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We study several classes of Banach bimodules over a II1 factor 
M , endowed with topologies that make them “smooth” with 
respect to Lp-norms implemented by the trace τ on M . Thus, 
letting M ⊂ B = B(L2M), and 2 ≤ p < ∞, we consider: 
(1) the space B(p), obtained as the completion of B in the 
norm ‖ |T ‖p := sup{|ϕ(T )| | ϕ ∈ B∗, sup{|ϕ(xY z)| | Y ∈
(B)1, x, z ∈ M ∩ (LpM)1} ≤ 1}; (2) the subspace K(p) ⊂
B(p), obtained as the closure in B(p) of the space of compact 
operators K(L2M); (3) the space Kp ⊂ B of operators that 
are ‖ | ‖ |p-limits of bounded sequences of operators in K(L2M). 
We prove that Kp are all equal to the τ-rank-completion of 
K(L2M) in B, defined by qKM := {K ∈ B(L2M) | ∃Kn ∈
K(L2M), pn ∈ P(M), limn ‖pn(K − Kn)pn‖ = 0, limn τ(1 −
pn) = 0}. We show that any separable II1 factor M admits 
non-inner derivations into qKM , but that any derivation δ :
M → qKM is a pointwise limit in τ -rank-topology of inner 
derivations.

© 2024 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: jesse.d.peterson@vanderbilt.edu (P. Hiatt), pjhiatt@math.ucla.edu (J. Peterson), 

popa@math.ucla.edu (S. Popa).
1 JP was supported in part by NSF Grant DMS #1801125 and NSF FRG Grant #1853989.
2 SP Supported by NSF Grant DMS-1955812 and the Takesaki Endowed Chair at UCLA.
https://doi.org/10.1016/j.jfa.2024.110452
0022-1236/© 2024 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2024.110452
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2024.110452&domain=pdf
mailto:jesse.d.peterson@vanderbilt.edu
mailto:pjhiatt@math.ucla.edu
mailto:popa@math.ucla.edu
https://doi.org/10.1016/j.jfa.2024.110452


2 P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452
1. Introduction

While Hochschild introduced his cohomology theory for algebras in the mid 1940s 
(cf. [14]), it was around 1970 that this theory started to be adapted and systematically 
studied in operator algebras framework (see the series of papers by Johnson, Kadison 
and Ringrose [16], [21], [18]). However, problems related to derivations of an operator 
algebra M with values in special M -bimodules, such as M itself, which amounts to the 
1-cohomology group of M with coefficients in M , started to be investigated several years 
earlier, triggered by Kaplanski’s interest in such problems (see e.g. [23] or the footnote 
in [34]). In a pioneering result in this direction, it is shown in [34]) that any derivation 
of a commutative Banach algebra must be equal to zero, while in ([20], [33]) is it shown 
that all derivations of a von Neumann algebra are inner. More general M -bimodules 
B were soon considered, such as algebras B that contain M , notably M ⊂ B = B(H)
(see e.g. [4]), or classical ideals in B(H), like the Schatten-von Neumann p-class cp(H), 
1 ≤ p < ∞ ([19], [16], [15]), or the ideal of compact operators ([19]).

Most of the early results in this direction aimed at proving that all derivations of 
an algebra M into an M -bimodule B are inner, and more generally on showing that all 
cohomology groups of M with coefficients in B vanish, Hn(M, B) = 0, ∀n. But starting 
with the work of Johnson in ([16], [17]), an interest towards using the cohomology groups 
Hn(M, B) as effective invariants for a von Neumann algebra M has emerged. However, 
while the amenable-nonamenable dichotomy could soon be established this way, by show-
ing that a tracial von Neumann algebra M is amenable if and only if H1(M, B) = 0 for 
any normal dual Banach M -bimodule B (cf [16], [6], [7], [11]), by early 1980s all efforts 
in this direction have stalled. At the “Operator Algebra Summer School” in Kingston 
1980, where the main directions of research in this area were presented, two cohomol-
ogy problems were particularly emphasized: (1) whether Hn(M, M) = 0, ∀n, for any 
II1 factor M ; (2) whether any derivation of a II1 factor M into B(H) is inner when 
M ⊂ B(H) has infinite coupling constant (the case when dimMH < ∞ had been settled 
in the affirmative in [4]).

These problems are still open, but there has been progress on both. On the one 
hand, problem (2) was shown to be equivalent to the similarity problem, asking whether 
any bounded representation of any C∗-algebra A, π : A → B(H), is similar to a 
∗-representation (i.e., ∃S ∈ B(H) invertible such that A 	 x 
→ S−1π(x)S is a ∗-
representation), see [27] for several equivalent formulations and a deep analysis of this 
problem. On the other hand, it was shown that Hn(M, M) = 0, ∀n, for many classes 
of II1 factors with “good decomposability” features, such as the property Gamma of 
Murray and von Neumann, existence of Cartan subalgebras, and more generally exis-
tence of a “thin decomposition” of M with respect to a pair of amenable subalgebras 
(see [5]). But the perception on these problems has changed: one now expects that there 
do exist II1 factors M for which H2(M, M) �= 0 and H1(M, B(L2M ⊗ �2N)) �= 0, and 
that in fact this should be the case for the free group factors M = LFn, 2 ≤ n ≤ ∞. 
However, these cohomology spaces are expected to be difficult to calculate, and to not be 
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able to make “fine distinctions”, such as to differentiate between the free group factors 
LFn, 2 ≤ n ≤ ∞, or show that LF∞ cannot be finitely generated.

A big impetus towards finding a different cohomology theory for II1 factors, one 
that would be non-vanishing and calculable, providing an efficient invariant that would 
reflect fine structural properties of the algebras involved, came in 2001, triggered by 
Gaboriau’s successful generalization to orbit equivalence relations RΓ arising from ac-
tions of countable groups by measure preserving transformations Γ � X of Atyiah’s 
and Cheeger-Gromov notion of L2-cohomology of groups, leading to his notion of L2-
Betti numbers for RΓ satisfying β(2)

n (RΓ) = β
(2)
n (Γ), with the striking consequence that 

free groups of different rank cannot be orbit equivalent ([12]). Since Gaboriau’s L2-
cohomology for RΓ can be viewed as a cohomology theory for the corresponding Cartan 
inclusion A = L∞(X) ⊂ L(RΓ) = M , of the group measure space II1 factor associated 
with the orbit equivalence relation RΓ, it is an invariant for factors M with unique 
Cartan decomposition (see [29]), for which one can simply define associated L2-Betti 
numbers as β(2)

n (M) = β
(2)
n (RΓ).

But a more interesting “wishful” L2-cohomology theory along these lines would be for 
group factors M = LΓ arising from ICC groups Γ, typically without Cartan subalgebras, 
for which one would like to have an identification between the L2-cohomology of LΓ and 
the L2-cohomology of the group Γ, with the corresponding L2-Betti number β(2)

n (LΓ)
coinciding with Atyiah’s L2-Betti number of the group, β(2)

n (Γ). This problem was much 
emphasized by Connes in his talk at MSRI in the Spring of 2001 ([8]).

Several attempts were made in this direction: (a) Connes-Shlyakhtenko proposed in [9]
an “everywhere defined” cohomology of M with coefficients in the Murray-von Neumann 
algebra Aff(M⊗Mop) of operators affiliated with M⊗Mop; (b) Peterson considered in [26]
a “densely defined” L2-cohomology theory for II1 factors; (c) Galatan-Popa considered 
in [13] a generalized version of the 1-cohomology with coefficients in K(L2M) in ([19], 
[28]), based on the larger class of smooth bimodules, trying this way to avoid being always 
equal to 0, while still vanishing in “amenable directions”.

All these attempts have shortcomings: [26] encountered the difficulty of having to 
prove the independence of the cohomology on the dense domain of the derivations; [9]
had to be adjusted with some continuity conditions in [35], and that modified version 
was shown in [31] to always be equal to 0 (this was previously shown in [2] and [1] to hold 
in certain cases, such as for free group factors); of the two classes of smooth bimodules 
proposed in [13], one was shown to produce a cohomology that’s always 0 and the other 
one has not led so far to non-vanishing examples.

Our work in this paper represents a new effort towards identifying a class of M -
bimodules B that would allow defining a viable cohomology theory, an effective isomor-
phism invariant, for the II1 factors M . To begin with, since our approach is somewhat 
inspired by the L2-cohomology of groups, one expects B to depend canonically on M
and be related in some ways to the Hilbert space L2M and the space of linear bounded 
operators acting on it B(L2M).
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Beyond that, a first priority for us was that the 1-cohomology with coefficients in B
should not always vanish, i.e., that there should exist II1 factors M that admit non-
inner derivations into B, especially in the case M = LΓ with β(2)

1 (Γ) �= 0, like Γ = Fn, 
2 ≤ n ≤ ∞. Another consideration was that B should host the derivations δc : LΓ → B
coming from 1-cocycles c : Γ → �2Γ, which on the group algebra CΓ = span{ug}g

are of the form δc(ug) = [Tf , ug], where Tf is the diagonal operator implemented by 
f ∈ �∞Γ, obtained by “integrating” c over the Cayley graph of Γ (note that one can 
just take f(g) = −cg(g), ∀g ∈ Γ). This implicitly means that derivations of M into B
should be uniquely determined by their values on weakly dense ∗-subalgebras. At the 
same time, one would like B to have an Mop-bimodule structure as well, commuting with 
its M -bimodule structure, potentially leading to a right M⊗Mop-module structure on 
B. One would further hope that whenever (uk)n

k=1 ⊂ U(M) is a finite set of unitaries 
generating M as a von Neumann algebra, the map δ 
→ (δ(uk))k gives an injective 
right-M⊗Mop-modular map from the space of derivations Z1(M, B) into Bn, that would 
behave well to the quotient by the space of inner derivations B1(M, B), or by its closure 
B1 under a suitable topology. If such requirements are met, this would allow associating 
a first L2-Betti number for M , β(2)

1 (M), as the Murray-von Neumann-Lueck dimension 

of H̃1(M, B) := Z1(M, B)/B1 viewed as a right M⊗Mop-module.
These considerations force B to be somewhat related to K(L2M), the space where 

[Mf , ug] takes values. So having all this in mind, we consider here the following spaces.
For each p ≥ 2, we consider the Banach space of “compact-like operators” K(p) defined 

as follows. We first let B∗(p) be the space of functionals ϕ on B(L2M) with the property 
that

‖ϕ‖B∗(p) := sup{|ϕ(xY z)| | Y ∈ (B)1, x, y ∈ M ∩ (LpM)1} < ∞.

We then let B(p) denote the completion of B(L2M) in the norm

‖|T ‖|p := sup{|ϕ(T )| | ϕ ∈ (B∗(p))1}.

Finally, we denote by K(p) ⊂ B(p) the closure in B(p) of the space of compact operators 
K(L2M). It is immediate to see that (K(p), ‖ | · ‖ |p) is both a Banach M -bimodule and 
a Banach Mop-bimodule. It is also easy to see that for each X ∈ K(p) the left-right 
multiplications by elements in the unit ball of M is ‖ ·‖2−‖ | · ‖ |p continuous (smoothness).

Since the derivations of M = LΓ arising from cocycles c : Γ → �2Γ are often 
implemented by bounded operators Mf ∈ B(L2M), we in fact expect that the M -
bimodules of interest for us consist of bounded operators. We thus also consider the 
spaces Kp := K(p) ∩ B(L2M), p ≥ 2. We prove that in fact all Kp, 2 ≤ p < ∞, 
“collapse” to just one space, which we show to coincide with the closure in B(L2M)
of K(L2M) in the so-called τ -rank metric qM , given by its M -bimodule structure, 
qM (S, T ) = inf{τ(1 − p) + ‖p(T − S)p‖ | p ∈ P(M)}.
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Theorem 1.1. For each p ≥ 2 denote by Kp the space of operators T ∈ B(L2M) for which 
there exists a sequence Kn ∈ K(L2M) such that supn ‖Kn‖ < ∞ and limn ‖ |T −Kn‖ |p =
0. Then Kp coincides with the τ -rank-completion qKM of K(L2M) in B(L2M).

We note that the τ -rank-completion qKM also coincides with the strong M -M -
completion of K(L2M) in the sense of [24], although we do not take this perspective 
here.

Any derivation of M into qKM is indeed determined by its values on any weakly-dense 
∗-subalgebra of M . In fact, any derivation of M into qKM is continuous from the unit 
ball of M with the ‖ · ‖2-topology to qKM with its qM -metric. Also, qKM is both a 
Banach M and Mop-bimodule and all derivations arising from non-vanishing 1-cocyles 
c of Γ into �2Γ described above give rise to non-inner derivations of M = LΓ into qKM . 
But in fact any separable II1 factor M (so including the hyperfinite II1 factor) admits 
non-inner derivations into the M -bimodule qKM :

Theorem 1.2. Given any separable diffuse tracial von Nuemann algebra M , there exist 
non-inner derivations of M into qKM .

