all n > 1;
(2) [(Kqugy un, 1, u un, 1) < 277 for all i # j.

We construct such a subsequence inductively. First, let w,, = wu;. Next, assume for
some k > 1 we have found wy,, Un,, ..., Uy, such that the above condition 1 occurs for
all 1 < n < k and condition 2 occurs for all 1 < 4,5 < k with ¢ # j. Then notice
that for any compact operators T, S € K(L?M) and any sequence of unitaries v, in M
converging weakly to 0 we have ||T + v, Sv}|| — max{||T||, ||S||} as n tends to infinity.
Since Zle Jupn, JK;Juy, J and Kjyq are compact operators of norm less than 2, it
follows there is an N7 such that for all n > N;

k
T J Ky JulJ +Y T, JK;Jul, J
i=1

< 2.

Next, note that for each fixed 1 < ¢ < k we have that u,u,, Kx1u;, u,, converges
weakly to 0 as n tends to infinity. Thus, there is an N such that for all 1 <7 < k and
all n > Ny

|<Kk+1uf“uni,uziuni>| = |(unuka+1u;‘”uni, i)| < 27hk2,
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Similarly, for each fixed 1 <4 < k we have that u, K;u, converges weakly to 0 as n tends
to infinity. Hence, there is an N3 such that for all 1 <7 < k and all n > N3

|<Klu:;u”117u;klumi>| = |<(unKzu;§)um]A-7Um]A.>| < Q_i_l.

If we take njy1 = max{Ni, Na, N3}, then the terms wuy,, Un,,. .., Un, , will satisfy the
above condition 1 for all 1 < n < k4 1 and condition 2 occurs for all 1 <, 7 < k—+1
with 4 # j. By induction, it follows that the desired subsequence (uy,)$2; exists.

Now we define an operator T' by letting

T=Y" Jup, JKaiJu, J.

=1

Note because of how we chose the unitaries u,, that 7" will indeed be a well-defined
operator in B(L?M) with || T|| < 2. Moreover, for any z; from our weakly dense sequence
of M we have

T,2] = [ Jung, JKoiJuly, Joaj] = T, J[Kai,x;]us,, J.
=1 i=1

BEach summand Juy,, J[K2;, x;]Juy,, J in this series is a compact operator and, because
of how we chose the operators K, for all i > j/2 we have

([T ttn,  [K2i 5] Ty, T || = [|[Koi, ]| < 272

Thus, this is a || - ||-norm convergent series of compact operators, and in turn [T, z;] is a
compact for each x;. By Lemma 7.2, adT is a derivation of M into q/Cp;.

We claim, however, that adT is not inner. Otherwise, assume for sake of contradiction
there is an S € q/Cjs such that adS = adT'. Take any sequence of unitaries v,, in M that
weakly converge to 0. Then we note that since (7' — S) commutes with M

(0, Tvi1,1) = (v (T — S)vil, 1) + (v, Svil, 1) (14)
= (T - 91,1) + (v, Sv:1,1).
Using Lemma 5.2, (v, Sv’1, 1) must converge to 0 as n tends to infinity. Thus, we observe
that (v, Tv:1,1) must converge as n tends to infinity.
It follows then that (u, T Uy, 1, i} converges as j tends to infinity. However, for even
terms of this sequence, we notice that
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oo

> Nty Jtty, JK i sy, Jus, 1,1)
i=1

|<un2jTu:sz i’ 1>| =

/\ % ~
E K2'L ’n2 uan un2jun2i1>

> |<K2jivi>|_ Z ’(KQiu;kLqunmiau;2jun27‘i> .
1<i#j

Because of how we chose the operators K, we have |(Ka;1,1)| > 1/2, whereas by

construction |(Ko;u) unml (9% Upy, 1)| < 27271 for all @ # j. We then get a lower
bound

[ty Ty, 1,1)| > 1/2 = > 27271 > 1/3.

1<ij

Conversely, for any odd term of this sequence
o0
[ty oy Ty L) = D (g Jtiy, JKoi July, Jush, ,1>|
i=1
o0
=) (Ko, iy, 10, i, 1) (15)
i=1
o0

~

1)) .

