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Abstract
Using Balacheff’s (2013) model of conceptions, we inferred potential conceptions in three 
examples presented in the spanning sets section of an interactive linear algebra textbook. 
An analysis of student responses to two similar reading questions revealed additional strat-
egies that students used to decide whether a vector was in the spanning set of a given set 
of vectors. An analysis of the correctness of the application of these strategies provides a 
more nuanced understanding of student responses that might be more useful for instructors 
than simply classifying the responses as right or wrong. These findings add to our knowl-
edge of the textbook’s presentation of span and student understanding of span. We discuss 
implications for research and practice.

Keywords  Linear algebra · Conceptions · Spans and spanning sets · Reading questions

The notion of span is central in linear algebra. From a mathematical point, the span of a 
finite set of vectors is simply and elegantly derived from basic mathematical operations 
to make a vector space, and determining whether a vector belongs to the span of a set is a 
central question in linear algebra. However, there has been ample and extensive research 
indicating that this notion is difficult for students to learn (Carlson, 1993; Harel, 1989; Hil-
lel, 2000; Sierpinska, 2000). Much of the research on students’ understanding of linear 
algebra ideas has been done in the context of individual interviews guided by specific theo-
retical approaches or by observing the implementation of theoretically designed curricula, 
both of which allow researchers to map the construction of notions by students. A smaller 
body of research has used students’ responses to examination questions, to describe stu-
dents’ knowledge of procedures in solving linear algebra problems (Kontorovich, 2020). 
While quite important to the field, these findings have limitations: the samples are small 
and circumscribed to specific institutions and contexts. Moreover, when recommendations 
for practice are suggested, they are available once the research is concluded, months or 
even years after the participants provided information.
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In this paper, we explore student understanding of span in relationship with the text-
book’s presentation of the topic using student responses to two reading questions embed-
ded in the textbook. As intended by its name, a reading question is a question that seeks 
to motivate students to read the textbook’s content before attending a lesson where those 
specific contents will be discussed. Students are expected to provide responses to those 
questions ahead of the lesson. In the interactive textbooks we study, students can type their 
mathematical work and thoughts directly into the textbooks (Fig. 1a), and once they submit 
their answers, instructors can immediately view them (Fig. 1b).

Reading questions are designed to fulfill multiple purposes: to attune students to the new 
content, to uncover misunderstandings that can lead students to ask questions about the mate-
rial, or to help students make connections to prior knowledge. These purposes are supported 
by research that documents that engaging with material prior to class can be beneficial for 
knowledge building (Graham et al., 2020). They are also included to support teaching when 
assigned before class, teachers can scan the student responses to ascertain their potential level 
of understanding of the textbook material and possibly adjust their teaching plans. Reading 
questions provide an important entry point into student understanding of ideas and can poten-
tially allow investigation of learning progressions tied to particular textbooks.

In what follows, we present literature that describes our current knowledge of students’ 
understanding of span, the theoretical approach to studying student responses, and the 
research questions guiding our investigation.

1 � Literature review

We identified three main areas of research in the literature about spans1: students’ ways of 
thinking about span, difficulties with the abstract nature and formal definition of span, and 
interventions to address those.

Fig. 1   a Reading question 1, student view. b Reading question 2, teacher view

1  Most research on student understanding of spans includes linear (in)dependence. See for example, Ras-
mussen and Wawro (2017) and Stewart et al. (2019) who provide a comprehensive review of these topics.
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Drawing upon Tall and Vinner’s (1981) construct of concept image, Plaxco and 
Wawro (2015) conducted individual interviews with five individual students enrolled in 
an inquiry-oriented instruction (IOI) course guided by the instructional design theory of 
Realistic Mathematics Education (RME; Freudenthal, 1991) based on possible travels on a 
magic carpet (Magic Ride). The authors found a wide range of student concept images of 
span, which they organized into four main categories: travel (“everywhere you can get” to 
describe span), geometric (the area that the span of some vectors covers), vector algebraic 
(“every vector you can make with linear combinations of the columns”), and matrix alge-
braic (the properties of matrix related to span, such as dimension). These concept images 
are closely related to the models used in the curriculum to illustrate span (e.g., moving on 
a flat space using a hoverboard or a magic carpet parallel to the surface, each with their 
own moving constraints, see Wawro et  al., 2012). Using the same curriculum and these 
concept images, Rasmussen et al. (2015) showed that students exhibited different trajec-
tories through the four categories yet demonstrated individual progress over time. These 
investigations illustrate the connection between the representations used in the curriculum 
(means of transportation, e.g., a hoverboard or a magic carpet and vector representation in 
the Cartesian plane) and the images that students build about the span.

Student challenges in learning the notion of span have been extensively documented. 
Medina (2000) and Parker (2010) also  used Tall and Vinner’s (1981) concept image to 
show that students rarely stated a formal definition of span, struggled to interpret it, and 
preferred describing span using everyday words. Having a hard time connecting various 
related concepts, students relied on procedural rather than conceptual understanding to 
solve problems. Parker further illustrated how students’ conceptual understanding of the 
definition of span varied more than their procedural understanding. Subsequent studies 
(e.g., Hannah et  al., 2013) have confirmed students’ struggles with understanding the 
formal definition and their inclination to use computational algorithms over theoretical 
methods.