Thus, while our primary objective of getting a non-vanishing 1-cohomology is in-
deed being met by the M -bimodules qKM , the above result shows that the associated 
(classic Hochschild) 1-cohomology space H1(M, qKM ), obtained as the quotient of the 
space of derivations Z1(M, qKM ) by the space of inner derivations B1(M, qKM ), becomes 
too “wild”, certainly un-calculable. This means one has to take instead the quotient of 
Z1(M, qKM ) by a closure B1(M, qKM ) with respect to some suitable topology on the 
space of derivations, like one does for the L2-cohomology of groups. This should however 
take into consideration that the closure of B1 in the ‖ ‖2 − qM pointwise convergence 
on the unit ball of M is too weak for this purpose, as one has the following:

Theorem 1.3. Let δ : M → qKM be a derivation implemented by T ∈ B(L2M). Then 
there exists a net of finite-rank operators Kι with ‖Kι‖ ≤ ‖T‖ such that

lim
ι

qM (δ(x), [Kι, x]) = 0, ∀x ∈ M.

Moreover, if L2M is separable, then the net can be taken a sequence.

Thus, one has to strengthen the topology on Z1(M, qKM ) so that the correspond-
ing closure B1 of the space of inner derivations gives all Z1(M, qKM ) in case M is 
amenable, and more generally when M satisfies various “good decomposition” proper-
ties with respect to its amenable subalgebras (like existence of Cartan subalgebras), but 
is not the entire Z1(M, qKM ) in general, notably for M = LFn. The resulting relevant 
1-cohomology space would then be defined as H̃1(M, qKM ) := Z1(M, qKM )/B1. An al-
ternative, but closely related strategy is to slightly modify the “target” M -bimodule 
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qKM to a bimodule B that would still host outer derivations δc arising from non-inner 
1-cocycles of Γ when M = LΓ, but would in turn lead to vanishing cohomology when 
M is amenable, and more generally when M satisfies various “good decomposition” 
properties as above. For instance, by taking B to be a suitable quotient of qKM , or of 
some modified version of this space. We will investigate all these possibilities in a future 
work.

The paper is organized as follows. In Section 2 we recall some basic definitions about 
M -bimodules and Lp-spaces associated with a tracial von Neumann algebra M . In Sec-
tion 3 we define for each p ≥ 2 the space B∗(p) of functionals ϕ on B := B(L2M) with 
the property that

‖ϕ‖B∗(p) := sup{|ϕ(xY z)| ≤ 1, ∀Y ∈ (B)1, x, y ∈ M ∩ (LpM)1} < ∞.

In Section 4 we consider its predual, B(p), obtained as the completion of B in the norm 
‖ |T‖ |p := sup{|ϕ(T )| | ϕ ∈ (B∗(p))1}. In Section 5 we define the subspace K(p) ⊂ B(p), 
obtained as the closure in B(p) of the space of compact operators K(L2M), whose dual 
identifies naturally to the “normal part” B∗

n(p) of B∗(p). In Section 6 we define the space 
Kp ⊂ B of operators that are ‖ | · ‖ |p-limits of bounded sequences of operators in K(L2M), 
define the τ -rank topology on M -bimodules, and prove Theorem 1.1, showing that all 
Kp coincide with the closure qKM of K(L2M) in B(L2M), in the τ -rank topology (see 
Theorem 6.5). Then in Section 7 we consider the space of derivations of M into qKM

and prove Theorems 1.2 and 1.3 (see 7.3 and 7.7).

2. Preliminaries

2.1. Banach bimodules

Given a unital Banach algebra M (which will typically be a tracial von Neumann 
algebra in this paper), a Banach M -bimodule B is a Banach space with left and right 
multiplication operations M × B 	 (x, T ) 
→ xT ∈ B, B × M 	 (T, x) 
→ Tx ∈ B
(i.e., bilinear maps satisfying x(yT ) = (xy)T , (Tx)y = T (xy), and 1M T = T 1M = T , 
∀x, y ∈ M, T ∈ B) that satisfy the conditions ‖xT‖B ≤ ‖x‖M ‖T‖B, ‖Tx‖B ≤ ‖T‖B‖x‖M , 
∀x ∈ M, T ∈ B.

If in addition B is the dual of a Banach space B∗ and for each x ∈ M the maps 
B 	 T 
→ xT ∈ B, B 	 T 
→ Tx ∈ B are continuous with respect to the σ(B, B∗)
topology (also called weak∗-topology), then B is called a dual M -bimodule. Finally, if 
M is a von Neumann algebra, B is a dual M -bimodule, and for each T ∈ B the maps 
M 	 x 
→ xT ∈ B, M 	 T 
→ Tx ∈ B are continuous from (M)1 with the σ(M, M∗)-
topology to B with the σ(B, B∗)-topology, then we say that the dual M -bimodule B is 
normal.
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2.2. Examples

A typical example of a Banach M -bimodule that we will consider here is when B is 
a larger unital Banach algebra that contains M (with 1M = 1B), with the left and right 
products xT, Tx for x ∈ M , T ∈ B, being the restrictions of the product in the larger 
algebra B. Note that in case M ⊂ B is an inclusion of von Neumann algebras, MBM is 
in fact a normal dual M -bimodule.

These examples entail two more classes of examples of Banach M -bimodules.
On the one hand, one can take a norm-closed two sided ideal J in the Banach algebra 

B, which will have a natural M -bimodule structure by restriction from B.
On the other hand, one can take the dual B∗ of B with the M -bimodule structure given 

by B∗ 	 ϕ 
→ x ·ϕ ·y ∈ B∗, ∀x, y ∈ M , which for T ∈ B is defined by x ·ϕ ·y(T ) = ϕ(yTx). 
This is easily seen to implement a Banach dual M -bimodule structure on B∗.

A particular case of this latter type of examples will be of interest to us. Thus, we 
fix a tracial von Neumann algebra (M, τ) (so τ is a normal faithful trace state on M) 
and let M ⊂ B = B(L2M) be its standard representation, where L2M is the Hilbert 
space obtained by completing M in the norm ‖x‖2 = τ(x∗x)1/2, x ∈ M , and M acts on 
it by left multiplication. This makes B into a dual normal M -bimodule. Moreover, since 
Mop acts on L2M as well, by right multiplication, B also has dual normal Mop-bimodule 
structure. Since M, Mop commute (in fact M ′ ∩ B = Mop, (Mop)′ ∩ B = M), the two 
bimodule structures commute, in other words they implement a M ⊗alg Mop-bimodule 
structure on B.

From the preceding remarks, these two bimodules structures on B entail dual Banach 
M -bimodule and Mop-bimodule structures on B∗.

2.3. Non-commutative Lp-spaces

Recall that ‖y‖p = τ(|y|p)1/p, y ∈ M , defines a norm on M , with ‖y‖p being increasing 
in p and the limit limp→∞ ‖y‖p equal to the operator norm ‖y‖∞ = ‖y‖. The completion 
of M in the norm ‖ ·‖p is denoted by LpM . One has LpM ⊃ Lp′

M whenever p′ ≥ p. Also, 
LpM identifies naturally with the space of densely defined closed operators Y on L2M

that are affiliated with M and have the property that |Y | has spectral decomposition 
|Y | =

∫
λdeλ satisfying 

∫
λpdτ(eλ) < ∞.

If 1 ≤ p ≤ ∞, then (LpM)1 is closed in Lp′
M , for any 1 ≤ p′ ≤ p. Moreover, all 

of the ‖ · ‖p′-topologies on the unit ball (M)1 of M for 1 ≤ p′ < ∞ coincide with the 
so-topology on (M)1 and if p < ∞, then all ‖ · ‖p′ -topologies on (LpM)1, 1 ≤ p′ ≤ p

coincide with the ‖ · ‖p-topology.
Recall that if 1 ≤ p < ∞, then (LpM)∗ � LqM , where q = p

p−1 (with the usual 
convention 1/0 = ∞), the duality being given by (ξ, ζ) 
→ τ(ζ∗ξ) for ξ ∈ LpM , ζ ∈ LqM , 
viewed as operators affiliated with M . This also shows that if y ∈ M and 1 ≤ p, q ≤ ∞
with 1 + 1 = 1, then ‖y‖p = sup{|τ(yz)| | z ∈ (LqM)1}.
p q
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Note also that if x, y ∈ M , ξ ∈ LpM , then ‖xξy‖p ≤ ‖x‖‖ξ‖p‖y‖, making LpM

into a Banach M -bimodule, which is dual and normal if 1 < p < ∞. Note that if 
ξ ∈ LpM, η ∈ Lp′

M , then ξη ∈ LqM where q = pp′

p+p′ .

2.4. Smooth bimodules

Recall from [13] that a Banach M -bimodule B is smooth, if for any T ∈ B the maps 
x 
→ xT and x 
→ Tx are continuous from the unit ball of M with its ‖ · ‖2-topology to 
B with its Banach norm topology.

A typical example much emphasized in [28], [13] is when B is the ideal of compact 
operators K(L2M) ⊂ B(L2M), with its M -bimodule structure inherited from the M -
bimodule B(L2M).

Another example, studied in [30], is when M is contained (as a von Neumann subal-
gebra) in a II∞ factor M with a normal semifinite faithful trace Tr and B is the norm 
closed ∗-ideal of “compact operators” J (M) ⊂ M, consisting of T ∈ M with the prop-
erty that all spectral projections e[t,∞)(T ∗T ) corresponding to t > 0 have finite trace, 
∀t > 0.

Indeed, in both these cases, it is shown in [28], respectively [30], that the Banach 
M -bimodule B, endowed with its corresponding operator norm, is smooth in this sense.

One should mention that in both these examples, the norm ‖ · ‖ on the M -bimodule 
B satisfies a certain operatorial condition (see [13]), requiring that if T ∈ B, then ‖pTp +
(1 − p)T (1 − p)‖ = max{‖pTp‖, ‖(1 − p)T (1 − p)‖}. However, in the examples of Banach 
M -bimodules that we will consider in this paper, this property doesn’t hold true in 
general.

3. The dual Banach M -bimodules B∗(p), 2 ≤ p < ∞

We now fix a tracial von Neumann algebra (M, τ) and we set B = B(L2M). We first 
consider a one parameter family of M sub-bimodules B∗(p) ⊂ B∗, 2 ≤ p < ∞, defined 
as spaces of functionals on B that are “Lp-smooth relative to M”.

Definition 3.1. Let 2 ≤ p < ∞. We denote by B∗(p) the subspace of functionals ϕ ∈ B∗ =
B(L2M)∗ with the property that

‖ϕ‖B∗(p) := sup{|ϕ(xTy)| | T ∈ (B)1, x, y ∈ M, ‖x‖p, ‖y‖p ≤ 1}

is finite. Note right away that B∗(p) is a vector subspace of B∗ and that ‖ · ‖B∗(p) is a 
norm on it that majorizes the usual norm of functionals in B∗.

Proposition 3.2.

1◦ The space B∗(p) is a Banach space with respect to the norm ‖ · ‖B∗(p).
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2◦ If 2 ≤ p′ ≤ p < ∞, then B∗(p′) ⊂ B∗(p). Moreover, for any ϕ ∈ B∗ we have 
‖ϕ‖ ≤ ‖ϕ‖B∗(p) ≤ ‖ϕ‖B∗(p′). Thus, lim

p→∞
‖ϕ‖B∗(p) = inf

p→∞
‖ϕ‖B∗(p) ≥ ‖ϕ‖.

Proof. (1) It remains to check that B∗(p) is complete with respect to the ‖ · ‖B∗(p)-norm. 
So take a Cauchy sequence (ϕn) in (B∗(p), ‖ · ‖B∗(p)). Since the norm ‖ · ‖B∗(p) majorizes 
the norm ‖ ·‖B∗ , the sequence (ϕn) is also Cauchy in B∗. Let ϕ be its ‖ ·‖B∗-norm limit in 
B∗. We claim first that ϕ ∈ B∗(p). Take any T ∈ (B)1 and x, y ∈ M with ‖x‖p, ‖y‖p ≤ 1. 
Since ϕn → ϕ with respect to the ‖ · ‖B∗-norm, we can find an m such that

‖ϕ − ϕm‖B∗ ≤ ‖xTy‖−1.

In particular, we see that

|ϕ(xTy)| ≤ |ϕ(xTy) − ϕm(xTy)| + |ϕm(xTy)|
≤ ‖xTy‖‖ϕ − ϕm‖ + sup

n≥1
|ϕn(xTy)|

≤ 1 + sup
n≥1

‖ϕn‖B∗(p).

(1)

This last quantity is finite since (ϕn) was assumed to be Cauchy in B∗(p). It follows 
then that |ϕ(xTy)| is uniformly bounded over all T ∈ (B)1 and ‖x‖p, ‖y‖p ≤ 1, and so 
ϕ ∈ B∗(p).

It remains to check that ϕn → ϕ with respect to the ‖ · ‖B∗(p) norm. To do this, 
let S be the set of elements X in B of the form xTy with T ∈ (B)1 and x, y ∈ M , 
‖x‖p, ‖y‖p ≤ 1. Then we have

lim
n→∞

‖ϕ − ϕn‖B∗(p) = lim
n→∞

sup
X∈S

|ϕ(X) − ϕn(X)|

= lim
n→∞

sup
X∈S

lim
m→∞

|ϕm(X) − ϕn(X)|

≤ lim
n→∞

lim
m→∞

sup
X∈S

|ϕm(X) − ϕn(X)|

= lim
n,m→∞

‖ϕm − ϕn‖B∗(p).

