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SUMMARY

Neuronal morphology influences synaptic connectivity and neuronal signal processing. However, it remains

unclear how neuronal shape affects steady-state distributions of organelles like mitochondria. In this work,

we investigated the link between mitochondrial transport and dendrite branching patterns by combining

mathematical modeling with in vivomeasurements of dendrite architecture, mitochondrial motility, andmito-

chondrial localization patterns in Drosophila HS (horizontal system) neurons. In our model, different forms of

morphological and transport scaling rules—which set the relative thicknesses of parent and daughter

branches at each junction in the dendritic arbor and link mitochondrial motility to branch thickness—predict

dramatically different globalmitochondrial localization patterns.We show that HS dendrites obey the specific

subset of scaling rules that, in our model, lead to realistic mitochondrial distributions. Moreover, we demon-

strate that neuronal activity does not affect mitochondrial transport or localization, indicating that steady-

state mitochondrial distributions are hard-wired by the architecture of the neuron.

INTRODUCTION

For more than a century, neuroscientists have attempted to

define a conserved set of design principles that govern neuronal

morphology across cell types and animal species.1 To delineate

these principles, the field has focused primarily on how the

shape of a neuron affects its ability to receive, process, and

transmit signals within a neural circuit while also minimizing total

wiring.2–11 However, neurons are not just signal processing

units. Neurons are also post-mitotic cells in which subcellular

constituent elements (e.g., organelles) degrade over timescales

substantially shorter than the lifetime of the cell and are

therefore continually regenerated and distributed throughout

the neuron.12–14 From this perspective, neuronal processes are

not only cables for conducting electrical signals; axonal and den-

dritic branches are also supply lines, or conduits for microtubule-

based trafficking of young, healthy organelles. Recent work sug-

gests that intracellular trafficking requirements may constrain

dendritic branching patterns,15,16 but there is no comprehensive

theory or experimental evidence that relates neuronal architec-

ture to intracellular transport and the maintenance of steady

state, global distribution patterns of organelles.

In this work, we combined theory and experimental measure-

ments to investigate how dendritic branching patterns affect the

transport and global distribution of mitochondria, organelles

essential for the maintenance of neuronal form and function.

There is abundant evidence that mitochondria move in neurons,

both in cell culture17–20 and in vivo,21–24 and the mechanics gov-

erning the motility of an individual mitochondrion are relatively

clear.14,25 In brief, the motor proteins kinesin and dynein trans-

port mitochondria along microtubules.26 Adaptor proteins link

mitochondria to motor proteins, and anchoring proteins oppose

mitochondrial movement.27–29 Whether a particular mitochon-

drion moves, and in which direction, depends on the number

and orientation of microtubule tracks, as well as the relative

amount of force generated by populations of motor proteins

versus anchoring interactions.25 It remains unclear, however,

how neurons regulate these molecular-scale interactions in or-

der to maintain large-scale mitochondrial distribution patterns.

Neuronal activity could regulate the spatial distribution of

mitochondria.19,30,31 Neuronal activation drives local calcium

signals at synapses, and high calcium levels arrest mitochondrial

motility in cultured neurons.19,30 Calcium-dependent arrest of

mitochondrial movement could, in principle, enrichmitochondria

in subcellular regions with high synaptic densities and high ener-

getic demands. However, several studies have shown that cal-

cium signals have no effect on mitochondrial movement in neu-

rons in vivo.23,32,33 Moreover, global mitochondrial localization

patterns likely depend not only on local mitochondrial arrest

rates, but also on the relative flux of mitochondria into different

subcellular compartments; calcium transients (or other local sig-

nals) cannot trap mitochondria near active synapses if there are

nomotile mitochondria to trap. Microtubule numbers are propor-

tional to the thickness of neuronal processes,34,35 and we
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therefore propose that neuronal branching patterns—specif-

ically, the relative sizes of sister subtrees that sprout from each

branchpoint, as well as the relative thicknesses of parent and

daughter branches—determine mitochondrial flux rates and

thus global localization patterns.

In this paper, we interrogated the relationship between

neuronal architecture and mitochondrial distribution patterns in

Drosophila HS (horizontal system) cells. There are three HS neu-

rons per optic lobe (six per fly), and all HS neurons have highly

branched dendritic arbors that localize to the first layer of the lob-

ula plate, the third neuropil of the Drosophila visual system

(Figures 1A and 1B). HS neurons are among themost extensively

studied neurons in flies36–42 and there is a clear link between HS

dendrite morphology and the specific function of HS neurons:

large HS dendrites pool synaptic inputs from a retinotopic array

of more than one thousand neurons that selectively respond to

specific local motion cues, allowing HS neurons to act as

matched filters for large-scale optic flow patterns.42,43 In addi-

tion, theoretical work suggests that HS dendrite branching pat-

terns are optimized to form the proper synaptic connections

while also minimizing total dendritic length.44–46 Here, we com-

bined in vivo measurements of mitochondrial localization and

transport with mathematical modeling to demonstrate that

steady-state mitochondrial distribution patterns also depend

on the precise structural scaling of HS dendrites. Based on our

results, we argue that a comprehensive set of design principles

for dendrite morphology must include rules for the reliable intra-

cellular transport and localization of organelles, in addition to the

previously considered principles for proper signal processing

and wiring economy.

RESULTS

Mitochondria are enriched in distal HS dendrites and

equitably distributed across sister subtrees

To investigate the relationship between dendrite morphology

and steady-state mitochondrial localization patterns, we first

measured mitochondrial localization in HS dendrites. We used

the GAL4/UAS binary expression system to selectively label

HS neurons (with a red fluorescent cytoplasmic volume marker,

tdTomato) and the mitochondria within them (with GFP localized

to the mitochondrial matrix, mitoGFP) before imaging fixed

Drosophila brains by confocal microscopy (Figures 1B–1D). We

found that mitochondria are distributed throughout HS neurons

and exhibit a range of morphologies: a branched reticulum in

the cell body, elongated mitochondria with variable widths in

the dendrites, and smaller, roundmitochondria in the axon termi-

nals (Figure S1A). We measured the fraction of the dendrite vol-

ume occupied by mitochondria (the mitochondrial volume

density), and we found that although the absolute mitochondrial

volume fraction varied across samples, it was consistently

higher in distal dendrites compared with the primary dendrite

(Figure 1E).

The high density of mitochondria in HS dendrites made it diffi-

cult to resolve individual mitochondria using conventional

confocal microscopy. We therefore took advantage of publicly

available ssTEM images of an entire fly brain (the ‘‘female adult

fly brain’’ or FAFB)47 to measure mitochondrial distribution pat-

terns in HS neurons. We used existing HS skeletons, which

were previously traced through the three-dimensional FAFB im-

age volume,48 to identify mitochondria within the six HS neurons

in the FAFB dataset (Figure 1F). Then, we measured mitochon-

drial morphology as a function of subcellular compartment by re-

constructing whole mitochondria within small portions of the

axon or dendrite (Figures S1B and S1C). We found that the me-

dian volume of an individual mitochondrion was�0.5 mm3 in both

HS dendrites and axons (Figure S1D). We also found that den-

drites, but not axons, often contained large, branchedmitochon-

dria that spanned multiple dendritic branches (Figures S1C and

S1D), consistent with previously published measurements of

mitochondrial morphology in vertebrate neurons.49,50

Next, to measure mitochondrial distribution patterns

throughout the whole cell, we resampled each HS skeleton

such that skeleton nodes were placed at regular 5 mm intervals

along the skeleton. Then we extracted two-dimensional image

slices centered around each node and reconstructed the HS

neuronal segment and all mitochondria within it in each image

(Figure 1G). We calculated total mitochondrial densities for

each HS neuron and found that, on average, the total mitochon-

drial density in HS neurons is �20% (mitochondrial density =

0.19 ± 0.04 SE). We measured substantial variation in the total

mitochondrial density across the six HS neurons in the FAFB da-

taset (Figure S1E), consistent with our measurement of total

mitochondrial density based on confocal images (Figure 1E).

Despite this variation in total mitochondrial density, we found

that mitochondrial localization patterns were conserved across

all six HS cells. First, we measured mitochondrial densities as

a function of subcellular compartment and found consistently

higher mitochondrial densities in the dendrites than in the axons

(Figures 1H and S1F). Second, in dendrites but not axons, mito-

chondrial densities increased with distance from the soma, with

densities approximately two times higher in the distal dendrites

compared with the primary dendrite (Figures 1H–1J and S1G–

S1H). Third, we measured mitochondrial densities across sister

subtrees. At each branchpoint within a dendritic arbor, a parent

branch splits into two daughter branches, and the entire arbor

can be decomposed into successive pairs of sister subtrees

(Figure 1K). We found that sister subtrees are often asymmetric,

and that larger subtrees contain proportionally more mitochon-

dria than their smaller sisters, resulting in equivalent mitochon-

drial densities across sister subtree pairs (Figure 1L). Altogether,

these results show that mitochondria in HS dendrites follow a

specific distribution pattern: equitable distribution across sister

subtrees and enrichment in distal dendrites.

Anterograde and retrograde transport of mitochondria

is balanced in primary HS dendrites

In cultured neurons, a substantial fraction of mitochondria are

motile, but there is some debate about the amount of mitochon-

drial movement in neurons in vivo, particularly in adult ani-

mals.14,32,51 To measure mitochondrial motility in HS neurons

in vivo, we used confocal microscopy to acquire time-lapse

images of primary HS dendrites, labeled with mitoGFP and tdTo-

mato, in head-fixed Drosophila (Figures 2A–2D; Video S1). Mito-

chondria moved in both the anterograde (into the dendritic arbor)

and retrograde (out of the dendritic arbor) directions (Figures 2C
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and 2D). Motile mitochondria ranged in length from�0.5 to 5 mm,

comparable with themajority of themitochondria we observed in

ssTEM images (Figures 1G, S1C, and S1D), and there was no

significant difference in the average lengths of anterograde

versus retrograde mitochondria (Figure 2E). Within the entire

population of motile mitochondria (pooled across 19 primary

dendrites from 19 flies), anterograde mitochondria exhibited

higher speeds (0.66 ± 0.02 mm/s, N = 243 mitochondria) than

Figure 1. Mitochondria are enriched in distal HS dendrites and equitably distributed across sister subtrees

(A) Organization of the Drosophila visual system.

(B–D) Representative images of HS dendrites, and the mitochondria within them, labeled with a cytosolic volume marker (tdTomato, magenta) and a mito-

chondria-targeted GFP (mitoGFP, green). There are three HS neurons per optic lobe: HSN, HSE, and HSS. HS dendrites localize to the lobula plate, the third

neuropil of the Drosophila optic lobe; neuropils were marked by immunostaining for the synaptic marker BRP (a-BRP, blue). Dashed yellow boxes in (B) indicate

the primary and distal dendrites shown in (C) and (D). All images are maximum projections of confocal z stacks.

(E) Mitochondrial volume densities (the fraction of the cell volume occupied bymitochondria) in primary and distal HS dendrites, measured from confocal images.

For all box and whisker plots (here and for all subsequent figures), the box extends from the first to third quartile of the data, with a line at the median, and the

whiskers indicate 1.5 times the interquartile range. Dots overlaid on the boxplots indicate measurements from individual cells (N = 20 neurons); dotted lines

connect measurements in the primary and distal dendrites of the same cell. The asterisks indicate a significant difference (p < 0.001, paired t test).

(F) Skeleton of an HS neuron traced through ssTEM images of an entire fly brain.47,48

(G) ssTEM images of mitochondria (cyan) in different compartments of an HS neuron (yellow). Scale bars, 1 mm. Dashed boxes indicate the regions enlarged in the

inset images. Scale bars, 200 nm (inset).

(H) Average normalized mitochondrial densities, measured from ssTEM images, plotted versus distance from the soma in the dendrite (green) and axon

(magenta). N = 6 neurons; shaded regions indicate the standard error of the mean. Mitochondrial densities were normalized to the density in the primary dendrite

for each cell.