To overcome these challenges, scholars have explored the implementation of various 
instructional interventions to aid students in transitioning to the abstract definition of span. 
Wawro et al. (2012), for example, employed the modeling task mentioned earlier, Magic Ride, 
to guide students in reinventing the notions of span and linear (in)dependence. They claimed 
that the modeling task eased students’ transition from systems of equations to vector equations 
by leveraging their intuitive understanding. Cárcamo et  al. (2016, 2017, 2018) devised 
modeling tasks about creating and using secure passwords that aimed to establish connections 
between span and the first-year students’ experiences at a Spanish university. Although 
students had a hard time using mathematical notation and the procedure to find spanning 
sets, the instructional design helped them advance their understanding by transitioning “their 
informal mathematical knowledge to a more formal comprehension” (2016, p. 67).

Other intervention studies have been inconclusive. Hannah et  al. (2013, 2016) 
investigated one instructor’s students’ understanding of span using visualization, talking and 
writing in the language of linear algebra, and emphasizing formal definitions. Using Tall’s 
(2013) theory of three worlds (embodied/geometric, symbolic, and formal) and action, 
process, object, and schema (APOS; Dubinsky & McDonald, 2001), they showed that 
despite emphasizing visualization and formal language, more students preferred informal 
and visual ways of thinking about span (e.g., being able to get to any point in the space 
with the given vectors and covering a plane with two vectors) and more students performed 
better on algorithmic tasks compared to tasks that connected geometric, symbolic, and 
formal ways of thinking about span. Using the same frameworks, Stewart and Thomas 
(2007, 2009) examined the effects of tutoring with elements of embodied, symbolic, and 
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formal concepts. Although most students still struggled with formal definitions, those who 
underwent the tutoring did better describing the concepts and were mostly able to link span 
to the idea of linear combination. Lastly, Bouhjar et al. (2021) investigated the impact of IOI 
on student reasoning about span and linear independence, using Tall and Vinner’s (1981) 
concept image. The study showed that students exposed to IOI exhibited more varied and 
conceptually aligned concept images of span compared to their non-IOI counterparts. IOI 
students also engaged in reasoning about span with a higher frequency in terms of linear 
independence, dimensionality, and row reduction. Conversely, a significant proportion 
of non-IOI students approached span by treating vectors as geometric entities. This work 
highlights the importance of using diverse representations, modeling, and inquiry to support 
students’ transition from less abstract to more formal definitions of span.

Given that this research often aims to improve the teaching of linear algebra, often 
through the utilization of Realistic Mathematics Education models (RME; Gravemeijer, 
1999), many studies examine student understanding by mainly relying on the notion of 
concept image—an individual’s “cognitive structure associated with the concept” (Tall & 
Vinner, 1981, p. 153). While these studies offer insights into students’ cognitive processes 
and conceptual development at the individual level, researchers recognize that this cogni-
tive approach to understanding students’ thinking has not produced much nuance regarding 
“when and whether the various conceptions occur across modes of thinking, Tall’s (2013) 
worlds, or different metaphors or models” (Stewart et al., 2019, p. 1022). In other words, 
the current theoretical frameworks used to dissect students’ understanding of span appear 
to be broadly linked to the representations of span, offering holistic descriptions without 
specific problem contexts. This lack of specificity makes it challenging for researchers to 
systematically study conceptions within a group of students.

In our study, we contribute to the literature by taking a different approach to studying 
student understanding of spans, through one type of problem, and during students’ learning 
processes using Balacheff’s cK¢ model of conceptions (Balacheff & Margolinas, 2005). 
Given that we are not interested in what students had learned by the time of data collec-
tion, but rather how they were thinking when learning about span, we integrate a charac-
terization of “correctness” to our student conceptions, inspired by Harel’s (1989, 2000) 
framework of correctness of students’ answers. We provide an overview of our theoretical 
framework next.

2 � Theoretical underpinnings

As they learn the material, students make statements, in writing or aloud, that suggest that 
they may be “mixing” contexts or definitions in ways that sound acceptable but are not 
quite right. Explanations for this phenomenon tend to rely on the assumption that what 
students do, say, or write maps directly to what they know (e.g., Sellers et al., 2021). These 
analyses are difficult to corroborate and are more reflective of the researcher’s perspec-
tive. Balacheff’s cK¢ model of conceptions (Balacheff & Gaudin, 2009; Balacheff & Mar-
golinas, 2005) gives a process for generating explicit characterizations of conceptions 
grounded in the analysis of students’ productions (what they write and what they say) and 
not on assumptions of what they are thinking.

