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Abstract

Using Balacheff’s (2013) model of conceptions, we inferred potential conceptions in three
examples presented in the spanning sets section of an interactive linear algebra textbook.
An analysis of student responses to two similar reading questions revealed additional strat-
egies that students used to decide whether a vector was in the spanning set of a given set
of vectors. An analysis of the correctness of the application of these strategies provides a
more nuanced understanding of student responses that might be more useful for instructors
than simply classifying the responses as right or wrong. These findings add to our knowl-
edge of the textbook’s presentation of span and student understanding of span. We discuss
implications for research and practice.

Keywords Linear algebra - Conceptions - Spans and spanning sets - Reading questions

The notion of span is central in linear algebra. From a mathematical point, the span of a
finite set of vectors is simply and elegantly derived from basic mathematical operations
to make a vector space, and determining whether a vector belongs to the span of a set is a
central question in linear algebra. However, there has been ample and extensive research
indicating that this notion is difficult for students to learn (Carlson, 1993; Harel, 1989; Hil-
lel, 2000; Sierpinska, 2000). Much of the research on students’ understanding of linear
algebra ideas has been done in the context of individual interviews guided by specific theo-
retical approaches or by observing the implementation of theoretically designed curricula,
both of which allow researchers to map the construction of notions by students. A smaller
body of research has used students’ responses to examination questions, to describe stu-
dents’ knowledge of procedures in solving linear algebra problems (Kontorovich, 2020).
While quite important to the field, these findings have limitations: the samples are small
and circumscribed to specific institutions and contexts. Moreover, when recommendations
for practice are suggested, they are available once the research is concluded, months or
even years after the participants provided information.
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Fig.1 a Reading question 1, student view. b Reading question 2, teacher view

In this paper, we explore student understanding of span in relationship with the text-
book’s presentation of the topic using student responses to two reading questions embed-
ded in the textbook. As intended by its name, a reading question is a question that seeks
to motivate students to read the textbook’s content before attending a lesson where those
specific contents will be discussed. Students are expected to provide responses to those
questions ahead of the lesson. In the interactive textbooks we study, students can type their
mathematical work and thoughts directly into the textbooks (Fig. 1a), and once they submit
their answers, instructors can immediately view them (Fig. 1b).

Reading questions are designed to fulfill multiple purposes: to attune students to the new
content, to uncover misunderstandings that can lead students to ask questions about the mate-
rial, or to help students make connections to prior knowledge. These purposes are supported
by research that documents that engaging with material prior to class can be beneficial for
knowledge building (Graham et al., 2020). They are also included to support teaching when
assigned before class, teachers can scan the student responses to ascertain their potential level
of understanding of the textbook material and possibly adjust their teaching plans. Reading
questions provide an important entry point into student understanding of ideas and can poten-
tially allow investigation of learning progressions tied to particular textbooks.

In what follows, we present literature that describes our current knowledge of students’
understanding of span, the theoretical approach to studying student responses, and the
research questions guiding our investigation.

1 Literature review

We identified three main areas of research in the literature about spans': students’ ways of
thinking about span, difficulties with the abstract nature and formal definition of span, and
interventions to address those.

! Most research on student understanding of spans includes linear (in)dependence. See for example, Ras-
mussen and Wawro (2017) and Stewart et al. (2019) who provide a comprehensive review of these topics.
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Drawing upon Tall and Vinner’s (1981) construct of concept image, Plaxco and
Wawro (2015) conducted individual interviews with five individual students enrolled in
an inquiry-oriented instruction (IOI) course guided by the instructional design theory of
Realistic Mathematics Education (RME; Freudenthal, 1991) based on possible travels on a
magic carpet (Magic Ride). The authors found a wide range of student concept images of
span, which they organized into four main categories: travel (“everywhere you can get” to
describe span), geometric (the area that the span of some vectors covers), vector algebraic
(“every vector you can make with linear combinations of the columns”), and matrix alge-
braic (the properties of matrix related to span, such as dimension). These concept images
are closely related to the models used in the curriculum to illustrate span (e.g., moving on
a flat space using a hoverboard or a magic carpet parallel to the surface, each with their
own moving constraints, see Wawro et al., 2012). Using the same curriculum and these
concept images, Rasmussen et al. (2015) showed that students exhibited different trajec-
tories through the four categories yet demonstrated individual progress over time. These
investigations illustrate the connection between the representations used in the curriculum
(means of transportation, e.g., a hoverboard or a magic carpet and vector representation in
the Cartesian plane) and the images that students build about the span.

Student challenges in learning the notion of span have been extensively documented.
Medina (2000) and Parker (2010) also used Tall and Vinner’s (1981) concept image to
show that students rarely stated a formal definition of span, struggled to interpret it, and
preferred describing span using everyday words. Having a hard time connecting various
related concepts, students relied on procedural rather than conceptual understanding to
solve problems. Parker further illustrated how students’ conceptual understanding of the
definition of span varied more than their procedural understanding. Subsequent studies
(e.g., Hannah et al., 2013) have confirmed students’ struggles with understanding the
formal definition and their inclination to use computational algorithms over theoretical
methods.