(I) Absolute mitochondrial volume densities in primary and distal HS dendrites, measured from ssTEM images. The asterisk indicates a significant difference

(p < 0.05, paired t test).

(J) Distal enrichment of mitochondria, measured from both ssTEM and confocal images.

(K) HS dendrite skeletons showing pairs of sister subtrees at primary (1�), secondary (2�), and tertiary (3�) branchpoints.

(L) Asymmetry in total mitochondrial volume plotted versus asymmetry in total neurite volume for sister subtree pairs (N = 12 subtree pairs). Asymmetry = (ST1 –

ST2)/(ST1 + ST2), where ST1 and ST2 are metrics (dendrite volume or mitochondrial volume) on the two sister subtrees. See also Figure S1.
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retrograde mitochondria (0.55 ± 0.02 mm/s [SE], N = 250 mito-

chondria, p < 0.001, unpaired t test). However, there was no

consistent difference in the average speed of anterograde

versus retrograde mitochondria moving through the same

primary dendrite (Figure 2F, p = 0.09, paired t test), and antero-

grade and retrogrademitochondria arrestedmotility at compara-

ble rates (Figure 2G). Most motile mitochondria moved rapidly

through the field of view and, on average, we were only able to

track individual mitochondria for �45 s. Despite this, the total

distance traveled per mitochondrion was �17 mm (average total

distance = 17.2 ± 0.4 and 17.4 ± 0.4 mm [SE] for anterograde and

retrograde mitochondria, respectively), suggesting that motile

Figure 2. Anterograde and retrograde mitochondrial transport rates are balanced in primary HS dendrites

(A) Experimental setup: in vivo confocal imaging of head-fixed Drosophila.

(B and C) In vivo confocal images of mitochondria (mitoGFP, green) in HS dendrites (marked by cytosolic tdTomato, magenta) before (B) and

after (C) photobleaching of stationary mitochondria in the primary dendrite. The dashed yellow box in (B) indicates the primary dendrite shown in (C).

(D) Image time series showing mitochondrial transport in the primary dendrite shown in (B) and (C). Stationary mitochondria were photobleached prior to image

acquisition to facilitate resolution of motile mitochondria. The yellow arrowhead indicates a mitochondrion moving the anterograde direction; the yellow arrow

indicates a mitochondrion moving in the retrograde direction.

(E–H) Lengths (E), speeds (F), arrest rates (G), and linear flux rates (H) for mitochondria moving in the anterograde (green) or retrograde (magenta) directions.

Dots overlaid on the boxplots indicate average measurements for individual flies (N = 19 flies); there were no significant differences between average

anterograde and retrograde measurements (p > 0.05, paired t test). Histograms show the distribution of measurements for individual mitochondria moving in

the anterograde (N = 243mitochondria) or retrograde (N = 250mitochondria) directions; there is a significant difference in speed for the population of anterograde

versus retrograde mitochondria (p < 0.001, unpaired t test). See also Figure S2.
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mitochondria can travel throughout the dendrite rather than sim-

ply relocating by a few microns. Finally, we quantified the linear

flux rate—the number of mitochondria moving through the pri-

mary dendrite per minute—and found no significant difference

for anterograde versus retrograde transport (Figure 2H, average

linear flux = 2.0 ± 0.2 and 2.3 ± 0.3 mitochondria/min for antero-

grade and retrograde transport, respectively; p = 0.18, paired t

test). Altogether, these results demonstrate that, in HS cells,

anterograde transport of mitochondria into the dendrite is

balanced by retrograde transport of an equivalent volume of

mitochondria back out of the dendrite.

Based on our measurements of linear flux rates and the typical

size of motile mitochondria, we estimate (see STAR Methods)

that approximately one cubic micron of mitochondrial volume

exchanges through the primary dendrite every minute. By

comparing this exchange rate (J = 1 mm3) to the volume density

of mitochondria in the primary dendrite, we calculate that only a

small fraction of mitochondria (�2%) are motile at any given

instant. However, over longer timescales the total mitochondrial

volume that exchanges through the primary dendrite (�60 mm3/

h) is a sizable fraction of the total mitochondrial volume in the

entire dendrite arbor (�15%). These estimates indicate that,

even if only a small number of mitochondria are motile at any

given time, the entire mitochondrial population can reorganize

over longer times scales (hours to days). In HS dendrites, we es-

timate that the entire mitochondrial volume reorganizes in less

than 10 h, or more than 100 times over the course of a fly’s life-

time. Altogether, our in vivo motility measurements indicate that

the specificmitochondrial localization pattern in HS dendrites re-

flects a dynamic steady state in which individual mitochondria

continually reorganize within a stable global pattern.

Mitophagy is largely restricted to the cell body in HS

neurons

In addition to moving throughout the cell, mitochondria are

degraded and replaced in neurons.14 In principle, the spatial

pattern of mitochondrial degradation—which occurs, in part,

by mitochondrial autophagy, or mitophagy—could shape the

global distribution of mitochondria in HS dendrites. To measure

the spatial pattern of mitophagy in HS neurons, we used the mi-

tophagy reporter mitoQC,52 which consists of tandem fluores-

cent proteins (GFP and mCherry) targeted to the mitochondrial

outer membrane (Figure S2). When mitoQC-tagged mitochon-

dria undergo mitophagy, the acidic environment of the lysosome

quenches GFP, allowing visualization of mitolysosomes as re-

d-only puncta. We used in vivo confocal microscopy to image

mitoQC in HS neurons and calculated a mitophagy index—the

volume of mitolysosomes (red-only) divided by the volume of

mitochondria (red + green)—for HS primary and distal dendrites

and cell bodies. We observed almost no mitolysosomes in HS

dendrites (Figures S2B–S2D). In the cell body, we measured an

average mitophagy index of 0.07 (SE = 0.01), indicating that

�7% of the mitochondrial volume in the cell body was undergo-

ing degradation in lysosomes (Figures S2A and S2D). Thus, even

if mitochondria are autophagocytosed in the dendritic branches,

they remain undegraded until reaching the cell body, similar to

recent observations of autophagic vesicles in cultured neu-

rons.53 Altogether, these measurements suggest that mitochon-

drial degradation plays a negligible role in shaping the mitochon-

drial localization pattern in the dendrite.

A mathematical model for mitochondrial transport in

branched dendrites links mitochondrial localization

patterns to dendrite architecture

How do HS dendrites maintain stable mitochondrial localization

patterns despite constant transport and reorganization of mito-

chondrial mass?We hypothesized that dendrite architecture de-

termines steady-state mitochondrial localization patterns in HS

neurons. To test this idea, we developed a mathematical model

linking mitochondrial transport and localization patterns to

dendrite morphology (Figures 3A–3C; see detailed model

description in methods and model parameters and variables in

Tables S1 and S2). In our model, each dendrite is a binary tree,

where each node connects a parent edge to two daughter

edges, and each edge is a cylinder with fixed radius ri along its

entire length li (Figure 3B). We set the topology of the dendritic

arbor—the length and connectivity of each branch—based on

dendritic skeletons extracted from real HS neurons (Figure 3A)

or from synthetic trees (Figure S3A), and we impose branch radii

according to two morphological scaling rules. The first scaling

rule dictates the relative widths of the parent and daughter

branches (parent-daughter scaling). Consistent with several pre-

vious studies,2,54–56 we assume that parent and daughter radii

scale according to the power law ra0 = ra1 + ra2 , where r0 is the

radius of the parent branch, r1 and r2 are the radii of the daughter

branches, and the exponent a determineswhether total dendritic

cross-sectional area in the daughter branches, relative to the

parent branch, increases (a> 2), decreases (a< 2), or remains

the same (a = 2). The second scaling rule—r1=r2 = m—sets

the relative widths of the two daughter branches (sister-sister

scaling); in the simplest version of sister-sister scaling, the

widths of the two daughter branches are equal (m = 1).

Within the dendrite, we assume that mitochondria can be

motile or stationary (Figure 3C). Motile mitochondria move in a

processive fashion in the anterograde or retrograde direction

with pause-free velocity v ±

i and arrestmotility at rate ks;i. Station-

ary mitochondria initiate motility at rate kw;i. In the first, simplest

version of our model, we assume that mitochondrial velocities

and stopping and starting rates are constant throughout the den-

dritic arbor. In subsequent versions of the model, we allow arrest

rates to scale with dendrite radius according to ks;i � 1=rbi ,

where the exponent b determines whether arrest rates increase

(b> 0), decrease (b< 0), or remain the same (b = 0) as dendrite

radii decrease. At steady state, the linear densities of antero-

grade, retrograde, and stationary mitochondria in each dendritic

branch (r+i , r�i , and rsi , respectively), obey the transport

equations:

dr±

i

dt
= Hvi

dr±

i

dx
� ks;ir

±

i +

kw;i

2
rsi = 0

drsi
dt

= ks;i
�
r+i + r�i

�
� kw;ir

s
i = 0

(Equation 1)

The steady-state solutions of these transport equations are

constant linear mitochondrial densities within each individual

branch, and the relative linear densities between branches are
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Figure 3. A mathematical model for mitochondrial transport in branched dendrites

(A–C) Schematic representation of a mathematical model linking mitochondrial transport and localization to dendrite morphology. Mitochondria move through a

branched dendritic tree (A), with dendrite topology extracted from an HS skeleton traced through ssTEM images.47,48 At each branchpoint, a parent branch splits

into two daughter branches (B). Each branch is a cylinder with fixed radius ri along its entire length li, where li is set by dendrite skeletons extracted from real HS

neurons (A) and ri is set by morphological scaling rules dictating the relative thicknesses of the parent radius and the two daughter radii (parent-daughter scaling

and sister-sister scaling, see main text). Within each branch (C), motile mitochondria move in a processive fashion in the anterograde or retrograde direction at

velocity vi. Motile mitochondria arrest motility at rate ks;i and stationary mitochondria initiate motility at rate kw;i.

(D) Parent-daughter scaling: parent and daughter radii scale according to ra0 = ra1 + ra2 , where r0 is the radius of the parent branch, r1 and r2 are the radii of the

daughter branches, and the exponent a determines whether the total cross-sectional area constricts, expands, or remains the same across the branchpoint.

(E–G) Model predictions of mitochondrial localization patterns for parent-daughter scaling according to Rall’s law (a = 3/2, E), Da Vinci’s rule for trees (a = 2, F),

and Murray’s law (a = 3, G). Radii were imposed according to the indicated values for the parent-daughter scaling exponent a; each branch is colored according

to mitochondrial density compared with the primary dendrite (yellow indicates the same density as in the primary dendrite; red and blue indicate mitochondrial

enrichment and dilution, respectively).

(H and I) Model predictions for mitochondrial distal enrichment (H) and distribution across sister subtrees (I) for topologies extracted from skeletons traced

through ssTEM images47 (open circles, N = 6 dendrites) and previously published reconstructions46 (purple circles, N = 20 dendrites). Boxplots show distal

enrichment or asymmetry in mitochondrial densities across sister subtrees for model dendrites obeying Rall’s law, Da Vinci’s rule for trees, or Murray’s law for

parent-daughter scaling; dots overlaid on the boxplots indicate model predictions for individual dendrite topologies. Line plots show distal enrichment or sister

subtree asymmetry for a range of values for the parent-daughter scaling parameter a (1%a%3); the shaded region indicates the standard error of the mean.

Distal enrichment (d) and sister subtree asymmetry (z) were calculated according to the indicated metrics (see STARMethods for details). See also Figure S3 and

Tables S1 and S2.
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Figure 4. Mitochondrial arrest rates scale with dendrite radius

(A and B) In vivo confocal images ofmitochondria (mitoGFP, green) in HS dendrites (marked by cytosolic tdTomato, magenta) before photobleaching of stationary

mitochondria in the distal dendrites. The dashed yellow box in (A) indicates the distal dendrites show in (B).

(C) Image time series showing a mitochondrion (indicated by yellow arrowheads) moving in the anterograde direction through a distal dendritic branch.

