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Fig. 1: Contextual Shape Servoing: DefGoalNet predicts a goal point cloud (green) by learning a model from human demonstrations. DeformerNet uses
the goal representation to compute actions to move the object to the desired shape, such that the human surgeon can cut the tissue at the desired location.

Abstract— Shape servoing, a robotic task dedicated to con-
trolling objects to desired goal shapes, is a promising approach
to deformable object manipulation. An issue arises, however,
with the reliance on the specification of a goal shape. This goal
has been obtained either by a laborious domain knowledge
engineering process or by manually manipulating the object
into the desired shape and capturing the goal shape at that spe-
cific moment, both of which are impractical in various robotic
applications. In this paper, we solve this problem by developing
a novel neural network DefGoalNet, which learns deformable
object goal shapes directly from a small number of human
demonstrations. We demonstrate our method’s effectiveness on
various robotic tasks, both in simulation and on a physical
robot. Notably, in the surgical retraction task, even when
trained with as few as 10 demonstrations, our method achieves
a median success percentage of nearly 90%. These results mark
a substantial advancement in enabling shape servoing methods
to bring deformable object manipulation closer to practical
real-world applications.

I. INTRODUCTION

Deformable object manipulation defines a fundamental
challenge in robotic manipulation due to its wide-ranging
applications [1, 2]. Unlike rigid objects, deformable mate-
rials such as clothing, fabrics, soft tissues, or food items
have intricate dynamics and infinite degrees of freedom.
This complexity necessitates innovative techniques to enable
robots to manipulate deformable objects effectively. Whether
in healthcare (surgical robots for delicate tissue manipula-
tion), manufacturing (handling soft materials like textiles),
or homes (folding laundry), enabling effective deformable
object manipulation empowers robots to perform a broader
range of tasks, increasing their utility.

Shape servoing, a robotic task dedicated to controlling
objects to desired goal shapes, has recently garnered sig-
nificant attention from the deformable object manipulation
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community [3—15]. Our prior work in this area, Deformer-
Net [3], leverages point clouds as the state representation
for deformable objects. DeformerNet defines a neural net-
work that takes the object’s current and goal point clouds
as inputs and computes the desired robot action to drive
the object toward the target shape. However, a significant
weakness of DeformerNet and other shape servoing methods
is the requirement to explicitly define goal shapes, e.g., as
a point cloud. Goals have previously been obtained either
by laborious domain knowledge engineering or by manual
manipulation of an object into the desired shape and captur-
ing the shape at that specific moment—approaches that often
prove impractical in various robotic applications.

In this work, we address this critical challenge by introduc-
ing DefGoalNet, a novel neural network that autonomously
learns deformable object goal shapes from human task
demonstrations. Our method fills the vital gap in Deformer-
Net by supplying it with a goal point cloud predicted from
additional sensory information encoding the task context. We
denote this as the contextual point cloud. The contextual
point cloud provides crucial features for defining the success
of a specific task. The design choice for the contextual point
cloud varies by task but will generally include other task-
relevant objects or environment components. When integrat-
ing DefGoalNet and DeformerNet into a unified pipeline,
we transform the robot policy formulation, making it reliant
solely on practically accessible parameters: the current point
cloud of the deformable object and an additional point cloud
encoding contextual information specific to the current task.

In our new learning-from-demonstration shape servoing
pipeline, we first train DefGoalNet on a set of demonstration
trajectories. This enables it to predict goal shapes that vary
as task context changes. At runtime, our neural network
reasons over the current deformable object point cloud and
the contextual point cloud, generating a goal point cloud
corresponding to a successful task outcome under that con-
text. This output from DefGoalNet then becomes the input to
DeformerNet, which computes the desired robot end-effector
action to drive the deformable object toward the goal shape,



accomplishing the task in a closed-loop manner (see Fig. 1).
Our pipeline decouples goal generation from the control
policy. This in turn enables learning a robust control policy
across a large set of related data (e.g., from simulation) while
learning goals from potentially few samples of the target task.