To overcome these challenges, scholars have explored the implementation of various
instructional interventions to aid students in transitioning to the abstract definition of span.
Wawro et al. (2012), for example, employed the modeling task mentioned earlier, Magic Ride,
to guide students in reinventing the notions of span and linear (in)dependence. They claimed
that the modeling task eased students’ transition from systems of equations to vector equations
by leveraging their intuitive understanding. Cércamo et al. (2016, 2017, 2018) devised
modeling tasks about creating and using secure passwords that aimed to establish connections
between span and the first-year students’ experiences at a Spanish university. Although
students had a hard time using mathematical notation and the procedure to find spanning
sets, the instructional design helped them advance their understanding by transitioning “their
informal mathematical knowledge to a more formal comprehension” (2016, p. 67).

Other intervention studies have been inconclusive. Hannah et al. (2013, 2016)
investigated one instructor’s students’ understanding of span using visualization, talking and
writing in the language of linear algebra, and emphasizing formal definitions. Using Tall’s
(2013) theory of three worlds (embodied/geometric, symbolic, and formal) and action,
process, object, and schema (APOS; Dubinsky & McDonald, 2001), they showed that
despite emphasizing visualization and formal language, more students preferred informal
and visual ways of thinking about span (e.g., being able to get to any point in the space
with the given vectors and covering a plane with two vectors) and more students performed
better on algorithmic tasks compared to tasks that connected geometric, symbolic, and
formal ways of thinking about span. Using the same frameworks, Stewart and Thomas
(2007, 2009) examined the effects of tutoring with elements of embodied, symbolic, and
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formal concepts. Although most students still struggled with formal definitions, those who
underwent the tutoring did better describing the concepts and were mostly able to link span
to the idea of linear combination. Lastly, Bouhjar et al. (2021) investigated the impact of I0I
on student reasoning about span and linear independence, using Tall and Vinner’s (1981)
concept image. The study showed that students exposed to IOI exhibited more varied and
conceptually aligned concept images of span compared to their non-IOI counterparts. 10I
students also engaged in reasoning about span with a higher frequency in terms of linear
independence, dimensionality, and row reduction. Conversely, a significant proportion
of non-I0I students approached span by treating vectors as geometric entities. This work
highlights the importance of using diverse representations, modeling, and inquiry to support
students’ transition from less abstract to more formal definitions of span.

Given that this research often aims to improve the teaching of linear algebra, often
through the utilization of Realistic Mathematics Education models (RME; Gravemeijer,
1999), many studies examine student understanding by mainly relying on the notion of
concept image—an individual’s “cognitive structure associated with the concept” (Tall &
Vinner, 1981, p. 153). While these studies offer insights into students’ cognitive processes
and conceptual development at the individual level, researchers recognize that this cogni-
tive approach to understanding students’ thinking has not produced much nuance regarding
“when and whether the various conceptions occur across modes of thinking, Tall’s (2013)
worlds, or different metaphors or models” (Stewart et al., 2019, p. 1022). In other words,
the current theoretical frameworks used to dissect students’ understanding of span appear
to be broadly linked to the representations of span, offering holistic descriptions without
specific problem contexts. This lack of specificity makes it challenging for researchers to
systematically study conceptions within a group of students.

In our study, we contribute to the literature by taking a different approach to studying
student understanding of spans, through one type of problem, and during students’ learning
processes using Balacheff’s cK¢ model of conceptions (Balacheff & Margolinas, 2005).
Given that we are not interested in what students had learned by the time of data collec-
tion, but rather how they were thinking when learning about span, we integrate a charac-
terization of “correctness” to our student conceptions, inspired by Harel’s (1989, 2000)
framework of correctness of students’ answers. We provide an overview of our theoretical
framework next.

2 Theoretical underpinnings

As they learn the material, students make statements, in writing or aloud, that suggest that
they may be “mixing” contexts or definitions in ways that sound acceptable but are not
quite right. Explanations for this phenomenon tend to rely on the assumption that what
students do, say, or write maps directly to what they know (e.g., Sellers et al., 2021). These
analyses are difficult to corroborate and are more reflective of the researcher’s perspec-
tive. Balacheff’s cK¢ model of conceptions (Balacheff & Gaudin, 2009; Balacheff & Mar-
golinas, 2005) gives a process for generating explicit characterizations of conceptions
grounded in the analysis of students’ productions (what they write and what they say) and
not on assumptions of what they are thinking.

In the French tradition, the word knowing (connaissance) is used as a noun to distinguish
a learner’s personal constructs of mathematical notions from knowledge (savoir), which refers
to intellectual constructs recognized by the community. As learners encounter a mathematical
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task (a problem, an exercise, or a question) in which they must use their knowing of a spe-
cific mathematical notion, they are in a position in which their cognitive dimension interacts
with those aspects of the task that bring into play the knowledge at stake (environment). The
learners’ actions, guided by their cognitive dimension, will generate feedback from the envi-
ronment in repeated sequences (when multiple intermediate steps are needed). The sequence
stops once the learners receive feedback that the task has been completed. The repeated
exchanges emanate from the personal knowings learners have, and as such, they can reveal
the coexistence of multiple knowings that may not be perceived as problematic or contradic-
tory to the learner. Contradictory knowings can coexist at different times of a learner’s history
(e.g., “multiplication results in bigger numbers”) or in cases in which mathematical situations
they encounter repeatedly call for one knowing and not others (e.g., multiplication of natural
numbers). The learner does not perceive the contradictions in new situations that demand
the use of their knowings (e.g., multiplication by rational numbers in the interval (0,1)), even
though they will appear contradictory to the observer—the teacher or the researcher is able
to identify that the new contexts will require a different knowing. Balacheft uses “subject”
(S) to refer to the cognitive dimension of the learner, and “milieu” (M) to refer to the aspects
of the mathematical task that bring into play the knowledge at stake (Fig. 2). An arrow from
the subject to the milieu is an action that the cognitive dimension of the learner is perform-
ing to address the task; an arrow from the milieu to the subject represents the feedback that
the learner receives as a result of their action. The viability of the system of exchanges is
regulated by conditions (constraints) needed to ensure that the system is such that the learner
will engage with the task and that an equilibrium is reached (the task is solved). Constraints
provide the subject with information for decision making. Thus, a conception is “a state of
dynamic equilibrium of an action-feedback loop, between a subject and a milieu under pro-
scriptive constraints of viability” (p. 189).