(D–F) Boxplots showing mitochondrial lengths (D), speeds (E), and arrest rates (F) for mitochondria moving in the anterograde direction through primary and distal

dendrites; primary dendrite measurements from Figure 1 are shown again here for ease of comparison. Dots overlaid on boxplots show average measurements

for individual flies (D–F, N = 19 flies). Asterisks indicate significant differences (p < 0.01, paired t test).

(G) The average mitochondrial arrest rate in dendritic branches plotted versus dendrite radius (N = 47 branches from 41 flies). Arrest scales with dendrite radius

according to ks � 1=rb, where b = 0.77 (dashed line, R2 = 0.45).

(H) Cartoon depicting mitochondrial transport scaling according to ks � 1=rb.

(I–K) Model predictions of mitochondrial localization patterns based on the experimentally measured value of the transport scaling parameter b = 0.8, with

constants j = 1 and m = 1, and parent-daughter scaling according to Rall’s law (a = 3/2, I), Da Vinci’s rule for trees (a = 2, J), and Murray’s law (a = 3, K).

(legend continued on next page)
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determined by the boundary conditions at branch junctions. At

distal dendrite tips, we assume reflecting boundary conditions

(r+ = r�), and we set the boundary condition in the trunk of

the dendritic by fixing the linear density of motile mitochondria

to a constant r�. At branchpoints, we assume that linear mito-

chondrial flux rates are conserved across parent and daughter

branches: v0r
±

0 = v1r
±

1 + v2r
±

2 . Finally, we set the relative linear

flux of anterograde mitochondria in the two daughters at each

junction according to the scaling rule
v1r

+

1

v2r
+

2

= j; in the simplest

version of this junction-flux scaling rule, linear fluxes in the two

daughters are equal (j = 1).

We implemented several versions of this model using different

forms of morphological and transport scaling rules (see STAR

Methods). We found steady-state linear mitochondrial densities

through analytical solutions of the set of linear equations

described above, and we computed the mitochondrial volume

density in each branch as ci =
ri
r2
i

. For all model versions, we

quantified mitochondrial localization patterns using two met-

rics—sister subtree asymmetry (z, the root-mean-squared

asymmetry of stationary mitochondrial volume densities be-

tween sister subtrees, averaged over all junctions in the arbor)

and distal enrichment (d, the stationary mitochondrial volume

density in distal dendrites normalized to the primary

dendrite)—to compare model predictions to our experimental

measurements.

We first examined the relationship between different forms of

power law parent-daughter scaling (Figure 3D, ra0 = ra1 + ra2 ) and

mitochondrial localization patterns. Optimal values for the expo-

nent a have been derived based on theoretical arguments for

preservation of graded electrical signals across dendritic

branchpoints (a = 3=2, often called ‘‘Rall’s law’’ after the neuro-

scientist Wilfrid Rall),2 action potential propagation in axons

(a = 3, often called ‘‘Murray’s law’’ and first derived for the

vasculature system),54,55,57 or efficient intracellular transport

(a = 2, often called ‘‘Da Vinci scaling’’ after Da Vinci’s rule for

trees).56,58 To determine how a affects steady-state mitochon-

drial localization patterns, we calculated sister subtree asymme-

try and distal enrichment of mitochondrial densities for a range of

values for a. We assumed the simplest versions of sister-sister

scaling and transport scaling—equal splitting of sister branch

radii (m = 1), equal linear flux rates in sister branches (j = 1),

and spatially uniform transport rates (b = 0)—and we set the to-

pology of the arbor based on HS skeletons (Figures 3E–3I) or

synthetic dendritic trees (Figures S3A–S3C). When parent and

daughter radii obey Da Vinci’s rule for trees (a = 2), this simple

model yields mitochondrial volume densities that are constant

throughout the entire arbor, resulting in equitable distribution of

mitochondria across sister subtrees but not distal enrichment

(Figures 3F, 3H–3I, S3B, and S3C). In contrast, when parent

and daughter dendrites scale according to Rall’s law (a = 3=

2), mitochondria are enriched in distal dendrites (Figures 3E–

3H and S3B), and when dendrites scale according to Murray’s

law (a = 3), mitochondria are diluted distally (Figures 3G, 3H,

and S3B). Overall, the relative density of mitochondria in the

distal versus primary dendrites increases as the exponent a de-

creases (Figures 3H and S3B).

Equitable distribution of mitochondria across sister subtrees

also depends on the exponent a (Figures 3I and S3C). In contrast

to Da Vinci-scaled dendrites (a = 2), when model dendrites

obey either Rall’s law (a = 3=2) or Murray’s law (a = 3), equi-

table distribution across sister subtrees occurs only when

branching patterns are perfectly symmetric (Figure S3C); when

branching patterns are asymmetric, as in real HS dendrites,

mitochondrial densities in sister subtrees are asymmetric (Fig-

ure 3I). In particular, subtrees with more branchpoints tend to

accumulate higher (in Rall-scaled dendrites; Figure 3E) or lower

(in Murray-scaled dendrites; Figure 3G) mitochondrial volume

densities due to the reduction or expansion of dendritic cross-

sectional area below each branchpoint. Altogether, this initial

version of our model recapitulates either equitable distribution

of mitochondria across sister subtrees (in Da Vinci-scaled den-

drites) or distal enrichment (in Rall-scaled dendrites), but

not both.

Mitochondrial arrest rates scale with dendrite radius

We next sought to update our model to fully recapitulate our

experimental measurements of mitochondrial localization pat-

terns—distal enrichment and equitable distribution of mitochon-

dria across asymmetrically branched sister subtrees. We

reasoned that non-uniform transport parameters—e.g., mito-

chondrial arrest rates that increase as dendrites narrow across

branchpoint—ought to result in distal mitochondrial enrichment

even in Da Vinci-scaled dendrites. We therefore measured mito-

chondrial motility in primary versus distal HS dendrites using

in vivo imaging (Figures 4A–4C; Video S2), focusing in particular

on mitochondria moving in the anterograde direction due to

experimental constraints (see STAR Methods). We found that

motile mitochondria in the distal and primary dendrites are

approximately the same length (Figure 4D) and move at the

same speeds (Figure 4E), but mitochondrial arrest rates are

significantly higher in the distal dendrites (Figure 4F). We

analyzed motile mitochondria moving through dendritic

branches with a range of radii and found that the rate of mito-

chondrial arrest ks;i scales with dendrite radius ri according to

ks;i � 1=rbi , where the best fit for b is �0.8 (Figure 4G).

Next, we updated our model to include scaling of mitochon-

drial arrest with dendrite radius according to ks;i =
1

rb
i

(Figure 4H).

For simplicity, we assumed that mitochondrial speeds and

motility initiation rates are spatially uniform; different assump-

tions, including scaling of speed or motility initiation rate kw;i

with dendrite radius, do not affect model predictions when the

fraction of motile mitochondria is small (see STAR Methods),

(L and M) Model predictions for mitochondrial distal enrichment (L) and distribution across sister subtrees (M) are shown for topologies extracted from skeletons

traced through ssTEM images47 (open circles,N = 6 dendrites) and previously published reconstructions46 (light purple circles, N = 20 dendrites). Line plots show

distal enrichment or asymmetry in mitochondrial densities across sister subtrees for model dendrites obeying Rall’s law (dashed line), Da Vinci’s rule for trees

(solid line), or Murray’s law (dotted line). Heatmaps show average distal enrichment or sister subtree asymmetry for a range of values for the transport scaling

parameter b (0% b% 2) and the parent-daughter scaling parameter a (1%a%3).
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as we observed experimentally. When we set b according to our

experimental measurements (b = 0.8), our model predicts distal

enrichment in Da Vinci-scaled dendrites as well as Rall-scaled

dendrites (Figures 4I and 4J), but not in Murray-scaled dendrites

(Figure 4K). Altogether, the amount of distal enrichment de-

creases with the parent-daughter scaling parameter a and in-

creases with the transport scaling parameter b (Figures 4L

and S3D).

Introducing inverse scaling of mitochondrial arrest with

dendrite radius according to ks;i =
1

rb
i

results in distal enrichment

in model dendrites that follow Da Vinci’s rule. However, this

transport scaling also introduced significant asymmetries in

mitochondrial densities across sister subtrees, even in Da

Vinci-scaled dendrites (Figures 4M and S3E). In particular, sub-

trees with more branchpoints acquire higher mitochondrial den-

sities, resulting in inequitable distribution across subtrees in ar-

bors with asymmetric topologies (Figure 4J). In Rall-scaled

dendrites, transport scaling resulted in even higher asymmetry

across sister subtrees than in the initial version of our model

(Figures 4M and S3E). Interestingly, in Murray-scaled dendrites,

transport scaling with b = 1 resulted in constant mitochondrial

volume densities throughout the arbor and therefore equitable

distribution across sister subtrees (Figures 4M and S3E) but

not distal enrichment (Figures 4L and S3D). Thus, some combi-

nations of the parent-daughter scaling parameter a and the

transport scaling parameter b recapitulate either distal enrich-

ment (e.g., a = 2 and b> 0) or equitable distribution across sister

subtrees (a = 3 and b = 1) but not both.

Mitochondria split according to dendrite thickness at

asymmetric branchpoints

HS dendrites are asymmetrically branched, such that one sister

subtree is often significantly larger than the other (Figures 1K and

5A). We reasoned that equitable distribution of mitochondria

across asymmetrically sized subtrees could be achieved if pro-

portionally more mitochondria move into the larger subtree at

each branchpoint. Such proportional splitting of mitochondria

at branchpoints would occur if linear flux rates scale with

daughter branch thickness (junction-flux scaling according to

j =
v1r1
v2r2

=
r2
1

r2
2

) and thicker trunks support proportionally larger

subtrees. To explore this idea, we measured branch thickness

and mitochondrial transport at primary branchpoints in HS den-

drites. We found, first, that mitochondria move persistently

across branchpoints in both the anterograde (Figure 5B) and

retrograde directions, with very few motile mitochondria

arresting (15% ± 1%) or reversing direction (0.4% ± 0.2%) at

the junction. Average mitochondrial linear flux rates were signif-

icantly lower in the daughter branches than in the parent branch

(Figure 5C), but there was no significant difference in flux normal-

ized to branch cross-sectional area (Figures 5D and 5E). This

conservation of flux, which we also measured in primary versus

distal dendrites (Figure 5F), is consistent with spatially uniform

volume densities of motile mitochondria, a hallmark of Da

Vinci-scaled dendrites in our model (see STARMethods). Finally,

we found that asymmetric linear flux (indicating that more mito-

chondria move into one daughter than the other) correlates with

asymmetric daughter branch cross-sectional areas (Figure 5G).

Thus, proportionally more mitochondria move into thicker

daughter branches at each branchpoint (Figure 5H). This

proportional splitting of mitochondria between daughter

branches is consistent with equivalent microtubule densities in

each daughter, as previously observed in other neuronal cell

types.34,35

Specific sister subtree scaling rules recapitulate

realistic mitochondrial localization patterns in model

dendrites

Based on our experimental measurements of mitochondrial

transport across branchpoints, we updated our model to include

scaling of linear flux with daughter branch thickness: j =
r2
1

r2
2

. This

scaling rule for transport across branchpoints could facilitate

equitable distribution of mitochondria across asymmetric sister

subtrees if thicker trunks support proportionally larger subtrees

at each branchpoint. Several parameters quantify subtree size

(e.g., total length or volume), and trunk thickness could scale

with any of these parameters. Importantly, we were able to

derive the sister-sister scaling rule required for equitable distri-

bution of mitochondria for a specific subset of parent-daughter

and transport scaling parameters. Specifically, when parent

and daughter radii obey Da Vinci’s rule for trees (a = 2), mito-

chondrial arrest scales with dendrite radius according to

ks;i � 1=r2i (b = 2), and motile mitochondria split according to

daughter thickness at branchpoints (j =
r2
1

r2
2

), our analytical calcu-

lations (see STAR Methods) show that equitable distribution of

mitochondria depends on a specific morphological relationship

between sister subtrees: the total subtree volume must be pro-

portional to its length, such that L1=V1 = L2=V2. In addition, in

a Da Vinci-scaled arbor, all subtrees will exhibit this length-vol-

ume scaling if and only if sister trunk thicknesses scale according

to m =
r2
1

r2
2

=
L1=D1

L2=D2
, where D describes the effective depth of the

tree (see STAR Methods). The ratio of total length over depth

(L=D) can be thought of as the ‘‘bushiness’’ of a tree; L=D = 1

in a dendrite with no branches, whereas L=D[1 in a highly

branched, bushy dendrite.

