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A B S T R A C T

Electric mobility hubs (eHUBS) represent an innovative approach to providing diverse shared electric trans-
portation options, aimed at curbing private car use, and mitigating associated environmental impacts. Assessing
the impact of eHUBS on travel choices across different cities requires significant resource and time investment
due to the need for localized data collection and model development. This paper proposes a potential solution to
this challenge by investigating the transferability of mode choice models originally developed for eHUBS in
Amsterdam to predict behaviour towards eHUBS in Manchester.
Multinomial Logit (MNL) and mixed logit models were transferred using four different procedures, and their

effectiveness was evaluated using three assessment measures. The findings indicate that a scaled mixed logit
model with an updated Alternative Specific Constant (ASC) outperforms other models in terms of its transfer
effectiveness, both for disaggregate and aggregate assessment measures. The interplay between transfer pro-
cedures and assessment measures also was examined, with results indicating enhancements in disaggregate
transferability measures with the ’scaling’ transfer procedure, while ’updating the Alternative Specific Constants
(ASCs)’ improved predictions of aggregate mode shares. Following the analysis, the paper presents an in-depth
discussion to provide a nuanced understanding of transferability and thus offers valuable insights for researchers
planning future studies and practical considerations for policymakers.

1. Introduction

Urban transportation planning is undergoing a significant trans-
formation due to the rapid growth of new mobility services grounded in
shared economy principles and vehicle electrification (Jenn et al., 2018;
Pan et al., 2021). The proliferation of novel modes and services has
significantly expanded the mobility options available to individuals by
offering a spectrum of services tailored to meet diverse travel needs. The
disruptive changes occurring in the urban mobility ecosystem carry the
potential to alleviate longstanding challenges resulting from the ineffi-
cient transportation systems such as vehicle emissions, traffic conges-
tion, equity disparities, connectivity limitations, and accessibility
barriers (Joshi et al., 2021; Peer et al., 2024). The realization of the

anticipated transformative impacts of shared electric mobility systems
hinges upon the extent to which these can align with user preferences
and induce behavioural shifts among commuters. As a result, it becomes
imperative to comprehensively understand the factors that influence
user preferences and, consequently, their choices of travel modes and
services.

Analysing the shifts in travel behaviour resulting from the intro-
duction of new mobility services necessitates the development of
discrete choice models that elucidate the underlying factors driving such
behaviour (Kang et al., 2024). The data essential for estimating these
models are typically gathered from survey participants through a range
of methods, including online questionnaires or interviews either
computer-aided, face-to-face or by telephone. However, the data
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collection process presents significant challenges, requiring substantial
efforts and resources to identify potential respondents, reach the target
sample size, and hire interviewers (Behrens et al., 2006). Even when
data is available from secondary sources, it is often not open source,
requiring financial investment to access. Moreover, the complexity is
further heightened when behavioural models need to be estimated using
data frommultiple geographical locations, thereby amplifying both time
and monetary costs. One approach to address this challenge is to explore
model transferability, which aims to minimize the necessity of collecting
data from multiple locations. This strategy can lead to substantial sav-
ings in both time and effort required for data collection.

Transferability, as defined by (Koppelman and Wilmot, 1982), refers
to the utility of a model developed in one context in explaining behav-
iour in another context. In essence, if a model originally developed to
understand mode choice behaviour in one setting can effectively explain
behaviour in a new, unobserved context, this could reduce or eliminate
the need for new data collection efforts. The literature on transferability
can be broadly categorized into two main domains: spatial, which as-
sesses transferability between different geographical locations (Pani
et al., 2021), and temporal, which examines transferability across
different time periods (Fox et al., 2014). Several studies have explored
the transferability of models in a range of contexts. For instance, (Dis-
sanayake et al., 2012) investigated the transferability of a mode choice
model across four different metropolitan areas in Asia using existing
databases. (Lefebvre-Ropars et al., 2017) evaluated the transferability of
a pedestrian index of the environment originally developed for Portland,
Oregon, to Montreal, Canada. Similar to the spatial transfer, the appli-
cation of transfers across different times was studied by (Cabrera Del-
gado and Bonnel, 2016), where the trip distributionmodel developed for
Lyon in France was tested on transferability across three decades.

Although the concept of transferability is not new having been
introduced several decades ago and already found application in various
studies, further advancements in addressing research gaps within this
topic have been sparse. Specifically, we have identified several research
gaps and inquiries, the resolution of which could enrich the existing
body of literature on transferability. Firstly, transferability in the context
of emerging modes of transportation has not been studied to the best of
our knowledge. Secondly, the differences in assessment measures of
model transfer depending on transfer procedures remains largely un-
explored. The third gap pertains to the performance of different types of
model structures in terms of transferability when applied to the same
context. Finally, it is crucial to explore the policy and research consid-
erations that should be accounted for in transferability analysis. This
paper addresses the aforementioned gaps in the following manner:

• by examining the transferability of mode choice models within the
context of emerging mobility services ’eHUBS,’ which remain rela-
tively new and unexplored in the literature.

• by understanding the relationship between different transfer pro-
cedures and assessment measures.

• by conducting transferability assessments for two distinct model
types, previous studies have examined only one, and thereby shed-
ding light on the influence of model specification on transferability
outcomes.