Learning in this context is defined as a process in which equilibrium between the
learner and the milieu is reached after several action-feedback loops (a loss of equilibrium
is perturbations that occur after an action is performed and a result is not exactly what
is expected). Unresolved perturbations recognized by the subject can lead to learning or
to repeated action-feedback loops. But in some cases, the subject does not identify the
perturbation; when this occurs, the unnoticed perturbation is a symptom of a conception,
the remnant of a “previous equilibrium of the subject/milieu system” (p. 190). To

Fig.2 Schematic for “concep-
tion” in the subject/milieu system
(Balacheff & Gaudin, 2009, p.

189) ‘

action

feedback

1

constraints
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characterize a learner’s knowings, Balacheff (2013) operationalizes a conception as
a quadruplet: problems, operators, semiotic and representation systems, and control
structures. Problems are the ‘“class of the disequilibria the considered conception is
able to recover from” (Balacheff & Gaudin, 2009, p. 190); these emerge from the need
for mathematical notions to evolve. Operators are the tools for “actions on the milieu”
needed to simulate what the learner does to tackle the problems and “to transform and
manipulate linguistic, symbolic or graphical representations” (p. 190). Semiotic and
representation systems are the “linguistic, graphical or symbolic means which support the
interaction between the subject and the milieu” (p. 190). Lastly, control structures are the
“components supporting the monitoring of the equilibrium of the [S — M] system” (p. 190)
or the strategies (e.g., metacognitive processes, use of definitions, and checking existing
answers) that allow learners to decide whether they have solved the problem and whether
they have done so correctly.

This conceptualization of conceptions is practical because it allows researchers to define
the domain of validity of a knowing as the collection of related conceptions exhibited by
individuals. Because the collection corresponds to the expression of a learner’s conceptions
enacted by a situation (solving a problem), the definition allows the coexistence of
more than one, possibly contradictory, conception in the subject. In addition, when
there is a need for variations in the set of problems that learners must face (e.g., when
the mathematical ideas are revisited in different contexts), the operators, representations,
and metacognitive strategies needed to organize the work (control structures) can be used
to describe the emergence of different conceptions of a mathematical notion. Moreover,
as teachers care about whether responses are right or wrong answers, we believe that the
cK¢ model provides a mechanism for characterizing correctness in terms of the students’
process of justification. Thus, in this study, we seek to answer the following questions:

1. 'What conceptions of spanning sets can be inferred from the examples of spanning sets
in an interactive undergraduate linear algebra textbook?

2. What control structures are evident in student responses to reading questions about
spanning sets provided prior to the lesson on spanning sets?

3. What is the correctness of the students’ responses using these control structures?

3 Methods

The data for this study come from a larger study that investigates the use of interactive
textbooks in calculus, linear algebra, and abstract algebra courses by instructors and
their students (Beezer et al., 2018). The linear algebra textbook, A First Course of Linear
Algebra (Beezer, 2021), follows the definition-theorem-proof presentation style (Love
& Pimm, 1996) and is designed as a bridge-to-proof course that uses mostly symbolic
representations without visualizations. It is authored in PreTeXt (https://pretextbook.
org/), a mark-up language that facilitates the publication of open source and open access
textbooks and the inclusion of interactive features, such as computation or Sage cells,
hyperlinks, automatic solution feedback systems, and short-answer questions (O’Halloran
et al., 2018). PreTeXt textbooks can be reproduced in any output (e.g., HTML, PDF,
ePub, and braille). Each section in the textbook has a set of three reading questions
that students are supposed to answer directly in their textbooks before coming to class.
Students’ responses are collected in real-time making them immediately available to their
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instructors, who in turn can alter their lesson plan depending on those responses. The
reading questions in the spanning sets (SS) section (Fig. 1) ask whether a vector is in the
span of a set of given vectors. This section is divided into two subsections: span of set
of vectors (SSV) and spanning sets of null spaces (SSNS). Our analysis focuses on the
reading questions related to the first subsection, which starts with the definition of the span
of a set of column vectors. Following the definition, the author gives three examples of
the same problem using numerical and symbolic representations of vectors and matrices,
without any visualizations. The subsection concludes with two Sage cells that guide
students to generate the span of a finite set of vectors and use the notion of span to check
the consistency of a linear system.

