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This paper studies three high-order structure-preserving finite volume weighted essentially 
non-oscillatory (WENO) methods, which are not only well balanced (WB) for a general 
known hydrostatic equilibrium state but also preserve the positivity of density and 
pressure, for the compressible Euler equations under gravitational fields. These methods 
are built on a simple local scaling positivity-preserving (PP) limiter and a modified WENO-
ZQ reconstruction exactly preserving the cell average value and scaling invariance. The WB 
properties of these three methods are achieved based on suitable numerical fluxes and 
approximation to the gravitational source terms. Based on some convex decomposition 
techniques as well as several critical properties of the admissible states and numerical 
flux, we carry out rigorous positivity-preserving analyses for these three WB schemes. We 
rigorously prove that the three WB methods, coupled with the PP limiter and a strong-
stability-preserving time discretization, are always PP under suitable Courant-Friedrichs-
Lewy conditions. Extensive numerical examples are provided to confirm WB and PP 
properties of three methods.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Euler equations with gravitational source terms play an important role in many application fields, such as astrophysics 
and atmospheric science. This model can be formulated as

Ut + ∇ · F(U) = S(U,x) (1.1)

with
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U =
⎛⎝ ρ

m
E

⎞⎠ , F(U) =
⎛⎝ ρu

ρu ⊗ u+ pId
(E + p)u

⎞⎠ , S(U,x) =
⎛⎝ 0

−ρ∇φ

−m · ∇φ

⎞⎠ , (1.2)

where x ∈ � ⊆ Rd; ρ , m and E denote the density, momentum vector, and total energy, respectively; Id is the identity 
matrix of size d; u = m/ρ is velocity. The source term S(U, x) represents the effect of the static gravitational field, and the 
φ(x) is the gravitational potential. The total energy E = ρe + ‖m‖2

2ρ with e being the specific internal energy, which is related 
to pressure p and density ρ through an equation of state (EoS). A general EoS can be expressed as e = E (ρ, p). For ideal 
gases, it is given by

p = (γ − 1)ρe = (γ − 1)

(
E − ‖m‖2

2ρ

)
, (1.3)

where the constant γ ∈ (1, +∞) is the adiabatic index.
System (1.1)-(1.2) with an EoS forms a hyperbolic system which is typically called a balance law. Such a system admits 

non-trivial hydrostatic equilibrium solutions, in which the gravitational source term and flux gradient are balanced exactly at 
the discrete level, and perturbations of such hydrostatic equilibrium solutions often appear in atmospheric and astrophysical 
applications. However, using standard numerical methods to solve (1.1)-(1.2) may not be able to preserve the balance, and 
can result in large numerical errors when simulating equilibrium solutions and their perturbations, unless the simulation 
is carried out on much refined meshes, which can be time-consuming for multi-dimensional problems. In order to address 
the issue, researchers propose well-balanced (WB) methods that preserve precisely the discrete versions of hydrostatic 
equilibrium solutions up to machine accuracy, so as to effectively capture the equilibria and their perturbations on relatively 
coarse meshes. The exploration of WB numerical schemes originally arose from solving the shallow water equations on a 
non-flat bottom topology, which is another hyperbolic balance laws model; see, for example, [1,14,39,43,44]. In recent years, 
researchers have witnessed growing interest in developing WB schemes for Euler equations (1.1)-(1.2) with gravitation, and 
many efforts have been done in this direction, including the finite volume (FV) WB methods [4,6,15,18–20,22,23], the gas-
kinetic schemes [27,45], finite difference methods [11,26,41], and discontinuous Galerkin (DG) methods [7,24,25,31,37,52]. 
Most of these methods require that the equilibrium solutions are known a priori. Recently, some efforts have been made to 
design WB methods without a prior knowledge of hydrostatic equilibrium solutions; see, e.g., [3,9,10,19,30].