(2)

Since (ϕn) was Cauchy with respect to the ‖ · ‖B∗(p) norm, it follows that (ϕn) also 
converge to ϕ with respect to the ‖ · ‖B∗(p) norm. This shows B∗(p) is complete, and thus 
is a Banach space.

(2) Now suppose 2 ≤ p′ ≤ p < ∞. For any x ∈ M we have that ‖x‖p′ ≤ ‖x‖p, so the 
set {xTy | T ∈ (B)1, x, y ∈ M, ‖x‖p, ‖y‖p ≤ 1} is a subset of {xTy | T ∈ (B)1, x, y ∈
M, ‖x‖p′ , ‖y‖p′ ≤ 1}. Taking supremums in the definition of ‖ · ‖B∗(p), we conclude 
‖ϕ‖B∗(p) ≤ ‖ϕ‖B∗(p′). The rest of the statement follows immediately. �
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Proposition 3.3.

1◦ Let 2 ≤ p < ∞. If x, y ∈ M and ϕ ∈ B∗(p), then

‖x · ϕ · y‖B∗(p) ≤ ‖x‖‖y‖‖ϕ‖B∗(p), ‖xop · ϕ · yop‖B∗(p) ≤ ‖xop‖‖yop‖‖ϕ‖B∗(p).

Thus, the M and Mop bimodule structures on B∗ leave B∗(p) invariant and implement 
Banach M -bimodule and Mop-bimodule structures on (B∗(p), ‖ · ‖B∗(p)).

2◦ The unit ball (B∗(p))1 is compact in the σ(B∗, B) topology.
3◦ The unit ball (B∗(p))1 is norm closed in B∗.
4◦ For each x, y ∈ M , the map B∗(p) 	 ϕ 
→ x · ϕ · y ∈ B∗(p) is continuous with respect 

to the σ(B∗, B)-topology.

Proof. 1◦ Take some 2 ≤ p < ∞. Fix elements x, y ∈ M and a functional ϕ ∈ B∗(p). Let 
T ∈ (B)1 and x′, y′ ∈ M with ‖x′‖p, ‖y′‖p ≤ 1. Then, if we apply x · ϕ · y to x′Ty′, we 
get

|[x · ϕ · y](x′Ty′)| = |ϕ(yx′Ty′x)| = ‖x‖‖y‖
∣∣∣∣ϕ (

yx′

‖y‖T
y′x

‖x‖

)∣∣∣∣ .

Notice that we have the bounds ‖yx′/‖y‖‖p ≤ 1 and ‖y′x/‖x‖‖p ≤ 1. It follows by 
definition then that

|[x · ϕ · y](x′Ty′)| = ‖x‖‖y‖
∣∣∣∣ϕ (

yx′

‖y‖T
y′x

‖x‖

)∣∣∣∣ ≤ ‖x‖‖y‖‖ϕ‖B∗(p).

Taking the supremum over all T ∈ (B)1 and all x′, y′ ∈ M with ‖x′‖p, ‖y′‖p ≤ 1 gives 
the bound ‖x · ϕ · y‖B∗(p) ≤ ‖x‖‖y‖‖ϕ‖B∗(p) as desired.

Let us now fix xop, yop ∈ Mop. Take T ∈ (B)1 and x′, y′ ∈ M with ‖x′‖p, ‖y′‖p ≤ 1. 
As we did before, if we apply xop · ϕ · yop to x′Ty′, we get

|[xop · ϕ · yop](x′Ty′)| = |ϕ(yopx′Ty′xop)| = ‖xop‖‖yop‖
∣∣∣∣ϕ (

x′ yop

‖yop‖T
xop

‖xop‖y′
)∣∣∣∣ .

Here this operator yopTxop/‖xop‖‖yop‖ has norm at most 1, so by definition we get

|[xop · ϕ · yop](x′Ty′)| ≤ ‖xop‖‖yop‖‖ϕ‖B∗(p).

Taking supremums over all T, x′, y′ will give ‖xop · ϕ · yop‖B∗(p) ≤ ‖xop‖‖yop‖‖ϕ‖B∗(p).
2◦ For x, y ∈ M , let Sx,y ⊂ B∗ be the set of all functionals ϕ ∈ B∗ such that 

‖x · ϕ · y‖B∗ ≤ 1. It is clear from the definitions that

(B∗(p))1 =
⋂

Sx,y.

‖x‖p,‖y‖p≤1
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Now each of these sets Sx,y is closed in the σ(B∗, B) topology so (B∗(p))1 is also closed in 
this topology. Furthermore, notice since the norm ‖ · ‖B∗(p) majorizes the operator norm 
on B∗ that (B∗(p))1 ⊂ (B∗)1. The Banach-Alaoglu theorem then gives us that (B∗(p))1
is compact.

3◦ This is just a consequence of 2◦.
4◦ Fix elements x, y ∈ M . From 1◦, we know that the map ϕ 
→ x · ϕ · y is a well 

defined linear map from B∗(p) to itself. It is also a σ(B∗, B) continuous map on the whole 
space B∗, so restricting to B∗(p) proves the claim. �
Lemma 3.4. Let 2 ≤ p < ∞ and ϕ ∈ B∗. Assume ϕ = ωξ,η for some ξ, η ∈ L2M . Then 
ϕ ∈ B∗(p) if and only if ξ, η ∈ LqM , where q = 2p

p−2 , with the conventions 1
0 = ∞. 

Moreover, if this is the case, then ‖ωξ,η‖B∗(p) = ‖ξ‖q‖η‖q.

Proof. Take elements x, y ∈ M with ‖x‖p, ‖y‖p ≤ 1 and an operator T ∈ (B)1. By 
Cauchy-Schwartz, we have a bound

|ωξ,η(xTy)| = |〈xTyξ, η〉| = |〈Tyξ, x∗η〉| ≤ ‖Tyξ‖2‖x∗η‖2 ≤ ‖yξ‖2‖x∗η‖2.

This gives a bound

‖ωξ,η‖B∗(p) ≤ sup
‖y‖p≤1

‖yξ‖2 sup
‖x‖p≤1

‖x∗η‖2 = sup
‖y‖p≤1

‖yξ‖2 sup
‖x‖p≤1

‖xη‖2.

Notice that the reverse inequality also holds. For if x, y ∈ M are fixed with ‖x‖p, ‖y‖p ≤
1, consider the rank-one partial isometry Tx,y ∈ (B)1 that maps yξ to ‖yξ‖

‖x∗η‖ x∗η. Then

‖yξ‖2‖x∗η‖2 = |ωξ,η(xTx,yy)| ≤ ‖ωξ,η‖B∗(p).

Taking the supremum over x and y gives us the reverse inequality.
So far we have that

‖ωξ,η‖B∗(p) = sup
‖y‖p≤1

‖yξ‖2 sup
‖x‖p≤1

‖xη‖2.

If we now use the non-commutative version of Hölder’s inequality, then

sup
‖y‖p≤1

‖yξ‖2 = ‖ξ‖q,

where 1/p + 1/q = 1/2, or q = 2p
p−2 . Similarly,

sup
‖x‖p≤1

‖xη‖2 = ‖η‖q.

This gives the desired result ‖ωξ,η‖B∗(p) = ‖ξ‖q‖η‖q. �
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A version of the previous lemma actually works for arbitrary positive finite-rank func-
tionals ϕ ∈ B∗(p).

Lemma 3.5. Fix 2 ≤ p < ∞, and let q = 2p
p−2 be as in the last lemma. Let ϕ ∈ B∗(p) be 

of the form ϕ =
∑n

i=1 ωξi,ξi
where ξ1, ξ2, . . . , ξn are in LqM . Then

‖ϕ‖B∗(p) =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ξiξ
∗
i

∣∣∣∣∣
∣∣∣∣∣
q/2

.

Proof. First we derive a lower bound for ‖ϕ‖B∗(p). Recall that ‖ϕ‖B∗(p) is a supremum 
over the values |ϕ(xTy)|, where x, y ∈ M are such that ‖x‖p, ‖y‖p ≤ 1 and T ∈ B(L2M)
is such that ‖T‖ ≤ 1. In particular, if we make T the identity on B(L2M),

‖ϕ‖B∗(p) ≥ sup
‖x‖p,‖y‖p≤1

|ϕ(xy)| = sup
‖x‖p,‖y‖p≤1

∣∣∣∣∣
n∑

i=1
〈xyξi, ξi〉

∣∣∣∣∣
= sup

‖x‖p,‖y‖p≤1

∣∣∣∣∣
n∑

i=1
τ(xyξiξ

∗
i )

∣∣∣∣∣
= sup

‖x‖p,‖y‖p≤1

∣∣∣∣∣τ
(

xy
n∑

i=1
ξiξ

∗
i

)∣∣∣∣∣ .

(3)

As x and y range over all elements with p norm at most 1, xy can be any ele-
ment of M with p/2 norm at most 1. By density, the above supremum is equal to 
supη∈(Lp/2)1

τ (η
∑n

i=1 ξiξ
∗
i ), which by duality is the same as ||

∑n
i=1 ξiξ

∗
i ||

r
, where r is 

the Hölder conjugate of p/2. A quick calculation gives

1
r

= 1 − 1
p/2 = p − 2

p
= 1

q/2 .

So we get a lower bound ||
∑n

i=1 ξiξ
∗
i ||q/2 for ‖ϕ‖B∗(p).

Now we prove the reverse inequality. By definition, ‖ϕ‖B∗(p) is the supremum over all 
sums

ϕ(xTy) =
n∑

i=1
〈xTyξi, ξi〉 =

n∑
i=1

〈Tyξi, x∗ξi〉,

where ‖x‖p, ‖y‖p ≤ 1 and ‖T ‖ ≤ 1. By Cauchy Schwartz, any one of the inner products 
〈Tyξi, x∗ξi〉 is bounded by

〈Tyξi, x∗ξi〉 ≤ ‖x∗ξi‖2‖Tyξi‖2 ≤ ‖x∗ξi‖2‖yξi‖2.

Thus, we get the upper bound
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‖ϕ‖B∗(p) ≤ sup
‖x‖p,‖y‖p≤1

n∑
i=1

‖x∗ξi‖2‖yξi‖2 = sup
‖x‖p,‖y‖p≤1

n∑
i=1

‖xξi‖2‖yξi‖2.

If we use Hölder’s inequality, then

‖ϕ‖B∗(p) ≤ sup
‖x‖p,‖y‖p≤1

(
n∑

i=1
‖xξi‖2

2

)1/2 (
n∑

i=1
‖yξi‖2

2

)1/2

≤ sup
‖x‖p≤1

n∑
i=1

‖xξi‖2
2.

(4)

Now, we can write ‖xξi‖2
2 in terms of τ so that

‖ϕ‖B∗(p) ≤ sup
‖x‖p≤1

n∑
i=1

τ(x∗xξiξ
∗
i ) ≤ sup

‖x‖p≤1
τ

(
x∗x

n∑
i=1

ξiξ
∗
i

)
.

By the same duality argument, this is equal to ||
∑n

i=1 ξiξ
∗
i ||q/2. This completes the 

proof. �
We remark that one can calculate an upper bound for ‖ϕ‖B∗(p) for an arbitrary finite-

rank functional ϕ ∈ B∗(p) by using the polarization identity combined with Lemma 3.5. 
For a general, not necessarily finite-rank, ϕ one has the following.

Proposition 3.6. Let 2 ≤ p < ∞ and ϕ ∈ B∗.
1◦ If ϕ ∈ B∗(p), then ϕ∗ ∈ B∗(p) and ‖ϕ∗‖B∗(p) = ‖ϕ‖B∗(p). Thus, �ϕ, �ϕ ∈ B∗(p)

and ‖�ϕ‖B∗(p), ‖�ϕ‖B∗(p) ≤ ‖ϕ‖B∗(p).
2◦ If ϕ ∈ B∗(p), then its normal and singular parts (as functionals in B∗) ϕn, ϕs, 

belong to B∗(p), with ‖ϕn‖B∗(p), ‖ϕs‖B∗(p) ≤ ‖ϕ‖B∗(p).

Proof. 1◦ By the definitions, one obviously have ‖ϕ‖B∗(p) = ‖ϕ∗‖B∗(p) for each ϕ ∈ B∗. 
Thus, ϕ ∈ B∗(p) implies ϕ∗ ∈ B∗(p), and hence also the real and imaginary parts of any 
such ϕ, lie in B∗(p). The given upper bounds then follow from the triangle inequality.

2◦ Let ϕ be any element of B∗(p), and let ϕn and ϕs be the normal and singular parts 
of ϕ respectively. Recalling the construction of these functionals, let pM be the central 
projection in B∗∗ such that ϕn = pM · ϕ and ϕs = (1 − pM ) · ϕ. If x and y are any 
elements of M such that ‖x‖p, ‖y‖p ≤ 1, then by using the fact that pM commutes with 
M we get

x · ϕn · y = x · (pM · ϕ) · y = pM (x · ϕ · y).