To investigate how the textbook content related to the reading questions in these
sections, we analyzed the text and examples directly related to the reading questions.
The study collected information from over 50 faculty, of which six used the interactive
linear algebra textbook and assigned the reading questions to their students (n=76) as
intended by the textbook’s author, namely, to be answered before class. The student
responses were collected during Fall 19, Fall 20, Spring 21, and Fall 21. The students
were in six different universities (public, private; small, medium size) in the USA. The
data were analyzed in three phases: (1) identifying conceptions in the textbook examples
and the control structures in student responses to the reading questions using Balacheff’s
(2013) cK¢ model, (2) coding for the correctness of the use of the control structure in the
responses, and (3) looking for patterns between the control structures in student responses
and correctness to identify possible associations. These analyses map our three research
questions. We describe each phase next.

3.1 Phase one: identifying conceptions and control structures

We analyzed three examples—Example ABS: A Basic Span; Example SCAA: Span of the
Columns of Archetype A; and Example SCAB: Span of the Columns of Archetype B—that
dealt with deciding whether a vector was in the span of a set or not. Figure 3 shows the first
example in SS. The other two examples deal with two different linear systems (archetype
A: three equations, three unknowns, with a singular coefficient matrix with dimension 1
null space; archetype B: three equations, three unknowns, with a nonsingular coefficient
matrix, see http://linear.ups.edu/html/section-SS.html). Example ABS uses R*; the other
two examples use R>.

The development of the codes followed a constant comparative method. After reading
the texts (either in the textbook or in the student responses), we identified operators and
control structures and assigned in vivo temporary codes to identify them (e.g., “find row
reduction echelon form” was coded as “RREF”). We individually created a codebook as
the reading of the texts went on. The four researchers held meetings to discuss the difficul-
ties faced in identifying the components of the model of conceptions. The first two authors
identified three different methods in the examples which suggested that multiple control
structures could be used for the same problem (is the vector in the span?), which could
lead to different conceptions. The last two authors, working with the student responses,
noted that the operations were usually implicit. Consider for example: “Yes, this vector
is in W, because the RREF [Row Reduced Echelon Form] is consistent” (RQ1, #46). In
this response, there is no information on how the student found out that the RREF (or the
system of equations that resulted in the RREF) is consistent because the steps taken are not
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Fig. 3 Example ABS: a basic span in SS

given. However, the justification for the conclusion is explicit: a consistent RREF implies
that the given vector is in the span. Because this happened in almost all the responses, we
assumed that the semiotic system and the operators students used in their responses were
similar and consistent with the textbook content and that the control structure must be the
discriminating element of the conceptions. Therefore, we decided to focus on the control
structures stated in the student responses. We also checked our use of the model with Bal-
acheff, who deemed it “accurate and appropriate” (N. Balacheff, personal communication,
January 6, 2023).

We refined the definitions of the components of the model and of the control structures,
and independently, pairs of authors coded the responses for control structures. The list of
control structures grew as we coded the student responses. Once the authors had read and
coded the responses individually, we met to compare and resolve disagreements. Disagree-
ments were due to ambiguity in interpretations, which led to clarification of the defini-
tions of the control structures. Once the definition of each control structure was finalized,
we reread the responses to make sure that the coding aligned with the new definitions.
The final definitions of each control structure are presented in Table 1, along with example
responses that illustrate each of them. We use italics through the text to refer to the control
structures.

As we discuss later in the findings, some of the student responses exhibited multiple
control structures. For example, we identified three control structures in the following
response to RQ1 from student 52 (the codes are underlined inside brackets):

The vector [-1,8,-4] is in W. First, I wrote out the vectors as: x1 [1,2,-1] + x2 [3,-4,2]
+ x3 [4,-2,1] = [-1,8,-4]. Next, I formed these vectors into a 3x4 augmented matrix. [
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then put the augmented matrix into RREF. We see there are infinetly [sic] many solu-
tions [CS2: Number of Solutions], and x3 is a free variable [CS3: Number of Free
Variables]. The solution set is S = [2-x3 , -1-x3 , x3]. Since x3 is a free variable, I
choice x3 to be 3. That than gives us: [3 , -4, -1] as the solution set when x3=3. We
know the vector [-1,8,-4] is in W because we get: (-1)ul + (-4)u2 + 3)u3 =W [CS7:
Scalars].

Thus, although one control structure was enough to justify that the vector is in the span
of the other three vectors, the student provided three control structures in their response.

3.2 Phase two: coding for correctness

In the second phase, we analyzed the action-feedback loop by assessing the correctness of
the student responses. By correctness, we do not mean to be “right” or “wrong” or being free
of error. Instead, we conceptualize correctness as a two-folded tool to capture the nuances of
student thinking during various steps of answering the reading questions. We analyzed the
correctness of each criterion and its link to the final conclusion, which we refer to as link by
conception. We define criterion as the intermediate result needed to apply the control struc-
ture that signals the student whether the given vector is in span. The description of the correct
criteria for each control structure for both reading questions is shown in Table 2.