In physics, the density and pressure are positive. It is required that numerical schemes maintain their positivity at the 
discrete level, which is necessary not only for the physical significance of numerical solutions but also for the robustness 
of numerical schemes. However, most high-order schemes for the system (1.1)-(1.2) usually do not have the positivity-
preserving (PP) property, and therefore there is a risk of failure in simulating problems with low density, low pressure, 
and/or strong shocks. In the past decade, high-order PP, or more generally bound-preserving, numerical schemes have been 
developed for a wide variety of hyperbolic systems. There are two main approaches mostly studied in the literature. One is 
based on the limiter for the reconstruction of polynomials, cf. [33,35,43,47,49,50]. The other one is based on flux correction 
limiters [16,38,46]. We refer to [28] for more discussion on bound-preserving schemes. Based on the first approach, high-
order PP DG schemes were designed for the Euler equations without source term in [50] and with various source terms 
including the gravitational source term in [51]. The bound-preserving numerical methods were also developed for, for ex-
ample, the shallow water equations [40,43], the special relativistic Euler equations [34,38], the compressible Navier–Stokes 
equations [47], and the ideal magnetohydrodynamic equations [33,35], and the general relativistic Euler equations under 
strong gravitational fields [32], to name a few. Recently, a geometric quasilinearization framework was proposed in [36] for 
studying bound-preserving problems involving nonlinear constraints, with applications to various physical systems including 
Euler equations. We would like to mention that, for the shallow water equations, several high-order PP WB schemes have 
been proposed, for example, in [21,42,43]. Very recently, uniformly high-order PP WB methods were proposed in the DG 
framework [37,52] and the central DG framework [17] for the Euler equations with gravitation.

The first goal of this paper is to propose a high-order FV weighted essentially non-oscillatory (WENO) scheme (abbre-
viated as “New-WB” scheme for convenience), which has both WB and PP properties. While most existing methods have 
only one of these two attributes, our New-WB scheme achieves both properties by generalizing the recently developed PP 
WB DG scheme [37] into the FV framework. In the New-WB scheme, the WB discretization of the source term is motivated 
by [23], by reformulating the gravitational source term in the momentum equations based on the cell average value of the 
numerical solution and the assumption that the equilibrium solutions are known a priori. In the FV framework used in this 
study, only the average values of the equilibrium solutions are required a priori. In order to accommodate the PP property 
in theory, we also discretize the source term in the energy equation in the same fashion as in the momentum equations, 
while such a careful treatment was not considered in [23] for the consideration of WB property only. A modified version 
of the WENO-ZQ [53] reconstruction was adopted in the New-WB scheme to preserve the scaling-invariant property, which 
is advantageous to avoid oscillation near the shock wave for multi-scale problems. Another significant difference from [23]
is the choice of numerical fluxes. Different from the modified Lax-Friedrichs (LF) flux in [23,24], we adopt an appropriately 
modified HLLC numerical flux. There are two reasons for such a choice. First, the HLLC flux can be modified in a unified 
way to achieve the WB property for different types of hydrostatic equilibrium solutions, while the WB modification of the 
LF flux relies heavily on specific problems. Secondly, the modified HLLC flux retains the desired PP property, while the PP 
2
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property of the modified LF flux [23,24] is questionable in such a framework. The present New-WB FV scheme overcomes 
some shortcomings in the PP WB DG schemes [37], which need an extra slope limiter to suppress spurious oscillations 
when simulating problems with strong discontinuities.

Another goal of this paper is to rigorously analyze and enforce the PP property for the two existing high-order WB 
methods developed in the literature. One WB method was proposed by Grosheintz-Laval and Käppeli in [15] (abbreviated 
as “GLK-WB” scheme), which is based on a new local hydrostatic reconstruction. This scheme satisfies the WB property for 
any consistent numerical fluxes. The other WB method was developed by Klingenberg, Puppo, Semplice in [20] (abbreviated 
as “KPS-WB” scheme), which assumes that the desired hydrostatic equilibrium solutions are known. The KPS-WB scheme 
is based on a high-order reconstruction of fluctuation from equilibrium density, velocity, and pressure balance, and is based 
on a WB quadrature of the source term. In addition to consistency, the numerical flux in this scheme does not require any 
modifications.