• by presenting an in-depth discussion of the results specifically
relating to the nuances in transferability analysis and thus offering
valuable insights for planning future studies.

The paper is structured into six sections, with this introduction being
the first. The second section establishes context by providing details
about the eHUBS in both cities, outlines the data collection process, and
presents descriptive statistics on the socio-demographic profiles.
Following this, the third section presents the mode choice models
developed for both cities, offering insights into the factors influencing
mode choice behaviour. Section four delves into the theory of trans-
ferability and introduces a range of measures for evaluating the

transferability. Moving on to section five, we discuss the results of the
transferability analysis and finally, in the sixth section, we provide a
discussion of the results and outline potential future research directions.

2. Context of the study

This section describes the case studies carried out in Amsterdam and
Manchester, the data collection and the descriptive statistics of the data
collected.

2.1. eHUBS in Amsterdam and Manchester

eHUBS provide at least two of a range of shared electric mobility
options to users, aiming to reduce private vehicle usage. These eHUBS
are undergoing pilot programs in numerous cities across Europe and aim
to encourage sustainable mobility behaviours. Two of these cities,
Amsterdam in the Netherlands, and Manchester in the United Kingdom,
serve as the primary case study locations in our paper. Amsterdam, the
largest city in the Netherlands, has a population close to a million
(Savills World Research, 2018). With a particular emphasis on facili-
tating first-mile travel and reducing the need for parking, the City of
Amsterdam has established 17 eHUBS across strategic areas within the
city. Amsterdam is renowned for its commitment to promoting cycling,
backed by state-of-the-art infrastructure facilities for cyclists (Nello--
Deakin and Nikolaeva, 2021). Now, with the advent of electric mobility,
Amsterdam seeks to integrate new mobility forms such as eHUBS with
its existing infrastructure. On the other hand, Manchester, known for its
industrial heritage, has set ambitious decarbonization goals to achieve
by 2038, with the transition to electric mobility forming a pivotal
component of the city’s decarbonization strategy (Transport for Greater
Manchester, 2021). Transport for Greater Manchester (TfGM) inaugu-
rated its first eHUB in October 2021 and has plans to introduce addi-
tional eHUBS as funding is made available. The below Fig. 1 presents
one of the eHUBS in Amsterdam.

The eHUBS initiative offered shared electric vehicles in six pilot cities
across five different countries and subsequently replicated the concept
in other European cities (Bösehans et al., 2021). A successful trans-
ferability of a model developed for one eHUBS city in explaining choices
related to eHUBS in another city could potentially pave the way to its
wider application in all other cities contemplating eHUBS imple-
mentation, thus saving a significant amount of time and resources
involved in data collection and analysis. The process of developing a
mode choice model, encompassing data collection, survey design, and
analysis, was undertaken previously in eHUBS project by (Liao et al.,
2024) and does not constitute the main focus of the current paper.
Instead, the current paper exclusively focuses on the transferability of
previously developed models, and thus provides limited discussion on
the model estimation and behavioural interpretation. However, to set
the context for the subsequent transferability analysis, the focus of this
paper, a concise explanation of the model development is provided
below.

2.2. Data collection

Data collection in both cities was conducted through an online sur-
vey containing questions related to respondents’ mobility profiles, in-
formation on their current trip, socio-demographic characteristics, and
stated preference choice questions to investigate individuals’ mode
choices for a hypothetical scenario where shared electric mobility ser-
vices become available for their work-related commuting trips. Before
administering the survey, respondents were presented with specific as-
sumptions regarding the hypothetical scenario. These included clari-
fying that eHUBS represent a one-way station-based system, wherein
vehicles can be hired from an eHUB station and returned to any other
station within the same city. Moreover, it was explicitly communicated
that vehicles would always be available at the eHUBS station. A market
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research panel company was engaged to distribute the online ques-
tionnaire and responses captured in a server for subsequent analysis. The
data collection was carried out in March 2021. The survey targeted in-
dividuals above the age of 18 holding a driver’s license, residing in
either Amsterdam or Manchester. Each respondent was asked to answer
six choice questions out of 27 alternative tasks which were orthogonally
designed by varying different attributes consisting of access time,
parking search time, travel time, changes in congestion, and travel cost.
An efficient design was not considered because any good estimates for
the coefficients of eHUBS attributes were not available at the time of
study and D-efficient design is not robust when priors are far from the
real value (Walker et al., 2018). Therefore, the respondents choose be-
tween current mode that they use (Status Quo - SQ) or eHUBS as an
alternative, i.e., either Shared Electric Vehicle (car) - SEV or Shared
Electric Bike -SEB in each of the six choice tasks that were randomly
shown. All choice tasks in the design appeared roughly an equal number
of times, thus facilitating the random procedure adopted in the survey.
The attribute values of the current mode alternative were fixed as the
real values provided by the respondent, whereas the attributes and their
levels used for designing the experiment are given in Table 1. An
example of a choice experiment is given in Fig. 2.

2.3. Descriptive comparison

Following a data cleaning process, a complete and valid dataset
comprising 358 individuals (2148 data points) from Amsterdam and 337
individuals (2022 data points) from Manchester was used for analysis.
Table 2 below presents a descriptive comparison of the socio-
demographic data from the collected samples in both cities and the
corresponding population proportions in each of these cities compiled
from various sources. The descriptive statistics provide insights into the
similarities and differences between the two cities.