Next, we looked at the correctness of the link between the criteria to the final conclu-
sion, that is, whether the student interpreted the criterion correctly (by means of mathemat-
ics) to reach the final conclusion answering the reading question. In this stage, we only
analyzed the correctness of responses with valid control structures. We modified Harel’s
(1989, 2000) coding of the correctness of students’ answers (correct final answer, incor-
rect final answer, correct justification, and incorrect justification) because in his case, an

Link by conception (#,)
Correct (1) Incorrect (0)

The vector [-1.8,-4] is in the span W, the reason is because when the  No, because the matrix has infinite solutions when we need a unique

Y
Correct criterion
matrix is in RREF, there are infinite solutions, this indicates that this solution. (SS-RQI, #11)

=
= —
K] Correct criterion
E vector is a part of the span. (SS-RQI, #2)
o
5 Sl
& Correct link Incorrect link
2
£
S
No it is not because when you get to the RREF it has a 0=1 which No because the solution is unique. (SS-RQI, #65)
v
= . Incorrect criterion
£ means po solutions, (SS-RQI, #27)
- )
o T
o 5 .
E Incorrect criterion
Qo
£

Solution Correct link Incorrect link

* Unique solution should give Yes, vector in span.

Fig.4 Four example responses using Number of Solutions (CS2) in RQI with correct and incorrect links by
conception and criteria
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incorrect justification could be obtained by correctly using a control structure. We created
a binary code, C##,, where #, represents the correctness of the criteria and #, represents
the correctness of the link by conception (1 =correct, 0 =incorrect). Thus, C10 is assigned
when the response uses the correct criteria for the chosen control structure, but the link
between the criteria and the final conclusion is incorrect. Figure 4 illustrates four responses
using Number of Solutions (CS2) in RQ1 and that uses the criterion “has infinite solutions.”

The first, second, and fourth authors analyzed the correctness of the criteria and their
links to the final conclusion. Disagreements were resolved through consensus and resulted
in refinements of the code definitions.

3.3 Phase three: connections between control structures and correctness

In the third phase, we examined the relationship between control structures and correct-
ness. This analysis involved cross-tabulating two sets of data. First, we examined the
control structures used and the frequency of each correctness category using UpSet plots
(Conway et al., 2017; Lex et al., 2014) for each reading question, which allowed us to vis-
ualize the various combinations of control structures presented in student responses and
their corresponding distribution across the correctness categories. Second, we performed
a chi-squared test to determine if there was any association between the control structures
observed in a response and the correctness of the response to investigate the connection
between specific control structures and correctness. Finally, we used a chi-squared test to
determine whether there was an association between the number of control structures in the
responses and the correctness of the responses. The results of the chi-squared tests need to
be taken with caution, as the observed frequency in one cell was less than five.

4 Findings

We present the findings in three sections, organized by the three analyses we performed:
the analysis of the conceptions from the examples in the spanning sets (SS) section, the
control structures present in the student responses, and the relationship between control
structures present in the responses and the correctness of their use and conclusions.

4.1 Inferred conceptions from SS examples in the textbook

The three examples analyzed in the section addressed the problem of “whether a given
vector is in the span of a set of vectors.” All three examples in this section rely on similar
symbolic representations R* in the first example, and R® in the other two. For each example,
a set of vectors is given, followed by two vectors to be tested for inclusion in the span of
the vector set. We identified three different control structures (CS for short, Fig. 5) and
six operators (OP for short), used in two separate solution paths as shown in Fig. 5; by
solution path, we mean a sequence of operators used for solving a problem with a specific
control structure. For example, the solution path of using Consistency (CS1) in Fig. 5 is
OP1—OP2—0P3 —OP4.1.

In all the solution paths illustrated in Fig. 5, the author starts by forming a system of
equations expressing the given vector as a linear combination of the vectors in the set (OP1:
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construct system). He then creates an augmented matrix for the system (OP2: construct
matrix) and performs a row-reduced echelon transformation on the matrix (OP3: row
reduction). He proceeds to inspect the resulting row-reduced echelon form (RREF) matrix
either for consistency (OP4.1: inspect consistency) or for the number of solutions (OP4.2:
inspect number of solutions) to conclude whether the given vector is in the span of S. Note
that in the presentation, the author alludes to some operators rather than explicitly showing
them. In Example SCAA and Example SCAB, the author states “Building the augmented
matrix for the given system, and row-reducing, gives...” and then uses the results in the
next steps. Such language suggests that a matrix was constructed (OP2: construct matrix),
although it was not explicitly shown.

In justifying the decision about whether the vector is in the span or not,
OP1—0P2—0P3—0P4.1 and OP1—OP2—OP3—OP4.2 are the main paths that
imply two possible conceptions corresponding to two distinct control structures (Consist-
ency, CS1 and Number of Solutions, CS2). Depending on the control structure, the crite-
rion chosen to decide varies. Using CS1, the author asserts that we can conclude the vector
is in the span if the system is consistent. (... we see that the system is consistent ... This
is enough to say that u € (S)”, Beezer, 2021). Conversely, if the system is inconsistent,
then the given vector is not in the span. Another alternative is to use CS2: the vector is in

P: Whether a given vector is in the span of a set of vectors
S: Vector space in R? or R*

l

OP1: Construct System
Construct a system of equations of the vector as a linear
combination of the vectors in the spanning set where the scalars are
to be determined.

l
OP2: Construct Matrix
Form an augmented matrix from the system ( Output Final

\__Conclusion

l Flow line
OP3: Row Reduction Optional Flow line
Perform row reduction on the augmented matrix

[ ]

OP4.2: Inspect Number of
Solutions

Determine number of solutions to
the system

I__J__l I_]—l

OP4.1: Inspect Consistency
Determine whether the system is
consistent.