We reformulate these two numerical methods in an equivalent form, so that the framework to prove the PP property of 
the New-WB FV scheme method can be adopted. Our analyses show that the New-WB and GLK-WB schemes have similar 
conclusions on the PP property, while that of the KPS-WB scheme is slightly different due to the use of Romberg’s method 
in the discretization of the source term. We will also present extensive numerical examples, to validate the WB property 
of our New-WB method as well as the PP property of the above three methods. The results confirm that under suitable 
Courant-Friedrichs-Lewy (CFL) conditions, all these three schemes achieve both the WB and PP properties.

The paper is organized as follows. In Section 2, we introduce hydrostatic equilibrium solutions, several properties of the 
admissible state set, the FV discretization of one-dimensional (1D) and two-dimensional (2D) Euler systems, and a modified 
WENO-ZQ reconstruction. Our main results on PP properties are outlined in Section 3, which hold for all three methods. 
In Sections 4-6, we introduce the numerical fluxes and discretizations of source terms involved in each of the three WB 
methods respectively, and present rigorous analyses of the PP property. Some numerical examples to verify the desired 
properties and effectiveness of the proposed schemes are given in Section 7, before the concluding remark in Section 8.

2. Preliminaries

In this section, we first introduce stationary hydrostatic equilibrium solutions of system (1.1)-(1.2), and a set of physically 
admissible states followed by some Lemmas, which will be used in the sections below. Next, we present the discretization 
of the 1D and 2D Euler systems in the FV framework and introduce a modified WENO-ZQ reconstruction which preserves 
the scaling-invariant property and will be used in our method.

2.1. Stationary hydrostatic solutions

The Euler system with a gravitational source term (1.1)-(1.2) has non-trivial steady-state solutions, where source terms 
exactly balance flux terms. The zero-velocity hydrostatic equilibrium solution takes the following form

ρ = ρ(x), u = 0, ∇p = −ρ∇φ. (2.1)

In most cases, we are interested in particular equilibrium states, with typical cases being isothermal and polytropic [18]
equilibrium states under the assumption of ideal gas laws. For an isothermal hydrostatic state with the constant temperature 
T (x) ≡ T0, the equilibrium solution takes the form

ρe = ρ0 exp

(
− φ

RT0

)
, u = 0, pe = p0 exp

(
− φ

RT0

)
,

where R is the gas constant, and p0, ρ0 are positive constants satisfying p0 = ρ0RT0. A polytropic equilibrium state satisfy-
ing the relation p = K0ρ

γ , is given by

ρe =
(

γ − 1

K0γ
(C − φ)

) 1
γ −1

, u = 0, pe = 1

K
1

γ −1
0

(
γ − 1

γ
(C − φ)

) γ
γ −1

,

with constants K0 and C .
For the general EoS, hydrostatic equilibrium solutions have the following expression

Ue(x) =
(
ρe(x),0,ρe(x)E

(
ρe(x), pe(x)

))	
, (2.2)

for given equilibrium functions ρe(x), pe(x) satisfying (2.1).
3



Y. Ren, K. Wu, J. Qiu et al. Journal of Computational Physics 492 (2023) 112429
2.2. Properties of admissible states

The density ρ and the pressure p must be positive in physics, which means the conserved variable U should belong to 
the set

G0 :=
{
U = (ρ,m, E)	 : ρ > 0, p > 0

}
. (2.3)

Assume the general EoS satisfies

if ρ > 0, then p > 0 ⇐⇒ e > 0. (2.4)

Then, as studied in [50], U ∈ G0 is equivalent to U ∈ G , where

G :=
{
U = (ρ,m, E)	 : ρ > 0, Ẽ = ρe = E − ‖m‖2

2ρ
> 0

}
(2.5)

is a convex set. Next, we introduce two Lemmas for the set G , which have been discussed in [37].

Lemma 2.1 ([37]). If U ∈ G, it holds that λU ∈ G for any λ ∈R+ . Furthermore, for any U0 ∈ G (the closure of G) and constant λ0 ≥ 0, 
we have λU + λ0U0 ∈ G.

Lemma 2.2 ([37]). For any constant λ ≥ 0, δ ∈R, U ∈ G, and a ∈Rd, we have

λU+ δ
(
0,ρa,m · a)	 ∈ G, if |δ| ‖a‖√

2e
≤ λ.