§ * 2 *
S ‘<K27;un2j+1un2i17un2j+1un2i
i=1

Again, using that |(Kzuy,, Hunzli uszjﬂunmi}‘ < 2721 we get a bound

|<un2j+1 ’IL2]+1 | < 22 2= 1

It follows then that the sequence (uy, Tu;,, 1, i> does not converge. Hence, by contradic-
tion, adT must be a non inner derivation. 0O

Proposition 7.4. Let ' be a countable group, set M = LI' and let f € (T be so that
of — f€cy(), Vg € T. Denote Ty € B(L?*M) the diagonal operator corresponding to f.

1° We have [Ty, M] C aKn, and thus é; := adTy defines a derivation of M into
K-

2° If f & C +co(I'), then the derivation §5 is outer, i.e., there exists no K € gy
such that 65 = adK.



32 P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452

Proof. 1° The condition ,f— f € ¢o(I'), Vg € I', amounts to [My, Ty] C K(L*M) C g,
where My = CT'. Since M is a weakly dense *-subalgebra of M, by Lemma 7.2 it follows
that [M, Tf] C qkum.

2° Assume there exists K € qKp such that ad(K) = ad(Ty) on M. We let & :
B(L?M) — £>°T" denote the conditional expectation to the diagonal operators given by
&(T)(g) = (Tty,Ug). Notice that & implements the canonical trace on both LT and
RT. By Lemma 4.7 if p > 2, then we have [|E(T)|| < [|T||lp, and so from Theorem 6.5
it follows that & (K) € co(T).

Since K — Ty € M' = M°P, we then have & (K) — f = E(K —Ty) € C, contradicting
the fact that f ¢ C 4+ ¢o(I'). O

Corollary 7.5. If I' is any infinite group, then there exists a non-inner derivation of
M = LI into qpr of the form 0y = adTy where f € 1" is given as in Proposition 7.4.

Proof. From an argument very similar to the one used in Theorem 7.3 it follows that
there always exist f € ¢°°T so that ,f — f € ¢o(T) for all g € T', but such that f ¢
C + ¢o(T"). One simply starts with an asymptotically T'-invariant approximate identity
in ¢(T") and proceeds as in the proof of Theorem 7.3. O

Lemma 7.6. Assume § : M — qK s is implemented by T € B(L*M). If K,, € qKs are
so that || K| < ||T, Vn, and lim,, q; ([Kn, z],0(z)) = 0 for all x in some weakly dense
*-subalgebra My of M, then this limit holds true for all x € M.

Proof. Let y € (M);. We have to prove that given any € > 0 there exists ng such that for
any n > ng there exists p € P(M) satistying 7(1 — p) < e and ||p(6(y) — [Kn, y])p|| < €.

By Kaplanski’s theorem, we can take yo € (M), with [lyo — yll2 < (¢/2)%/2/2. By
applying the hypothesis to this yg € My, there exists ng such that Vn > ng, Ipg € P(M)
with 7(1—pg) < e/2 and ||po(d(yo) — [Kn, yo])po|| < €/3. On the other hand, by applying
Theorem 7.1 to x = y — yo and the derivations §,ad(K,,), we get a projection p; € M
such that 7(1 —p1) < &/2 and [[p1d(y — yo)p1lle/3, [P1[Kn, (v — yo)lp1 |l < €/3. Thus, if

we let p = pg A p1, then 7(1 — p) < e and for each n > ny we have

Ip(6(y) — [Kn, yDpll
< |Ipd(y — yo)pll + [Ip[En, (y — yo)lpll + lp(d(yo) — [Kn,vo])pll <e. O

Theorem 7.7. Let § : M — qKar be a derivation implemented by T € B(L*M).
Then there exists a met of finite-rank operators K, with ||K,|| < |T| such that
lim, q,,(8(z),[K,,z]) = 0 for all z € M. Moreover, if L?M is separable, then the
net can be taken a sequence.

Proof. Let F' = {z1,22,...,2,} be an arbitrary finite subset of M and e > 0. Since §
is a derivation into q/Cps, we can find a projection p € M with 7(1 — p) < €/2 such
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that pd(x;)p € K(L*M) for 1 < i < n. Consider then the convex subset C' C K(L?M)"
consisting of all n-tuples of the form

(Pé(z1)p — K, 21]p, pd(x2)p — p[K, 22]p, . . ., pd(20)p — PIK, 20 ]p),

where K runs over all finite-rank operators in B(L?M) such that || K|| < ||T|.