Unique/
Inconsistent Consistent Infinite No solution
Solution
I I g |
{ [ i i 1 1
I I
No, vector not in span Yes, vector in span | ERE R | Yes, vector in span No, vector not in span
CS1: Consistency CS2: Number of solutions

| OPS: Solve System, Find Scalars (Optional)
! Solve the system completely and express the given vector as a
] linear combination of the vectors in the spanning set.

CS3: Scalars

Fig.5 Inferred conceptions from three examples in the SS section (dashed arrows indicate optional steps)
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the span if the system has a unique solution (“This system has a unique solution ..., so we
are convinced that z really is in (R),” Example SCAB) or infinitely many solutions (“This
system has infinitely many solutions, but all we need is one solution vector, ..., so we are
convinced that w really is in (S)”, Example SCAA). Conversely, if the system has no solu-
tions, then the given vector is not in the span.

The author also provides an optional operator that solves the system completely for the
scalars in the linear combination (OP5: solve system, find scalars, represented using dashed
lines in Fig. 5). This operator is depicted as a means of confirming the decision using either
CS1 or CS2, but also implies the emergence of another control structure, Scalars (CS3).
Using CS3, the author decides whether there are scalars that create a linear combination
and if so, finds a set of such scalars (“we know there is not (emphasis in original) a solution
for the five scalars ... If we wished for further evidence, we could compute an actual solu-
tion, say a; =2, o, = 1, a3 = =2, @y = =3, a5 = 2” Example ABS). In Example SCAA,
after finding one such set of scalars that “work,” the author explains that his set of scalars
is in fact not unique, highlighting that any set of scalars that work is justifiable: “There is
nothing magical about the scalars a; =5, @, = =3, a; = 7, they could have been chosen
to be anything.” Although one may find such scalars by guessing, the scalars in the three
examples are found by solving the system.

4.2 Control structures in student responses to SS reading questions

Figure 6 shows the number of responses with each control structure for both reading ques-
tions and the distribution of the correctness of using each control structure. The three most
observed control structures in RQ1 were Consistency (CS1), Number of Solutions (CS2), and
Scalars (CS3). We had a similar set of common control structures in RQ2 except that we
have Linear Combination (CS4) in place of CS3. We think this is because there are no scalars
that work as a linear combination for RQ2; only one student used CS3 giving incorrect sca-
lars. Other than Pivots (CS6), which was coded in 11 student RQ2 responses, the rest of the
control structures (CS5-7) were seen five times or less across the responses to RQ1 and RQ2.

Given that the author provides Scalars (CS3) only as an optional control structure and
he does not mention linear combination (CS4) in the examples, the relative high presence
of CS3 and CS4 could be explained by assuming that those responses would rely on the
textbook’s definition of the span of a set given (Fig. 7) and not necessarily on the operator
paths given by the textbook examples. Students could identify the scalars that work as a
linear combination by using inspection or guessing.

Most responses had only one control structure (55 for RQ1 and 43 for RQ2), but some
had two or more control structures (see Fig. 8). For example, out of 23 responses coded
with Consistency (CS1) in RQ1, nine had other control structures (one with Number of
Solutions (CS2), three with Scalars (CS3), two with Linear Combination (CS4), two with
CS2 and CS4, and one with CS3 and Number of Free Variables (CS7)). Attending to spe-
cific combinations of control structures used in the RQ1 responses (Fig. 8a), we note that
responses with CS7 always come in combination with one or more of the textbook’s con-
trol structures, namely, CS1, CS2, and CS3.
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Fig.6 Number of responses using each control structure and the correctness distribution when using each
control structure for a RQ1 and b RQ2. Note. Control structures: CS1: consistency; CS2: number of solu-
tions; CS3: scalars; CS4: linear combination; CS5: SAGE; CS6: pivots; CS7: Number of free variables.
Correctness codes: C11: correct use of criteria for the chosen control structure and a correct link by concep-
tion; C10: correct criteria and incorrect link; CO1: incorrect criteria and correct link; C0O: incorrect criteria
and incorrect link

Definition SSCV. Span of a Set of Column Vectors. Given a set of
vectors S = {uy, uy, ug, ..., u,}, their span, (S), is the set of all possible linear
combinations of uy, uy, ug, ..., u, Symbolically,

(S) = {01111 + U +agug + -+ aply la; € C,1<1< p}

l)
= Zniu,- aq;eCi1<i<p
i=1

Fig. 7 Textbook’s definition of the span of a set of column vectors located at the beginning of the SS sec-
tion

4.3 Connections between control structures and correctness in student responses

Most of the interpretable responses (56 of 69 in RQ1 and 61 of 67 in RQ2) showed a cor-
rect use of criteria and a correct link (C11, see Table 3). The second common correctness
category was the response with incorrect criteria but correct links by conception (CO1). It
is possible that some computational error in obtaining the criteria led students to incorrect
conclusions (whether vector in span) despite having a correct understanding of the theorem
(link by conception).