Our derivation of this specific sister-sister scaling rule, where

sister subtree trunk thickness is proportional to subtree bushi-

ness (r2 � L=D, Figure 6A), is based on a special case where

mitochondrial arrest scales according to ks;i � 1=r2i (b = 2),

but we measured b = � 0:8 from our experimental data (Fig-

ure 4G). Changes in b have a dramatic effect on distal enrichment

of mitochondria, and b = 0.8 results in more realistic levels of

enrichment than b = 2 (Figures 6B, 6C, and S3F). In contrast,

equitable distribution of mitochondria across subtrees is robust

to changes in b, but only in dendrites that obey both Da Vinci’s

parent-daughter scaling and r2 � L=D sister-sister scaling

(Figures 6D and S3G). Da Vinci-scaled dendrites that follow

different sister subtree scaling rules do not exhibit such equitable

distributions across subtrees (Figures 6D and S4A), nor do Rall-

or Murray-scaled dendrites that obey r2 � L=D (Figure 6D).

Moreover, we show that, for an arbor obeying Rall’s law, it is

impossible to establish equitable mitochondrial distributions be-

tween asymmetric sister subtrees with any single function that

sets sister subtree trunk thicknesses based on subtree

Cell Reports 43, 114190, May 28, 2024 9

Article
ll

OPEN ACCESS



morphology (Figure S5; see STAR Methods). Altogether, of all

the parent-daughter and sister-sister scaling rules we examined,

only one pair of rules—parent-daughter scaling according to

Da Vinci’s rule for trees and sister-sister scaling with trunk thick-

ness proportional to subtree bushiness—successfully recapitu-

lates the key features of experimentally observed mitochondrial

distributions: equitable densities between sister subtrees and

increased density in distal branches.

Figure 5. Motilemitochondria split according

to dendrite thickness at asymmetric branch-

points

(A) HS dendrite, labeled by MultiColor FlpOut

(MCFO). The yellow arrow indicates the primary

branchpoint.

(B) Trajectories of mitochondria moving in the

anterograde direction from a parent branch into one

of two daughter branches. Trajectory colors indi-

cate mitochondria that moved into daughter one

(yellow) or daughter two (blue).

(C–F) Boxplots showingmitochondrial linear flux (C),

dendrite radius (D), and linear flux normalized to

dendrite cross-sectional area (E and F) for parent

and daughter branches (C–E) and primary versus

distal dendrites (F). Asterisks indicate significant

differences (p < 0.001, paired t test).

(G) Asymmetry in daughter branch radii squared

plotted versus asymmetry in mitochondrial linear

flux rates. Dots indicate measurements from indi-

vidual branchpoints (N = 26 branchpoints from

26 flies).

(H) Cartoon depicting equitable splitting of mito-

chondria across branchpoints, where the linear flux

of anterograde mitochondria is proportional to

daughter branch cross-sectional area: r � r2.

HS dendrites obey specific

morphological scaling rules

To determine whether HS dendrites scale

parent and daughter branches according

to Da Vinci’s rule and sister branches ac-

cording to r2 � L=D, we used stochastic

MultiColor FlpOut labeling59 to label

individual HS dendrites (Figure 6E). We

segmented and skeletonized each

dendrite before measuring parent and

daughter branch radii and the length, vol-

ume, and bushiness of the subtrees

sprouting from each branchpoint

(Figures 6E and 6F). Consistent with our

previous observations, we found that HS

dendrites are asymmetrically branched,

with significant asymmetry in daughter

branch thickness and subtree length, vol-

ume, and bushiness (Figure 6G). We fit

our measurements of parent and daughter

radii to the power law ra0 = ra1 + ra2 for a

range of values for the exponent a, and

we found that HS dendrites are approxi-

mately Da Vinci scaled, with a = 2:2 giving

the best fit (Figure 6H, R2 = 0.87, 95% bootstrap confidence in-

terval = 2–2.5).

Next, our model predicts that, when mitochondrial arrest rates

scale with dendrite thickness, Da Vinci-scaled dendrites can only

achieve equitable distribution of mitochondria if sister subtrees

have volumes proportional to their length. To test this prediction,

we compared the asymmetry in subtree lengths with the asym-

metry in volumes for sister subtree pairs emerging from the
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Figure 6. HS dendrites obey specific parent-daughter and sister-sister scaling rules

(A) Cartoon depicting sister-sister scaling where daughter branch cross-sectional area is proportional to subtree length/depth, or ‘‘bushiness’’: r2 � L= D.

(B) Model predictions of mitochondrial localization patterns for specific morphological scaling rules (parent-daughter scaling according to Da Vinci’s rule for trees

(a = 2) and sister-sister scaling according to r2 � L=D) and transport scaling rules (inverse scaling of arrest with dendrite radius according to ks � 1= rb, where b =

0.8, and proportional splitting of mitochondria at branchpoints according to r � r2).

(C and D) Boxplots show distal enrichment (C) or asymmetry in mitochondrial densities across sister subtrees (D) for model dendrites obeying the indicated forms

of sister-sister scaling (radii splitting according to subtree bushiness [L=D�, total subtree length [L�, or equally [r1 = r2]), with b = 0.8; dots overlaid on the boxplots

(legend continued on next page)

Cell Reports 43, 114190, May 28, 2024 11

Article
ll

OPEN ACCESS



same branchpoint. We found that length asymmetry is equal to

volume asymmetry (Figure 6I, R2 = 0.94), indicating that longer

sister subtrees have proportionally larger volumes, as predicted.

Thus, HS dendrites obey two separate morphological rules: po-

wer law scaling of parent and daughter branches with ay 2, and

sister subtree splitting with volume proportional to length (L1=

V1 = L2=V2). According to our model, for dendrites that follow

these two rules, daughter branch cross-sectional areas must

be proportional to subtree bushiness (r2 � L=D). To test this pre-

diction, we compared asymmetry in branch cross-sectional area

to asymmetry in subtree bushiness. We found that trunk cross-

sectional area and bushiness asymmetry are well correlated

(Figure 6J, R2 = 0.70). In contrast, cross-sectional area asymme-

try was only weakly correlated with subtree length, volume, or

depth asymmetry (Figures S4B–S4D).

Altogether, these results indicate that HS dendrites obey the

specific subset of morphological scaling rules that are predicted

by our model to enable the robust self-organization of steady-

state mitochondrial distributions, with mitochondria enriched in

the distal dendrites and equitably distributed across sister

subtrees.

Visual input does not affect mitochondrial movement or

localization in HS dendrites

Thus far, our mathematical model and experimental results sug-

gest that dendrite architecture plays a critical role in determining

steady-state mitochondrial distribution patterns. However,

neuronal activity has been proposed to regulate mitochondrial

localization, with local calcium signals arresting mitochondrial

motility near active synapses.19,30 To determine whether

neuronal activity regulates mitochondrial localization in HS den-

drites, we drove HS activity with a visual stimulus while simulta-

neously measuring mitochondrial motility in the dendrites. Spe-

cifically, we projected the preferred visual stimulus for HS

neurons—a global motion stimulus moving from front to back

across one eye—on a screen positioned in front of the fly while

imaging a genetically encoded calcium reporter (GCaMP6f)

and motile mitochondria (mitoDsRed) in distal dendrites

(Figures 7A and 7B). The visual stimulus drove robust calcium re-

sponses (Figures 7C–7F) but had no effect on mitochondrial

speeds, arrest rates, or linear flux rates (Figures 7G–7J). Thus,

stimulus-evoked calcium signals do not affect mitochondrial

motility in HS dendrites over short timescales.

In principle, visual input could cause a delayed change inmito-

chondrial transport that we were unable to measure in our in vivo

imaging experiments. To investigate whether chronic manipula-

tions of neuronal activity affect mitochondrial localization

patterns over longer timescales, we prevented activation of HS

neurons by rearing flies in continual darkness for 7 days after

eclosion. We found, first, that dark rearing had no effect on HS

dendrite scaling: regardless of whether the flies were reared in

the dark (dark-dark) or under a normal 24 h light-dark cycle

(light-dark), HS dendrites obeyed Da Vinci’s rule for parent-

daughter scaling and sister subtrees scaled with volume propor-

tional to length and trunk thickness proportional to bushiness

(Figures S6A–S6E). Next, we measured mitochondrial transport

in HS primary dendrites in dark-dark and light-dark flies

and found that dark rearing had no effect on mitochondrial

speeds, arrest rates, or linear flux rates in primary dendrites

(Figures S6F–S6I). Finally, we measured mitochondrial densities

in primary and distal HS dendrites and found no differences be-

tween dark-dark and light-dark flies (Figures 7K–7M), indicating

that visual input is not required for HS neurons to maintain

steady-state mitochondrial localization patterns. Instead, our re-

sults suggest that mitochondrial distribution patterns are, in ef-

fect, hard-wired by the architecture of the dendrite.

DISCUSSION

Neuronal function is inextricably linked to neuronal form.2–4,6Our

work suggests that maintenance of mitochondrial homeostasis,

and specifically the robust self-organization of a specific global

mitochondrial distribution pattern, is also linked to neuronal

morphology. We present a model in which four simple scaling

rules determine mitochondrial localization patterns. Two trans-

port scaling rules— scaling of mitochondrial transport with

dendrite radius and proportional splitting of mitochondria at

branchpoints—relate local mitochondrial motility rates to den-

dritic branch radii, and two morphological scaling rules—power

law scaling of parent and daughter radii and scaling of trunk

thickness with sister subtree size—determine the architecture

of the dendrite. There are many possible forms of these dendritic

scaling rules, but only a subset of the rules we examined—Da

Vinci scaling of parent-daughter radii at branchpoints and sister

subtree scaling with trunk thickness proportional to subtree

bushiness—predict realistic mitochondrial localization patterns

in our model (Figures 6B–6D). Our experimental measurements

demonstrate that HS dendrites do in fact obey thesemorpholog-

ical scaling rules (Figures 6H–6J). Thus, our work suggests that

intracellular transport, and the need to distribute mitochondria

throughout elaborately branched dendritic arbors, acts as an

important constraint on dendrite morphology.

We have shown that mitochondria are equitably distributed

across sister subtrees and enriched in the distal dendrites in

HS cells (Figure 1). Distribution of mitochondria throughout the

cell is critical for neuronal stability, but the relationship between

specific mitochondrial localization patterns (e.g., distal enrich-

ment) and neuronal function is unclear. One possibility is that

indicate model predictions for individual HS dendrite topologies (N = 26). Heatmaps show average distal enrichment or sister subtree asymmetry for sister-sister

scaling according to r2 � L=D and a range of values for the transport scaling parameter b (0% b%2) and the parent-daughter scaling parameter a (1% a% 3).

(E and F) HS dendrites labeled by MCFO (E) and associated skeletons and branch radii (F).

(G) Experimental measurements of sister subtree asymmetry with measurements of subtree size including radius, length, depth, bushiness, and volume;

asymmetry =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðST1 � ST2Þ=ðST1+ST2ÞD

2
q

, averaged over all subtree pairs per cell.

(H–J) Experimental measurements of parent-daughter scaling, with ra0 plotted versus ra1 + ra2 (H, best fit for a = 2:2), and sister-sister scaling, with subtree length

asymmetry plotted versus subtree volume asymmetry (I) and trunk cross-sectional area asymmetry plotted versus subtree bushiness asymmetry (J). Asymmetry

across branchpoints = (ST1 – ST2)/(ST1 + ST2); N = 649 branchpoints from 10 neurons from 7 flies. See also Figures S4 and S5.
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Figure 7. Visual input does not affect mitochondrial movement or localization

(A) Experimental setup: in vivo confocal imaging of HS dendrites in head fixed Drosophila, with a global motion stimulus (square wave gratings moving in the

preferred direction for HS cells (front-to-back) presented on a screen in front of the fly.