2.3. The finite volume discretization and notations

1D spatial discretization: In the 1D case, the Euler system (1.1)-(1.2) reduces to

Ut + F(U)x = S(U, x), (2.6)

with

U =
⎛⎝ρ
m
E

⎞⎠ , F(U) =
⎛⎝ ρu

ρu2 + p
(E + p)u

⎞⎠ , S(U, x) =
⎛⎝ 0

−ρφx

−mφx

⎞⎠ . (2.7)

Assume that the spatial domain � is divided into cells I j = [x j− 1
2
, x j+ 1

2
], with mesh size �x j = x j+ 1

2
− x j− 1

2
. We assume 

the mesh is uniform for ease of presentation, i.e., �x j = �x. The center of cell I j is denoted by x j = (x j− 1
2

+ x j+ 1
2
)/2. The 

semidiscrete FV numerical scheme for (2.6) takes the form

dU j

dt
= L j(U) := − 1

�x

(̂
F j+ 1

2
− F̂ j− 1

2

)
+ S j, (2.8)

where U j = U j(t) is the computational variable to approximate the cell average of the exact solution, U(x j, t) =
1

�x

∫
I j
U(x, t)dx. The term F̂ j± 1

2
= F (U−

j± 1
2
, U+

j± 1
2
) is a suitable numerical flux, in which U±

j+ 1
2

are high-order point-

wise approximations to U(x j+ 1
2
, t) from left and right, respectively. The source term approximation is denoted by S j =(

0, S[2]
j , S[3]

j

)	
with S[	]

j ≈ 1
�x

∫
I j
S[	]dx, in which the 	 indicates the 	th element of source term S. The specific numerical 

fluxes and source term approximation which lead to WB and PP properties will be detailed in the following sections. If the 
forward Euler time discretization is applied to (2.8), we have

U
n+1
j = U

n
j + �tL j(U

n) = U
n
j − �t

�x

(̂
F j+ 1

2
− F̂ j− 1

2

)
+ �tS

n
j , (2.9)

where �t is the time step size and the superscript n represents the nth time level.
Multi-dimensional spatial discretization: For ease of presentation, we only discuss it for 2D Euler equations with gravity 

field, which are given by

Ut + F(U)x + G(U)y = S(U, x, y), (2.10)

with
4
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U =

⎛⎜⎜⎝
ρ
m
n
E

⎞⎟⎟⎠ , F =

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

(E + p)u

⎞⎟⎟⎠ , G =

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
(E + p)v

⎞⎟⎟⎠ , and S =

⎛⎜⎜⎝
0

−ρφx

−ρφy

−ρuφx − ρvφy

⎞⎟⎟⎠ . (2.11)

Here u = (u, v) and m = (ρu, ρv), with u and v being the velocity in x− and y− directions, respectively, and

m = ρu, n = ρv, E = 1

2
ρ(u2 + v2) + ρe.

Assume that the computational domain is discretized into rectangular meshes Ii j = {[xi− 1
2
, xi+ 1

2
] ×[y j− 1

2
, y j+ 1

2
]}, with mesh 

sizes �xi = xi+ 1
2

− xi− 1
2

and �y j = y j+ 1
2

− y j− 1
2

in x- and y-directions, respectively. For simplicity, uniform meshes are 
assumed, that is �xi = �x and �y j = �y. The semidiscrete FV numerical scheme is given by

dUi j

dt
= Li j(U) := − 1

�x
(̂Fi+ 1

2 , j − F̂i− 1
2 , j) − 1

�y
(̂Gi, j+ 1

2
− Ĝi, j− 1

2
) + Si j, (2.12)

where Ui j = Ui j(t) is the 2D computational variable which approximates 1
|Ii j |
∫
Ii j

U(x, t)dx with |Ii j | = �xi�y j . Here, ̂Fi+ 1
2 , j

is the numerical flux at the x-direction, which is an approximation to 1
�y

∫ y
j+ 1

2
y
j− 1

2

F(U(x j+ 1
2
, y))dy. Similarly, Ĝi, j+ 1

2
is the 

numerical flux at the y-direction. The source term approximation is denoted by Si j . The specific numerical fluxes and 
source term approximation which lead to WB and PP properties will be detailed in the following sections. Combining the 
semidiscrete FV scheme (2.12) with the forward Euler time discretization leads to