The chi-squared test of independence between the control structure observed in a
response and the correctness of the response was significant (y2(200,6) = 14.08; p <0.05).
Responses coded as using Number of Solutions (CS2) had, relative to other responses
coded with other control structures, more incorrect criteria and links by concep-
tion (;(2(200,6)=4.15; p<0.05). In contrast, all 22 responses coded using SAGE (CS5),
Pivots (CS6), and Number of Free Variables (CS7), which are not mentioned in this section
of the textbook, showed correct criteria and had correct links by conception.
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Table 3 Number of interpretable

. Correctness category RQI RQ2

responses in each correctness

category for RQI and RQ2 C11: correct criteria and correct link 56 61
C10: correct criteria and incorrect link 2 0
CO1: incorrect criteria and correct link 10 4
CO00: incorrect criteria and incorrect link 1 2
Total 69 67

Ta.ble 4 Number qf responses C11: correct Other correctness  Total

with one and multiple control criteria and cor-  categories

structures and correctness in rect link

both reading questions combined

2(218,1)=37.82; p<0.001 One CS 65 17 &
Multiple CS 52 2 136
Total 117 19 218

The chi-squared test between the combined number of control structures present in the
responses (one, two, or more) and the correctness of the use of the control structure and the
links (two categories, C11 and C10+C01+ C00) revealed a statistically significant associ-
ation (;(2(218,1) =37.82; p<0.001; Table 4), which corroborates that responses with more
than one control structure tended to have correct use of criteria and link by conception.
Perhaps the various control structures work towards reaching a correct conclusion.

5 Discussion

When dealing with the problem of deciding “whether a given vector is in a span of a given
spanning set,” Beezer’s (2021) textbook presents three solution methods, each represent-
ing a distinct conceptual approach as defined by Balacheff: (1) the consistency of the sys-
tem of the equation obtained by expressing the given vector as a linear combination of the
spanning vectors, (2) the number of solutions to that system, and (3) the scalars found by
solving the system completely. We observed a wide variety of control structures in student
responses to the two reading questions that address the same problem, with some students
using multiple control structures to justify their answers. Moreover, when comparing indi-
vidual students’ responses across the two reading questions, we discovered that they often
fall into the different categories of control structures. Although we observed some varia-
tion in the level of correctness when using different control structures, most of the student
responses offered solutions with correct criteria and linked by conception to both reading
questions. We discuss these findings of our research questions next.
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5.1 Conceptions inferred from the textbook examples

We identified three distinct potential conceptions given the different control structures in
the relevant textbook examples. While the textbook does not name the different strategies,
the justifications used to arrive at the final conclusions clearly differ. Each example uses a
separate control structure. The textbook does not have a rationale for using a control struc-
ture, instead, the examples illustrate different approaches depending on whether the vec-
tor is in the span or not, offering multiple ways in which the problem can be treated. In
terms of the model of conceptions, such work codifies different conceptions of the notion
of spanning sets. Because in linear algebra there are multiple equivalences (Payton, 2019;
Wawro, 2014), it is likely that students will struggle to recognize the equivalence of the
various conceptions. It might be useful to alert students that although the ways of deciding
may seem different, they will soon learn that all are basically the same.

In the analyzed examples and throughout the textbook, the author deliberately uses sym-
bolic representations (matrices, vectors, and equations) instead of geometric or real-world
representations. This choice is tailored to the targeted audience and the course’s objectives
as the textbook aims to provide a formal introduction to linear algebra concepts to second-
and third-year students in bridge-to-proof courses. Given the author’s heavy use of sym-
bolic representations, it is no surprise that students predominantly used symbolic control
structures in their responses.

5.2 Control structures evident in student responses

Our analysis of the control structures used in student responses suggests that students hold
a wider variety of conceptions relative to those in the textbook. Perhaps students rely on
other resources on the definition of span (e.g., Desmos, YouTube videos, other textbooks,
and classmates), instead of reading the accompanying examples and using them to solve
the problem. This could explain the use of two of these control structures (Scalars (CS3)
and Linear Combinations (CS4)) because the textbook defines span in terms of linear
combinations. Alternatively, students may rely on other sources to answer the questions;
this could explain the use of Pivots (CS6) and Number of Free Variables (CS7), which
are not present in the textbook content up to this point. Our prior work regarding students’
schemes of use of the reading questions shows that students do attempt to answer the read-
ing questions without reading the preceding text and that they use multiple resources as
they work with the reading questions (Castro et al., 2022; Quiroz et al., 2022).

We found responses with multiple control structures. It is not clear that students are
aware that one control structure suffices, whether using multiple control structures is a
strategy to increase their chances of getting the “correct” answer if they wanted to check
their answer or show that they knew more than one way to justify their answers, or if they
realized that they were using multiple control structures. It is possible that the decision
on which control structure to use does not always happen right after students identify the
problem, but rather as they engage with the action-feedback loop, meaning as they carry
out the operators until certain feedback hints at a choice of control structure.

Recognizing the equivalence between the control structures may be an epistemological
obstacle. Number of Free Variables (CS7), for example, was always used in combination
with other control structures; perhaps students see this control structure as additional support
for their justification. Because the textbook does not yet state the equivalence between these
control structures, we presume that it will be the instructor’s responsibility to demonstrate
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how and why they are equivalent to one another. Nevertheless, recognizing their equiva-
lence is an important milestone in the learning of linear algebra because it allows students to
perceive how key concepts relate to one another. This suggests a longitudinal study of stu-
dents’ responses to reading questions across sections to track the evolution of their concep-
tions of span. Such study would provide valuable insights into how students’ understanding,
specifically their use of control structures, develops over time during the course, informing
targeted interventions and instructional strategies to enhance their learning experience.