In the French tradition, the word knowing (connaissance) is used as a noun to distinguish 
a learner’s personal constructs of mathematical notions from knowledge (savoir), which refers 
to intellectual constructs recognized by the community. As learners encounter a mathematical 
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task (a problem, an exercise, or a question) in which they must use their knowing of a spe-
cific mathematical notion, they are in a position in which their cognitive dimension interacts 
with those aspects of the task that bring into play the knowledge at stake (environment). The 
learners’ actions, guided by their cognitive dimension, will generate feedback from the envi-
ronment in repeated sequences (when multiple intermediate steps are needed). The sequence 
stops once the learners receive feedback that the task has been completed. The repeated 
exchanges emanate from the personal knowings learners have, and as such, they can reveal 
the coexistence of multiple knowings that may not be perceived as problematic or contradic-
tory to the learner. Contradictory knowings can coexist at different times of a learner’s history 
(e.g., “multiplication results in bigger numbers”) or in cases in which mathematical situations 
they encounter repeatedly call for one knowing and not others (e.g., multiplication of natural 
numbers). The learner does not perceive the contradictions in new situations that demand 
the use of their knowings (e.g., multiplication by rational numbers in the interval (0,1)), even 
though they will appear contradictory to the observer—the teacher or the researcher is able 
to identify that the new contexts will require a different knowing. Balacheff uses “subject” 
(S) to refer to the cognitive dimension of the learner, and “milieu” (M) to refer to the aspects 
of the mathematical task that bring into play the knowledge at stake (Fig. 2). An arrow from 
the subject to the milieu is an action that the cognitive dimension of the learner is perform-
ing to address the task; an arrow from the milieu to the subject represents the feedback that 
the learner receives as a result of their action. The viability of the system of exchanges is 
regulated by conditions (constraints) needed to ensure that the system is such that the learner 
will engage with the task and that an equilibrium is reached (the task is solved). Constraints 
provide the subject with information for decision making. Thus, a conception is “a state of 
dynamic equilibrium of an action-feedback loop, between a subject and a milieu under pro-
scriptive constraints of viability” (p. 189).

Learning in this context is defined as a process in which equilibrium between the 
learner and the milieu is reached after several action-feedback loops (a loss of equilibrium 
is perturbations that occur after an action is performed and a result is not exactly what 
is expected). Unresolved perturbations recognized by the subject can lead to learning or 
to repeated action-feedback loops. But in some cases, the subject does not identify the 
perturbation; when this occurs, the unnoticed perturbation is a symptom of a conception, 
the remnant of a “previous equilibrium of the subject/milieu system” (p. 190). To 

Fig. 2   Schematic for “concep-
tion” in the subject/milieu system 
(Balacheff & Gaudin, 2009, p. 
189)
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characterize a learner’s knowings, Balacheff (2013) operationalizes a conception as 
a quadruplet: problems, operators, semiotic and representation systems, and control 
structures. Problems are the “class of the disequilibria the considered conception is 
able to recover from” (Balacheff & Gaudin, 2009, p. 190); these emerge from the need 
for mathematical notions to evolve. Operators are the tools for “actions on the milieu” 
needed to simulate what the learner does to tackle the problems and “to transform and 
manipulate linguistic, symbolic or graphical representations” (p. 190). Semiotic and 
representation systems are the “linguistic, graphical or symbolic means which support the 
interaction between the subject and the milieu” (p. 190). Lastly, control structures are the 
“components supporting the monitoring of the equilibrium of the [S – M] system” (p. 190) 
or the strategies (e.g., metacognitive processes, use of definitions, and checking existing 
answers) that allow learners to decide whether they have solved the problem and whether 
they have done so correctly.

This conceptualization of conceptions is practical because it allows researchers to define 
the domain of validity of a knowing as the collection of related conceptions exhibited by 
individuals. Because the collection corresponds to the expression of a learner’s conceptions 
enacted by a situation (solving a problem), the definition allows the coexistence of 
more than one, possibly contradictory, conception in the subject. In addition, when 
there is a need for variations in the set of problems that learners must face (e.g., when 
the mathematical ideas are revisited in different contexts), the operators, representations, 
and metacognitive strategies needed to organize the work (control structures) can be used 
to describe the emergence of different conceptions of a mathematical notion. Moreover, 
as teachers care about whether responses are right or wrong answers, we believe that the 
cK¢ model provides a mechanism for characterizing correctness in terms of the students’ 
process of justification. Thus, in this study, we seek to answer the following questions:

1.	 What conceptions of spanning sets can be inferred from the examples of spanning sets 
in an interactive undergraduate linear algebra textbook?

2.	 What control structures are evident in student responses to reading questions about 
spanning sets provided prior to the lesson on spanning sets?

3.	 What is the correctness of the students’ responses using these control structures?

3 � Methods

The data for this study come from a larger study that investigates the use of interactive 
textbooks in calculus, linear algebra, and abstract algebra courses by instructors and 
their students (Beezer et al., 2018). The linear algebra textbook, A First Course of Linear 
Algebra (Beezer, 2021), follows the definition-theorem-proof presentation style (Love 
& Pimm, 1996) and is designed as a bridge-to-proof course that uses mostly symbolic 
representations without visualizations. It is authored in PreTeXt (https://​prete​xtbook.​
org/), a mark-up language that facilitates the publication of open source and open access 
textbooks and the inclusion of interactive features, such as computation or Sage cells, 
hyperlinks, automatic solution feedback systems, and short-answer questions (O’Halloran 
et  al., 2018). PreTeXt textbooks can be reproduced in any output (e.g., HTML, PDF, 
ePub, and braille). Each section in the textbook has a set of three reading questions 
that students are supposed to answer directly in their textbooks before coming to class. 
Students’ responses are collected in real-time making them immediately available to their 

https://pretextbook.org/
https://pretextbook.org/
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instructors, who in turn can alter their lesson plan depending on those responses. The 
reading questions in the spanning sets (SS) section (Fig. 1) ask whether a vector is in the 
span of a set of given vectors. This section is divided into two subsections: span of set 
of vectors (SSV) and spanning sets of null spaces (SSNS). Our analysis focuses on the 
reading questions related to the first subsection, which starts with the definition of the span 
of a set of column vectors. Following the definition, the author gives three examples of 
the same problem using numerical and symbolic representations of vectors and matrices, 
without any visualizations. The subsection concludes with two Sage cells that guide 
students to generate the span of a finite set of vectors and use the notion of span to check 
the consistency of a linear system.