The analysis of the sample reveals that both cities exhibit a similar

socio-economic profile concerning income level, gender distribution,
education, and car ownership. Notably, despite Amsterdam’s reputation
as the bicycle capital of the world, over 95% of households in both
Amsterdam and Manchester possess at least one car. Differences be-
tween the two cities emerge primarily in terms of employment status,
age demographics, and the number of children within households. Fig. 3
illustrates the comparison of current mode shares in both cities, high-
lighting significant differences. In Manchester, approximately one-third
of all work trips are undertaken using private cars, with public transport
ranking as the second most preferred mode. In contrast, Amsterdam
exhibits a distinct pattern, with only 38% of trips conducted via private
cars, an equal share for bicycles.

3. Mode choice models

Data from both Amsterdam and Manchester were collected concur-
rently, with the estimation of models using Amsterdam data taking place
first. Subsequently, the Manchester models were separately estimated,
employing the same model specifications as the Amsterdammodels. The
sole distinction between these two sets of models lies in the omission of
variables related to ’bikes’ as the current mode in case of Manchester.
This exclusion is due to the relatively small sample size of bike users,
making it challenging to reliably estimate model parameters associated
with bikes. It is important to note that this omission does not impact
transferability, as all parameters present in the Manchester model are
also present in the Amsterdam model, making transferability of com-
plete model feasible.

Both Multinomial Logit (MNL) and Mixed Logit models were esti-
mated for both cities using the Biogeme software package (Bierlaire,
2023) and the results are shown in Table 3. The probability of choosing
the mode between eHUB and current mode depends on the mode at-
tributes (travel time, cost, access time, etc.) and socio-demographic
variables of respondent (gender, age, income, etc.). The mixed logit

Fig. 1. EHUBS in Amsterdam.

Table 1
Attributes and their levels.

Attributes eHUBS

SEV SEB

Travel time (minutes) If the current mode is private car, same as car. Otherwise:Reference: *80%,100%,120%
Reference is calculated based on distance assuming 30 km/h

Reference: * 80%,100%,120%Reference is calculated
based on distance assuming 20 km/h

Access - egress time
(minutes)

2 2
10 10
18 18

Travel cost (€ or￡ per
minute)

0.15 0.5 (regardless of distance)
0.25 1.5 (regardless of distance)
0.35 2.5 (regardless of distance)

Congestion level
(minutes)

If current mode is private car, same as car. Otherwise:Chance of delay: 0%, 20%, 40%
Possible delay: 25%, 50%, 75% of travel time
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Fig. 2. Choice task example.

Table 2
Descriptive statistics.

Variable Categories Sample proportion (%) Population in proportion (%)

Manchester Amsterdam Manchester Amsterdam

Gender Male 38 41 50.6 50.4
Female 62 59 49.4 49.6

Age 18–24 12 11 26.9 12.0
25–34 32 28 16.7 26.2
35–44 31 26 10.4 17.4
45 or older 25 36 46.0 44.5

Education No higher education 40 36 61 52
Higher education 60 64 39 48

Incomea Low ( ≤ 40000) 50 49 – –
Middle (>40000 ≤ 80000) 37 38 – –
High (>80000) 10 9 – –
Missing values 3 5 – –

Employment status Employed 81 72 73 68.1
Student 7 7 27 8.1
Others 12 21 23.8

Car Ownership 0 4 5 39 60
1 43 44 43 40
more than 1 53 52 18

No of children 0 50 60 70 76
1 19 17 30 11.7
more than 1 31 23 12.13

a Manchester’s income levels are in GBPs and Amsterdam’s income levels are in Euros.

Fig. 3. Current mode shares.
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model assumes that the averages of unobserved factors (ASC) in utility
follow a random distribution across the sample, characterized by a
normal distribution. Additionally, the panel structure of the data in the
mixed logit model addresses the correlation between multiple responses
from the same individual. Some of the parameter values in both models
are mode-specific and contingent on the respondents’ current mode of
travel (either car or Public Transport - PT). These mode-specific pa-
rameters are denoted with labels such as ’Car users Access/Egress,’
indicating the influence of access time on the preference for shared
mode among respondents currently using a car as their mode of travel.

Initially, it appears that the estimated parameter values for both
cities are quite distinct. However, it would be inappropriate to compare
them and draw conclusions about behavioural differences unless specific
factors are considered. These factors will be covered in Section 4 dedi-
cated to the transferability analysis. We would like to reiterate the point
that the model interpretation is not covered in this paper since trans-
ferability of these models is the primary focus and interested readers are
referred to (Liao et al., 2024) for more details on each parameter.
However, for the convenience of our readers, we will summarize the key
features of the estimated model for Amsterdam. The analysis found that
most travel time and cost coefficients for different modes have a nega-
tive sign, indicating a general preference against increased travel time

and costs. On average, current users of public transportation traveling
more than 5 km are more likely to switch to eHUBS. The attributes of
existing modes, such as parking search time and parking time, signifi-
cantly influence the likelihood of switching to eHUBS modes.
Socio-demographic factors also play a role: younger individuals are
more likely to use eHUBS, while older individuals are less likely to adopt
these modes.