We also observed different combinations of control structures in the student responses
for the two reading questions when comparing control structures used by the same students
across the two questions. Why do students choose not to replicate their own work from the
previous question when it is essentially the same problem? This illustrates how the nature
of a problem and the operators needed to solve it contribute to choosing control structures.
For instance, in the second reading question, more students mentioned Pivots (CS6) com-
pared to the first, as they may have received feedback indicating that there are no pivots,
thus realizing that they can stop. This reaffirms how the cK¢ model works; the system
gives students feedback, prompting students to choose control structures that may signal
that they have solved the problem.

5.3 Correctness of student responses using control structures

We found that most of the responses had a solution with both correct criteria and link by
conception. We do not claim, however, that students who wrote those answers fully under-
stand the material they have read; we are aware that inferring understanding is problematic
based on these responses alone. However, the variations in the correctness observed among
the responses categorized into different control structures, especially those mentioned in
the textbook examples, suggest that the difficulty in understanding and employing them
varies. For example, responses that used Number of Solutions (CS2) had relatively more
incorrect criteria and links by conception than those that used Consistency (CS1) and Sca-
lars (CS3). This suggests that relying on the number of solutions as a control structure for
this type of problem might be more complex. Additionally, it raises the possibility that a
misinterpretation concerning the case of a unique solution could be linked to the presence
of incorrect criteria. Given the limited evidence, we propose that this connection warrants
further investigation.

Even though a conception is not right or wrong, the proposed fine-grained analysis of
the correctness of the answer based on the control structure observed by looking at the
correctness of criteria and the correctness of link by conception can provide a useful tool
to map a progression of conceptions. We think that this analysis is more informative than
solely assessing the correctness of the final conclusion. As reading questions are designed
to be answered prior to a lesson, they allow instructors to delve into the intricacies of the
students’ thinking and adjust teaching to students’ needs. For instance, if errors in crite-
ria occur more frequently than errors in links, an instructor could revisit the role of the
operators (e.g., row reduction) and what is behind them. If link errors are more prevalent,
instructors may expand on their mathematical justification.

5.4 Limitations

There are two limitations in the study. First, as the students typed their responses in a
textbook textbox, it was not possible to ask follow-up questions to clarify how they made
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decisions about specific control structures and their connections to local conclusions. This
made it difficult to infer all the elements in the conceptions (e.g., operators used and alter-
native representations) used to arrive at typed answers. However, we were careful to only
use the information provided to make the classification and avoid inferring students’ inten-
tions. For that reason, and because the operations and the representations could be assumed
to be similar, the control structures can serve as a reliable proxy for identifying different
conceptions that students have about deciding whether a vector is in the span of a set or
not.

Second, our coding for correctness is not comprehensive for students who used mul-
tiple control structures but had different correctness based on each control structure. For
example, in response to RQ2, student #70 wrote: “No, because the matrix is inconsistent
and has infinitely many solutions for «; and a,.” This response has two control struc-
tures, Consistency (CS1), and Number of Solutions (CS2). Both the criterion and link
for CS1 are correct (inconsistent — not in span), but both the criterion and the link for
CS2 are incorrect (infinite solutions — not in span, should be no solution — not in span;
infinite solutions should imply vector is in span). We coded this response as C0O (incor-
rect criteria and incorrect link by conception) to account for the errors when using CS2.
This case illustrates a difficulty in the process of coding for correctness that might be
significant as a larger number of responses are gathered. In our sample, there was only
one instance of this issue.

6 Implications

Balacheft’s model (Balacheff & Margolinas, 2005) enabled us to describe potential con-
ceptions from textbook examples and student responses related to the problem of decid-
ing set belonging. While only describing a particular component of students’ concep-
tions due to the nature of the data (typed responses), the analysis shows the potential
of extending the use of this model to other data sources (exams and interviews), which
can shape curricular and instructional interventions. We note that this model has been
successfully used to analyze textbook content (Mesa, 2004, 2010; Mesa & Goldstein,
2016).

That some students answered the two reading questions without using the textbook
examples highlights a tension when designing reading questions. The author may have
deliberately selected simple vectors for the reading questions so that practicing the rep-
lication of the process illustrated in the example would be straightforward. However,
doing so may have curtailed the need for students to read the text, as some of them
solved the problem without the information in the examples. This points to an area of
further research regarding the design of these reading questions.

Finally, we believe that these analyses can facilitate learning and teaching by provid-
ing students with immediate feedback and instructors with potential conceptions, which
would allow them to plan accordingly for their lessons. Given the advances in natural
language processing (NLP), large language models (LLM) with mathematical interpret-
ability, such as MathBERT (Shen et al., 2021), have the potential to automate this pro-
cess within interactive textbooks. We are planning to leverage Runestone (https://landi
ng.runestone.academy/), an interactive learning analytics platform, to streamline the
collection of student and instructor data, thereby supporting our overarching vision of
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supporting both students and teachers as they learn and teach mathematics with interac-
tive textbooks.
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