To investigate how the textbook content related to the reading questions in these 
sections, we analyzed the text and examples directly related to the reading questions. 
The study collected information from over 50 faculty, of which six used the interactive 
linear algebra textbook and assigned the reading questions to their students (n = 76) as 
intended by the textbook’s author, namely, to be answered before class. The student 
responses were collected during Fall 19, Fall 20, Spring 21, and Fall 21. The students 
were in six different universities (public, private; small, medium size) in the USA. The 
data were analyzed in three phases: (1) identifying conceptions in the textbook examples 
and the control structures in student responses to the reading questions using Balacheff’s 
(2013) cK¢ model, (2) coding for the correctness of the use of the control structure in the 
responses, and (3) looking for patterns between the control structures in student responses 
and correctness to identify possible associations. These analyses map our three research 
questions. We describe each phase next.

3.1 � Phase one: identifying conceptions and control structures

We analyzed three examples—Example ABS: A Basic Span; Example SCAA: Span of the 
Columns of Archetype A; and Example SCAB: Span of the Columns of Archetype B—that 
dealt with deciding whether a vector was in the span of a set or not. Figure 3 shows the first 
example in SS. The other two examples deal with two different linear systems (archetype 
A: three equations, three unknowns, with a singular coefficient matrix with dimension 1 
null space; archetype B: three equations, three unknowns, with a nonsingular coefficient 
matrix, see http://​linear.​ups.​edu/​html/​secti​on-​SS.​html). Example ABS uses R4 ; the other 
two examples use R3.

The development of the codes followed a constant comparative method. After reading 
the texts (either in the textbook or in the student responses), we identified operators and 
control structures and assigned in vivo temporary codes to identify them (e.g., “find row 
reduction echelon form” was coded as “RREF”). We individually created a codebook as 
the reading of the texts went on. The four researchers held meetings to discuss the difficul-
ties faced in identifying the components of the model of conceptions. The first two authors 
identified three different methods in the examples which suggested that multiple control 
structures could be used for the same problem (is the vector in the span?), which could 
lead to different conceptions. The last two authors, working with the student responses, 
noted that the operations were usually implicit. Consider for example: “Yes, this vector 
is in W, because the RREF [Row Reduced Echelon Form] is consistent” (RQ1, #46). In 
this response, there is no information on how the student found out that the RREF (or the 
system of equations that resulted in the RREF) is consistent because the steps taken are not 

http://linear.ups.edu/html/section-SS.html
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given. However, the justification for the conclusion is explicit: a consistent RREF implies 
that the given vector is in the span. Because this happened in almost all the responses, we 
assumed that the semiotic system and the operators students used in their responses were 
similar and consistent with the textbook content and that the control structure must be the 
discriminating element of the conceptions. Therefore, we decided to focus on the control 
structures stated in the student responses. We also checked our use of the model with Bal-
acheff, who deemed it “accurate and appropriate” (N. Balacheff, personal communication, 
January 6, 2023).

We refined the definitions of the components of the model and of the control structures, 
and independently, pairs of authors coded the responses for control structures. The list of 
control structures grew as we coded the student responses. Once the authors had read and 
coded the responses individually, we met to compare and resolve disagreements. Disagree-
ments were due to ambiguity in interpretations, which led to clarification of the defini-
tions of the control structures. Once the definition of each control structure was finalized, 
we reread the responses to make sure that the coding aligned with the new definitions. 
The final definitions of each control structure are presented in Table 1, along with example 
responses that illustrate each of them. We use italics through the text to refer to the control 
structures.

As we discuss later in the findings, some of the student responses exhibited multiple 
control structures. For example, we identified three control structures in the following 
response to RQ1 from student 52 (the codes are underlined inside brackets):

The vector [-1,8,-4] is in W. First, I wrote out the vectors as: x1 [1,2,-1] + x2 [3,-4,2] 
+ x3 [4,-2,1] = [-1,8,-4]. Next, I formed these vectors into a 3x4 augmented matrix. I 

Fig. 3   Example ABS: a basic span in SS
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then put the augmented matrix into RREF. We see there are infinetly [sic] many solu-
tions [CS2: Number of Solutions], and x3 is a free variable [CS3: Number of Free 
Variables]. The solution set is S = [2-x3 , -1-x3 , x3]. Since x3 is a free variable, I 
choice x3 to be 3. That than gives us: [3 , -4, -1] as the solution set when x3=3. We 
know the vector [-1,8,-4] is in W because we get: (-1)u1 + (-4)u2 + (3)u3 = W [CS7: 
Scalars].