4. Transfer procedures and assessment

4.1. Transfer procedures

This sub-section of the paper explains the mechanisms by which a
model can be transferred, also referred to as ‘transfer procedures’.
Different transfer procedures used in the paper are as follows:

a) Naïve transferability’: The most straightforward method for trans-
ferring a model is known as “naïve transfer.” In naïve transfer, the
base model parameters are directly applied to the application data
without any alterations. It is worth noting that the majority of
transferability studies consistently report subpar performance of
naïve transfer in terms of its ability to explain behaviour in the

Table 3
MNL and mixed logit models for Amsterdam and Manchester.

Parameter name MNL model Mixed logit model

Amsterdam Manchester Amsterdam Manchester

Est p-val Est p-val Est p-val Est p-val

ASC-Shared Electric Bikes
Mean −2.57 0.00 −1.64 0.00 −3.53 0 −3.61 0
Public transport users 0.78 0.16 1.11 0.02 1.44 0.16 2.81 0.05
Public transport users, 5 km or more 1.26 0.01 −0.35 0.42 1.42 0.14 −0.64 0.67
Standard deviation – – – – −2.09 0.00 3.72 0.00
ASC-Shared Electric Vehicles
Mean −2.00 0.00 −2.39 0.00 −3.28 0.00 −5.99 0.00
Public transport users −0.17 0.76 4.88 0.00 −0.63 0.63 9.34 0.00
Public transport users, 5 km or more 1.75 0.00 1.45 0.02 3.06 0.02 2.33 0.20
Standard deviation – – – – −2.25 0 −3.62 0.00
Mode attributes- Shared Electric Bikes
Access/Egress time −0.06 0.00 −0.06 0.03 −0.07 0.00 −0.16 0.00
SEB: Car users’ Access/Egress time 0.02 0.42 −0.08 0.00 0.04 0.15 −0.14 0.00
SEB: Travel cost −0.34 0.00 −0.62 0.00 −0.47 0.00 −1.35 0.00
SEB: Travel time −0.03 0.01 −0.06 0.00 −0.05 0.04 −0.15 0.00
Mode attributes-Shared Electric Vehicles
Access/Egress time −0.03 0.02 −0.08 0.00 −0.03 0.07 −0.15 0.00
PT users’ congestion time −0.13 0.22 −0.05 0.56 −0.24 0.09 −0.13 0.34
Car users’ congestion time 0.02 0.61 −0.15 0.40 0.06 0.56 −0.54 0.53
Car users’ travel cost 0.14 0.11 −0.26 0.00 0.11 0.35 −0.48 0.00
PT users’ travel cost −0.37 0.00 −0.22 0.00 −0.43 0.01 −0.59 0.00
Travel time −0.09 0.00 0 0.97 −0.11 0.05 −0.1 0.25
PT users’ travel −0.04 0.37 −0.36 0.00 −0.07 0.43 −0.63 0.00
Mode attributes-Current mode
Access/Egress time −0.01 0.42 −0.03 0.00 −0.01 0.72 −0.07 0.06
Congestion time 0.02 0.53 −0.75 0.00 0.07 0.40 −1.65 0.01
Travel cost −0.23 0.00 −0.09 0.00 −0.29 0.01 −0.21 0.00
Parking cost −0.03 0.05 0.02 0.1 −0.07 0.08 0.04 0.23
Parking search time −0.09 0.00 −0.21 0.00 −0.11 0.06 −0.45 0.00
Travel time −0.01 0.44 −0.06 0.00 0.01 0.81 −0.17 0.00
Socio-demographic-SEV
Higher education 0.13 0.47 −0.16 0.38 0.02 0.96 0.35 0.58
High income ( ≥ 80000) −1.3 0.00 0.28 0.35 −1.6 0.01 0.42 0.68
Low income ( ≤ 40000) −0.67 0.00 0.00 1.00 −0.65 0.13 0.2 0.76
Male 0.13 0.43 −0.26 0.17 0.36 0.37 −0.11 0.86
Old age ( ≥ 60) −0.18 0.59 −2.44 0.00 −0.99 0.2 −3.95 0.08
Young age ( ≤ 35) 0.98 0.00 −0.43 0.02 1.53 0.00 −0.93 0.15
Socio-demographic-SEB
Higher education −0.06 0.74 0.26 0.13 −0.07 0.87 0.56 0.33
High income ( ≥ 80000) −0.91 0.00 0.12 0.68 −1.26 0.03 0.08 0.93
Low income ( ≤ 40000) −0.19 0.32 0.12 0.51 −0.34 0.4 −0.76 0.2.
Male 0.37 0.04 0.16 0.34 0.28 0.45 0.09 0.87
Old age ( ≥ 60) −3.06 0.00 −0.52 0.19 −3.47 0.01 −0.37 0.76
Young age ( ≤ 35) 0.51 0.01 −0.13 0.44 0.79 0.04 −0.11 0.86
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application context (Koushik et al., 2022; Santoso and Tsunokawa,
2005). Nonetheless, naïve transfer serves a valuable purpose by
providing a reference point for comparing the effectiveness of other
transfer procedures.