We evaluate our method with experiments on surgery-
inspired robotic tasks. We first conduct experiments in
simulation, with simulated demonstrations, on two common
surgical sub-tasks: retraction and tissue wrapping. We then
perform a zero-shot sim-to-real transfer experiment with a
physical robot, using the model entirely trained on simulated
data. Finally, we train DefGoalNet with a small set of
real human demonstrations and evaluate our method on a
physical mock surgical retraction task. In all experiments,
we find DefGoalNet achieves high performance. Notably,
on a surgical retraction task, our method achieves high
performance when trained on as few as 10 demonstrations.

While a small demonstration dataset can still lead to the
successful completion of the task, our experiments show that
increasing the size of the demonstration dataset results in
more realistic and easily interpretable goal shape prediction.
Visualizing these high-quality goal shapes as an intermediate
step before executing the robot policy enhances safety and
transparency in robot learning from demonstration. This is
a key feature that distinguishes DefGoalNet from imitation
learning methods. Additionally, DefGoalNet offers the bene-
fit of not requiring a human to explicitly specify task success
metrics, which can be challenging to encode and require
significant engineering effort for each task. Instead, Def-
GoalNet enables learning task-specific goals directly from
demonstrations.

Our paper is the first effort to tackle the challenge of
learning goal shape specification in shape servoing tasks
from demonstration. The experimental outcomes we have
achieved represent a significant stride toward making shape
servoing more applicable to real-world robotic applications.

We publish all code and data at:
https://sites.google.com/view/defgoalnet/home.

II. RELATED WORK

Machine learning has enabled robots to manipulate rigid
objects by harnessing complex, high-dimensional sensor
data, such as point clouds [16-21]. Neural networks have
revolutionized approaches to challenging robotic tasks, such
as shape completion [21], pose estimation [20], and grasp-
ing [16, 17, 20, 21]. Even tasks demanding long-horizon
planning and a range of skills, such as the comprehensive
removal of all food items from a table [22], have found
solutions by deploying cutting-edge learning tools. Inspired
by these advancements, we examine a learning-based method
to address 3D deformable object shape control.

Shape servoing historically has been tackled by mostly
learning-free approaches [9-11, 23-25]. These methods often
represent the object as a set of hand-picked feature points,
thus struggling to generalize to unseen objects and being vul-
nerable to sensor noise. Shetab-Bushehri et al. [25] leverage
a 3D lattice to describe deformable objects enabling accurate

3D shape control. Nevertheless, an assumption of feature
correspondence limits its application.

Hu et al [13] use the fast point feature histogram
(FPFH) [26] of deformable objects as the state representation
for shape control learning. However, Thach et al. [4] showed
that the FPFH fails to capture the complex dynamics of 3D
deformable objects. DeformerNet [3, 4] is the current state-
of-the-art in 3D shape servoing, operating effectively in both
simulation and physical-robot experiments. It offers a neural
network that takes as input the object’s current and goal
point clouds and computes the desired robot action to drive
the object toward the target shape. However, a significant
weakness of DeformerNet and other shape servoing methods
is the requirement to define goal shapes explicitly.

While point cloud generative networks show strong per-
formance [27-30], their application in robotics is somewhat
limited. In terms of goal generation for robotics, Waveren
et al. [31] introduce a generative model that can render a
goal image for a rearrangement task, given natural language
instructions. However, this method does not reason about
changing deformable object geometries.

Various learning-based methods have been examined for
robotic automation of surgical procedures, such as cut-
ting [32, 33], suturing [34, 35], retracting tissues [36, 37],
navigating surgical tools [38], and tissue tracking [39, 40].

III. PROBLEM FORMULATION

We address the problem of orchestrating robotic manipu-
lation of a 3D deformable object to achieve a specific task
T. The term 3D indicates that no single dimension in the
object significantly surpasses the other two in scale [1].

We define the 3D object to be manipulated as O C R3.
O undergoes dynamic changes during robotic manipulation.
Due to the inherent limitations in directly sensing the entirety
of O, we instead work with a partial-view point cloud P C
O, encompassing a subset of points on the object’s surface.
We represent the current point cloud of the object as P.