Thus, although one control structure was enough to justify that the vector is in the span 
of the other three vectors, the student provided three control structures in their response.

3.2 � Phase two: coding for correctness

In the second phase, we analyzed the action-feedback loop by assessing the correctness of 
the student responses. By correctness, we do not mean to be “right” or “wrong” or being free 
of error. Instead, we conceptualize correctness as a two-folded tool to capture the nuances of 
student thinking during various steps of answering the reading questions. We analyzed the 
correctness of each criterion and its link to the final conclusion, which we refer to as link by 
conception. We define criterion as the intermediate result needed to apply the control struc-
ture that signals the student whether the given vector is in span. The description of the correct 
criteria for each control structure for both reading questions is shown in Table 2.

Next, we looked at the correctness of the link between the criteria to the final conclu-
sion, that is, whether the student interpreted the criterion correctly (by means of mathemat-
ics) to reach the final conclusion answering the reading question. In this stage, we only 
analyzed the correctness of responses with valid control structures. We modified Harel’s 
(1989, 2000) coding of the correctness of students’ answers (correct final answer, incor-
rect final answer, correct justification, and incorrect justification) because in his case, an 

Fig. 4   Four example responses using Number of Solutions (CS2) in RQ1 with correct and incorrect links by 
conception and criteria
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incorrect justification could be obtained by correctly using a control structure. We created 
a binary code, C#1#2, where #1 represents the correctness of the criteria and #2 represents 
the correctness of the link by conception (1 = correct, 0 = incorrect). Thus, C10 is assigned 
when the response uses the correct criteria for the chosen control structure, but the link 
between the criteria and the final conclusion is incorrect. Figure 4 illustrates four responses 
using Number of Solutions (CS2) in RQ1 and that uses the criterion “has infinite solutions.”

The first, second, and fourth authors analyzed the correctness of the criteria and their 
links to the final conclusion. Disagreements were resolved through consensus and resulted 
in refinements of the code definitions.

3.3 � Phase three: connections between control structures and correctness

In the third phase, we examined the relationship between control structures and correct-
ness. This analysis involved cross-tabulating two sets of data. First, we examined the 
control structures used and the frequency of each correctness category using UpSet plots 
(Conway et al., 2017; Lex et al., 2014) for each reading question, which allowed us to vis-
ualize the various combinations of control structures presented in student responses and 
their corresponding distribution across the correctness categories. Second, we performed 
a chi-squared test to determine if there was any association between the control structures 
observed in a response and the correctness of the response to investigate the connection 
between specific control structures and correctness. Finally, we used a chi-squared test to 
determine whether there was an association between the number of control structures in the 
responses and the correctness of the responses. The results of the chi-squared tests need to 
be taken with caution, as the observed frequency in one cell was less than five.

4 � Findings

We present the findings in three sections, organized by the three analyses we performed: 
the analysis of the conceptions from the examples in the spanning sets (SS) section, the 
control structures present in the student responses, and the relationship between control 
structures present in the responses and the correctness of their use and conclusions.

4.1 � Inferred conceptions from SS examples in the textbook

The three examples analyzed in the section addressed the problem of “whether a given 
vector is in the span of a set of vectors.” All three examples in this section rely on similar 
symbolic representations R4 in the first example, and R3 in the other two. For each example, 
a set of vectors is given, followed by two vectors to be tested for inclusion in the span of 
the vector set. We identified three different control structures (CS for short, Fig.  5) and 
six operators (OP for short), used in two separate solution paths as shown in Fig. 5; by 
solution path, we mean a sequence of operators used for solving a problem with a specific 
control structure. For example, the solution path of using Consistency (CS1) in Fig. 5 is 
OP1 → OP2 → OP3 → OP4.1.

In all the solution paths illustrated in Fig. 5, the author starts by forming a system of 
equations expressing the given vector as a linear combination of the vectors in the set (OP1: 
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construct system). He then creates an augmented matrix for the system (OP2: construct 
matrix) and performs a row-reduced echelon transformation on the matrix (OP3: row 
reduction). He proceeds to inspect the resulting row-reduced echelon form (RREF) matrix 
either for consistency (OP4.1: inspect consistency) or for the number of solutions (OP4.2: 
inspect number of solutions) to conclude whether the given vector is in the span of S . Note 
that in the presentation, the author alludes to some operators rather than explicitly showing 
them. In Example SCAA and Example SCAB, the author states “Building the augmented 
matrix for the given system, and row-reducing, gives…” and then uses the results in the 
next steps. Such language suggests that a matrix was constructed (OP2: construct matrix), 
although it was not explicitly shown.

In justifying the decision about whether the vector is in the span or not, 
OP1 → OP2 → OP3 → OP4.1 and OP1 → OP2 → OP3 → OP4.2 are the main paths that 
imply two possible conceptions corresponding to two distinct control structures (Consist-
ency, CS1 and Number of Solutions, CS2). Depending on the control structure, the crite-
rion chosen to decide varies. Using CS1, the author asserts that we can conclude the vector 
is in the span if the system is consistent. (“… we see that the system is consistent … This 
is enough to say that u ∈ ⟨S⟩ ”, Beezer, 2021). Conversely, if the system is inconsistent, 
then the given vector is not in the span. Another alternative is to use CS2: the vector is in 

Fig. 5   Inferred conceptions from three examples in the SS section (dashed arrows indicate optional steps)
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the span if the system has a unique solution (“This system has a unique solution …, so we 
are convinced that z really is in ⟨R⟩ ,” Example SCAB) or infinitely many solutions (“This 
system has infinitely many solutions, but all we need is one solution vector, …, so we are 
convinced that w really is in ⟨S⟩ ”, Example SCAA). Conversely, if the system has no solu-
tions, then the given vector is not in the span.