U
n+1
i j = U

n
i j − λ1(̂Fi+ 1

2 , j − F̂i− 1
2 , j) − λ2(̂Gi, j+ 1

2
− Ĝi, j− 1

2
) + �tS

n
i j, (2.13)

where λ1 = �t/�x, λ2 = �t/�y.
SSP-RK time discretization: In general, explicit strong-stability-preserving (SSP) Runge-Kutta (RK) methods [13] are used 

as the high-order temporal discretization. In this paper, the third-order accurate SSP RK method is used, which takes the 
form

U(1) = U
n + �tL(U

n
),

U(2) = 3

4
U
n + 1

4

(
U(1) + �tL(U(1))

)
,

U
n+1 = 1

3
U
n + 2

3

(
U(2) + �tL(U(2))

)
.

(2.14)

2.4. WENO-ZQ reconstruction

The cell interface values U±
j+ 1

2
are obtained from the cell averages U j via a reconstruction procedure. In this paper, we 

will use a modified version of the WENO-ZQ reconstruction developed by Zhu and Qiu in [53]. A similar modification was 
also studied in [8] for the motivation of ensuring the scaling-invariant property. The WENO-ZQ reconstruction, instead of 
the traditional WENO reconstruction, was chosen in this paper, due to the fact that it satisfies the average-value-preserving 
property, and we refer to Section 3.1 for the detailed discussion on this. The 1D fifth-order modified WENO-ZQ reconstruc-
tion procedure is presented below as an example, and the multi-dimensional extension can be obtained in a similar fashion 
through the dimension-by-dimension approach.

From the average value sequence {Ul} j+2
l= j−2, we can reconstruct cell interface values U+

j− 1
2
, U−

j+ 1
2
, and Gauss-Lobatto 

point values U (xνj ) in the cell I j in the following way:

• Step 1: Take a big stencil T1 = {I j−2, · · · , I j+2}, and two small stencils T2 = {I j−1, I j}, T3 = {I j, I j+1}, we compose a 
quartic polynomial p1(x) and two linear polynomials p2(x) and p3(x) satisfying (see Fig. 2.1)

1

�x

∫
Il

p1(x)dx = Ul, l = j − 2, · · · , j + 2, (2.15)

1

�x

∫
Il

p2(x)dx = Ul, l = j − 1, j; 1

�x

∫
Il

p3(x)dx = Ul, l = j, j + 1. (2.16)
5
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x j− 5
2

U j−2

x j− 3
2

U j−1

x j− 1
2

U j

x j+ 1
2

U j+1

x j+ 3
2

U j+2

x j+ 5
2

T2

T3

T1

Fig. 2.1. Stencils of WENO-ZQ reconstruction to reconstruct the values at solid circles.

• Step 2. In the nonlinear WENO reconstructions, U (xνj ) are computed as a convex combination of these three corre-
sponding polynomial values

U (xνj ) = ω̃1

(
1

γ1
p1(x

ν
j ) − γ2

γ1
p2(x

ν
j ) − γ3

γ1
p3(x

ν
j )

)
+ ω̃2p2(x

ν
j ) + ω̃3p3(x

ν
j ),

where the parameters γn (n = 1, 2, 3) and ω̃n (n = 1, 2, 3) are named linear and nonlinear weights. The weights {γn}
can be any positive constants satisfying γ1 + γ2 + γ3 = 1 and {ω̃n} are computed from

ω̃n = ωn∑3
l=1 ωl

, ωn = γn

(
1+

(
τ0

ε + βn

)4
)

, n = 1,2,3, (2.17)

in which ε = �x2 max
l∈T1

|Ul| + 10−12, where 10−12 is added to avoid zero denominator, and

τ0 = |β1 − β2| + |β1 − β3|
2

, βn =
r∑

α=1

∫
I j

�x2α−1
(
dα pn(x)

dxα

)2

dx, n = 1,2,3,

where r = 4 for n = 1, and r = 1 for n = 2, 3.