If we then apply the usual norm from B∗ we have that

‖x · ϕn · y‖ = ‖pM (x · ϕ · y)‖ ≤ ‖x · ϕ · y‖ ≤ ‖ϕ‖B∗(p).
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Taking the supremum over all x and y with ‖x‖p, ‖y‖p ≤ 1, gives us then that ‖ϕn‖B∗(p) ≤
‖ϕ‖B∗(p). The same argument with 1 − pM shows that ‖ϕs‖B∗(p) ≤ ‖ϕ‖B∗(p). �
Corollary 3.7. Let 2 ≤ p < ∞ and denote B∗

n(p) = {ϕ ∈ B∗(p) | ϕ = ϕn}. Then B∗
n(p) is 

norm closed and σ(B∗, B)-dense in (B∗(p), ‖ · ‖B∗(p)).

Proof. Take any 2 ≤ p ≤ ∞. Since the space (B∗
n)∗ = B, the space is B∗

n is σ(B∗, B)
dense in B∗. Moreover, the space L ⊂ B∗

n obtained as the span of functionals of the form 
ωξ,η with ξ, η ∈ M̂ ⊂ L2M is clearly dense in B∗

n with respect to the usual norm in B∗. 
Since L is contained in B∗(p), this implies that B∗

n(p) is σ(B∗, B) dense in B∗(p).
Next, consider a Cauchy sequence {ϕn} in B∗

n(p). Since B∗(p) is complete, the sequence 
converges to some ϕ ∈ B∗(p). But for all p, the ‖ · ‖B∗(p) norm dominates the usual norm 
of functionals in B∗. Thus, ϕ is the usual norm limit in B∗ of the normal functionals ϕn, 
and hence it is normal itself, ϕ ∈ B∗

n, showing that B∗
n(p) is norm closed. �

We end this section by noticing that the norm ‖ · ‖B∗(p) on the M -bimodules B∗(p)
satisfies an interesting property with respect to direct sums, which we will however not 
use in this paper.

Proposition 3.8. Let (M, τ) be a tracial von Neumann algebras and 2 ≤ p < ∞. Assume 
ϕ1, ϕ2 ∈ B∗(p) are supported by mutually orthogonal projections in Z(M), i.e., there 
exist z1, z2 ∈ P(Z(M)) such that ϕi = ϕi(zi · zi), i = 1, 2. Then for p = 2 we have 
‖ϕ1+ϕ2‖B∗(2) = max{‖ϕ1‖B∗(2), ‖ϕ2‖B∗(2)} and for 2 < p < ∞ we have ‖ϕ1+ϕ2‖B∗(p) =
(‖ϕ1‖q

B∗(p) + ‖ϕ1‖q
B∗(p))

1/q, where q = p
p−2 .

Proof. Let ϕ = ϕ1+ϕ2. By definition, ‖ϕ‖B∗(p) is the supremum of |ϕ(xTy)| for x, y ∈ M

with p-norm at most 1 and T ∈ B(L2M) with norm at most 1. Since ϕ is supported on 
z1 + z2, we can restrict the values of x and y we take to only those in M(z1 + z2), and 
operators T we take to those supported on (z1 + z2)L2M . With this in mind, consider 
such a triple x, y, and T . We can decompose x = x1 + x2 where x1 = z1xz1 and 
x2 = z2xz2. Similarly, we can decompose y = y1 + y2 where y1 and y2 are defined in the 
same manner. We then define the operator

T =
(

T11 T12
T21 T22

)
,

where here Tij = ziTzj . Under this decomposition, we have

|ϕ(xTy)| = |ϕ1(x1T11y1) + ϕ2(x2T22y2)|.

We now wish to maximize this quantity given ‖T‖ ≤ 1 and |x|p, |y|p ≤ 1. First, it 
is clear that it is optimal make the off diagonal terms of T equal to 0, and have the 
diagonal terms T11 and T22 have norm 1. Next, we see by properties of the p-norm in M
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that |x1|pp + |x2|pp = |x|pp and |y1|pp + |y2|pp = |y|pp. While varying the xi, yi, Tii under these 
constraints, we calculate the norm ‖ϕ‖B∗(p) to be the supremum of

α1β1‖ϕ1‖B∗(p) + α2β2‖ϕ1‖B∗(p),

where the αi and βi are in [0, 1] and satisfy αp
1 + αp

2 = 1 and βp
1 + βp

2 = 1. Now let q be 
such that 1/q + 2/p = 1, i.e. the Hölder conjugate of p/2. Then the discrete version of 
Hölder’s inequality gives us

α1β1‖ϕ1‖B∗(p) + α2β2‖ϕ1‖B∗(p) ≤ (αp
1 + αp

2)1/p(βp
1 + βp

2 )1/p(‖ϕ1‖q
B∗(p) + ‖ϕ2‖q

B∗(p))
1/q

= (‖ϕ1‖q
B∗(p) + ‖ϕ2‖q

B∗(p))
1/q.

(5)

Moreover, equality is guaranteed to be achieved for some values of αi and βi. This gives 
us

‖ϕ‖B∗(p) = (‖ϕ1‖q
B∗(p) + ‖ϕ2‖q

B∗(p))
1/q.

Raising both sides to the qth power then completes the proof. �
4. The Banach bimodules B(p), 2 ≤ p < ∞

We now consider the natural preduals of the spaces B∗(p) introduced in the previous 
section.

Definition 4.1. Let 2 ≤ p < ∞. For each T ∈ B = B(L2M), denote ‖ |T‖ |p = sup{|ϕ(T )| |
ϕ ∈ (B∗(p))1}. Noticing that ‖ | · ‖ |p is a norm on B, we denote by B(p) the completion 
of B in this norm.

Lemma 4.2. 1◦ For each T ∈ B, the norms ‖ |T‖ |p are increasing in p and majorized by 
the operator norm ‖T ‖, with lim

p→∞
‖ |T ‖ |p = supp ‖ |T‖ |p = ‖T‖.

2◦ If T ∈ B and x, y ∈ M , then

‖|xTy‖|p ≤ ‖x‖p‖T ‖‖y‖p, ‖|xTy‖|p ≤ ‖x‖‖|T‖|p‖y‖,

‖|xopTyop‖|p ≤ ‖xop‖‖|T‖|p‖yop‖.

Proof. 1◦ Take 2 ≤ p ≤ p′ < ∞ and T ∈ B. Since (B∗(p))1 ⊂ (B∗(p′))1 we have that

‖|T ‖|p = sup{|ϕ(T )| | ϕ ∈ (B∗(p))1}
≤ sup{|ϕ(T )| | ϕ ∈ (B∗(p′))1}
= ‖|T ‖| ′ .

(6)
p
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So the norms ‖ | · ‖ |p are increasing as p increases. For any finite 2 ≤ p < ∞, we also have 
a bound ‖ |T‖ |p ≤ ‖T ‖, since the unit ball (B∗(p))1 is a subset of (B∗)1. So it follows that 
‖ |T‖ |p converges as p tends to infinity.

To find the limit of these norms, take x and y any elements of M . Let x̂ and ŷ be the 
associated elements of L2M . By Lemma 3.4 we have

|〈T x̂, ŷ〉| = |ωx̂,ŷ(T )| ≤ ‖|T ‖|p‖ωξ,η‖B∗(p) = ‖|T‖|p‖x‖q‖y‖q,

where q = 2p
p−2 . Letting p tend to infinity gives us the bound

|〈T x̂, ŷ〉| ≤ ‖x‖2‖y‖2 lim
p→∞

‖|T‖|p.

If we take the supremum over all x, y ∈ M with ‖x‖2, ‖y‖2 ≤ 1, we get that ‖T‖ ≤
lim

p→∞
‖ |T‖ |p. The result then follows.

2◦ First consider when 2 ≤ p < ∞. Fix x, y ∈ M and T ∈ B. If ϕ is an element of 
B∗(p), then we have a bound

|ϕ(xTy)| = ‖x‖p‖y‖p‖T ‖ ·
∣∣∣∣ϕ (

x

‖x‖p

T

‖T‖
y

‖y‖p

)∣∣∣∣
≤ ‖x‖p‖y‖p‖T ‖ · ‖ϕ‖B∗(p).

(7)

If we take the supremum over all ϕ with ‖ϕ‖B∗(p) ≤ 1, this gives the

‖|xTy‖|p = sup
‖ϕ‖B∗(p)≤1

|ϕ(xTy)| ≤ ‖x‖p‖T‖‖y‖p,

which is the first desired inequality. On the other hand, one could also note that

‖|xTy‖|p = sup
‖ϕ‖B∗(p)≤1

|ϕ(xTy)| = sup
‖ϕ‖B∗(p)≤1

|(y · ϕ · x) (T )| .

From Proposition 3.3, we know that ‖y · ϕ · x‖B∗(p) ≤ ‖x‖‖y‖‖ϕ‖B∗(p). Thus, it follows 
that

‖|xTy‖|p ≤ sup
‖ϕ‖B∗(p)≤‖x‖‖y‖

|ϕ(T )| = ‖x‖‖|T‖|p‖y‖.

This gives the second desired inequality. The case when x and y are elements of Mop

follows by the exact same reasoning. �
Proposition 4.3. Let q = 2p

p−2 as before, and let q′ = 2p
p+2 be the Hölder conjugate of q. 

If T ∈ B(L2M) satisfies ‖ |T ‖ |p ≤ 1, then T takes the unit ball of LqM into the unit 
ball of Lq′

M , thus defining an element T̃ ∈ (B(LqM, Lq′
M))1. The map T 
→ T̃ extends 

uniquely to a contractive linear map from B(p) into B(LqM, Lq′
M), which is injective 

when restricted to B(L2M).



P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452 17
Proof. Noticing that for any 2 ≤ p ≤ ∞ one has q ≤ 2 ≤ q′, if T ∈ B(L2M), then for 
any vector ξ ∈ LqM ⊂ L2M we have

‖Tξ‖q′ ≤ ‖Tξ‖2 ≤ ‖T ‖‖ξ‖2 ≤ ‖T‖‖ξ‖q.

Hence, T restricts to a bounded operator T̃ ∈ B(LqM, Lq′
M). Moreover, we notice by 

Lemma 3.4 that if ξ, η are vectors in LqM , then

|〈Tξ, η〉| = |ωξ,η(T )| ≤ ‖ωξ,η‖B∗(p)‖|T‖|p = ‖ξ‖q‖η‖q‖|T‖|p.

Thus, the bilinear form u : L2M × L2M → C given by u(ξ, η) = 〈Tξ, η〉 restricts to a bi-
linear form on LqM ×LqM with norm at most ‖ |T‖ |p. But notice by the noncommutative 
version of Hölder’s inequality

sup
‖ξ‖q,‖η‖q≤1

|〈Tξ, η〉| = ‖T‖LqM→Lq′ M

where here, this norm represents the operator norm in B(LqM, Lq′
M). Thus we conclude 

that ‖T̃‖LqM→Lq′ M ≤ ‖ |T ‖ |p. By the ‖ | · ‖ |p-density of B(L2M) in B(p), it follows that 
the map T 
→ T̃ extends uniquely to a contractive linear map on all B(p). �
Proposition 4.4. 1◦ The restriction of the norm ‖ | · ‖ |p to M ⊂ B is equal to the norm 
‖ · ‖p/2 for L

p
2 M .

2◦ If M is assumed to be a factor, then the restriction of the norm ‖ | · ‖ |p to Mop ⊂ B
is equal to the operator norm ‖ · ‖ on Mop.

3◦ If Mop is viewed as a subset of B(LqM, Lq′
M), then the restriction of the norm 

‖ · ‖LqM→Lq′ M to Mop is equal to the norm ‖ · ‖p/2.

Proof. 1◦ Fix an element of x ∈ M . Let x = u|x| be the polar decomposition of x. Let 
1B be identity operator in B. Then for any ϕ ∈ B∗(p)

|ϕ(x)| = |ϕ(u|x|1/21B|x|1/2)|
≤ ‖u|x|1/2‖p · ‖|x|1/2‖p · ‖1B‖ · ‖ϕ‖B∗(p)

= ‖|x|1/2‖2
p · ‖ϕ‖B∗(p)

= ‖x‖p/2 · ‖ϕ‖B∗(p).

(8)

Taking the supremum over all ϕ in (B∗(p))1) gives the inequality ‖ |x‖ |p ≤ ‖x‖p/2.
Now we prove the reverse inequality. Let q = 2p

p−2 , as in Lemma 3.4. Then note that 
if ξ and η are vectors in L2M such that ‖ξ‖q = ‖η‖q = 1, Lemma 3.4 implies that 
|〈xξ, η〉| ≤ ‖ |x‖ |p. Thus, we have that

‖|x‖|p ≥ sup |〈xξ, η〉|. (9)

‖ξ‖q=‖η‖q=1
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If we choose q′ such that 1
q + 1

q′ = 1 and choose r such that 1
r + 1

q = 1
q′ , then by duality 

we have

sup
‖ξ‖q=‖η‖q=1

|〈xξ, η〉| = sup
‖ξ‖q=1

‖xξ‖q′ = ‖x‖r,

so we have a bound ‖x‖r ≤ ‖ |x‖ |p. Now by our chosen definition of r we check that

1
r

= 1
q′ − 1

q
= 1 − 2

q
= 2

p
.

So indeed, we have r = p/2, and the reverse inequality ‖x‖p/2 ≤ ‖ |x‖ |p holds. This 
completes the proof.