(B) HS dendrites, labeled with mitoDsRed (magenta) and GCaMP6f (green), imaged by confocal microscopy while a visual stimulus drove calcium signals in distal

HS dendrites.

(C) Images of calcium signals (GCaMP6f) in HS distal dendrites before (stimulus OFF, left column) and during (stimulus ON, center column) visual stimulus

presentation. The image on the right shows the difference between the left and center images (DF = stimulus ON – stimulus OFF).

(legend continued on next page)
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mitochondrial densities simply reflect local energetic demands,

with mitochondrial enrichment in subcellular regions that require

relatively higher levels of ATP production. The reversal of ion

fluxes near synapses is thought to account for a large fraction

of the neuron’s energy budget,60,61 and mitochondrial densities

weakly correlate with synaptic densities in the dendrites of

mouse cortical pyramidal neurons.50 Mitochondria also buffer

calcium,62 and variations in mitochondrial densities may

contribute to compartment-dependent differences in calcium

buffering capacities, which have recently been shown to

contribute to place field formation in mice.63

In addition to supporting dendritic function, enrichment ofmito-

chondria in specific neuronal compartments may play a role

in supporting mitochondrial function. In active mitochondria,

damaging reactive oxygen species are a by-product of the elec-

tron transport chain.64 Mitochondria compensate for ROS-

induced damage by degrading and replacing damaged proteins

and by homogenizing the mitochondrial population—diluting

damaged proteins and sharing freshly synthesized proteins—via

mitochondrial fusion and fission.65 The majority of mitochondrial

proteins are thought to be synthesized and transported into mito-

chondria in the soma, which are then trafficked to axons and den-

drites.14 Theoretical work suggests that fusion with stationary

mitochondria depletes freshly synthesizedmitochondrial proteins

from motile mitochondria as they move in the anterograde direc-

tion.66 A graded distribution of stationary mitochondria, with

higher densities in distal dendrites, may allow neurons to ensure

adequate delivery of fresh mitochondrial proteins to distal axons

and dendrites while also maximizing complementation across

mitochondria in distal compartments. Moreover, mitochondria in

HS distal dendrites are large, often spanning multiple dendritic

branchpoints (Figure S1C). If young, healthy mitochondria fuse

with stationary mitochondria upon arrival in the distal dendrites,

passive transport within these elongated mitochondria would

ensureuniform localdistributionsof freshly synthesizedmitochon-

drial proteins. Future versions of our model will includemitochon-

drial fusion and fission rates, as well as mitochondrial motility.

In our model, equitable distribution of mitochondria across

sister subtrees is robust to variation in mitochondrial transport

parameters in Da Vinci-scaled dendrites (Figure 6D). Distal

enrichment, on the other hand, depends on inverse scaling of

motility arrest with dendrite thickness (Figure 6C). The mecha-

nism underlying scaling of motility arrest with branch thickness

remains undetermined. In principle, narrowing of dendrite

branches, on its own, could be sufficient to increase motility ar-

rest. In cylindrical dendrites, the surface area-to-volume ratio

(As/V) increases as radius decreases, with As/V � 1/r. Microtu-

bule densities are conserved throughout dendritic arbors34,35

and the amount of microtubule-based transport should scale

with dendrite volume. In contrast, some mechanical interactions

that oppose mitochondrial transport should scale with surface

area. Friction between motile mitochondria and the cell mem-

brane could oppose motility in thin neuronal processes.67 Actin

localizes to the cell membrane in neurons,68 and actin-based

anchoring opposes microtubule-based transport in several con-

texts,69,70 including myosin V-dependent opposition to mito-

chondrial movement in neurons.28 Biochemical signals gener-

ated at the cell membrane could also contribute to inverse

scaling of motility arrest and dendrite radius. High glucose levels

trigger mitochondrial arrest in cultured neurons via post-transla-

tional modification of the Milton adaptor protein,71 and quantita-

tive modeling suggests that glucose-mediated motility arrest is

sufficient to affect mitochondrial localization patterns.66Neurons

take up glucose via transporters in the cell membrane72,73 and,

assuming a constant areal density of these transporters, glucose

concentrations in the cytosol could increase as the surface area-

to-volume ratio increases, thereby promoting increased mito-

chondrial arrest in thin distal dendrites. In sum, the relative

weight of mechanical and biochemical signals generated at the

cell membrane versus in the cytosol should increase as neuronal

processes narrow, and surface area-to-volume ratios may play a

general role in regulating intracellular transport in neurons.

Finally, our results suggest that neuronal signal processing

and cell biological requirements may act as competing con-

straints on neuronal architecture. According to cable theory,

Rall’s law for parent-daughter scaling is optimal for dendritic

signal processing, as it allows for efficient propagation of electri-

cal signals across branchpoints in passive dendrites.2 However,

according to our transport model, Rall’s scaling is incompatible

with equitable distribution of mitochondria across asymmetri-

cally branched sister subtrees (Figure S5). In contrast, parent-

daughter scaling according to Da Vinci’s rule facilitates robust

equitable distribution of mitochondria for a broad range of trans-

port parameters (Figure 6D). Different neuronal cell types may

(D and E) (D) GCaMP6f signals in the dendritic branch indicated in (C), and average GCaMP6f responses for a population of cells (E) (DF/F = (F – F0)/F0, where F is

GCaMP6f fluorescence and F0 is the average fluorescence during the 30 s period before stimulus onset); yellow shading indicates when the global motion

stimulus was on and gray shading indicates the standard error of the mean.

(F) GCaMP6f signal amplitude when the stimulus was off versus on. GCaMP6f fluorescence was normalized to the median fluorescence for the entire time series

(Fm) according to (F – Fm)/Fm and signal amplitudes were calculated by summing the signal for the entire time the stimulus was off or on. The asterisks indicate a

significant difference (p < 0.01, paired t test, N = 9 cells from 9 flies).

(G) Calcium responses to the motion stimulus (GCaMP6f, left) and mitochondria (mitoDsRed, right) in an HS dendritic branch. Yellow arrows indicate a moving

mitochondrion.

(H–J) Mitochondrial speeds (H), mitochondrial arrest rates (I), and linear flux rates (J) when the visual stimulus was off or on. Dots overlaid on the boxplots indicate

average values for individual flies (N = 9 flies). Histograms show the distribution of instantaneousmitochondrial velocities when the stimulus was off (gray, top plot)

or on (yellow, bottom plot).

(K) Representative images of mitochondria in HS primary and distal dendrites in flies reared under a normal 24 h light-dark cycle (light-dark) (left) or in continual

darkness (dark-dark) (right).

(L and M) Mitochondrial densities in primary and distal HS dendrites in light-dark (open circles) and dark-dark (filled circles) (L) flies and mitochondrial distal

enrichment (M). Dots overlaid on the boxplots indicate measurements from individual neurons (N = 37 light-dark, 27 dark-dark from >10 flies); asterisks indicate

significant differences (p < 0.001, unpaired t test). See also Figure S6.
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obey different parent-daughter scaling rules depending on the

relative weight of signal processing versus cell biological con-

straints. For example, HS dendrites are not passive,39 and active

dendritic conductances may allow Da Vinci-scaled dendrites to

efficiently integrate input signals while also maintaining steady-

state mitochondrial localization patterns. In contrast, neurons

with purely passive dendrites may be more likely to obey Rall’s

law and to exhibit inequitable distribution of mitochondria across

sister subtrees. Altogether, we argue that a complete set of

design principles for dendrite morphology must include rules

for the reliable intracellular transport and localization of organ-

elles, in addition to rules governing the integration and propaga-

tion of electrical signals. Moreover, maintenance of global mito-

chondrial distribution patterns is essential for the long-term

maintenance of neuronal homeostasis, and neurons that deviate

from morphological scaling rules that facilitate equitable distri-

bution of mitochondria, whether due to developmental defects

or competing functional constraints on the shape of dendrite,

may ultimately be subject to age-related defects in neuronal sta-

bility and function.

Limitations of the study

This work sheds light on the relationship between mitochondria

dynamics and dendrite architecture. However, it has some limi-

tations. We conducted our experiments using female flies only,

and it is possible that there are sex-based differences in dendrite

morphology. Moreover, we focused exclusively on Drosophila

HS neurons, and it remains to be determined if dendrite architec-

ture shapes mitochondrial localization patterns across cell types

and species. Finally, our model links mitochondrial transport to

dendrite architecture, but additional dynamic processes,

including mitochondrial biogenesis, degradation, fission, and

fusion, also contribute to the long-term maintenance of a

healthy, properly distributed population of mitochondria. We

exclude mitochondrial degradation from our model because

our experimental measurements suggest that mitophagy in HS

dendrites is negligible. In the future, experimental measurements

of the spatiotemporal patterns of mitochondrial biogenesis and

fission and fusion will be required to constrain a comprehensive

quantitative model for mitochondrial homeostasis.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-BRP DSHB nc-82; RRID: AB_2314866

Rabbit monoclonal anti-HA Cell Signaling Technology 3724; RRID: AB_10693385

DyLight 550 Mouse monoclonal anti-V5 Bio-Rad MCA1360D550GA;

RRID: AB_2687576

Rat monoclonal anti-FLAG Novus Biologicals NBP1-06712; RRID: AB_1625981

Chicken polyclonal anti-GFP Aves Labs GFP-1010; RRID: AB_2307313

Rabbit polyclonal anti-RFP Rockland 600-401-379; RRID: AB_2209751

Alexa Fluor 405 Goat anti-Mouse IgG Thermo Fisher Scientific A-31553; RRID: AB_221604

Alexa Fluor Plus 488 Donkey anti-Rabbit

IgG

Thermo Fisher Scientific A-32790; RRID: AB_2762833

Alexa Fluor 488 Goat anti-Chicken IgY Thermo Fisher Scientific A-11039; RRID: AB_2534096

Alexa Fluor 555 Goat anti-Rabbit IgG Thermo Fisher Scientific A-21428; RRID: AB_2535849

Alexa Fluor 647 Donkey anti-Rat IgG Abcam ab150155; RRID: AB_2813835

Alexa Fluor 647 Goat anti-Mouse IgG Thermo Fisher Scientific A-21235; RRID: AB_2535804

Chemicals, peptides, and recombinant proteins

Bondic UV glue BONDIC N/A

ProLongTM Gold Antifade Mountant Invitrogen P10144

paraformaldehyde Sigma-Aldrich 158127

Triton X-100 Sigma-Aldrich T9284

Experimental models: Organisms/strains

Canton-S Bloomington Stock Center 64349

w-; +; R27B03-GAL4 (HS) Bloomington Stock Center 49211

w-; UAS-GCaMP6f; + Bloomington Stock Center 52869

w+; UAS-mitoDsRed; + Xinnan Wang N/A

w+; UAS-mitoGFP; + Xinnan Wang N/A

w+; UAS-tdTomato; + Bloomington Stock Center 36327

w+; UAS-mitoGFP,UAS-tdTomato/CyO;

R27B03-GAL4(HS)/TM6B

this study N/A

w-,hs-FLPG5; +; 10xUAS(FRT.stop)

myr:smGdP-HA,10xUAS(FRT.stop)

myr:smGdP-V5-THS-10xUAS(FRT.stop)

myr:smGdP-FLAG (MCFO stock)

Bloomington Stock Center 64085

w+; UAS-mitoQC; + Bloomington Stock Center 91640

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/

Fiji Schindelin et al.74 https://fiji.sc/

Python 3 Python https://www.anaconda.com/products/

distribution

ilastik Berg et al.75 https://www.ilastik.org/

neuTube Feng et al.76 https://neutracing.com/

TREES toolbox Cuntz et al.7 https://www.treestoolbox.org/

TrakEM2 Fiji plug-in Cardona et al.77 https://imagej.net/plugins/trakem2/

PsychoPy Peirce et al.78 https://www.psychopy.org/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and reasonable requests for resources and reagents should be directed to the lead contact, Erin Barnhart

(eb3305@columbia.edu).