In fact, we have constructed a polynomial U (x) on the cell I j in the WENO-ZQ reconstruction, that is

U (x) = ω̃1

γ1
p1(x) +

(
ω̃2 − ω̃1γ2

γ1

)
p2(x) +

(
ω̃3 − ω̃1γ3

γ1

)
p3(x), (2.18)

and can use this polynomial to evaluate the cell interface values and Gauss-Lobatto point values.

Remark 2.1. It is worth noting that our choice of nonlinear weights (2.17) are slightly different from those in the traditional 
WENO-ZQ scheme [53], which may lead to large oscillation or overfit phenomenon near the shock wave for some multi-
scale problems. Such a modification is advantageous (see the comparison in Fig. 7.1), and it was also used in [8] to ensure 
the scaling-invariant property.

For the WENO-ZQ reconstruction in the 2D case, we consider rectangular meshes in this paper. The standard dimension-
by-dimension approach is given as follows. Starting from cell averages of the function U in both x and y directions, we first 
perform a 1D WENO-ZQ reconstruction in one direction (e.g. y-direction) to obtain the 1D cell average of the function U
in the other direction (e.g. x-direction). Then we apply the WENO-ZQ reconstruction in the other direction to compute the 
approximate point values. More details can be found in [53].

3. Main results

In this section, we first introduce some unified notations to be used in the description of these three methods. The main 
results on the PP property are summarized here, and the detailed proof for each method will be presented in the following 
sections.

3.1. Notations

First of all, two sets of numerical quadrature rules will be used in this paper, namely, the Gauss-Lobatto quadrature for
New-WB and GLK-WB methods, and Romberg’s numerical quadrature for KPS-WB method. Let k be the algebraic precision 
of two numerical quadratures.
6
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Table 3.1
Notations to be used in numerical methods.

U j = (ρ j ,mj , E j) Represents the 1D numerical solution in the cell I j
Ui j = (ρ i j ,mi j , Eij) Represents the 2D numerical solution in the cell Ii j
U(x) = (ρ(x),m(x), E(x)) WENO reconstructed polynomial function from cell averages

ρe, pe, ee,ρee Represent the average of the targeting equilibrium variables

ρe(x), pe(x), ee(x) Represent the equilibrium density, pressure and internal energy

L j(·) The 1D discrete average operator with L-point Gauss-Lobatto quadrature and algebraic precision k in the cell I j
Li j(·) The 2D discrete average operator with L2-point Gauss-Lobatto quadrature and algebraic precision k in the cell Ii j
R j(·), Ri j(·) Similar to the definition of L j(·), Li j(·), with Romberg’s quadrature used

W j
({Ul}

)
The 1D WENO reconstruction operator on the cell I j

Wi j
({U g,l}

)
The 2D WENO reconstruction operator on the cell Ii j

τ , τ̃ The 1D and 2D WB correction term for the source term approximation

• New-WB and GLK-WB methods
In the 1D case, let S j = {xνj }Lν=1 be the set of L-point Gauss-Lobatto quadrature nodes on cell I j , and the quadrature 
weights are {ων}Lν=1 with ω1 = ωL = 1

L(L−1) , where L ≥ (k + 3)/2.

In the 2D case, let {xνi }Lν=1 and {yν
j }Lν=1 denote L-point (L ≥ (k + 3)/2) Gauss-Lobatto quadrature nodes with weights 

{ων} on the cell [xi− 1
2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
], respectively. Let the Si j = {xqi j}L

2

q=1 be quadrature nodes in the cell Ii j , 
and quadrature weights are {ω̂q} = {ων} ⊗{ων}.

• KPS-WB method
In the 1D case, let S j = {xκj }Nκ=1 and {ωκ }Nκ=1 be the set of N-point Romberg’s quadrature nodes and weights on the 

cell I j , where N ≥ 2
k−1
2 + 1, and the nodes are given by xκj = x j− 1

2
+ (κ−1)

N−1 �x.