The author also provides an optional operator that solves the system completely for the 
scalars in the linear combination (OP5: solve system, find scalars, represented using dashed 
lines in Fig. 5). This operator is depicted as a means of confirming the decision using either 
CS1 or CS2, but also implies the emergence of another control structure, Scalars (CS3). 
Using CS3, the author decides whether there are scalars that create a linear combination 
and if so, finds a set of such scalars (“we know there is not (emphasis in original) a solution 
for the five scalars ... If we wished for further evidence, we could compute an actual solu-
tion, say �1 = 2 , �

2
= 1 , �

3
= −2 , �

4
= −3 , �

5
= 2 ” Example ABS). In Example SCAA, 

after finding one such set of scalars that “work,” the author explains that his set of scalars 
is in fact not unique, highlighting that any set of scalars that work is justifiable: “There is 
nothing magical about the scalars �

1
= 5 , �

2
= −3 , �

3
= 7 , they could have been chosen 

to be anything.” Although one may find such scalars by guessing, the scalars in the three 
examples are found by solving the system.

4.2 � Control structures in student responses to SS reading questions

Figure 6 shows the number of responses with each control structure for both reading ques-
tions and the distribution of the correctness of using each control structure. The three most 
observed control structures in RQ1 were Consistency (CS1), Number of Solutions (CS2), and 
Scalars (CS3). We had a similar set of common control structures in RQ2 except that we 
have Linear Combination (CS4) in place of CS3. We think this is because there are no scalars 
that work as a linear combination for RQ2; only one student used CS3 giving incorrect sca-
lars. Other than Pivots (CS6), which was coded in 11 student RQ2 responses, the rest of the 
control structures (CS5–7) were seen five times or less across the responses to RQ1 and RQ2.

Given that the author provides Scalars (CS3) only as an optional control structure and 
he does not mention linear combination (CS4) in the examples, the relative high presence 
of CS3 and CS4 could be explained by assuming that those responses would rely on the 
textbook’s definition of the span of a set given (Fig. 7) and not necessarily on the operator 
paths given by the textbook examples. Students could identify the scalars that work as a 
linear combination by using inspection or guessing.

Most responses had only one control structure (55 for RQ1 and 43 for RQ2), but some 
had two or more control structures (see Fig. 8). For example, out of 23 responses coded 
with Consistency (CS1) in RQ1, nine had other control structures (one with Number of 
Solutions (CS2), three with Scalars (CS3), two with Linear Combination (CS4), two with 
CS2 and CS4, and one with CS3 and Number of Free Variables (CS7)). Attending to spe-
cific combinations of control structures used in the RQ1 responses (Fig. 8a), we note that 
responses with CS7 always come in combination with one or more of the textbook’s con-
trol structures, namely, CS1, CS2, and CS3.
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4.3 � Connections between control structures and correctness in student responses

Most of the interpretable responses (56 of 69 in RQ1 and 61 of 67 in RQ2) showed a cor-
rect use of criteria and a correct link (C11, see Table 3). The second common correctness 
category was the response with incorrect criteria but correct links by conception (C01). It 
is possible that some computational error in obtaining the criteria led students to incorrect 
conclusions (whether vector in span) despite having a correct understanding of the theorem 
(link by conception).

The chi-squared test of independence between the control structure observed in a 
response and the correctness of the response was significant (χ2(200,6) = 14.08; p < 0.05). 
Responses coded as using Number of Solutions (CS2) had, relative to other responses 
coded with other control structures, more incorrect criteria and links by concep-
tion  (χ2(200,6) = 4.15; p < 0.05). In contrast, all 22 responses coded using SAGE (CS5), 
Pivots (CS6), and Number of Free Variables (CS7), which are not mentioned in this section 
of the textbook, showed correct criteria and had correct links by conception.

Fig. 6   Number of responses using each control structure and the correctness distribution when using each 
control structure for a RQ1 and b RQ2. Note. Control structures: CS1: consistency; CS2: number of solu-
tions; CS3: scalars; CS4: linear combination; CS5: SAGE; CS6: pivots; CS7: Number of free variables. 
Correctness codes: C11: correct use of criteria for the chosen control structure and a correct link by concep-
tion; C10: correct criteria and incorrect link; C01: incorrect criteria and correct link; C00: incorrect criteria 
and incorrect link

Fig. 7   Textbook’s definition of the span of a set of column vectors located at the beginning of the SS sec-
tion
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Fig. 8   Control structures in student responses and the correctness distribution when using one or more con-
trol structures in a RQ1 and b RQ2
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The chi-squared test between the combined number of control structures present in the 
responses (one, two, or more) and the correctness of the use of the control structure and the 
links (two categories, C11 and C10 + C01 + C00) revealed a statistically significant associ-
ation (χ2(218,1) = 37.82; p < 0.001; Table 4), which corroborates that responses with more 
than one control structure tended to have correct use of criteria and link by conception. 
Perhaps the various control structures work towards reaching a correct conclusion.