Materials availability

The w+; UAS-mitoGFP,UAS-tdTomato/CyO; R27B03-GAL4(HS)/TM6B Drosophila stock will be made available by the lead contact

upon request.

Data and code availability

d Data will be made available by the lead contact upon request.

d Custom written code is available online: https://zenodo.org/records/10777759.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Drosophila strains and husbandry

Drosophila stocks used in this study include wild-type Canton S (BSC64349), R27B03-GAL4 (HS driver, BSC49211), UAS-GCaMP6f

(BSC52869), MCFO-1 (BSC64085), UAS-tdTomato (BSC36327), UAS-mitoQC (BSC91640), andUAS-mitoDsRed andUAS-mitoGFP

(gifts from XinnanWang). The w+; UAS-mitoGFP,UAS-tdTomato/CyO; R27B03-GAL4(HS)/TM6B stock was generated by recombin-

ing UAS-tdTomato and UAS-mitoGFP on the second chromosome. All flies were cultured in vials containing a standard cornmeal-

agarmedium at 25�Cwith 60%humidity in a 12h light/dark cycle. Crosses were flipped into fresh vials every 3 days and progenywere

imaged 4–7 days after eclosion.

METHOD DETAILS

Drosophila whole brain dissection and immunostaining

For mitochondria labeling, female flies were collected 1–2 days after eclosion and then dissected 3–5 days later. Flies were anesthe-

tized on ice before dissection in 2% paraformaldehyde and 0.1 M L-Lysine on an elastomer plate, followed by fixation for 1 h on ice.

Samples were washed three times (5 min per wash) with PBST (PBS with 0.5% Triton), blocked in PBST-NGS (PBST with 5% normal

goat serum, Abcam) for 30 min at room temperature, and incubated for two nights at 4C in primary antibodies diluted in PBST-NGS

(Chicken anti-GFP, 1:1000 dilution; Rabbit anti-RFP, 1:100; and Mouse anti-BRP, 1:10). Then, brains were washed three times

(30min per wash) in PBST-NGS before incubation in secondary antibodies (AF488 Goat anti-Chicken, 1:1000; AF555 Goat anti-Rab-

bit, 1:500; and AF647 Goat anti-Mouse, 1:500) for 3 h at room temperature. Finally, brains were washed three times (20min per wash)

in PBST-NGS prior to mounting in ProLong gold antifade (Invitrogen).

For MultiColor FlpOut (MCFO) labeling, HSGAL4 driver lines were crossedwithMCFO59 virgins. Offspring were collected 1–2 days

after eclosion, heat shocked at 38�C for 25 min, and dissected three days later. Fly brains were dissected in cold PBS solution and

fixed in 4% formaldehyde for 25 min at room temperature. Brains were subsequently rinsed with PBST and blocked in PBST-NGS at

room temperature for 1.5 h. Brains were incubated for two nights in primary antibodies diluted in PBST-NGS (Mouse anti-BRP, 1:10;

Rabbit anti-HA, 1:400; and Rat anti-FLAG, 1:200), incubated for two nights in secondary antibodies in PBST-NGS (AF405 Goat anti-

Mouse, 1:50; AF488 Donkey anti-Rabbit, 1:400; and AF647 Donkey anti-Rat, 1:200), and finally incubated overnight in tertiary anti-

bodies in PBST-NGS (DyLight550 Mouse anti-V5, 1:300). Prior to each antibody incubation, brains were washed three times for

10 min each in PBST. All antibody incubations were performed at 4�C. Brains were mounted in VectaShield (Vector Laboratories)

and imaged using a confocal microscope.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Custom written Python code for quantifying

mitochondrial transport, extracting visual

stimulus-driven calcium signals from in vivo

images, and generating synthetic dendritic

skeletons

this paper https://zenodo.org/records/10777759

Custom written MATLAB code for modeling

mitochondrial localization patterns in

branched dendrites

this paper https://zenodo.org/records/10777759
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In vivo imaging

Female flieswere cold anesthetized and positioned in a key-hole cut in a thinmetal shim, with the back of the head exposed above the

shim and the eyes below the shim. The fly was secured in place with UV-cured glue (Bondic) and the brain was exposed using fine

forceps to dissect a hole in the cuticle and remove overlying fat and trachea. The brain was perfused with a sugar saline solution

(103 mM NaCl, 3 mM KCl, 5 mM TES, 1 mM NaH2PO4, 26 mM NaHCO2, 4 mM MgCl2, 1.5 mM CaCl2, 10 mM trehalose, 10 mM

glucose, and 7 mM sucrose). Neurons were imaged using an integrated confocal and two-photon microscope (Leica SP8 CSU

MP Dual) equipped with a 2531.0 NA water immersion objective (Leica). For confocal imaging of motile mitochondria (Figures 2,

4A–4G, 5, and 7G–7J), stationary GFP- or DsRed-tagged mitochondria in the field of view were photobleached prior to time lapse

imaging, allowing for resolution of individual motile mitochondria as they moved through the field of view. In distal dendrites, bleach-

ing stationary mitochondria prevented reliable imaging of mitochondria moving in the retrograde direction, so all subsequent analysis

was conducted for anterograde mitochondria only. Confocal z-stacks (voxel size = 108.54 nm 3 108.54 nm x 1 mm) were collected

over time (frame rates ranged from 1 to 5 s per z stack, depending on the experiment) for 10–20 min after photobleaching.

Visual stimulus presentation

Visual stimuli were generated using PsychoPy78 (Python) and presented on a white screen (Da-Lite Dual-Vision vinyl, AV Outlet) using

a digital light projector (DLP LightCrafter, Texas Instruments). The stimulus screen spanned �60� of the fly’s visual field horizontally

and �60� vertically, and the stimulus was updated at 60 Hz. To avoid detection of light from the stimulus by the microscope, the

stimulus was filtered using a 472/30 nm bandpass filter (Semrock). Voltage signals from the imaging software were relayed to

PsychoPy via a LabJack device, in order to synchronize the stimulus and the imaging frames. The visual stimuli were full contrast

square wave gratings (l = 30�) that filled the entire stimulus screen. When the stimulus was on, the gratings moved in the preferred

direction for HS neurons (front-to-back across one eye) at 30�/s; when the stimulus was off, the gratings remained stationary.

Image analysis

Quantification of mitochondrial morphologies and localization patterns

Mitochondrial densities were measured from confocal z-stacks of HS neurons labeled with mitoGFP and tdTomato and from ssTEM

images from the Female Adult Fly Brain (FAFB) dataset.47 For confocal images, the dendrite (cytosolic tdTomato) and the mitochon-

dria within it (mitoGFP) were manually segmented from three to six z slices per primary or distal dendrite using Fiji. Densities were

calculated as D = M/(M + C), where M is the total number pixels segmented from the mitoGFP channel and C is the total number

of pixels segmented from the cytosolic tdTomato channel. Analysis of mitochondrial densities in light-dark and dark-dark samples

(Figure 7K–7M) was conducted in a blinded fashion: images were de-identified and randomized prior to z slices selection andmanual

segmentation. For ssTEM images from the FAFB dataset,47 HS neurons were identified within the larger FAFB image volume using

previously traced HS skeletons.48 Tomeasure the size of individual mitochondria, small image volumes centered aroundHS dendritic

segments were cropped out of the FAFB dataset, and mitochondria within HS dendrites were manually segmented in three dimen-

sions using the TrakEM2 Fiji plug-in.77 To measure mitochondrial localization patterns throughout HS neurons, all HS skeletons were

resampled using a python-CATMAID interface library, pymaid, such that the graph distance between skeleton nodes was 5 mm. All

branch points and endpoints were preserved during resampling. Two-dimensional image slices centered around each node in the

resampled skeleton were then cropped out of the FAFB dataset, and HS neurons and the mitochondria within them were manually

segmented in each image using TrakEM. Mitochondrial density (total mitochondrial area/total neurite area) was measured as a func-

tion of neuronal compartment (axons versus dendrites), distance from the soma, and across sister subtree pairs using custom-written

Python code.

Quantification of mitochondrial motility

Mitochondrial lengths, speeds, arrest rates, and flux rates were measured from maximum projections of confocal z-stacks of mi-

toGFP and cytosolic tdTomato expressed in HS neurons. Max projections were aligned using the TurboReg79 Fiji plugin. Linear mito-

chondrial flux rates weremeasured by counting the number of motile mitochondria that moved through a particular cross-section of a

dendritic branch in either the anterograde or retrograde direction per unit time. Individual motile mitochondria were hand-tracked to

generate mitochondrial tracks using the Tracking Fiji built in plugin. Mitochondrial speeds and arrest rates weremeasured from these

mitochondrial tracks using custom-written Python code. Mitochondrial speeds were calculated for each mitochondrion as an

average speed (distance over time) above an instantaneous speed threshold of 0.1 mm/s. Arrest rates weremeasured for eachmotile

mitochondrion by counting the number of times the mitochondrion stopped moving for the entire time period it was tracked. The ar-

rest rate (stops per second) was then calculated by dividing the total number of stops by the total time. Lengths of motile mitochon-

dria were measured using the line selection tool in Fiji.

Estimates of mitochondrial exchange rate and motile fraction

A mitochondrial volume exchange rate J was estimated based on experimental measurements of mitochondrial linear flux (r � 2

mitochondria/minute, Figure 2H) and the approximate volume of the motile mitochondria (Vm � 0:5 mm3): J = rVm � 1 mm3/min.

The average volume of motile mitochondria was estimated as Vm = pr2l, where l is the length of a motile mitochondrion (�2 mm,

Figure 2E) and r is the radius (assumed to be �0.3 mm). Vm � 0:5 mm3 is consistent with the median mitochondrial volume in our

EM reconstructions (Figure S1C). The fraction of the total mitochondrial volume in the entire dendritic arbor exchanged through

the primary dendrite per hour was estimated based on experimental measurements of themitochondrial density in the entire dendrite
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(c � 20%, Figure S1F), previously published measurements of the total volume of the dendrite (Vd �2000 mm3),46 and the mitochon-

drial volume exchange rate (J� 1 mm3/min): Jnorm = J=ðc VdÞ � 15% hr�1. The fraction of mitochondria that are motile in the primary

dendrite at any given instant was estimated based on the mitochondrial volume exchange rate (J � 1 mm3/min), the typical speed of

motile mitochondria (v � 0.6 mm/s, Figure 2F), the mitochondrial volume density (c � 10% in the primary dendrite, Figure S1G), and

the cross-sectional area (Ad� 30 mm2, estimated from the radius of the primary dendrite, r� 3 mm, Figure 2D): fm = 2 J/(v c Ad)� 2%.

Quantification of mitophagy

Confocal z-stacks of HS dendrites and cell bodies, acquired via in vivo confocal imaging of head-fixed flies, were cropped into sub-

stacks containing distinct subcellular compartments (soma, primary dendrite, and distal dendrites). Mitolysosomes (red-only voxels)

and mitochondria (red+green voxels) in each substack were manually segmented in Fiji to create binary masks, and the mitophagy

index (MI) was calculated as MI = (number of mitolysosomes voxels)/(number of mitochondria voxels) for a given compartment.

Quantification of dendritic branching patterns

Dendritic arbors for individual HS neurons were segmented from MCFO images using ilastik75 and custom-written Python code.