The robot can reshape the object by grasping it at a pair
of manipulation points {pm; }:=1.2 and subsequently moving
its end-effectors. We define robot actions 4 as a pair of
homogeneous transformation matrices: A € SE(3) x SE(3),
representing the desired change of end-effector poses. Note
that for tasks that do not require bimanual manipulation,
we only need a single manipulation point and a single
transformation matrix for the action.

We frame our problem as a contextual learning problem
wherein there is observable context present at the start of
the task execution, which, when combined with the observ-
able state of the deformable object, dictates how the task
should be performed. We encode the task-specific context
as a contextual point cloud Pr. This point cloud does not
belong to the object volume but provides crucial features for
the task’s success. It may include task-relevant objects or
features in the surrounding environment. The design choice
for the contextual point cloud varies from task to task and
will be elaborated on in Sec. V. For instance, for a surgical
robot tasked with lifting a deformable tissue layer off a
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kidney, Pr could include the partial view of the kidney
observable at the start of the task execution.

For a given task 7', we assume an associated dataset,
D, which consists of a set of demonstration trajectories
that accomplish the task under various contexts. We define
each trajectory 7 as an ordered sequence of M waypoints
(P1,Pa,...,Pr), where each P; is a point cloud obser-
vation of the deformable object at the associated time. The
problem then becomes to learn a policy to autonomously
perform 7' in new, unseen contexts. To learn this, the robot
has the available training data of associated contexts, initial
object states, and demonstration trajectories.

IV. METHOD

Our formulation assumes that a goal shape O, exists,
whereby if the object reaches this particular configuration,
the task succeeds. Leveraging this intuition, we decompose
the initial complex problem into two distinct sub-problems.

The first examines contextual goal learning. Here, we aim
to predict a goal point cloud P, corresponding to a successful
task outcome, based on the current state and the context:
Py = ®(Pe, Pr). We can train a task specific goal generation
model using the demonstration dataset D associated with
task 7. At runtime, DefGoalNet reasons over the current
point cloud observations and generates a goal point cloud that
corresponds to a successful task outcome under that context.

Given this point cloud, we can examine the second
question of goal-conditioned shape control. We address this
by learning a policy that maps the current point cloud,
goal point cloud, and manipulation point to a robot action:
7(Pe, Py, Pm) = ‘A. By applying this policy repeatedly, the
robot gradually transforms the object towards its goal shape,
ultimately accomplishing the task. The robot selects manip-
ulation points using the dense predictor network from [3].

Note that DeformerNet [3] presents an effective solution
to the second sub-problem. Therefore, the remainder of this
section primarily focuses on the contextual goal learning
problem. We first provide details of the proposed architecture
for DefGoalNet. We then explain how we train the model.
We conclude the section by describing how we integrate the
goal generation network with DeformerNet.

A. DefGoalNet Architecture Details

We adopt an encoder-decoder architecture for DefGoalNet.
Our neural network feeds the inputs P. and Pr into two
identical PointConv [41] encoder channels g, generating
two feature vectors 9. = ¢(P.) and ¢y = g(Pr). By
concatenating them together, we obtain the final feature
vector ¢ = 1. (). This feature vector is fed into a
decoder d, which consists of a series of fully connected layers
and eventually outputs a 1D vector with 3 x N elements,
where N is the desired number of points in the goal point
cloud. The 1D vector is then reshaped to construct a point
cloud of shape 3 x N. The composite goal generator thus
takes the form: P, = ®(P., Pr) = d(g(P.) © 9(Pr)).

Prior to training, we employ farthest point sampling [42]
to downsample both P. and Pr to N points. In all our
experiments, we choose N to be 512.

Figure 2 provides a comprehensive overview of the Def-
GoalNet architecture. We design the encoder to have three
consecutive PointConv [41] layers. These layers progres-
sively output point clouds of dimensions 64 x 512, 128 x 128,
culminating in a 256-dimensional feature vector. The decoder
architecture encompasses a sequence of fully-connected lay-
ers with hidden layer sizes of 256,256, and 3 x N.