5 � Discussion

When dealing with the problem of deciding “whether a given vector is in a span of a given 
spanning set,” Beezer’s (2021) textbook presents three solution methods, each represent-
ing a distinct conceptual approach as defined by Balacheff: (1) the consistency of the sys-
tem of the equation obtained by expressing the given vector as a linear combination of the 
spanning vectors, (2) the number of solutions to that system, and (3) the scalars found by 
solving the system completely. We observed a wide variety of control structures in student 
responses to the two reading questions that address the same problem, with some students 
using multiple control structures to justify their answers. Moreover, when comparing indi-
vidual students’ responses across the two reading questions, we discovered that they often 
fall into the different categories of control structures. Although we observed some varia-
tion in the level of correctness when using different control structures, most of the student 
responses offered solutions with correct criteria and linked by conception to both reading 
questions. We discuss these findings of our research questions next.

Table 3   Number of interpretable 
responses in each correctness 
category for RQ1 and RQ2

Correctness category RQ1 RQ2

C11: correct criteria and correct link 56 61
C10: correct criteria and incorrect link 2 0
C01: incorrect criteria and correct link 10 4
C00: incorrect criteria and incorrect link 1 2
Total 69 67

Table 4   Number of responses 
with one and multiple control 
structures and correctness in 
both reading questions combined 
χ2(218,1) = 37.82; p < 0.001

C11: correct 
criteria and cor-
rect link

Other correctness 
categories

Total

One CS 65 17 82
Multiple CS 52 2 136
Total 117 19 218
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5.1 � Conceptions inferred from the textbook examples

We identified three distinct potential conceptions given the different control structures in 
the relevant textbook examples. While the textbook does not name the different strategies, 
the justifications used to arrive at the final conclusions clearly differ. Each example uses a 
separate control structure. The textbook does not have a rationale for using a control struc-
ture, instead, the examples illustrate different approaches depending on whether the vec-
tor is in the span or not, offering multiple ways in which the problem can be treated. In 
terms of the model of conceptions, such work codifies different conceptions of the notion 
of spanning sets. Because in linear algebra there are multiple equivalences (Payton, 2019; 
Wawro, 2014), it is likely that students will struggle to recognize the equivalence of the 
various conceptions. It might be useful to alert students that although the ways of deciding 
may seem different, they will soon learn that all are basically the same.

In the analyzed examples and throughout the textbook, the author deliberately uses sym-
bolic representations (matrices, vectors, and equations) instead of geometric or real-world 
representations. This choice is tailored to the targeted audience and the course’s objectives 
as the textbook aims to provide a formal introduction to linear algebra concepts to second- 
and third-year students in bridge-to-proof courses. Given the author’s heavy use of sym-
bolic representations, it is no surprise that students predominantly used symbolic control 
structures in their responses.

5.2 � Control structures evident in student responses

Our analysis of the control structures used in student responses suggests that students hold 
a wider variety of conceptions relative to those in the textbook. Perhaps students rely on 
other resources on the definition of span (e.g., Desmos, YouTube videos, other textbooks, 
and classmates), instead of reading the accompanying examples and using them to solve 
the problem. This could explain the use of two of these control structures (Scalars (CS3) 
and Linear Combinations (CS4)) because the textbook defines span in terms of linear 
combinations. Alternatively, students may rely on other sources to answer the questions; 
this could explain the use of Pivots (CS6) and Number of Free Variables (CS7), which 
are not present in the textbook content up to this point. Our prior work regarding students’ 
schemes of use of the reading questions shows that students do attempt to answer the read-
ing questions without reading the preceding text and that they use multiple resources as 
they work with the reading questions (Castro et al., 2022; Quiroz et al., 2022).

We found responses with multiple control structures. It is not clear that students are 
aware that one control structure suffices, whether using multiple control structures is a 
strategy to increase their chances of getting the “correct” answer if they wanted to check 
their answer or show that they knew more than one way to justify their answers, or if they 
realized that they were using multiple control structures. It is possible that the decision 
on which control structure to use does not always happen right after students identify the 
problem, but rather as they engage with the action-feedback loop, meaning as they carry 
out the operators until certain feedback hints at a choice of control structure.

Recognizing the equivalence between the control structures may be an epistemological 
obstacle. Number of Free Variables (CS7), for example, was always used in combination 
with other control structures; perhaps students see this control structure as additional support 
for their justification. Because the textbook does not yet state the equivalence between these 
control structures, we presume that it will be the instructor’s responsibility to demonstrate 
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how and why they are equivalent to one another. Nevertheless, recognizing their equiva-
lence is an important milestone in the learning of linear algebra because it allows students to 
perceive how key concepts relate to one another. This suggests a longitudinal study of stu-
dents’ responses to reading questions across sections to track the evolution of their concep-
tions of span. Such study would provide valuable insights into how students’ understanding, 
specifically their use of control structures, develops over time during the course, informing 
targeted interventions and instructional strategies to enhance their learning experience.