Unique pixel classifiers were trained in ilastik for eachMCFO z stack, and binary masks were generated from the resulting probability

maps in Python by thresholding and connected component analysis. Binary masks were then manually cleaned up in Fiji and skel-

etonized using the Skeletonize (2D/3D) Fiji built in plugin. Dendritic arbors for light-dark and dark-dark were randomized andmanually

traced using 3D images of a cytosolic volumemarker, tdTomato, using neuTube76 and custom-written MATLAB code. Skeleton data

was translated into a set of nodes (including junction nodes, parent node, and distal tips) with three-dimensional coordinates, and

curved edge paths connecting the nodes. Once the initial network structure was extracted, manual clean-up was carried out with

a custom MATLAB GUI, involving the removal of short spurious branches (‘shrubs’) from the network. A combination of percentile

and asymmetry cutoffs were used to quantitatively remove shrubs that would not contribute to the total length in subsequent anal-

ysis. A degree of manual editing was performed for each cell, such that any branchwithout a discernible thickness was removed from

the network object. The widths of network branches were also calculated with the aid of the MATLAB GUI, which allows the user to

add and adjust widthmeasurements across a given edge. For longer edges, onemeasurement point close to the branching point and

the other closer to the end of the edge are chosen. Total subtree length, volume, depth, and bushiness following each branch was

calculated using MATLAB written code. Volume was measured using the diameter and length of each edge bounded between two

nodes. Bushiness is defined as the total subtree length (L) over the subtree depth (D), where D is the path length from the base of the

subtree to each distal tip, weighted by the length of each subtree. Proportional scaling of sister subtrees (V� L and r2�L/D, Figures 6I

and 6J) was assessed by measuring each sister subtree pair (ST1 and ST2, where ST1 and ST2 are the length, volume, truck thick-

ness (r2), or bushiness (L/D) for sister subtree 1 and 2), calculating asymmetry between the sisters for each metric according to ST1-

ST2)/(ST1+ST2), and then comparing asymmetries for volume versus length and for trunk thickness versus bushiness. Equivalent

asymmetries indicate proportional scaling of the metrics (e.g., Vasym = Lasym indicates V1=V2 = L1=L2, or equivalently V � L for

the sister subtrees). Note that proportionality does not hold when comparing non-sister subtrees (e.g., comparing subtrees from

different levels in the tree), and calculating asymmetries allows for normalization of metrics for sister subtrees, enabling statistical

comparisons across multiple entire trees.

Mathematical modeling

Mean-field models for mitochondrial distributions in a dendritic tree

Comparing average subtree densities in models with uniform transport. We first consider models where themitochondrial transport

parameters are spatially uniform (constant velocity v and stopping rate ks throughout the arbor, b = 0). Steady state linear densities

of motile mitochondria (r±

i ) and stationary mitochondria (rsi ) are defined by Equation 1 in the main text. These densities are constant

on individual branches, with values set by boundary conditions at the junction, which require incoming flux to equal outgoing flux at

steady-state. Namely, the solutions to Equation 1 are given by:

r+i = r�i ; (Equation 2a)

rsi =

ks

kw
rwi ; (Equation 2b)

r+1 =

jr+0
1+j

; r+2 =

r+0
1+j

(Equation 2c)

where pw
i = r+i + r�i is the linear density of motilemitochondria on branch i, and r+0 , r

+

1 , r
+

2 are linear densities of anterogrademitochon-

dria in a mother branch and its two daughter branches respectively. The junction-specific parameter j = r+1=r
+

2 determines how the

anterograde flux splits at the junction. In this manuscript we consider both the simple model of equal splitting j = 1 as well as the

model where anterograde mitochondria split in proportion to daughter branch area ðj = r21=r
2
2 , supported by experimental data).

The volume densities in the daughter branches can be expressed as:
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c1 =

�jc0

1+j

� r20
r21
; c2 =

� c0

1+j

� r20
r22

(Equation 3)

where the relationship holds for both the motile and stationary mitochondria densities (if stopping rate ks is assumed constant on all

branches, b = 0).

A particularly simple version of the model is one where anterograde mitochondria split equally at all junctions (j = 1). Then the

volume density a branch that is i junctions below the trunk is given by:

ci =

�
1

2i

��
r2trunk
r2i

�
ctrunk (Equation 4)

If we further assume that sister branch widths are split equally at all junctions (m = r1=r2 = 1), this implies that two sister branches

will always have equal volume densities. In this case, we can express the branch radii according to ri = rtrunk=2
i=a, where a describes

the parent-daughter scaling relationship, with ra0 = ra1 + ra2 relating the parent branchwidth r0 and daughter branchwidths r1; r2 at each

junction. The volume density in a branch separated by i junctions from the trunk is then:

ci = 2ð2=a� 1Þictrunk (Equation 5)

If the arbor obeys Da Vinci scaling (a = 2), which conserves cross-sectional area across junctions, then the volume density of

mitochondria must be equal in all branches of the tree. Thus, there is no distal enrichment and perfectly symmetric mitochondrial

distributions. By contrast, in a tree where a < 2 (as for Rall’s Law, a = 3=2), the volume density will increase as a power law with

the number of junctions away from the trunk. Similarly, for trees with a > 2 (as for Murray’s Law, a = 3), the volume density will

decrease as a power law toward more distal branches.

Alternately, we consider the case where the anterograde flux at each junction splits in proportion to the daughter branch area: j =

r21=r
2
2 . From Equation 2, this gives the following relation between parent and daughter volume densities:

c1 = c2 =

c0r
2
0

r21+r
2
2

(Equation 6)

In all cases, the volume density in two sister branches must be equal. If the arbor obeys Da Vinci scaling (a = 2), then the volume

density will be constant throughout the tree (i.e., the average volume density in all sister subtree pairs will be equal). However, for non-

Da Vinci-scaled arbors with asymmetric branching patterns and unequal sister-branch radii, the average volume densities in two sis-

ter subtrees may be quite different.

As an example, we consider specifically the mitochondrial volume density in arbors that obey Rall’s Law relating parent and

daughter branch widths (ra0 = ra1 + ra2 , with a = 3=2). Assuming uniform mitochondrial transport (b = 0) and anterograde splitting

in proportion to branch area (j = r21=r
2
2 ), we show that mitochondrial densities increase with distance from the soma and that asym-

metric sister subtrees must in general have unequal average densities. The relationships below apply to both motile and stationary

mitochondrial densities.

We begin by focusing on a single junction with a parent trunk of radius r0 and linear mitochondrial density r0, and daughter trunk

radii r1; r2 and linear densities r1; r2. A single (junction-dependent) parameter, m = r1=r2, describes how the dendritic width is split

between sister branches. For convenience, we define a related quantity: bm0 = ra1=r
a
0 = ma =ð1 +maÞwhich describes how the first sis-

ter branch radius compares to that of the parent branch. The ratio of mitochondrial volume density between the daughter branches

and the parent can be written as:

c1

c0

=

c2

c0

=

r20
r21+r

2
2

=

1

bm2=a
0 +ð1 � bm0Þ

2=a
(Equation 7)

For a < 2, this ratio is always above unity (c1=c0 > 1), except in the edge cases of m0 = 1 or m0 = 0, which would correspond to one

daughter branch disappearing. Thus, the volume density of mitochondria in the daughter branches of a Rall’s Law tree is always

higher than in the parent branch. This is a direct consequence of the reduced cross-sectional area in the daughter branches.

We next consider whether it is possible to choose values of the sister trunk splitting parameter mi at each junction i in a way that

ensures equitable mitochondrial distribution in the two sister subtrees. We begin by defining two parameters for a subtree initiating

from trunk 0. First, we define the parameter h0, which relates the total volume of the subtree to the cross-sectional area of the trunk:

V0 = h0r
2
0 . For a symmetric Da Vinci tree, where total cross-sectional area is conserved at each junction, the parameter h0 represents

the depth of the tree (distance from soma to distal tips). For a symmetric Rall’s Law tree, however, the value of h0 is less than the

depth, due to the narrowing of total cross-sectional area below each junction. Second, we define the parameter z0, which relates

the average volume density of mitochondria within the subtree to the density within the trunk: CcD0 = z0r0=r
2
0 . For a Da Vinci tree,

under the assumption of uniform mitochondrial transport, z = 1 for all junctions regardless of the tree morphology. For a Rall’s law

tree with at least one junction, the increase in density from parent to daughter branches implies that z0 > 1. These two parameters

describing the volume and average mitochondrial density in a subtree, can be expressed recursively:
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h0 = l0 + h1bm
2=a
0 + h2ð1 � bm0Þ

2=a
(Equation 8a)

z0 =

l0+
z1bm2=a

0 +z2ð1 � bm0Þ
2=a

bm2=a
0 +ð1 � bm0Þ

2=a

l0+h1bm
2=a
0 +h2ð1 � bm0Þ

2=a
(Equation 8b)

where h0, z0 are the values for a tree with parent trunk 0 and h1;2, z1;2 are values for the daughter subtrees with trunks 1 and 2.

For two sister subtrees, the volume densities in the trunkmust be the same (Equation 6). Consequently, the subtrees will have equal

average mitochondrial densities if and only if z1 = z2. If we want to establish a universal rule for splitting sister trunks (i.e., defining mi

values at each junction) that depends only on themorphology of the downstream subtree, then the only way to ensure equitablemito-

chondrial densities throughout all sister subtrees in the arbor would be for all values of zi to be set to a single constant zi = z�. For a

Rall’s Law arbor, we would need to pick a value z� > 1 when setting such a rule. In Figure S5, we consider a Rall-scaled arbor with

junction connectivities and branch lengths extracted from a Drosophila HS arbor skeleton. Starting from the distal branches of the

tree, we recursively solve, where possible, for the value of mi at each junction that would set zi = z� for the parent trunk leading to that

junction. Where a solution is impossible (always due to the maximum value of zi being below z�), we pick the splitting that maximizes

zi. Red circles in the figure show junctions where a solution was not found that could enable the two sister subtrees to have equal

mitochondrial densities. Choosing a high value of z� makes it impossible to enforce equitable mitochondrial densities in many pairs

of sister subtrees (Figure S5A), in contrast to experimental observations. On the other hand, choosing z�z1 leads to an unrealistic

collapse of the arbor to a single primary path in order to maintain equitable mitochondrial distribution (Figure S5B). Overall, these

calculations imply that a Rall’s tree morphology (together with uniformmitochondrial transport kinetics and anterograde flux splitting

in proportion to trunk area) leads to increased mitochondrial densities in distal branches but cannot allow for a realistic splitting of

branch widths that establishes equal mitochondrial densities between sister subtrees.

Subtree densities in a Da Vinci tree with non-uniform transport. Rather than assuming spatially constant mitochondrial motility, an

alternativemodel can be constructed wheremitochondria aremore likely to halt on narrower branches, with stopping rate ks � 1= rbi ,

while the restarting rate kw and pause-free velocities v remain constant. It should be noted that the steady-state densities (Equation 1)

depend only on the ratio of ks=kw in each branch and not on the rates themselves. Thus, equivalent model results would be obtained if

the restarting rate kw was instead made to vary with branch width.

One simple model for width-dependent stopping would be to set the rate inversely proportional to the cross-sectional area of each

branch: ks;i = k�s=r
2
i , corresponding to b = 2. With ks � 1=r2, the linear density of stationary mitochondria in branch i is given by:

r
ðsÞ
i =

k�s
kw

r
ðwÞ
i

	
r2i (Equation 9)

where r
ðwÞ
i = r+i + r�i is the motile linear density of mitochondria. At a junction with daughter branches 1 and 2, we assume this motile

linear density splits according to j = r+1=r
+

2 = r21=r
2
2 , in keeping with experimental measurements (Figure 5).