Context

Deformable Object

(512,3) °

‘ ®PointConv l

v

OF
}

FC Decoderl

Goal PC l (512, 3)

2o
<

Fig. 2: DefGoalNet architecture, comprising PointConv-based fea-
ture encoders and a fully-connected decoder.

B. DefGoalNet Training Procedure

Training  DefGoalNet  follows a  straightforward,
supervised-learning approach. Given a demonstration
trajectory, we apply a segmentation mask over the raw
point cloud observations to obtain points that belong to the
object. We set the object point cloud at the beginning of the
trajectory as P. and the terminal object point cloud as P,.
For the remaining points that do not belong to the object
volume, we select a subset of task-relevant points and set
them as the context Pr. The design choice of what points
to be included in Pr varies from task to task. We elaborate
on our specific choices in Sec. V.



To effectively capture the complex goal point clouds of
deformable objects, we adopt a loss function that combines
Chamfer distance and earth mover’s distance, both widely
recognized point cloud distance metrics [43, 44]. Chamfer
distance measures the average distance of each point in one
set to the nearest point in the other set:
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In contrast, earth mover’s distance quantifies the dissimilarity
between two point distributions:
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The training loss, a linear combination of these two distances,
measures the disparity between predicted and ground-truth
point clouds. We train DefGoalNet end-to-end using the
Adam solver [45] on a single RTX 3090 GPU.

C. Integration with DeformerNet

DeformerNet provides an effective policy for deformable
object manipulation: 7s(P¢, Pg, Pm) = A. The shape servo-
ing policy takes as inputs a manipulation point along with
the current and goal object point clouds. An issue arises,
however, with the reliance on the specification of a goal
shape, which is impossible to obtain in some applications.

Herein lies the significance of DefGoalNet, which gener-
ates a goal point cloud Py = ®(P., Pr). This predicted goal
point cloud becomes the input for DeformerNet. As a result,
the robot policy within DeformerNet no longer hinges on the
potentially difficult-to-generate P, but is instead formulated
as a function of practically obtainable parameters, namely
P. and Pr:

WS(PCa,Pgapm) = TrS(,PCa (I)(PC’PT)’pm) = A

Running this policy in a closed-loop fashion enables the
robot to accomplish the task. Prior to manipulation, given
the learned P, the dense predictor network of DeformerNet
can select the manipulation points on the object that the robot
should grasp. Note that we leverage the DeformerNet and
dense predictor models trained in the original paper [3] with-
out any fine-tuning. This demonstrates an advantage of our
approach, enabling independent training of goal prediction
and deformable shape control.

V. EXPERIMENTS AND RESULTS

We assess the performance of our method in simulation
and on a real-world robotic setup. In simulation, we em-
ploy a model of the patient-side manipulator from the da
Vinci research kit surgical robot [46] using the Isaac Gym
platform [47]. We test on a Baxter robot equipped with a
laparoscopic tool and an Azure Kinect camera for capturing
point clouds for our real-world experiments.

We evaluate our method on two simulation-based robotic
tasks: surgical retraction and tissue wrapping. We then con-
duct a zero-shot sim-to-real transfer experiment with a physi-
cal robot, using the model trained entirely on simulated data.
Finally, we experiment with a real human demonstration
dataset on a physical mock surgical retraction task.

Fig. 3: Sample manipulation sequence on the surgical retraction
task, in simulation. The green point cloud visualizes the goal shape
generated by DefGoalNet.

A. Demonstration data collection

Here we describe the procedure for collecting training
data for DefGoalNet for our experiments. First, we collect
M demonstration trajectories that accomplish the task. Note
that in some experiments we utilize scripted demonstrations
only to facilitate evaluation of our method in simulation. In
practice, however, the demonstrations will be provided by
humans (as in our physical robot experiments). We record
each trajectory’s initial and terminal object point clouds and
save them as current and goal point clouds (P. and Pg,
respectively) for training. We also record the contextual point
cloud Pr. We detail the design choice for Pr in the follow-
ing sections after formally introducing each task. Finally,
we construct input-output pairs for DefGoalNet training. The
input is (P, Pr), and the output is Pg.
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Fig. 4: Simulated retraction results - Success percentage on the
test set across multiple training dataset sizes. From left to right:
DefGoalNet trained with 10000, 1000, 100, and 10 demonstrations.
We train the 10-demonstration model 5 times with 5 different sets
of demonstrations, which are labeled 10(0-4).