In the 2D case, let {xκi }Nκ=1 and {yκ
j }Nκ=1 denote N-point Romberg’s quadrature nodes with weight {ωκ } in the intervals 

[xi− 1
2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
], respectively. Let Si j = {xqi j}N

2

q=1 quadrature nodes in the cell Ii j , and quadrature weights 
are {ω̂q} = {ωκ } ⊗{ωκ }.

Definition 3.1. We introduce the notations L j(·) and R j(·) to be the 1D discrete average operators, which compute the 
integral over the cell I j using the Gauss-Lobatto quadrature and Romberg’s quadrature respectively. Similarly, let Li j(·) and 
Ri j(·) to be the 2D discrete average operators over the cell Ii j .

Definition 3.2. Let the notation W j
({Ul}

)
to be the 1D WENO reconstruction operator on the cell I j , which outputs the 

reconstructed polynomial U (x) in (2.18) with (k + 1)th order accuracy from the cell averages {Ul}. Similarly, let Wi j
({U g,l}

)
be the 2D reconstruction operator on the cell Ii j .

The reconstruction operator W j(·) (or the 2D version Wi j(·)) is said to be average-value-preserving if the reconstructed 
polynomial U (x) satisfies∑

α

ωαU (xαj ) = U j, i.e., L j
(
W j
({Ul}

))= U j, or R j
(
W j
({Ul}

))= U j,

where α can be either ν or κ referring to the Gauss-Lobatto or Romberg’s quadrature.

In this paper, the modified WENO-ZQ reconstruction discussed in Section 2.4 is used in the WENO reconstruction op-
erators W j(·) and Wi j(·). This operator satisfies the average-value-preserving property, which can be easily observed from 
the reconstructed polynomial (2.18) and sufficient quadrature nodes. If the traditional WENO-JS reconstruction is used, only 
point values U (xνj ) are reconstructed, and one cannot obtain a polynomial on the cell I j similar to (2.18). As such, the tra-
ditional WENO-JS reconstruction is generally not average-value-preserving and L j

(
W j({Ul})

) �= U j , which has been verified 
numerically.

Note that, in the FV framework, the WENO reconstruction with the average-value-preserving property is needed in 
the theoretical analysis of the PP property. See Sections 4-6. If only the well-balancedness is considered, any WENO-type 
reconstruction is feasible.

For references, we list some commonly used notations and variables in Table 3.1, in which all quantities are at the 
current nth time level unless otherwise specified.

3.2. Major conclusions

The general semidiscrete FV WENO method for the Euler model takes the form (2.8) or (2.12), where the choice of nu-
merical fluxes and the corresponding source term discretization has not been specified. One key component in the design of 
7
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various PP and WB methods, including New-WB, GLK-WB, KPS-WB methods, is the reconstruction of cell interface values to 
be used in the computation of numerical fluxes. For these three WB methods, this procedure to reconstruct the polynomial 
U j(x) = (ρ j(x), mj(x), E j(x))	 from cell averages is different, as different techniques were proposed to achieve WB property, 
and these will be described in detail in Sections 4-6.

Here we summarize the main theorems on PP properties, which show that schemes (2.9) and (2.13) have PP properties 
under certain conditions. These results hold for all three WB methods, to be discussed in the following sections.

Theorem 3.1 (PP property of 1D method). Let U j(x) = (ρ j(x), mj(x), E j(x))	 be the reconstructed function at the nth time level. For 
the 1D scheme (2.9) with numerical fluxes and source term to be specified in Sections 4-6, if

U j(x) ∈ G, x ∈ S j, (3.19)

then Un+1
j ∈ G under the CFL-type condition

α̃ j
�t

�x
≤ ω1, (3.20)

where ω1 is the first weight of the adopted numerical quadrature, and ̃α j is a parameter to be determined for each method.

The proof of Theorem 3.1 is different for three WB methods due to different choices of numerical fluxes and source 
term approximation utilized. The detailed proof and the parameter α̃ j will be presented in Section 4.1.2, Section 5.1.2 and 
Section 6.1.2, respectively.