We also observed different combinations of control structures in the student responses 
for the two reading questions when comparing control structures used by the same students 
across the two questions. Why do students choose not to replicate their own work from the 
previous question when it is essentially the same problem? This illustrates how the nature 
of a problem and the operators needed to solve it contribute to choosing control structures. 
For instance, in the second reading question, more students mentioned Pivots (CS6) com-
pared to the first, as they may have received feedback indicating that there are no pivots, 
thus realizing that they can stop. This reaffirms how the cK¢ model works; the system 
gives students feedback, prompting students to choose control structures that may signal 
that they have solved the problem.

5.3 � Correctness of student responses using control structures

We found that most of the responses had a solution with both correct criteria and link by 
conception. We do not claim, however, that students who wrote those answers fully under-
stand the material they have read; we are aware that inferring understanding is problematic 
based on these responses alone. However, the variations in the correctness observed among 
the responses categorized into different control structures, especially those mentioned in 
the textbook examples, suggest that the difficulty in understanding and employing them 
varies. For example, responses that used Number of Solutions (CS2) had relatively more 
incorrect criteria and links by conception than those that used Consistency (CS1) and Sca-
lars (CS3). This suggests that relying on the number of solutions as a control structure for 
this type of problem might be more complex. Additionally, it raises the possibility that a 
misinterpretation concerning the case of a unique solution could be linked to the presence 
of incorrect criteria. Given the limited evidence, we propose that this connection warrants 
further investigation.

Even though a conception is not right or wrong, the proposed fine-grained analysis of 
the correctness of the answer based on the control structure observed by looking at the 
correctness of criteria and the correctness of link by conception can provide a useful tool 
to map a progression of conceptions. We think that this analysis is more informative than 
solely assessing the correctness of the final conclusion. As reading questions are designed 
to be answered prior to a lesson, they allow instructors to delve into the intricacies of the 
students’ thinking and adjust teaching to students’ needs. For instance, if errors in crite-
ria occur more frequently than errors in links, an instructor could revisit the role of the 
operators (e.g., row reduction) and what is behind them. If link errors are more prevalent, 
instructors may expand on their mathematical justification.

5.4 � Limitations

There are two limitations in the study. First, as the students typed their responses in a 
textbook textbox, it was not possible to ask follow-up questions to clarify how they made 



	 S. Gerami et al.

1 3

decisions about specific control structures and their connections to local conclusions. This 
made it difficult to infer all the elements in the conceptions (e.g., operators used and alter-
native representations) used to arrive at typed answers. However, we were careful to only 
use the information provided to make the classification and avoid inferring students’ inten-
tions. For that reason, and because the operations and the representations could be assumed 
to be similar, the control structures can serve as a reliable proxy for identifying different 
conceptions that students have about deciding whether a vector is in the span of a set or 
not.

Second, our coding for correctness is not comprehensive for students who used mul-
tiple control structures but had different correctness based on each control structure. For 
example, in response to RQ2, student #70 wrote: “No, because the matrix is inconsistent 
and has infinitely many solutions for �1 and �

2
 .” This response has two control struc-

tures, Consistency (CS1), and Number of Solutions (CS2). Both the criterion and link 
for CS1 are correct (inconsistent → not in span), but both the criterion and the link for 
CS2 are incorrect (infinite solutions → not in span, should be no solution → not in span; 
infinite solutions should imply vector is in span). We coded this response as C00 (incor-
rect criteria and incorrect link by conception) to account for the errors when using CS2. 
This case illustrates a difficulty in the process of coding for correctness that might be 
significant as a larger number of responses are gathered. In our sample, there was only 
one instance of this issue.

6 � Implications

Balacheff’s model (Balacheff & Margolinas, 2005) enabled us to describe potential con-
ceptions from textbook examples and student responses related to the problem of decid-
ing set belonging. While only describing a particular component of students’ concep-
tions due to the nature of the data (typed responses), the analysis shows the potential 
of extending the use of this model to other data sources (exams and interviews), which 
can shape curricular and instructional interventions. We note that this model has been 
successfully used to analyze textbook content (Mesa, 2004, 2010; Mesa & Goldstein, 
2016).

That some students answered the two reading questions without using the textbook 
examples highlights a tension when designing reading questions. The author may have 
deliberately selected simple vectors for the reading questions so that practicing the rep-
lication of the process illustrated in the example would be straightforward. However, 
doing so may have curtailed the need for students to read the text, as some of them 
solved the problem without the information in the examples. This points to an area of 
further research regarding the design of these reading questions.

Finally, we believe that these analyses can facilitate learning and teaching by provid-
ing students with immediate feedback and instructors with potential conceptions, which 
would allow them to plan accordingly for their lessons. Given the advances in natural 
language processing (NLP), large language models (LLM) with mathematical interpret-
ability, such as MathBERT (Shen et al., 2021), have the potential to automate this pro-
cess within interactive textbooks. We are planning to leverage Runestone (https://​landi​
ng.​runes​tone.​acade​my/), an interactive learning analytics platform, to streamline the 
collection of student and instructor data, thereby supporting our overarching vision of 

https://landing.runestone.academy/
https://landing.runestone.academy/
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supporting both students and teachers as they learn and teach mathematics with interac-
tive textbooks.
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