B. Simulation Experiments

1) Surgical Retraction: Surgical retraction plays a pivotal
role in nephrectomies, a procedure during which an adipose
tissue layer needs to be retracted off of a kidney [48]. Here,
we designed a simulated robotic task to emulate this surgical
procedure, as depicted in Figure 3. The robot is assigned to
lift the tissue to reveal the kidney beneath it.

To train DefGoalNet on this task, we create a dataset of
different kidneys with sizes sampled from the distribution of
typical, adult human kidneys [49], along with different box-
like tissue layers with geometries sampled from a uniform
distribution. We also randomize the kidney and tissue poses.
The contextual point cloud Pr for this task is the partial-
view point cloud of the part of the kidney unoccluded by the
adipose layer. The demonstration trajectories are generated
using scripted robot actions. We set a target plane that bisects
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Fig. 5: Simulated retraction results - Chamfer distance between
predicted and ground truth goal point clouds on the test set
across multiple training dataset sizes. Example predicted goals are
visualized on top of each violin plot.

the kidney into two halves along its longitudinal dimension.
The robot demonstrator grasps the tissue and retracts it until
the entire tissue layer passes beyond the target plane.

We examine the influence of dataset size on the perfor-
mance of DefGoalNet by training separate models on 10,
100, 1000, and 10000 demonstrations. The 10000 demonstra-
tion set is obtained by running the robot demonstrator on 100
different sampled kidneys, each with 100 different sampled
tissue layers, all with randomly sampled poses. The smaller
sets are selected uniformly at random from the largest set. We
train the 10 demonstration model 5 times with 5 different sets
of demonstrations to examine performance variance at small
data scales. We evaluate our method on a test set comprising
100 unseen configurations (kidney size and pose, and tissue
size and pose). A representative manipulation sequence is
visualized in Fig. 3. Two evaluation metrics quantify the
performance of our method.

The first and most important metric directly measures
the success rate. On each test configuration, we run the
DeformerNet policy on the predicted goal generated by Def-
GoalNet and record the final object point cloud. We leverage
the robot demonstrator’s target plane to assess how good each
retraction trajectory is. We count the percentage of points in
the final point cloud that successfully pass through the target
plane, which we call success percentage. As visualized in
Fig. 4, even with as few as 10 demonstrations, our method
can still achieve a median success percentage of nearly 90%.

The second metric is the Chamfer distance between the
predicted and ground truth goal point clouds. The Chamfer
results and example predicted goals are visualized in Fig. 5.
Unsurprisingly, as we increase the demonstration dataset
size, the generated goals become more realistic and easily
interpretable; however, the structure of the goal is visible

even from 10 demonstrations.

2) Tissue Wrapping: To showcase the breadth of de-
formable manipulation tasks DefGoalNet can handle, we
conduct further experiments on a tissue wrapping task in-
spired by surgical procedures such as aortic stent placement.
This entails the cooperation of two robotic arms to encase a
thin layer of tissue around a cylindrical tube, with the goal
of maximizing tissue coverage on the tube’s surface. The
contextual point cloud Pr for this task is the partial-view
point cloud of the cylindrical tube.

We train DefGoalNet on a varying number of demonstra-
tions: 10, 100, and 1000. For the case of 10 demonstrations,
we also train 5 times with different random seeds to validate
the robustness of the approach. A representative manipula-
tion sequence is visualized in Fig. 6.

We compute the tissue coverage percentage to quantify
task success, developed in [3]. This measures the percentage
of tube surface area being wrapped by the tissue. We run
DeformerNet on the test set with goals generated by Def-
GoalNet and visualize the results in Fig. 7. At a dataset size
of 100, our method starts achieving competitive performance
with a median coverage percentage of almost 90%.

Fig. 8 visualizes the Chamfer distance between predicted
and ground truth goal point clouds on a test set of 100 unseen
demonstrations. As with retraction, there is a clear trend that
more data makes the predicted goals more similar to the
ground truth shapes.