b) Scaling: Transferability can be significantly enhanced by adjusting
the transferred model parameters to accommodate the differences in
variance in the application context. Within the ’scaling’ transfer
procedure, the model parameters—excluding the Alternative Spe-
cific Constants (ASCs)—are initially scaled to address differences in
variance and are subsequently applied to the application data. The
rationale behind scaling lies in the assumption that respondents in
the base and application contexts assign different degrees of impor-
tance to variables within the mode choice equation (Galbraith and
Hensher, 1982). Scaling has been extensively employed in studies
which use data from multiple sources and in studies that combine RP
and SP data (Batarce et al., 2015; Bergantino et al., 2020). The idea
in these studies is similar to that in our paper, i.e., accounting for the
difference in variance (amount of scatter) between two contexts. The
scale can be estimated using data from the application context, and
studies have indicated that the data required for estimating the scale
represents only a small fraction of what is needed to estimate a
complete model for the independent application context (Koppelman
et al., 1985).

c) Updating ASC: Another transfer procedure known as ’Updating
Alternative Specific Constant (ASC)’ involves accounting for differ-
ences in the average unobserved factors between the base and
application contexts. This procedure operates under the assumption
that all model parameters can be directly transferred to the appli-
cation context, with only the constants (ASC) requiring adjustment.
The ASC values are adapted to align with the aggregate mode share
observed in the application context. Multiple studies have docu-
mented improvements in transferability following the scaling of
parameters and the updating of model constants (Hadayeghi et al.,
2006; Nohekhan et al., 2022; Santoso and Tsunokawa, 2010).

4.2. Transferability assessment measures

The evaluation of transferability can be conducted through various
measures, broadly classified into three categories; 1) statistical test for
parameter equality, 2) disaggregate transferability (log-likelihood
based), and 3) aggregate transferability. Within each of these categories,
these measures can be further categorized into two types of measure:
relative and absolute. Relative measures assess the transferability of a
model concerning another model, while absolute measures do not
reference another model. For a comprehensive overview of these mea-
sures, readers are referred to a matrix presented by (Sikder et al., 2014).
Table 4 below provides explanations exclusively for the measures used
in this paper.

LL
(

βj
)
is the log-likelihood (LL) value for the transferred model [i.e.,

when base (Amsterdam) model parameters are transferred to the
application data (Manchester data)].

LL(βi) is the LL value for the application model (i.e., LL of the model
estimated using application data, i.e., Manchester data).

LL(MS) is the LL value for the market share model (also referred to as
a constants-only model).

PSk is the predicted mode share for mode k given by the transfer.
OSk is the observed mode share for mode k in application data.
For the convenience of our readers, we will adopt the following

nomenclature throughout the paper to refer to different models:

• Amsterdam (or base) model: The model estimated using Amsterdam
(or base) data.

• Manchester (or application) model: The model estimated using
Manchester data.

• Transferred model: Refers to the parameters from the Amsterdam
(base) model that have been applied to the Manchester dataset
(application data).

The Transferability Test Statistics (TTS) assesses the transferability
under the hypothesis that the two sets of parameters are equal. It com-
prises a dichotomous statistical test that either accepts or rejects the null
hypothesis positing the equality of model parameters (Atherton and
Ben-Akiva, 1976). However, due to various factors such as model
specification and behavioural differences, achieving perfect model
transferability is typically not attainable. Therefore, it becomes imper-
ative to consider a continuous scale of transferability (McArthur et al.,
2011).

The Transferability Index (TI) serves as a continuous measure of
disaggregate transferability, evaluating the goodness of fit by employing
log-likelihood values. The TI value ranges from 0 to 1, with 1 indicating
that the transferred model performs as effectively as an application
model in terms of explaining individual-level choices.

The Root Mean Square Error (RMSE) values give an aggregate-level
measure, assessing the predictive efficiency of the transferred model
in reproducing observed mode shares within the data. A lower RMSE
value signifies enhanced predictive accuracy of the model.

5. Results of spatial transferability of models

The MNL and mixed logit models developed for Amsterdam were
transferred using four procedures: 1) Naïve transfer, 2) scaling, 3)
updating ASC, and 4) simultaneous scaling and updating ASC. The
effectiveness of the transfer is evaluated using three measures: a) TTS, b)
TI, and c) RMSE. The following subsections will delve into the details of
these methods and present the transferability results.

5.1. Naïve transferability

The first transfer procedure is ‘Naïve transferability’, where the pa-
rameters of the Amsterdam model are transferred to Manchester data
without any changes. The deterministic part of the utility equation
contains alternative specific constants and parameters of the transferred
model as shown below:

VA
m =ASCt + βt ∗ XA

im

Table 4
Transferability measures.

Measure Category Formula Description

Transferability Test statistics
(TTS)

Statistical measure − 2
[
LL

(
βj

)
− LL(βi)

]
χ2 distributed, checks the equality of the transferred model parameters with the
application model parameters.

Transferability Index (TI) Disaggregate
measure

LL
(

βj
)

− LL(MS)

LL(βi) − LL(MS)

Checks the goodness of fit of the transferred model

Root Mean Square Error
(RMSE)

Aggregate measure ⎛

⎜
⎝

∑

k
PSk ∗ ((PSk − OSk)/OSk)

2

∑

k
PSk

⎞

⎟
⎠

1/2 Aggregate level prediction of mode shares compared with observed shares
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VA
m is the utility of mode m in application context ‘A’

ASCt is the alternative specific constant of the transferred model
(represented by ‘t’)
XA
im is the vector of attributes of mode ‘m’ and characteristics of in-
dividual ‘i’
βt transferred model parameters.