2◦ Assume that M is a factor, and take an element xop ∈ Mop. By Lemma 4.2, we 
already know that ‖ |xop‖ |p ≤ ‖xop‖, so it suffices to check that ‖ |xop‖ |p ≥ ‖xop‖. To do 
this, we will construct a family of functionals ϕ ∈ B∗(p) such that |ϕ(xop)|/‖ϕ‖B∗(p)
can come arbitrarily close to ‖xop‖. From here the result will follow since ‖ |xop‖ |p ≥
|ϕ(xop)|/‖ϕ‖B∗(p) for all ϕ ∈ B∗(p)

With this in mind, let’s say we choose a self adjoint element m ∈ M and a finite list 
of unitaries u1, u2, . . . , un ∈ M . Then we can define a linear functional ϕ ∈ B∗(p) by

ϕ(T ) = 1
n

n∑
i=1

〈T (uim), uim〉.

By Lemma 3.5, we know that

‖ϕ‖B∗(p) =

∣∣∣∣∣
∣∣∣∣∣ 1
n

n∑
i=1

(uim)(uim)∗

∣∣∣∣∣
∣∣∣∣∣
q/2

=

∣∣∣∣∣
∣∣∣∣∣ 1
n

n∑
i=1

uim
2u∗

i

∣∣∣∣∣
∣∣∣∣∣
q/2

.

If we apply this ϕ to xop, we get

ϕ(xop) = 1
n

n∑
i=1

〈xop(uim), uim〉 = 1
n

n∑
i=1

〈uimx, uim〉.

Using that this inner product comes from the trace τ , we can simplify this to be

ϕ(xop) = 1
n

n∑
i=1

τ(uimx(uim)∗) = 1
n

n∑
i=1

τ(xm2) = 〈x, m2〉.

Now, using that ‖ |x‖ |p ≥ |ϕ(xop)|/‖ϕ‖B∗(p), we get the following lower bound

‖|xop‖|p ≥ |〈x, m2〉|
∣∣∣∣∣
∣∣∣∣∣ 1
n

n∑
uim

2u∗
i

∣∣∣∣∣
∣∣∣∣∣
−1

.

i=1 q/2
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Note that this holds for any self adjoint m ∈ M and any choice of unitaries u1, u2, · · · , un. 
But by Diximier’s averaging property, we know the ‖ · ‖-norm closure of the convex hull 
of the set {um2u∗ : u ∈ U(M)} intersects the center of M . In this case, since M was 
assumed to be a factor, the center of M is trivial. In particular, since the trace of any 
element in {um2u∗ : u ∈ U(M)} is τ(m2), it follows that τ(m2) is in the ‖ · ‖-norm 
closure of the convex hull of this set. Now the operator norm ‖ · ‖ majorizes the norm 
‖ · ‖q/2 norm, so the same averaging result is true in the space Lq/2M . It follows then 
from the above lower bound that

‖|xop‖|p ≥ |〈x, m2〉| 1
τ(m2) = |〈x,

m2

τ(m2) 〉|,

where m2 can be an arbitrary positive element of M . Thus, we conclude that

‖|xop‖|p ≥ sup
m≥0, ‖m‖1≤1

|〈x, m〉|,

where here this supremum runs over all positive m ∈ M with ‖m‖1 = τ(m) ≤ 1.
Now if x was assumed to be positive, duality would force this supremum to be ‖x‖, 

which would give us the desired reverse inequality ‖xop‖ ≤ ‖ |xop‖ |p. In general, we 
can write xop = uop|xop| to be the polar decomposition of xop. Note by part 1◦ of 
Proposition 3.3, that the map T 
→ uopT is an isometry on B(p) with respect to the 
‖ | · ‖ |p-norm. In particular, it follows from the positive case that

‖|xop‖|p = ‖| |xop| ‖|p ≥ ‖ |xop| ‖ = ‖xop‖,

so the reverse inequality holds for a general xop, which completes the proof of the first 
claim.

3◦ We see by Hölder’s inequality that ‖xop‖LqM→Lq′ M is equal to ‖xop‖r, where r is 
the solution to the equation q−1 + r−1 = (q′)−1. Using the definition of q and q′, one 
gets r = p/2, as desired. �
Corollary 4.5. If M is a II1 factor, then the map B(p) 	 T 
→ T̃ ∈ B(LqM, Lq′

M) is not 
a homeomorphism of Banach spaces.

Proof. Let xn ∈ (M)1 be so that ‖xn‖ = 1 but ‖xn‖p/2 → 0. If we take Tn = xop
n , 

then by Proposition 4.4.2◦ we have ‖ |Tn‖ |p = ‖Tn‖ = ‖xn‖ = 1, while by 4.4.3◦ we have 
‖T̃n‖LqM→Lq′ M = ‖xn‖p/2 → 0. �

The next result, which is crucial in proving Theorem 6.5 later in this paper (The-
orem 1.1 in the introduction) should be compared to [25] and Proposition 3.1 in [10]
where similar decompositions are considered. The previous corollary shows however that 
the proof strategy employed there will not apply to our current situation.
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Lemma 4.6. For any T ∈ B(L2M)

‖|T‖|p = inf{‖a‖p‖S‖‖b‖p : a, b ∈ M, S ∈ B(L2M), aSb = T}.

Proof. Using Lemma 4.2, we have that for any decomposition T = aSb with a, b ∈ M

and S ∈ B(L2M) that ‖ |T ‖ |p ≤ ‖a‖p‖S‖‖b‖p. This shows at the very least that ‖ |T‖ |p is 
smaller than this infimum.

To obtain the reverse inequality, we use a convexity argument. To this end, for the 
remainder of the proof we consider the following subsets of B(L2M). For any positive 
number α, let Cα be the set of operators T ∈ B(L2M) such that we can find a decompo-
sition T = aSb with a, b ∈ M and S ∈ B(L2M) such that ‖a‖p‖S‖‖b‖p ≤ α. We claim 
first that Cα is convex.

For let’s say we have operators T1, T2 ∈ Cα. Then by definition, we can find decom-
positions T1 = a1S1b1 and T2 = a2S2b2 with the ai, bi ∈ M and the Si ∈ B(L2M) such 
that ‖ai‖‖Si‖‖bi‖p ≤ α. After rescaling, we may assume without loss of generality that 
‖Si‖ = 1 and ‖ai‖p = ‖bi‖p ≤ α1/2. For any λ ∈ (0, 1), we can form the decomposition 
λT1 + (1 − λ)T2 = aSb as follows. First, factor λT1 + (1 − λ)T2 as a chain of operators 
through L2M ⊕ L2M by noting

λa1S1b1 + (1 − λ)a2S2b2 =
(
λ1/2a1 (1 − λ)1/2a2

) (
S1 0
0 S2

) (
λ1/2b1

(1 − λ)1/2b2

)
.

Let au be the polar decomposition of (λ1/2a1 (1 − λ)1/2a2), where a ∈ M is positive, 
and let ub be the polar decomposition of 

(
λ1/2b1

(1−λ)1/2b2

)
, where here b ∈ M is positive. If 

we call S ∈ B(L2M) the product

S = u

(
S1 0
0 S2

)
v.

We arrive at a decomposition T1 + T2 = aSb.
Now we can calculate that

aa∗ = λa1a∗
1 + (1 − λ)a2a∗

2.

So that

‖a‖2
p = ‖aa∗‖p/2 ≤ λ‖a1a∗

1‖p/2 + (1 − λ)‖a2a∗
2‖p/2

= λ‖a1‖2
p + (1 − λ)‖a2‖2

p

≤ α.

(10)

By the same logic we also have ‖b‖2
p ≤ α. Lastly, we see by inspection that ‖S‖ =

max{‖S1‖, ‖S2‖} = 1. Putting this together, we have then
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‖a‖p‖S‖‖b‖p ≤ α (11)

It follows then that λT1 + (1 − λ)T2 ∈ Cα, so Cα is convex.
Next, let’s say we have an operator T ∈ B(L2M) with ‖ |T‖ |p = α. We claim that T

is in the ‖ | · ‖ |p norm closure of Cα. For otherwise, since Cα is convex, we can find using 
Hahn-Banach a functional ϕ ∈ B∗(p) with ‖ϕ‖B∗(p) = 1 such that

Re(ϕ(T )) > sup
S∈Cα

Re(ϕ(S)).

Now, by definition we have

Re(ϕ(T )) ≤ ‖|T‖|p = α.

Moreover, since ‖ϕ‖B∗(p) was equal to the supremum of all |ϕ(aSb)| where ‖a‖p, ‖b‖p ≤ 1
and ‖S‖ ≤ 1, it follows that

sup
S∈Cα

Re(ϕ(S)) = α.

But this leads to a contradiction, so we must have T ∈ Cα
‖|·‖|p .

On the other hand, we claim that the closure of Cα in the σ(B(L2M), B∗(p)) topology 
is 

⋂
β>α Cβ . For consider

p(T ) = inf{β : T ∈ Cβ}

the seminorm corresponding to the convex sets Cβ. Note that a linear functional ϕ on 
B(L2M) will be bounded with respect to the seminorm p if and only if ϕ is bounded on 
any set Cβ . But as we observed already supS∈Cβ

|ϕ(S)| = β‖ϕ‖B∗(p), so the only such 
functional are in B∗(p). It follows then that the σ(B(L2M), B∗(p)) topology and the 
weak topology for (B(L2M), p) coincide. Hence, since Cα was convex, the closure of Cα

in the σ(B(L2M), B∗(p)) topology will be the same as the closure of Cα with respect to 
the seminorm p, which is indeed 

⋂
β>α Cβ .

To complete the proof, we notice by convexity that the ‖ | · ‖ |p norm closure and the 
σ(B(L2M), B∗(p)) closure of Cα are the same. Hence, for any T ∈ B(L2M) such that 
‖ |T‖ |p = α we have

T ∈ Cα
‖|·‖|p = Cα

σ(B(L2M),B∗(p)) =
⋂

β>α

Cβ .

It follows the that we can find decomposition T = aSb with ‖a‖p‖S‖‖b‖p arbitrarily 
close to α, and the lemma follows immediately. �
Lemma 4.7. Assume {un}n ⊂ U(M) is a sequence of unitary elements in M with 
τ(u∗

num) = 0 for all n �= m. For each T ∈ B(L2M) let E0(T ) ∈ B be the operator 
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that acts as 0 on H⊥
0 , where H0 = sp({ûn}n) ⊂ L2M , and as the diagonal operator that 

takes ûn to 〈T (ûn), ̂un〉ûn. Then ‖ |E0(T )‖ |p ≤ ‖ |T‖ |p, for all 2 ≤ p ≤ ∞. Moreover, if 
T ∈ B(L2M) is diagonal with respect to {ûn}n, i.e., E0(T ) = T , then ‖ |T‖ |p is equal to 
the operator norm of T in B(L2M), ∀p.

Proof. By Proposition 3.2, one has ‖ |T ‖ |p ≤ ‖T‖, ∀T ∈ B(L2M). If in addition T is 
diagonal with respect to {ûn}n and equal to 0 on H⊥

0 , then ‖T‖ = supn |〈T (ûn), ̂un〉|. 
But by Lemma 3.4 and the definition of ‖ |T ‖ |p, the right hand side is larger than or equal 
to ‖ |T‖ |p, showing that ‖ |T ‖ |p ≥ ‖T ‖ as well, so altogether ‖ |T‖ |p = ‖T‖.

For an arbitrary T ∈ B(L2M), by the definition of ‖ |T‖ |p and Lemma 3.4 one 
has ‖ |T‖ |p ≥ |〈T (ûn), ̂un〉|, ∀n. Thus, ‖ |T ‖ |p ≥ supn |〈T (ûn), ̂un〉| = ‖E0(T )‖ =
‖ |E0(T )‖ |p. �
Corollary 4.8. If M = LΓ and we denote D = �∞Γ ⊂ B(�2Γ) = B(L2M), C = c0(Γ) ⊂
�∞Γ, then for each T ∈ D we have ‖ |T ‖ |p = ‖T ‖, ∀p ≥ 2. Thus, C ⊂ D are ‖ | · ‖ |p-closed 
in B(p).

Proof. Since for M = LΓ we have L2M = �2Γ, with {ûg}g as orthonormal basis, the 
previous lemma implies that ‖ | · ‖ |p restricted to D = �∞Γ coincided with the operator 
norm. �
5. The Banach bimodules K(p), 2 ≤ p < ∞

Since the ideal of compact operators K(L2M) is a Banach bimodule over both M, Mop, 
its ‖ | · ‖ |p-completions, 2 ≤ p < ∞, give rise to a one parameter family of bimodules that 
we now consider.

Definition 5.1. For each 2 ≤ p < ∞, we denote by K(p) the closure of K = K(L2M) in 
B(p).

Lemma 5.2. Let 2 ≤ p < ∞ and denote q = 2p
p−2 and q′ = 2p

p+2 as before. Following Propo-
sition 4.4, for each K ∈ B(p) we denote by K̃ the element it induces in B(LqM, Lq′

M).