Fig. 6: Sample manipulatio sequence on the tissue wrapping
task, in simulation. The red point cloud visualizes the goal shape

generated by DefGoalNet.
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C. Physical Robot Experiments

1) Zero-Shot Sim-to-Real Transfer: We first evaluate
whether the learned goal point clouds trained in simulation
can be directly utilized to perform retraction tasks with
a physical robot. We employ the model trained with 100
demonstrations in Sec. V-B.1 for this experiment. We use a
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3D-printed human-size kidney and a soft object as stand-ins
for the biological kidney and deformable tissue. We conduct
experiments on 3 different pose configurations of kidney and
tissue. For each configuration, we execute the pipeline 5
times to ensure the robustness of our method. We observe
that the robot always succeeds in retracting the tissue over the
entire 15 runs. Figure 9 illustrates representative sequences.
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Fig. 9: Sample manipulation sequences on the kidney retraction
task, with the physical robot (zero-shot sim-to-real).

2) Real Human Demos - Hand-conditioned Retraction:
We develop a mock surgical retraction task to demonstrate
the learning capabilities of DefGoalNet when trained on real
human demonstrations. In surgery, a robot may assist by
retracting tissue based on the location of the human surgeon’s
hand within the surgical scene. Fig. 10 illustrates how the
tissue should be retracted given the hand pose. Motivated by
this application, we collect a set of 20 diverse demonstrations
and direct DefGoalNet to learn the desired shape of the tissue
with the human hand’s partial-view point cloud as Pr (see
Fig. 2). We employ a thin deformable object as a stand-in for
biological tissue to facilitate this data collection process. Our
data acquisition involves manually manipulating this object
using tongs, closely simulating surgical retraction.

We train the model with 15 demonstrations, holding 5
demonstrations for testing purposes. The Chamfer distances
between the predicted and ground truth goal point clouds on
this test set are 1.72,0.97,1.64,0.45, and 0.64 millimeters.
Fig. 11 visualizes the two worst examples of the predicted
goal point clouds on the test set. The goals look similar to the
ground truth, showcasing DefGoalNet’s ability to generalize
even when trained on a relatively small dataset.

We evaluate the robot using three distinct goals, each pre-
dicted from distinct contextual point clouds of the human’s
hand pose. We execute 5 trials for each scenario to ensure
robustness for a total of 15 runs. Fig. 1 visualizes a repre-
sentative retraction result. Qualitatively, our method predicts
goal shapes that align well with the human demonstrator’s
objectives and computes the necessary robot actions to drive
the object to these goals.

E it i

Fig. 10: Visualization of real human demonstrations. The retraction
procedure varies based on the observed hand pose. Blue: hand pose;
Red: initial tissue shape; Green: human-demonstrated goal shape.
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Fig. 11: Predicted (blue) vs ground truth (red) test set goals.

VI. CONCLUSIONS

We have presented a novel method for learning deformable
object manipulation from demonstrations. At the heart of this
pipeline is DefGoalNet, a neural network that predicts the
desired object shape to successfully execute a given task. We
demonstrate DefGoalNet’s effectiveness on a diverse set of
tasks, achieving a 100% success rate on a zero-shot sim-to-
real task. Crucially, we show how contextual goal generation
can be learned from relatively few demonstrations while still
leveraging a control policy learned on a large and diverse
dataset independent of the specific downstream task.

DefGoalNet currently assumes that the final state of the
object solely defines success. In many robotic applications,
the overall trajectory is a critical consideration of task
success. To address this limitation, future research could
explore methods for predicting a sequence of goal shapes
instead of just a single goal instance. In addition, DefGoalNet
is currently deterministic, where only one goal is output
to achieve the task given a specific current shape and
context. We will investigate a version of DefGoalNet that
generates a distribution over goal shapes. Furthermore, while
DefGoalNet is inherently a task-specific model, it holds the
potential to learn across multiple tasks. Lastly, we will aim
to employ the method in other domains such as in home and
warehouse environments.
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