The outcomes of the naive transferability assessment for both MNL
andmixed logit models, as assessed by the TTSmeasure, are presented in
Table 5, where the likelihood of transferred model is indicated as LL (Bj),
whereas the likelihood of application context model is LL (Bi).

The null hypothesis, that the parameters of the Amsterdam and
Manchester models are the same, was rejected at a 99% significance
level. The TTS results for the null hypothesis are binary, meaning that
the transferability of the entire model is either accepted or rejected.
Most previous studies that assess transferability through TTS measure
produce results rejecting the null hypothesis. This limitation of the TTS
measure is addressed with TI and RMSE measures, which consider
transferability as a continuous measure. The results of naïve trans-
ferability as assessed through TI and RMSE measures is illustrated in the
figures below:

Fig. 4 illustrates that the mixed logit model significantly outperforms
the MNL model in terms of TI values. The TI value of the MNL model
stands at −0.3, indicating that the Amsterdam MNL model performs
even worse than a market share model (a model with constants only)
when transferred. Whilst most transferability studies report positive TI
values, it is worth noting that negative TIs can occur, as observed by
(Sikder et al., 2014). In contrast, the mixed logit model demonstrates
superior performance over the MNL model with a higher TI value of 0.6.
This could be interpreted to mean that a naively transferred mixed logit
model can capture 60% of the overall behaviour as explained by the
Manchester model, which was estimated using Manchester data. Moving
to Fig. 5, we observe RMSE values for the transferred MNL and ML
models. Once again, the ML model outperforms the MNL model, having
a lower RMSE value. However, in contrast to disaggregate measures (TI
values), the MNLmodel’s performance in the aggregate measure (RMSE)
remains relatively comparable to that of the mixed lofit model.

5.2. Other transfer procedure

Other transfer methods involving scaling and updating the ASC were
employed and were compared to results obtained through the naive
transfer as reference. The scaling procedure adjusts for variations be-
tween the two contexts. In the scaling transfer approach, the scaling
factor for the Amsterdam model was determined in relation to Man-
chester, establishing Manchester as the reference point for scaling.
Essentially, after scaling, the parameters of the Amsterdam model
become comparable to those of Manchester, as the variation in both
models is standardized. All the parameters of the Amsterdam model
(except for the ASC) were multiplied by this estimated scale factor and
transferred them to the Manchester dataset, as shown in the equation
below:

VA
m =ASCt + λ ∗ βt ∗ XA

im

λ is the estimated scale parameter.
Notably, the estimated scale for Amsterdam models is less than 1,

indicating a greater unexplained variance in the Amsterdam dataset as
compared to the Manchester dataset.

In another transfer procedure, adjustments were made to the ASC
values in the Amsterdam models to accommodate variations in mode
preferences attributed to unexplained factors. In the MNL model, the
constant ASC terms were updated, while in the ML model, the mean of
the distribution of ASC terms was updated. The ASC values were
updated to imitate the mode shares observed in the Manchester data, as
illustrated in the following equation:

VA
m =ASCA + λ ∗ βt ∗ XA

im

ASCA is the updated ASC based on the application context.
The consolidated results for all transfer procedures assessed through

the TI Fig. 6, where naïve transfer values serve as a reference point. The
scaling procedure elevated the TI value from 0.6 to 0.72 for the ML
model, while for the MNL model, it increased to −0.1 from −0.3, as
shown in Fig. 6. However, updating the ASC did not yield significant
improvements in TI values. The most substantial TI values were ach-
ieved when both scaling, and ASC updates were applied simultaneously
to theMLmodel. A scaledMLmodel with an updated ASC value explains
75% of the overall behaviour, compared to 60% in the case of naïve
transferability. Although no universally accepted threshold defines good
transferability, the results presented in this paper are comparable to
those found in other published studies (Fox et al., 2014; Sikder et al.,
2014).

Similar outcomes were observed for RMSE values, as shown in Fig. 7.
After scaling, the RMSE values fall to 2.87 from 3.18 for mixed logit
model, whereas for MNL the relative drop was smaller. Updating the

Table 5
Naïve transferability - TTS.

MNL Mixed logit

LL (Bi) −1034 −1048
LL (Bj) −1395 −1395
TTS 723 694
Parameters/df 35 37
p-value Less than 0.00001 Less than 0.00001
Result Null hypothesis is rejected Null hypothesis is rejected

Fig. 4. Naive transferability - TI.

Fig. 5. Naive transferability - RMSE.
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ASC resulted in a significant reduction in RMSE values for both models,
where the values fell to 0.17 and 0.14 for MNL and mixed logit model
respectively. This aligns with findings reported in other published
studies (Koppelman and Wilmot, 1982), which reported similar huge
improvements in RMSE values after updating ASC. The ASC update
procedure uses observed aggregate mode shares from the application
context for updating, resulting in improved performance in terms of
aggregate assessment measures such as RMSE compared to other pro-
cedures. Similar to the TI measure, the scaled ML model with updated
ASC values demonstrates the best performance in RMSE measures,
limiting errors in aggregate mode share predictions to 0.13. The
observed and predicted mode shares after updating ASC and scale for a
mixed model are almost same as shown in Table 6.