1◦ If K ∈ K(p), then K̃ takes the unit ball (LqM)1 into a ‖ · ‖q′-compact subset of 
Lq′

M .
2◦ If K ∈ K(p), then for any sequence of unitary elements {un}n ⊂ M that converges 

weakly to 0, one has ‖K̃(ûn)‖q′ → 0.

Proof. 1◦ Note first that if K ∈ K(p) is a finite-rank operator, then K̃ is in 
K(LqM, Lq′

M). If K is a general element of K(p), then we can find a sequence (Kn)
of finite-rank operators in B(p) such that Kn → K with respect to the ‖ | · ‖ |p norm. 
Since the mapping K 
→ K̃ is contractive, we have K̃n → K̃ in B(LqM, Lq′

M). Since 
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the space K(LqM, Lq′
M) is closed in B(LqM, Lq′

M), and each finite-rank Kn was in 
K(LqM, Lq′

M), it follows that K ∈ K(LqM, Lq′
M) as well.

2◦ As in part 1◦, if K ∈ K(p) is a assumed to be a finite-rank operator the claim 
follows immediately. Let now K ∈ K(p) be arbitrary and let (Kn)n be a sequence of 
finite-rank operators in B(p) such that Kn → K with respect to the ‖ | · ‖ |p norm. Now 
if ε > 0 we can find an m such that

‖K̃ − K̃m‖LqM→Lq′ M ≤ ‖|K − Km‖|p < ε/2.

Now since Km is finite-rank, we can also find an N such that for all n ≥ N we have 
‖Km(ûn)‖q′ < ε. Combining these we get for any n ≥ N

‖K(ûn)‖q′ ≤ ‖(K − Km)(ûn)‖q′ + ‖Km(ûn)‖q′

< ‖ûn‖q‖K − Km‖LqM→Lq′ M + ε/2

< ε.

(12)

Thus we conclude ‖K̃(ûn)‖q′ → 0 as desired. �
Proposition 5.3. For each 2 ≤ p < ∞, K(p) endowed with the norm ‖ | · ‖ |p is a Banach 
M -bimodule and Banach Mop-bimodule.

Proof. The fact that K(p) is a Banach space is clear from the fact that it is a norm 
closed subspace of B(p). The M -bimodule and Mop-bimodule structure also follows by 
restricting from B(p), and by taking into account that the ‖ | · ‖ |p-dense subset K(L2M)
of K(p) is invariant under left and right multiplication by elements of M , Mop. �

Recalling that K(L2M)∗ = B∗
n, we now prove the analogous result for the spaces K(p)

and B∗
n(p).

Theorem 5.4. For all p ≥ 2, K(p)∗ = Bn(p). Also, for each 2 ≤ p < ∞, K(p) endowed 
with its norm ‖ | · ‖ |p is a smooth M -bimodule, in the sense of Definition 2.4.

Proof. We use the description of preduals in [22] to prove the result. Note first that 
the compact operators K(L2M), form a subspace of (Bn(p))∗. Furthermore, the space 
K(L2M) separates points of Bn(p), i.e. for any distinct ϕ, ϕ′ ∈ Bn(p) there is a K ∈
K(L2M) such that ϕ(K) �= ϕ′(K). This is because the space K(L2M), which is strictly 
smaller than K(p), separates the points of its dual B(L2M)∗, which is strictly larger than 
Bn(p).

Now we claim that the unit ball of B∗
n(p) is compact in the σ(B∗

n(p), K(L2M)) topology. 
To see this, consider a net (ϕα) in the unit ball (B∗

n(p))1. Recall that the norm ‖ · ‖B∗(p)
majorizes the usual norm on B∗ and that (B∗

n(p))1 is a subset of (B∗
n)1. Since the predual 

of the space B∗
n of normal linear functionals on B is K(L2M), we have that (B∗

n)1 is 
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compact in the σ(B∗
n, K(L2M)) topology. Thus, there exists a subnet (ϕβ) of our original 

net that converges to some ϕ ∈ (B∗
n)1 in the σ(B∗

n, K(L2M)) topology.
We claim further that this ϕ is actually in B∗

n(p). Let x and y be any elements of M . 
Since the space B∗

n is a dual normal Banach M -bimodule, it follows the net x · ϕβ · y

converges to x · ϕ · y in the σ(B∗
n, K(L2M)) topology. Note that this implies ‖x · ϕ · y‖ ≤

supβ ‖x · ϕβ · y‖. In particular, notice that if x and y are chosen so that ‖x‖p, ‖y‖p ≤ 1, 
then, since the net (ϕβ) lies in (B∗

n(p))1, we would have ‖x · ϕ · y‖ ≤ supβ ‖x · ϕβ · y‖ ≤ 1. 
Varying over all x and y with p-norm less than 1, we gather that ‖ϕ‖B∗(p) ≤ 1, so indeed 
our ϕ lies in (B∗

n(p))1. It follows then that the unit ball (B∗
n(p))1 is compact in the 

σ(B∗
n(p), K(L2M)) topology. Using the description of preduals in [K77], we find that a 

predual of B∗
n(p) is the norm closure of K(L2M) in the dual space (B∗

n(p))∗. By definition 
this is K(p).

It remains then to check that K(p) is a smooth bimodule. Note that if T ∈ K(p) lies 
in B(L2M), then by Lemma 4.2 the maps x 
→ Tx and x 
→ xT are ‖ · ‖2 to ‖ | · ‖ |p
continuous on the unit ball of M . If T ∈ K(p) is an arbitrary element, then we for any 
ε > 0 there exists S ∈ K(p) ∩ B(L2M) such that ‖ |T − S‖ |p < ε. But then for any net 
(xι) in the unit ball of M such that ‖xι‖2 → 0 we have

‖|Txι‖|p ≤ ‖|(T − S)xι‖|p + ‖|Sxι‖|p < ε + ‖|Sxι‖|p.

Hence lim supι ‖ |Txι‖ |p ≤ ε. Since ε was arbitrary, it follows ‖ |Txι‖ |p tends to 0. Hence 
the map x 
→ Tx is still ‖ · ‖2 to ‖ | · ‖ |p continuous on the unit ball of M . A similar 
argument shows the same for the map x 
→ xT . It follows then that K(p) is smooth. �
6. The qM -topology and the bimodule qKM

In this section we consider a new topology on Banach bimodules over tracial von 
Neumann algebras (M, τ), which we will denote qM , that takes into consideration the 
trace on M , and which we will refer to as the τ -rank topology (sometimes also called the 
topology of convergence in measure). When applied to the Banach M -bimodule B(L2M), 
the restriction of the qM -topology to the unit ball (B(L2M))1 is “almost the same” as 
the topology given by ‖ | · ‖ |p-norms, but finer. However, the qM -closure in B(L2M) of 
the unit ball of compact operators (K(L2M))1 coincides with its ‖ | · ‖ |p-closure, thus 
giving rise to an interesting Banach M -bimodule of “almost-compact” operators denoted 
qKM .

Definition 6.1. Let B be a Banach M -bimodule. We say that a net (Ti)i ⊂ B is qM -
convergent to T ∈ B if the following conditions are satisfied: supi ‖Ti‖ < ∞; for any 
ε > 0, there exists i0 such that for any i ≥ i0 there exists a projection p ∈ P(M) with 
τ(1 − p) < ε, ‖p(Ti − T )p‖ < ε.

Note that if these conditions are satisfied, then ‖T‖ ≤ lim supi ‖Ti‖. Thus, for any 
finite r > 0, the qM -convergent nets in (B)r define a topology on (B)r, that we will 
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also denote by qM . Note also that if r′ ≥ r > 0, then the restriction to (B)r of the 
qM -topology on (B)r′ , coincides with the qM -topology on (B)r.

Note that the qM -topology on any bounded subset of B is implemented by the metric 
given by qM (T, S) = inf{τ(1 − p) + ‖p(T − S)p‖ | p ∈ P(M)}.

Given a linear subspace B0 ⊂ B, we denote B0
qM the union over all r > 0 of the qM -

closures of (B0)r in (B)r. Equivalently, B0
qM is the set of all scalar multiples of elements 

in (B0)1
qM .

The qM -topology on (B)r is obviously weaker than the norm topology. A typical 
example of a Banach M -bimodule B that we consider is the algebra B(H) of all linear 
bounded operators on a Hilbert space H on which M acts normally and faithfully, with 
the M -bimodule structure given by left-right multiplication by elements in M . More 
generally, we consider (linear) subspaces B ⊂ B(H) with MBM ⊂ B, such as the space 
of compact operators K(H) on H. For this class of examples, another natural topology on 
B is the s∗-topology. If B = M , then this is easily seen to coincide with the qM -topology 
on bounded sets. But in general, the s∗-topology is strictly weaker than the qM -topology 
on (B)1 (notably if B = K(H) and M is infinite dimensional, see below).

Proposition 6.2. Let B be a dual normal M -bimodule and B0 ⊂ B a norm closed sub-
bimodule.

1◦ For any T ∈ B, the maps (M)1 	 x 
→ xT, Tx ∈ B are ‖ · ‖2 − qM continuous.

2◦ (B)1 is complete in the qM -metric (and thus so is (B0)1
qM ⊂ (B)1).

3◦ B0
qM is a Banach M -bimodule.

4◦ Given any norm-separable subspace E ⊂ B0
qM , there exists an increasing sequence 

of projections pn ∈ M with pn → 1 such that pnTpn ∈ B0, for all T ∈ E.

Proof. 1◦ If ε > 0 and ‖x‖ ≤ 1 satisfies ‖x‖2 ≤ ε, then the spectral projection p

of xx∗ corresponding to the interval [0, ε] has trace at least 1 − ε, or else we have 
‖x‖2

2 = ‖px‖2
2 + ‖(1 − p)x‖2

2 > ‖(1 − p)x‖2
2 ≥ ε2, a contradiction. Thus, we have ‖pxT‖ ≤

‖px‖‖T‖ ≤ ε and τ(1 − p) ≤ ε. This shows that (M)1 	 x 
→ xT ∈ B is ‖ · ‖2 − qM

continuous. The proof for (M)1 	 x 
→ Tx ∈ B is similar.
2◦ If Tn ∈ (B)1 is qM -Cauchy, then for any k ≥ 1, there exists nk such that for any 

n, m ≥ nk there exists a projection pk ∈ P(M) with the property that τ(1 − pk) +
‖pk(Tm − Tn)pk‖ ≤ 2−k. Thus, the sequence of projections Pk = ∧l≥kpl, k ≥ 1, is 
increasing and satisfies τ(1 − Pk) ≤ 2−k+1, ‖Pk(Tn − Tm)Pk‖ ≤ 2−k for any n, m ≥ nk. 
By the inferior semicontinuity of the norm on B with respect to the w∗-topology, it follows 
that any w∗-limit point T ∈ (B)1 of the sequence {Tm}m satisfies ‖Pk(T −Tn)Pk‖ ≤ 2−k

for any n ≥ nk. This shows that {Tm}m is qM -convergent to T .
3◦ If Tn is a sequence in B0

qM that converges in norm to some T ∈ B, then Tn is 
automatically bounded and by 2◦ we have T ∈ B0

qM as well. The invariance of B0
qM to 

left-right multiplication by elements in M is obvious.
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4◦ It is sufficient to show the existence of such projections for a countable subset 
{Ti}i ⊂ (B0)1

qM . For each i ≤ n ≤ k, there exists a projection pi,k ∈ M and Si,k ∈ (B0)1
such that ‖pi,k(Ti − Si,k)pi,k‖ ≤ 2−k and τ(1 − pi,k) ≤ 2−k/n. Thus, if we let Pn,k =
∧i≤npi,k, then ‖Pn,k(Ti −Si,k)Pn,k‖ ≤ 2−k, ∀i ≤ n, and τ(1 −Pn,k) ≤ 2−k. If we now put 
Pn = ∧k≥nPn,k, then Pn is increasing, τ(1 −Pn) ≤ 2−n+1, and ‖Pn(Ti −Si,k)Pn‖ ≤ 2−n, 
∀i ≤ n ≤ k. For each fixed m, by applying this to k = n ≥ m and taking into account that 
PmPn = Pm, it follows that ‖Pm(Ti − Si,n)Pm‖ ≤ 2−n, ∀i ≤ m. This shows in particular 
that {PmSi,nPm}n ⊂ (B0)1 is norm-Cauchy and thus convergent to some Xi,m ∈ (B0)1. 
It also shows that Xi,m satisfy PmTiPm = Xi,m, while τ(1 − Pm) ≤ 2−m+1, ∀i ≤ m. �
Definition 6.3. Given a tracial von Neumann algebra (M, τ) in its standard representation 
on L2M , we denote by qKM the qM -closure of K(L2M) in B(L2M) and call its elements 
qM -compact operators.

Notice that besides its M -bimodule structure, the algebra B(L2M) also has an JMJ =
M ′ bimodule structure, where J : L2M → L2M is the canonical conjugacy defined by 
J(x) = x∗, x ∈ M ⊂ L2M , and M ′ denotes as usual the commutant of M in B(L2M). 
The algebra JMJ = M ′ can be naturally identified with the opposite algebra Mop of 
M , and we will retain this notation for JMJ .

Proposition 6.4. The space qKM is a norm closed ∗-subspace of B(L2M), which is both 
an M -bimodule and an Mop-bimodule.