The set C C K(L*M)™ can be viewed as a subset of (K(L2M)")** = B(L2M)™.
Note that, since 6 = ad(T), if we plug in T for K in the above n-tuple viewed as an
element in B(L?M)", then one gets (0, ...,0). Note also that T is a wo-limit of finite-
rank operators with norm at most ||T|| and that this implies (0,...,0) = (pd(z1)p —
[T, x1]p, pd(x2)p —p[T, z2]p, . . ., pd(2y)p — p[T, ,]p) is in the o (B(L*M)", B} (L*M)")-
closure of C' in B(L?M)™. But since C C K(L?*M)™ is convex, its norm closure in
K(L?M)™ coincides with its closure in the o(K(L2M)", B:(L2M)™) topology. Hence
(0,0,...,0) is in the norm closure of C. In particular, there exists a finite-rank operator
K € B(L*M) such that ||[K| < ||T|| and ||pd(z;)p — p[K,xi]p|| < €/2 for all 1 < i < n.
But then we see that

sup  qpy(0(2i), [K,2;]) < sup 7(1—p) +[[p(d(z;) — [K, z:])pl| <e.
1<i<n 1<i<n

This shows that for any set F' C M we can find a finite-rank operator Kp € B(L?>M)
such that | Kp|| < ||T|| and qu,(6(z;) — [KF,z;]) < 1/|F|. This net (Kr)p, indexed over
all finite subsets will then satisfy the condition.

The fact that this net can be taken to be a sequence when L?M is separable follows
from Lemma 7.6. O

The next result shows if By C M is a weakly quasi-regular diffuse von Neumann
subalgebra of M (in the sense of [13]), then the derivations of M into any of the bimodule
qKyr, are uniquely determined by their restriction to By.

Proposition 7.8. Let M be a tracial von Neumann algebra with a diffuse weakly quasi-
reqular von Neumann subalgebra By C M. If a derivation § : M — qlCp; vanishes on
By, then § =0 on all M.

Proof. Since ¢ is automatically || - |lo-q-continuous, it follows that the space B of
elements in M on which ¢ vanishes (which contains the diffuse algebra By, by hypothesis)
is a von Neumann subalgebra of M. Let u be a unitary element in M such that B :=
uw*Bu N B is diffuse and denote ¢ : B — M the isomorphism of B into B given by
o(b) = ubu*, b € B. Since ub = o(b)u, by applying 0 it follows that d(u)b = o(b)d(u),
Vb € B. Thus, K = d§(u) € qKj satisfies the conditions in Lemma 6.6, implying that
§(u) = 0. Since By C M is weakly quasi-regular, this shows that B = M. 0O
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Let us end this section by mentioning some q,,-approximation properties of deriva-
tions of a tracial von Neumann algebra M into Banach M-bimodules endowed with the
q-metric, notably qiCas.

Proposition 7.9. Let (M, 1) be a tracial von Neumann algebra, B a Banach M-bimodule
and 6 : M — B a derivation.

1° Let My C M be a weakly dense C*-subalgebra and By C B an M sub-bimodule
(not necessarily norm-closed). Assume pd(My)p C By, for some projection p € M. Then,
for any countable subset X C M and any €9 > 0, there exists pg € P(pMp) such that
T(p —po) < e7(p) and pod(x)po € By, Vo € X.

2° If B = qCpy, then given any separable C*-subalgebra My C M and any € > 0, there
exists pg € P(M) such that (1 — pg) < & and pod(x)py € K(L?>M), Y € M.

Proof. 1° Let X = {z,,}»,>1 be an enumeration of X'. By Pedersen’s Lusin-type Theorem,
for each n there exists p, € P(M) and y, € My such that T,p, = YnDn, PnTn = Pnln
and 7(p,) > 1 —7(p)e/2" "L, Vn. Since §(znpn) = Ynd(pn) + 6(Yn)pn, we have

Pn0(Tn)Pn = Pnd(TnDn)Pn — Pnnd(Pn)Pn
= pnyn(s(pn)pn +pn6(yn)pn - pnwnd(pn)pn = pn5<yn)pn € By.

Thus, if we let pg = An>1Pn A p, then pod(x)py € By, Vo € X. Moreover, we have
T(An>1Pn) 2 (1= Xp>17(1 = pn)) = 1 —e7(p) and thus 7(py) = (1 —e7(p)) +7(p) -1 =
(1 —e)7(p), implying that 7(p — po) < e7(p).

2° This is trivial by Proposition 6.2. O
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