5.3. Behavioural differences

In preceding sections, we discussed the overall efficiency of trans-
ferred models in explaining the behaviour in the application data.
Furthermore, it is crucial to discern which parameters of transferred
models effectively account for behaviour and which do not, through
comparison with the parameters of the application context model (the
Manchester model). This exercise is critical from the policy perspective
as it acknowledges the fact that there will always exists true behavioural
differences which even the ‘best transferred’ model may not explain.
Since in our context, the scaled mixed logit model with an updated, ASC
performed best in both disaggregate and aggregate transferability
measures, it was further examined with additional analysis on the in-
dividual model parameters.

The parameters for the transferred model were compared with the
parameters of the Manchester model using an individual parameter t-
test at a 95% confidence interval threshold following the equation:

t=
M1 − M2

̅̅̅̅̅̅̅̅̅̅̅̅̅
s21
n1

+
s22
n2

√

WhereM1 andM2 represent themean values of the estimated parameters
being compared, s1 and s2 denote their respective standard deviations,
and n1 and n2 indicate the corresponding sample sizes. The parameters
that statistically differ in both the models are listed in Table 7.

The analysis reveals statistically significant differences in the stan-
dard deviation for SEB and SEV. This suggests variations in the hetero-
geneity surrounding the average preference for SEV and SEB in both
cities. Specifically, the higher absolute standard deviation implies more
heterogeneity in average preferences towards shared electric vehicles
among Manchester respondents compared to those in Amsterdam.
Furthermore, discrepancies were observed in another set of parameters
related to the Level of Service (LOS) attributes of eHUBS, such as access
time, travel time, and cost of service. Manchester respondents exhibited
higher sensitivity towards these attributes, indicating a greater disutility
for eHUBS as access/egress time, travel time, and service costs increased
compared to their counterparts in Amsterdam. Additionally, when it
comes to the preferences towards continuing to use their current modes,
the sensitivities for parking search time differ in both the cities.

The insights derived from this comparison could be valuable in
designing eHUBS. For instance, respondents in Manchester show a
higher sensitivity to access and egress time compared to those in
Amsterdam (−0.16 vs. −0.04). To ensure a higher mode share of eHUBS
in Manchester, it is crucial to accommodate these preferences by
increasing the density of hubs, thus minimizing access and egress times.
This strategy is more effective than extending coverage into new areas,
which could increase access times for these new hubs. Similarly, Man-
chester respondents display a higher sensitivity to parking search time
for current modes. This suggests that eHUBS in Manchester should be

Fig. 7. RMSE measure.

Table 6
Observed and predicted mode share.

Observed (%) Predicted (%)

Status Quo 79 79
Shared Electric Vehicle 9 10
Shared Electric Bike 12 11

Table 7
Individual parameter with differences.

No Parameter
namea

Manchester
estimates

Transferred
estimates

t-
value

p-
value

1 SEB: standard
deviation

3.72 −2.09 12.35 0.00

2 SEV: standard
deviation

−3.62 −2.25 2.93 0.00

3 SEB: Access/
Egress time

−0.16 −0.04 2.56 0.01

4 SEV: Access/
Egress time

−0.15 −0.02 5.15 0.00

5 SEB: Travel cost −1.35 −0.27 6.23 0.00
6 SQ: Parking

search time
−0.45 −0.07 2.83 0.00

7 SEB: Travel time −0.14 −0.03 3.39 0.00

a SEB – Shared Electric Bike, SEV – Shared Electric Vehicle, SQ – Status Quo.

Fig. 6. TI measure.
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large enough to avoid parking wait times. In conclusion, tailoring
mobility hubs to accommodate the observed preferences of respondents,
as indicated by the transferability analysis, can enhance the effective-
ness of eHUBS. The eHUBS can be tailored to accommodate the pref-
erences from the range of available options as described by (Hachette &
L’Hostis, 2024).

6. Discussions and conclusions

This study sought to test the spatial transferability of a mode choice
model developed in one context (Amsterdam) to another (Manchester).
While the present study focused on the use of eHUBS, the results have
broader implications for transportation planning, demonstrating the
value of transferring and applying developed models to new contexts,
thus saving a substantial amount of time and resources. Based on the
results presented above, we wish to highlight several noteworthy ob-
servations, limitations and future avenues of research and conclusions
from the research presented in this paper:

6.1. Notable observations

Superior performance of mixed logit model: In most cases, the superior
performance of the mixed logit model compared to the MNL could be
attributed to its flexible structure, which incorporates a parameter dis-
tribution to account for preference heterogeneity among respondents
(Hess and Train, 2017) as well as the panel effect that addresses the
correlation between multiple responses from the same individual in the
data. This flexibility likely contributes to its enhanced transferability.

Difference in performance between disaggregate and aggregate measures:
A range of performance levels of the same model was observed when
assessed using disaggregate (TI) and aggregate (RMSE) measures. This
raises the question of how to proceed when results from different
assessment measures diverge. In such instances there are two factors
that could be considered; firstly, it is essential to consider the robustness
of the assessment in drawing conclusions regarding transferability. As
emphasized by (Forsey et al., 2014), aggregate measures tend to be less
robust compared to disaggregate measures. This is because a model’s
capacity to predict choices at the aggregate level may not necessarily
reflect its performance in disaggregate assessments. Secondly a factor to
consider is the intended purpose of model transfer. If the primary
objective of model transfer is to accurately predict aggregate behaviour
in the application context, aggregate measures such as RMSE may carry
more weight. Conversely, when the aim is to comprehend behaviour and
analyse policy impacts in the application context, disaggregate measures
such as TI may prove more valuable.