Proof. By applying Proposition 6.2 to B0 = K(L2M) ⊂ B(L2M) = B, it follows that 
qM is a norm closed M -bimodule. It is clearly an Mop-bimodule and closed under the 
∗-operation. �
Theorem 6.5. For each 2 ≤ p < ∞ denote by Kp the space of all operators T ∈ B =
B(L2M) with the property that there exists a sequence of compact operators Kn ∈ Kp

such that supn ‖Kn‖ < ∞ and limn ‖ |T − Kn‖ |p = 0. Then Kp = qKM .

Proof. To see that qKM ⊂ Kp let us show that the qM -topology on the unit ball of 
B(L2M) is stronger than the ‖ | · ‖ |p-topology, ∀2 ≤ p < ∞. Indeed, by Lemma 4.2, if 
T ∈ B(L2M) and P ∈ P(M), then we have

‖|T‖|p ≤ ‖|PTP‖|p + ‖|PT (1 − P )‖|p + ‖|(1 − P )T‖|p
≤ ‖PTP‖ + 2‖1 − P‖p‖T ‖ = ‖PTP‖ + 2(τ(1 − P ))1/p‖T‖.

(13)

This shows that ‖ |T ‖ |p ≤ 2 inf{‖PTP‖ + (τ(1 − P ))1/p‖T‖}, implying that the 
qM -topology on (B(L2M))1 is stronger than the ‖ | · ‖ |p-topology.

To show that Kp ⊂ qKM , let T be an operator in Kp. Then we can find a sequence of 
uniformly bounded compact operators Kn ∈ K(L2M) such ‖ |T − Kn‖ |p tends to 0. Since 
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T − Kn is still in B(L2M), Lemma 4.6 says we can find an, bn ∈ M and Sn ∈ B(L2M)
such that T −Kn = anSnbn and ‖an‖p‖Sn‖‖bn‖p tends to 0. Taking spectral projections 
of |an| and |b∗

n| we can find a sequence of projections pn with ‖pn‖p tending to 1 such 
that

‖pn(T − Kn)pn‖ = ‖pnanSnbnpn‖ → 0

Thus, Kp ⊂ qKM , which combined with the first part shows that Kp = qKM . �
It is useful to note that due to their “compact nature”, elements in the spaces qKM

cannot intertwine diffuse subalgebras of M . This fact will be used later to deduce that an 
operator in B(L2M) that commutes with M modulo qKM and commutes with a diffuse 
subalgebra of M , must in fact commute with all of M .

Lemma 6.6. Let B ⊂ eMe be a diffuse von Neumann subalgebra and σ : B → fMf be 
a unital faithful ∗-homomorphism, for some non-zero projections e, f ∈ M . If K ∈ qKM

satisfies Kb = σ(b)K, ∀b ∈ B, then K = (1 − f)K(1 − e).

Proof. Note that fK(1 −e) = 0 and (1 −f)Ke = 0. By replacing K by K−(1 −f)K(1 −e), 
we may also assume (1 − f)K(1 − e) = 0. So we have to prove that if K satisfies the 
condition in the hypothesis and K = fKe, then K = 0.

Let u be a Haar unitary in B and x ∈ eM . Since unx tends weakly to 0 and ‖v(ξ)‖1 =
‖ξ‖1 for any unitary v ∈ fMf and ξ ∈ L1(fM), we get

0 = lim
n

‖K(ûnx)‖1 = lim
n

‖σ(un)(K(x̂))‖1 = ‖K(x̂)‖1,

where the first equality follows easily from the definition of qKM . This shows that K =
fKe satisfies K(êM) = 0, thus K = 0. �
7. Derivations of M into qKM

Recall that if M is a Banach algebra (always assumed unital) and B is a Banach 
M -bimodule, then a derivation of M into B is a linear map δ : M → B satisfying the 
property δ(xy) = xδ(y) + δ(x)y, for all x, y ∈ M .

It is immediate to check that if T ∈ B, then the map adT : M → B defined by 
adT (x) = [T, x] := Tx − xT , x ∈ B, is a derivation. Such derivations are called inner.

It is useful to note that if F ⊂ M is a set, then δ|F determines the values of δ on all 
the algebra Alg(F ) generated by F .

Recall from [32] that a derivation is automatically norm-continuous. Moreover, if M
is a von Neumann algebra and B is a dual normal M -bimodule, then any derivation is 
automatically continuous from M with the ultra-weak topology to B with its σ(B, B∗)
topology.



28 P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452
Thus, if F = F ∗ ⊂ M is a set that generates M as a von Neumann algebra and M0
is the norm closure of the ∗-algebra generated by F , then any derivation δ of M into a 
Banach M -bimodule is uniquely determined on M0 by the values it takes on F , δ|F . If 
in addition B is a dual normal Banach bimodule, then all of δ is uniquely determined by 
δ|F .

Let us first notice an automatic continuity (smoothness) result for derivations, with 
respect to the qM -metric and the ‖ | · ‖ |p norms.

Theorem 7.1. Let (M, τ) be a tracial von Neumann algebra, B a Banach M -bimodule 
and δ : M → B a derivation. Then δ is automatically ‖ · ‖2-qM continuous on (M)1. 
More precisely, if ε > 0, then given any x ∈ (M)1 with ‖x‖2 ≤ (ε/2)3/2, there exists 
p ∈ P(M) such that τ(1 − p) ≤ ε and ‖pδ(x)p‖ ≤ ε‖δ‖.

In particular, if B = qKM , then δ is automatically continuous from (M)1 with the 
‖ · ‖2-topology to qKM with the topology given by the qM -metric.

Proof. By [R72], δ is automatically norm continuous and without loss of generality we 
may assume ‖δ‖ = 1. Let ε > 0. Let x ∈ (M)1 be so that ‖x‖2 ≤ (ε/2)3/2. Denote by 
e the spectral projection of xx∗ corresponding to [0, ε2/4]. Then e satisfies ‖ex‖ ≤ ε/2
and (1 − e)xx∗ ≥ (ε/2)2(1 − e). Thus we have:

(ε/2)3 ≥ ‖x‖2
2 = ‖ex‖2

2 + ‖(1 − e)x‖2
2

≥ ‖(1 − e)x‖2
2 = τ((1 − e)xx∗) ≥ (ε/2)2τ(1 − e).

This implies that τ(1 − e) ≤ ε/2. Similarly, if e′ denotes the spectral projection of x∗x

corresponding to [0, ε2/4], we have τ(1 − e′) ≤ ε/2 and ‖xe′‖ ≤ ε/2. Thus, if we denote 
p = e ∧ e′, then τ(1 − p) ≤ ε and ‖pδ(x)p‖ = ‖δ(px)p − δ(p)xp‖ ≤ ε. �
Lemma 7.2. Assume T ∈ B(L2M) is so that [T, M0] ⊂ qKM for some weakly dense 
∗-subalgebra M0 ⊂ M . Then we have:

1◦ [T, M ] ⊂ qKM .
2◦ If, in addition, T = e is a projection and there exists a Haar unitary u ∈ M

such that [e, u] ∈ K(L2M) with eue having Fredholm index �= 0 in B(e(L2M)), then 
[T, M ] ⊂ qKM , and the derivation δe : M → qKM defined by δe(x) = [e, x], x ∈ M , is 
not inner, i.e., there exists no K ∈ qKM such that δe = adK.

Proof. 1◦ By Theorem 7.1, the derivation δ = adT : M → B(L2M) is ‖ · ‖2 − qM

continuous. Since M0 is ‖ · ‖2-dense in M , [T, M0] ⊂ qKM and qKM is qM -closed in 
B(L2M), it follows that [T, M ] ⊂ qKM .

2◦ Let A = {u}′′. Since u is a Haar unitary, one can view the restriction of the action 
of u on L2A as the bilateral shift on �2Z. Denote u = v ⊕ w where v is the restriction of 
u to L2A = �2Z and w its restriction to L2M � L2A. By [BDF73], there exist compact 
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operators K0, K1 ∈ K(L2M) such that (u + K0, e + K1) are unitary conjugate to (u, f), 
where f is the orthogonal projection of L2M onto �2Z+ ⊂ �2Z = L2A.

Thus, if δe = adK for some K ∈ K(M, L1M), then δf = adf = ad(e + K1) = ad(K ′)
with K ′ = K + K1 ∈ K(M, L1M). This implies f − K ′ ∈ M ′ = Mop, so there must 
exist x0 ∈ M such that f(ŷ) = K ′(ŷ) + ˆyx0, for all y ∈ M . Since lim|n|→∞ K ′(ûn) = 0
and f(ûn) is equal to ûn for n > 0 and is equal to 0 for n < 0, this shows on the 
one hand that 0 = limn→∞ ‖f( ˆu−n)‖2 = ‖u−nx0‖2 = ‖x0‖2, on the other hand 1 =
limn→∞ ‖f(ûn)‖2 = ‖unx0‖2 = ‖x0‖2, a contradiction. �
Theorem 7.3. For any separable diffuse finite von Neumann algebra M , there exists a 
non inner derivations of M into qKM .

Proof. Since M is separable, we can fix a weakly dense sequence of xn in M . By [3], 
the closed ideal K(L2M) of B(L2M) has a quasicentral approximate unit. In particular, 
for any ε > 0 and any operators T1, T1, . . . , Tk ∈ B(L2M), we can find an operator 
K ∈ K(L2M)+ from such a quasicentral approximate unit such that ‖K‖ ≤ 1 and 
‖[K, Ti]‖ < ε for all 1 ≤ i ≤ k. Moreover, since such a quasicentral approximate unit 
weakly tends to the identity, for any 0 < α < 1 such an operator K can be chosen to 
satisfy 〈K1̂, ̂1〉 > α. Thus, we can find a sequence of operators Kn in K(L2M) with 
‖Kn‖ ≤ 1 for all n ≥ 1 such that ‖[Kn, xk]‖ < 2−n for all 1 ≤ k ≤ n and 〈Kn1̂, ̂1〉 > 1/2
for all n ≥ 1.

Now fix a sequence of unitaries un in M that are weakly tending to 0. We claim there 
exists a subsequence (uni

)∞
i=1 such that

(1)
∥∥∑n

i=1 Juni
JKiJu∗

ni
J

∥∥ < 2 for all n ≥ 1;
(2) |〈Kiu

∗
nj

uni 1̂, u∗
nj

uni 1̂〉| < 2−i−1 for all i �= j.

We construct such a subsequence inductively. First, let un1 = u1. Next, assume for 
some k ≥ 1 we have found un1 , un2 , . . . , unk

such that the above condition 1 occurs for 
all 1 ≤ n ≤ k and condition 2 occurs for all 1 ≤ i, j ≤ k with i �= j. Then notice 
that for any compact operators T, S ∈ K(L2M) and any sequence of unitaries vn in M
converging weakly to 0 we have ‖T + vnSv∗

n‖ → max{‖T‖, ‖S‖} as n tends to infinity. 
Since 

∑k
i=1 Juni

JKiJu∗
ni

J and Kk+1 are compact operators of norm less than 2, it 
follows there is an N1 such that for all n ≥ N1∥∥∥∥∥JunJKk+1Ju∗

nJ +
k∑

i=1
Juni

JKiJu∗
ni

J

∥∥∥∥∥ < 2.

Next, note that for each fixed 1 ≤ i ≤ k we have that ununi
Kk+1u∗

ni
u∗

n converges 
weakly to 0 as n tends to infinity. Thus, there is an N2 such that for all 1 ≤ i ≤ k and 
all n ≥ N2

|〈Kk+1u∗
n un1̂, u∗

n un1̂〉| = |〈ununi
Kk+1u∗

n un1̂, 1̂〉| < 2−k−2.

i i i
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Similarly, for each fixed 1 ≤ i ≤ k we have that unKiu
∗
n converges weakly to 0 as n tends 

to infinity. Hence, there is an N3 such that for all 1 ≤ i ≤ k and all n ≥ N3

|〈Kiu
∗
nuni

1̂, u∗
nuni

1̂〉| = |〈(unKiu
∗
n)uni

1̂, uni
1̂〉| < 2−i−1.

If we take nk+1 = max{N1, N2, N3}, then the terms un1 , un2 , . . . , unk+1 will satisfy the 
above condition 1 for all 1 ≤ n ≤ k + 1 and condition 2 occurs for all 1 ≤ i, j ≤ k + 1
with i �= j. By induction, it follows that the desired subsequence (uni

)∞
i=1 exists.

Now we define an operator T by letting

T =
∞∑

i=1
Jun2i

JK2iJu∗
n2i

J.

Note because of how we chose the unitaries uni
that T will indeed be a well-defined 

operator in B(L2M) with ‖T ‖ ≤ 2. Moreover, for any xj from our weakly dense sequence 
of M we have

[T, xj ] =
∞∑

i=1
[Jun2i

JK2iJu∗
n2i

J, xj ] =
∞∑

i=1
Jun2i

J [K2i, xj ]Ju∗
n2i

J.

Each summand Jun2i
J [K2i, xj ]Ju∗

n2i
J in this series is a compact operator and, because 

of how we chose the operators Kn, for all i ≥ j/2 we have

‖Jun2i
J [K2i, xj ]Ju∗

n2i
J‖ = ‖[K2i, xj ]‖ ≤ 2−2i.