In a tree with Da Vinci scaling, the volume density of motile mitochondria is spatially constant, so that all branches have c
ðwÞ
i =

c
ðwÞ
trunk = r

ðwÞ
trunk=r

2
trunk . We can then calculate the average volume density of the stationary population in a subtree with total volume

VST and total branch length LST :

CcðsÞDST =

P
i˛STr

ðsÞ
i liP

i˛ST r
2
i li

=

k�s
kw

c
ðwÞ
trunk

P
i li

VST

�
LST

VST

(Equation 10)

where the summations are over all branches in the subtree. Therefore, the ratio between the average stoppedmitochondrial densities

in sister subtrees becomes:

CcðsÞD1
CcðsÞD2

=

L1=V1

L2=V2

(Equation 11)

Keeping inmind that CcD = CcðwÞD+ CcðsÞD and that cðwÞ is the same for all branches in a Da Vinci tree, we see that equitable distribution

of mitochondria between sister subtrees can be achieved only if the volume of each sister subtree is proportional to its total length:

L1

V1

=

L2

V2

(Equation 12)

For a Da Vinci arbor, this proportional scaling of sister subtree length and volume can be achieved via a particular form for the sister

trunk width relation (m = r1=r2). We begin by defining the depth of a tree, D, via a recursive approach. For a subtree consisting of a

single branch of length l1, the depth is simply defined as that branch length (D1 = l1). Next, we consider a tree with trunk of index 0,

splitting at a downstream junction between subtree trunks 1 and 2.We define the depth of the tree according to the following formula:
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D0 = l0 +
L1+L2

L1=D1+L2=D2

(Equation 13)

whereD1;D2 are the depths and L1;L2 are the total branch lengths of the subtrees starting with branch 1 and 2, respectively. Concep-

tually, this expression averages the inverse depths of the two subtrees, weighted by their respective lengths, and adds on the length

of the parent trunk. We note that in the case where the two subtrees have the same depth (D1 = D2) then the overall depth of the tree

becomes D0 = l0 +D1. Thus, in an arbor where all distal tips are the same distance from the parent node, the depth of the tree will

simply be equal to that distance.

We now consider the specific case of a Da Vinci arbor that additionally obeys the criterion in Equation 12, where the volume of a

sister subtree is proportional to its total length. As before, we express the volume of the arbor in terms of the prefactor h0 according to

V = h0r
2
0 . We then show by induction that under these assumptions the prefactor is equal to the depth: D0 = h0 . First, we use the

length-volume proportionality to express the volume of each subtree in terms of the parent volume and the subtree lengths according

to:

V0 = l0r
2
0 +V1 +V2 (Equation 14a)

V1 =

Li

L1+L2

ðV1 + V2Þ =

Li

L1+L2

�
V0 � l0r

2
0

�
= hir

2
i i = 1; 2 (Equation 14b)

Next, we can apply the Da Vinci law relating parent and daughter branch widths:

r20 = r21 + r22 =

L1=h1+L2=h2

L1+L2

�
V0 � l0r

2
0

�
; (Equation 15a)

V0 =

�
l0 +

L1+L2

L1=h1+L2=h2

�
r20 = h0r

2
0 (Equation 15b)

Thus, we see that if the two subtrees have depthsD1 = h1 andD2 = h2; then the overall tree will also haveD0 = h0 , where depth is

defined according to Equation 12. Since single branches have Di = hi by definition, this argument implies that all trees obeying Da

Vinci scaling and length-volume proportionality have volume given by V0 = D0r
2
0 .

Finally, we note that, for a Da Vinci tree, the proportionally of length and volume can now be translated directly into a relationship

between sister subtree trunk widths:

L1=V1

L2=V2

=

L1


�
D1r

2
1

�

L2



ðD2r

2
2Þ

= 1 (Equation 16a)

m2
=

r21
r22

=

L1=D1

L2=D2

=

b1

b2

(Equation 16b)

where we define the ‘bushiness’ of a subtree (bi) as its total length divided by its depth: bi = Li=Di. Trees with high bushiness are

broader, in the sense of having a greater total length of branches at a given depth, arising from more frequent junctions (Figure 4B).

Overall, we have shown that in an arbor obeying the Da Vinci rule (a = 2), wheremitochondrial stopping is inversely proportional to

branch area (b = 2), equal densities of mitochondria between sister subtrees will be obtained if the sister trunk cross-sectional areas

are split in proportion to the subtree bushiness (Equation 15b).

Average subtree densities for general transport behavior in Da Vinci arbors. We next consider a generalization of the mitochondrial

distributionmodel to the casewhere both the stopping rate ks;i and the pause-free velocity vi can vary depending on the branchwidth.

At steady state, the conservation of incoming and outgoing flux into a branch junction gives a relationship between the motile mito-

chondria density r
ðwÞ
0 in the parent trunk and the daughter branches. We maintain the assumption that the splitting of mitochondrial

flux into each daughter branch is proportional to the cross-sectional area. Specifically, this gives the two conditions:

y0r
ðwÞ
0 = y1r

ðwÞ
1 + y2r

ðwÞ
2 (Equation 17a)

j =

y1r
ðwÞ
1

y2r
ðwÞ
2

=

r21
r22

(Equation 17b)

where we note that rðwÞ
= 2r+ by symmetry. The density of stationary mitochondria in each branch is given by r

ðsÞ
i =

ks;i
kw
r
ðwÞ
i .
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Assuming a Da Vinci relationship between parent and daughter branch widths, we can solve for the volume density of mitochondria

in daughter branches as follows:

y0r
ðwÞ
0 = y1r

ðwÞ
1

�
1 +

r22
r21

�
=

y1r
ðwÞ
1 r20
r21

(Equation 18a)

c
ðwÞ
1 = r1

	
r21 = c

ðwÞ
0

y0

y1
(Equation 18b)

Consequently, throughout the entire arbor, the motile volume density in each branch can be written in terms of the local velocity

and the density in the parent trunk of the full tree: c
ðwÞ
i = c

ðwÞ
trunk

vtrunk
vi

. The total volume density on a branch, including motile and sta-

tionary mitochondria, can be expressed in terms of the average velocity (with pauses included), given by yi =
kw

kw+ks;i
yi. Specifically:

ci = c
ðwÞ
i + c

ðsÞ
i =

�
ks;i+kw

kw

�
c
ðwÞ
trunk

ytrunk

yi
= c

ðwÞ
trunkytrunk

	
yi (Equation 19)

The average volume density of mitochondria in a subtree is then given by:

CcDST =

P
i˛STc

ðwÞ
i r2i liP

i˛ST r
2
i li

=

1

VST

X
i˛ST

r2i lic
ðwÞ
trunkytrunk

vi
= c

ðwÞ
trunkytrunkC1=vDV (Equation 20)

where the final term denotes the volume-weighted average of the inverse velocity over the subtree: C1=vDV = ð
P

i˛ST r
2
i lið1 =viÞÞ =VST .

We consider the case where the average velocity (including pauses) along a branch scales as a power law of the branch width:

vi � r
g

i : Under this assumption, the ratio of sister subtree densities is given by:

CcD1
CcD2

=

C1=vDV1

C1=vDV2

=

V2

V1

P
i˛ST1

r2�g

i li
P

i˛ST2
r2�g

i li
(Equation 21)

In the case that g = 2, this relationship reduces to CcD1=CcD2 = ðL1 =V1Þ =ðL2 =V2Þ, and equal densities of mitochondria between

sister subtrees are again achieved when the subtree volume is proportional to its total length. A particular case that leads to g = 2

is where restarting rates are low (ks;i [ kw throughout most of the tree), pause-free velocities are constant, and the stopping rate

scales inversely with cross-sectional area (ks;i � 1=r2i Þ: This is the simplified case considered in the main text.

Mitochondrial processivity. Our basic model (Equation 1 in the main text) assumes that mitochondria lose all memory of their direc-

tion of motion when they stop. Processivemotion that persists beyond individual stopping events can be incorporated in amore gen-

eral model with different stopped states (rs+i ;rs�i ) that retain a memory of prior direction of motion, and a switching probability ps for

the organelle to reverse direction upon restarting. The steady-state equations then generalize to:

dr+i
dt

= � y
dr+i
dx

� ks;ir
+

i + kw;ipsr
s�
i + kw;ið1 � psÞr

s+
i = 0 (Equation 22a)

dr�i
dt

= y
dr�i
dx

� ks;ir
�
i + kw;ipsr

s+
i + kw;ið1 � psÞr

s�
i = 0 (Equation 22b)

drs+i
dt

= ks;ir
+

i � kw;ir
s+
i = 0 (Equation 22c)

drs�i
dt

= ks;ir
�
i � kw;ir

s�
i = 0 (Equation 22d)

These equations reduce to the base model with ps = 1=2 , with the total density of stopped mitochondria defined as rsi =

rs+i + rs�i .

The solutions to this set of equations can be found bymatching boundary conditions at the dendritic tips and branch points. As the

basemodel described in themain text, reflecting boundaries at the tips and conservation of mass as the junction impy that r+i = r�i at

all boundaries. This relationship, together with Equation 22, leads to steady-state solutions that constant along each individual

branch, with rs±i = ðks;i =kw;iÞr
± everywhere. Finally, adding Equations 22c and 22d together to set the total density of stopped mito-

chondrial reduces this model back to Equation 1.

Similarly, we can reducemitochondrial processivity by introducing a new rate kr;i for reversing the direction of motion while remain-

ing in the motile state. In this case, the steady-state equations become:

dr+i
dt

= � y
dr+i
dx

� ks;ir
+

i +
1

2
kw;ir

s
i + kr;ir

�
i � kr;ir

+

i = 0 (Equation 23a)
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dr�i
dt

= y
dr�i
dx

� ks;ir
�
i +

1

2
kw;ir

s
i + kr;ir

+

i � kr;ir
�
i = 0 (Equation 23b)

drsi
dt

= ks;i
�
r+i +r

�
i

�
� kw;ir

s
i = 0 (Equation 23c)

As in the base model, solving these equations (with reflecting conditions at the tips) implies that r+i = r�i at all boundaries, and the

terms involving the reversal rate thus disappear, reducing the system back to Equation 1 in the main text.

Overall, the processivity of mitochondrial motion in a dendritic tree has no effect on the steady-state distribution of mitochon-

drial mass.

Generation of model dendrite skeletons

Dendrite skeletons with well-defined branch lengths and connectivity were obtained either fromMCFO images ofDrosophilaHS neu-

rons as described above, from published swc files,46 fromHS skeletons traced through a ssTEM dataset,48 or from synthetically con-

structed trees. The synthetic trees were constructed in Python 3.7.6 using the NetworkX library. The skeleton of a binary tree was

initiated with a single junction consisting of a parent branch and two daughter branches of unit length. Moving downstream along

the tree, each daughter branch either terminated as a distal tip (with probability 1/3 ), increased in length by an additional unit (prob-

ability 1/3 ), or branched into two more daughter branches (probability 1/3 ). This process was repeated up to a preset maximum path

distance (40 unit branch lengths) from the arbor parent node to the distal tips. Examples of the resulting random-topology binary tree

structures are shown in Figure S3A.

Quantification of mitochondrial distribution patterns in model dendrites

For each dendrite skeleton, the radius of the primary branch (the trunk of dendritic arbor) was set to r0 = 1 (in dimensionless units).

The radii of the rest of the branches in the arbor were set based on two morphological scaling rules (parent-daughter scaling and

sister-sister scaling). Mitochondrial linear densities within each branch were determined by analytical solutions of the linear differen-

tial equations for all combinations of the morphological and transport scaling parameters (a, m, b, and c), as described in the main

text. Model predictions of mitochondrial localization patterns were quantified using two parameters: distal mitochondrial enrichment

(d) and average asymmetry across sister subtrees (z). Distal mitochondrial enrichment was calculated according to d =
Ccs

distal
D

Ccs
primary

D
, where

CcsdistalD and CcsprimaryD are the average volume densities of stationary mitochondria in the distal and primary dendrites, respectively, and

distal dendrites were defined as those whose distance from the soma is greater than 75% the maximum value in the tree. The asym-

metry metric was calculated as the root-mean-squared asymmetry in volume densities of stationary mitochondria in sister subtrees

(CcsD1 and CcsD2): z =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nb

P
b

�
CcsD1 � CcsD2
CcsD1+CcsD2

�2
s

, where the index b enumerates the junctions,Nb is the total number of junctions in the arbor,

and CcsD1=2 is the total volume density of stationary mitochondria is daughter subtree 1 and 2, respectively, from each junction. All

model calculations were carried out using custom written MATLAB code.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters and significance are indicated in the legends of each figure, including the definitions of error bars and the num-

ber of samples. Statistical significance was determined by t-tests (based on the assumption that all data was normally distributed),

and p < 0.05 was considered statistically significant. Unless otherwise indicated, data was collected from one neuron per fly.
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