Policy considerations: The results from individual parameter com-
parisons showed that the transferred model effectively captures behav-
iour in the application context, with notable exceptions of a few
parameters. These exceptions may be attributed to genuine behavioural
differences between the two cities. From a policy perspective, it is
crucial to acknowledge that whenever a model is transferred to another
context for predictive purposes, there could be actual behavioural dif-
ferences that the transferred model may not fully explain. Therefore, any
policy interventions based on the transferred model should incorporate
a caveat regarding these “non-explainable” behavioural variations. Such
recognition ensures that policy decisions are grounded in an under-
standing of local contexts and realities.

6.2. Limitations and future research scope

Interplay between transfer procedures and assessment measures: Previ-
ous studies have explored transferability, however, research on the re-
lationships between transfer procedures and assessment measures
remains limited (Sikder et al., 2013). Our results indicate that the scaling
procedure improves the disaggregate assessment measure (TI), while
updating the ASC enhances the aggregate assessment measure (RMSE).

This finding offers an initial indication about the relationships between
transfer procedures and assessment measures, however, an intriguing
avenue for future investigation lies in the analysis of factors that can
influence the nature of this relationship, although this topic is beyond
the scope of the current paper.

Modelling specific gaps in transferability: We would like to highlight a
few gaps in transferability research specific to modelling structure that
can be explored in the future. Firstly, regarding the data types and its
implication on transferability. The current study is based on stated
preference data, the limitation of which is well established in terms of
hypothetical bias that it may possess. An interesting question arises as to
how the transferability varies for other data types such as the revealed
preference data vis-à-vis the stated preference data. The second research
gap is the transferability of other types of models. The current and the
previous research project focused on the MNL and mixed logit model,
however, alternative model structures such as error component logit
(relaxing independence assumption and allowing correlation between
alternatives), latent class (Delbosc and Naznin, 2019), and hybrid choice
models (Vij et al., 2013) have not been tested for their transferability.
Exploring whether these models, known for their robust fit within esti-
mation contexts, can better explain behaviour when transferred to un-
familiar data sets presents an interesting avenue. The third gap relates to
analysing the implication of different specifications (eg: Espino et al.
(2006); Vega et al. (2018)) in the utility on transferability. While our
paper adopts a linear in parameter utility specification, alternative
specifications, including nonlinear formulations and variable in-
teractions, offer ground for future exploration.

Extending transferability from policy perspectives: While we focused on
model transferability and individual parameter comparison, there exists
an opportunity for further extension through policy-specific trans-
ferability analysis (Parady and Axhausen, 2023). This requires exam-
ining the response to policy scenarios by comparing elasticities in both
contexts. We would recommend the paper by (Sikder et al., 2014) for
researchers who would wish to extend transferability analysis for policy
scenarios.

Alternative approaches in model transferability: A final aspect of limi-
tation concerns the unexamined alternative approaches in model
transferability within the current study. Specifically, we did not inves-
tigate the impact of pooled data (joint estimation) on transferability,
primarily due to data being available from only two spatial contexts.
With access to data from more than two sources, the possibility of
pooling two data sources and subsequently examining transferability
across the remaining ones would have been feasible. The inclusion of
more diverse data sources can potentially enhance transferability by
incorporating context-specific variables that better encapsulate local
characteristics. Another approach that was not included in this paper is
the Bayesian methods in the domain of model transferability. While our
present study predominantly revolves around classical statistical meth-
odologies in transfer procedures, the adoption of Bayesian approaches
also could be considered. Several previous studies have adopted
Bayesian approaches in transferability (Nohekhan et al., 2022), how-
ever, it is recommended to employ Bayesian approaches primarily in
situations where there is an anticipation of the transfer bias between the
two contexts is less, as suggested by (Karasmaa, 2007).

6.3. Conclusions

The concept of transferability in choice models offers a promising
avenue for mitigating the challenges associated with data collection and
the expenses incurred during model development. Our study explores
the transferability of MNL and mixed logit models, initially developed to
understand travel behaviour in the context of eHUBS in Amsterdam and
assessing their applicability in explaining travel behaviour within the
framework of a different city Manchester. We employed four distinct
transfer procedures and evaluated their efficiency employing three
assessment measures. The results of the transferability analysis indicate
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that a scaled mixed logit model with an updated ASC can effectively
account for 75% of behaviour in the application context and reduces
prediction errors to 0.13. Another noteworthy finding uncovered in our
analysis is that the scaling procedure leads to improvements in the
disaggregate assessment measures TI, whilst updating the ASC results
the enhanced aggregate assessment measure namely RMSE. Following
the analysis, the paper presents an in-depth discussion of the trans-
ferability results and their implications for future research. This dis-
cussion aims to provide a nuanced understanding of transferability
analysis. More specifically we delve into topics such as the trans-
ferability of models at both aggregate and disaggregate levels, the
enhanced transferability observed in mixed logit models, the intricate
relationship between transfer procedures and assessment measures, and
the potential generalization of transferability results. These discussions
offer valuable insights for researchers planning future studies and offer
practical considerations for policymakers.
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