Thus, this is a ‖ · ‖-norm convergent series of compact operators, and in turn [T, xj] is a 
compact for each xj . By Lemma 7.2, adT is a derivation of M into qKM .

We claim, however, that adT is not inner. Otherwise, assume for sake of contradiction 
there is an S ∈ qKM such that adS = adT . Take any sequence of unitaries vn in M that 
weakly converge to 0. Then we note that since (T − S) commutes with M

〈vnTv∗
n1̂, 1̂〉 = 〈vn(T − S)v∗

n1̂, 1̂〉 + 〈vnSv∗
n1̂, 1̂〉

= 〈(T − S)1̂, 1̂〉 + 〈vnSv∗
n1̂, 1̂〉.

(14)

Using Lemma 5.2, 〈vnSv∗
n1̂, ̂1〉 must converge to 0 as n tends to infinity. Thus, we observe 

that 〈vnTv∗
n1̂, ̂1〉 must converge as n tends to infinity.

It follows then that 〈unj
Tu∗

nj
1̂, ̂1〉 converges as j tends to infinity. However, for even 

terms of this sequence, we notice that



P. Hiatt et al. / Journal of Functional Analysis 287 (2024) 110452 31
|〈un2j
Tu∗

n2j
1̂, 1̂〉| =

∣∣∣∣∣
∞∑

i=1
〈un2j

Jun2i
JK2iJu∗

n2i
Ju∗

n2j
1̂, 1̂〉

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=1
〈K2iu

∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂〉
∣∣∣∣∣

≥ |〈K2j 1̂, 1̂〉| −
∑

1≤i�=j

∣∣∣〈K2iu
∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂〉
∣∣∣ .

Because of how we chose the operators Kn, we have |〈K2j 1̂, ̂1〉| > 1/2, whereas by 

construction 
∣∣∣〈K2iu

∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂〉
∣∣∣ < 2−2i−1 for all i �= j. We then get a lower 

bound

|〈un2j
Tu∗

n2j
1̂, 1̂〉| > 1/2 −

∑
1≤i�=j

2−2i−1 ≥ 1/3.

Conversely, for any odd term of this sequence

|〈un2j+1Tu∗
n2j+1

1̂, 1̂〉| =

∣∣∣∣∣
∞∑

i=1
〈un2j+1Jun2i

JK2iJu∗
n2i

Ju∗
n2j+1

1̂, 1̂〉
∣∣∣∣∣

=

∣∣∣∣∣
∞∑

i=1
〈K2iu

∗
n2j+1

un2j 1̂, u∗
n2j+1

un2i 1̂〉
∣∣∣∣∣

≤
∞∑

i=1

∣∣∣〈K2iu
∗
n2j+1

un2i
1̂, u∗

n2j+1
un2i

1̂〉
∣∣∣ .

(15)

Again, using that 
∣∣∣〈K2iu

∗
n2j+1

un2i
1̂, u∗

n2j+1
un2i

1̂〉
∣∣∣ < 2−2i−1 we get a bound

|〈un2j+1Tu∗
n2j+1

1̂, 1̂〉| <
∞∑

i=1
2−2i−1 = 1/6.

It follows then that the sequence 〈unk
Tu∗

nk
1̂, ̂1〉 does not converge. Hence, by contradic-

tion, adT must be a non inner derivation. �
Proposition 7.4. Let Γ be a countable group, set M = LΓ and let f ∈ �∞Γ be so that 
gf − f ∈ c0(Γ), ∀g ∈ Γ. Denote Tf ∈ B(L2M) the diagonal operator corresponding to f .

1◦ We have [Tf , M ] ⊂ qKM , and thus δf := adTf defines a derivation of M into 
qKM .

2◦ If f �∈ C + c0(Γ), then the derivation δf is outer, i.e., there exists no K ∈ qKM

such that δf = adK.
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Proof. 1◦ The condition gf −f ∈ c0(Γ), ∀g ∈ Γ, amounts to [M0, Tf ] ⊂ K(L2M) ⊂ qKM , 
where M0 = CΓ. Since M0 is a weakly dense ∗-subalgebra of M , by Lemma 7.2 it follows 
that [M, Tf ] ⊂ qKM .

2◦ Assume there exists K ∈ qKM such that ad(K) = ad(Tf ) on M . We let E0 :
B(L2M) → �∞Γ denote the conditional expectation to the diagonal operators given by 
E0(T )(g) = 〈T ûg, ̂ug〉. Notice that E0 implements the canonical trace on both LΓ and 
RΓ. By Lemma 4.7 if p ≥ 2, then we have ‖E0(T )‖ ≤ ‖ |T‖ |p, and so from Theorem 6.5
it follows that E0(K) ∈ c0(Γ).

Since K − Tf ∈ M ′ = Mop, we then have E0(K) − f = E0(K − Tf ) ∈ C, contradicting 
the fact that f �∈ C + c0(Γ). �
Corollary 7.5. If Γ is any infinite group, then there exists a non-inner derivation of 
M = LΓ into qKM of the form δf = adTf where f ∈ �∞Γ is given as in Proposition 7.4.

Proof. From an argument very similar to the one used in Theorem 7.3 it follows that 
there always exist f ∈ �∞Γ so that gf − f ∈ c0(Γ) for all g ∈ Γ, but such that f �∈
C + c0(Γ). One simply starts with an asymptotically Γ-invariant approximate identity 
in c(Γ) and proceeds as in the proof of Theorem 7.3. �
Lemma 7.6. Assume δ : M → qKM is implemented by T ∈ B(L2M). If Kn ∈ qKM are 
so that ‖Kn‖ ≤ ‖T ‖, ∀n, and limn qM ([Kn, x], δ(x)) = 0 for all x in some weakly dense 
∗-subalgebra M0 of M , then this limit holds true for all x ∈ M .

Proof. Let y ∈ (M)1. We have to prove that given any ε > 0 there exists n0 such that for 
any n ≥ n0 there exists p ∈ P(M) satisfying τ(1 − p) ≤ ε and ‖p(δ(y) − [Kn, y])p‖ ≤ ε.

By Kaplanski’s theorem, we can take y0 ∈ (M0)1 with ‖y0 − y‖2 ≤ (ε/2)3/2/2. By 
applying the hypothesis to this y0 ∈ M0, there exists n0 such that ∀n ≥ n0, ∃p0 ∈ P(M)
with τ(1 −p0) ≤ ε/2 and ‖p0(δ(y0) − [Kn, y0])p0‖ ≤ ε/3. On the other hand, by applying 
Theorem 7.1 to x = y − y0 and the derivations δ, ad(Kn), we get a projection p1 ∈ M

such that τ(1 − p1) ≤ ε/2 and ‖p1δ(y − y0)p1‖ε/3, ‖p1[Kn, (y − y0)]p1‖ ≤ ε/3. Thus, if 
we let p = p0 ∧ p1, then τ(1 − p) ≤ ε and for each n ≥ n0 we have

‖p(δ(y) − [Kn, y])p‖

≤ ‖pδ(y − y0)p‖ + ‖p[Kn, (y − y0)]p‖ + ‖p(δ(y0) − [Kn, y0])p‖ ≤ ε. �
Theorem 7.7. Let δ : M → qKM be a derivation implemented by T ∈ B(L2M). 
Then there exists a net of finite-rank operators Kι with ‖Kι‖ ≤ ‖T‖ such that 
limι qM (δ(x), [Kι, x]) = 0 for all x ∈ M . Moreover, if L2M is separable, then the 
net can be taken a sequence.

Proof. Let F = {x1, x2, . . . , xn} be an arbitrary finite subset of M and ε > 0. Since δ
is a derivation into qKM , we can find a projection p ∈ M with τ(1 − p) < ε/2 such 
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that pδ(xi)p ∈ K(L2M) for 1 ≤ i ≤ n. Consider then the convex subset C ⊂ K(L2M)n

consisting of all n-tuples of the form

(pδ(x1)p − p[K, x1]p, pδ(x2)p − p[K, x2]p, . . . , pδ(xn)p − p[K, xn]p),

where K runs over all finite-rank operators in B(L2M) such that ‖K‖ ≤ ‖T‖.
The set C ⊂ K(L2M)n can be viewed as a subset of (K(L2M)n)∗∗ = B(L2M)n. 

Note that, since δ = ad(T ), if we plug in T for K in the above n-tuple viewed as an 
element in B(L2M)n, then one gets (0, ..., 0). Note also that T is a wo-limit of finite-
rank operators with norm at most ‖T ‖ and that this implies (0, ..., 0) = (pδ(x1)p −
p[T, x1]p, pδ(x2)p − p[T, x2]p, . . . , pδ(xn)p − p[T, xn]p) is in the σ(B(L2M)n, B∗

n(L2M)n)-
closure of C in B(L2M)n. But since C ⊂ K(L2M)n is convex, its norm closure in 
K(L2M)n coincides with its closure in the σ(K(L2M)n, B∗

n(L2M)n) topology. Hence 
(0, 0, . . . , 0) is in the norm closure of C. In particular, there exists a finite-rank operator 
K ∈ B(L2M) such that ‖K‖ ≤ ‖T ‖ and ‖pδ(xi)p − p[K, xi]p‖ < ε/2 for all 1 ≤ i ≤ n. 
But then we see that

sup
1≤i≤n

qM (δ(xi), [K, xi]) ≤ sup
1≤i≤n

τ(1 − p) + ‖p(δ(xi) − [K, xi])p‖ < ε.

This shows that for any set F ⊂ M we can find a finite-rank operator KF ∈ B(L2M)
such that ‖KF ‖ ≤ ‖T ‖ and qM (δ(xi) − [KF , xi]) < 1/|F |. This net (KF )F , indexed over 
all finite subsets will then satisfy the condition.

The fact that this net can be taken to be a sequence when L2M is separable follows 
from Lemma 7.6. �

The next result shows if B0 ⊂ M is a weakly quasi-regular diffuse von Neumann 
subalgebra of M (in the sense of [13]), then the derivations of M into any of the bimodule 
qKM , are uniquely determined by their restriction to B0.

Proposition 7.8. Let M be a tracial von Neumann algebra with a diffuse weakly quasi-
regular von Neumann subalgebra B0 ⊂ M . If a derivation δ : M → qKM vanishes on 
B0, then δ = 0 on all M .

Proof. Since δ is automatically ‖ · ‖2-qM -continuous, it follows that the space B̃ of 
elements in M on which δ vanishes (which contains the diffuse algebra B0, by hypothesis) 
is a von Neumann subalgebra of M . Let u be a unitary element in M such that B :=
u∗B̃u ∩ B̃ is diffuse and denote σ : B → M the isomorphism of B into B̃ given by 
σ(b) = ubu∗, b ∈ B. Since ub = σ(b)u, by applying δ it follows that δ(u)b = σ(b)δ(u), 
∀b ∈ B. Thus, K = δ(u) ∈ qKM satisfies the conditions in Lemma 6.6, implying that 
δ(u) = 0. Since B0 ⊂ M is weakly quasi-regular, this shows that B̃ = M . �
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Let us end this section by mentioning some qM -approximation properties of deriva-
tions of a tracial von Neumann algebra M into Banach M -bimodules endowed with the 
qM -metric, notably qKM .

Proposition 7.9. Let (M, τ) be a tracial von Neumann algebra, B a Banach M -bimodule 
and δ : M → B a derivation.

1◦ Let M0 ⊂ M be a weakly dense C∗-subalgebra and B0 ⊂ B an M sub-bimodule 
(not necessarily norm-closed). Assume pδ(M0)p ⊂ B0, for some projection p ∈ M . Then, 
for any countable subset X ⊂ M and any ε0 > 0, there exists p0 ∈ P(pMp) such that 
τ(p − p0) ≤ ετ(p) and p0δ(x)p0 ∈ B0, ∀x ∈ X .

2◦ If B = qKM , then given any separable C∗-subalgebra M0 ⊂ M and any ε > 0, there 
exists p0 ∈ P(M) such that τ(1 − p0) ≤ ε and p0δ(x)p0 ∈ K(L2M), ∀x ∈ M0.

Proof. 1◦ Let X = {xn}n≥1 be an enumeration of X . By Pedersen’s Lusin-type Theorem, 
for each n there exists pn ∈ P(M) and yn ∈ M0 such that xnpn = ynpn, pnxn = pnyn

and τ(pn) ≥ 1 − τ(p)ε/2n+1, ∀n. Since δ(xnpn) = ynδ(pn) + δ(yn)pn, we have

pnδ(xn)pn = pnδ(xnpn)pn − pnxnδ(pn)pn

= pnynδ(pn)pn + pnδ(yn)pn − pnxnδ(pn)pn = pnδ(yn)pn ∈ B0.

Thus, if we let p0 = ∧n≥1pn ∧ p, then p0δ(x)p0 ∈ B0, ∀x ∈ X . Moreover, we have 
τ(∧n≥1pn) ≥ (1 − Σn≥1τ(1 − pn)) = 1 − ετ(p) and thus τ(p0) ≥ (1 − ετ(p)) + τ(p) − 1 =
(1 − ε)τ(p), implying that τ(p − p0) ≤ ετ(p).

2◦ This is trivial by Proposition 6.2. �
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