Theorem 3.2 (PP property of 2D method). Let Ui j(x) = (ρi j(x), mi j(x), Eij(x)) be the reconstructed function at the nth time level. For 
the 2D scheme (2.13) with numerical fluxes and source term to be specified in Sections 4-6, if

Ui j(x) ∈ G, ∀x ∈ Si j, (3.21)

then Un+1
i j ∈ G under the CFL-type condition

�tα̃i j

(
1

�x
+ 1

�y

)
≤ ω1, (3.22)

where ω1 is the first weight of the adopted numerical quadrature, and ̃αi j is a parameter to be determined for each method.

The proof of Theorem 3.2 and the parameter α̃i j will be presented in Section 4.2.2, Section 5.2.2 and Section 6.2.2 for 
each method, respectively.

Theorems 3.1 and 3.2 give a sufficient condition for the PP property of numerical schemes if the forward Euler time 
discretization is applied. High-order SSP-RK time discretization (2.14) can be viewed as a convex combination of the forward 
Euler method. Therefore, according to Lemma 2.1, the conclusion of Theorems 3.1 and 3.2 also holds if the SSP-RK time 
discretization is used.

Remark 3.1. As shown in Theorem 3.1 and Theorem 3.2, both CFL-type conditions (3.20) and (3.22) are sufficient, but may 
not be necessary, for the sake of preserving the positivity of cell averages. To evolve numerical solutions at (n + 1)th time 
level, we can start with a larger CFL number at the nth time level to save computational cost. If negative cell averages 
emerge in any of the three stages in one step of the third-order SSP RK method, we return to stage one and restart the 
computation with half the time size. The specific flowchart can refer to Section 3.3 in [5].

3.3. PP limiter

In general, given the set Un
j ∈ G , the reconstructed function U(x) may not necessarily satisfy the condition (3.19) or (3.21). 

To enforce the condition (3.19) in Theorem 3.1 and (3.21) in Theorem 3.2, we present the following PP limiter [49–51] and 
take the 1D case as an example to present it.

We assume the reconstructed function U j(x) = (ρ j(x), mj(x), E j(x))	 on the cell I j with the cell average U j =
(ρ j, mj, E j) and ρ j, ρe(U j) > 0. We use the following PP limiting procedure to modify U j(x) into Ũ j(x), so that Ũ j(x) ∈ G , 
for x ∈S j .

1. Set a small number ε0 = min
j

{10−13, ρ j, ρe(U j)}. Evaluate θ1 = min{| ρ j−ε0
ρ j−min

x∈S j
ρ j(x)

|, 1} in each cell I j .

2. Modify the density by

ρ̂ j(x) = θ1(ρ j(x) − ρ j) + ρ j.
8
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3. Set Û j(x) = (ρ̂ j(x), mj(x), E j(x)). To enforce the positivity of the internal energy, we perform the following procedure

Ũ j(x) = θ2(Û j(x) −U j) +U j, θ2 = min

⎧⎪⎨⎪⎩ ρe(U j) − ε0

ρe(U j) − min
x∈S j

ρe(Û j(x))
, 1

⎫⎪⎬⎪⎭ .

4. In the numerical scheme (2.9), use Ũ j(x) instead of U j(x), which satisfies Ũ j(x) ∈ G , for x ∈S j .

In fact, the complete expression of functions U j(x) is not required, and we just need to modify these values at the points 
belonging to the set S j according to the above PP limiter. A similar process can be applied to the reconstructed function 
Ui j(x) in the 2D case, by simply replacing the set S j with Si j .

In the following sections (Sections 4-6), we will introduce numerical fluxes and discretization of the source term, and 
provide the proof of Theorem 3.1 and Theorem 3.2, for each of the three WB methods respectively.

4. New-WB: a new PPWB finite volume method

In this section, we construct a uniformly high-order FV PP WB WENO method (New-WB method), and present the 
rigorous analyses of its PP and WB properties.

4.1. One-dimensional New-WB scheme

4.1.1. WB numerical fluxes and source term discretization
Consider 1D Euler equations (2.6) with a general EoS e = E (ρ, p). The general semidiscrete finite volume WENO method 

takes the form (2.8), coupled with the modified WENO-ZQ reconstruction discussed in Section 2.4. Here we present WB 
numerical fluxes and the corresponding source term discretization.

The standard HLLC flux is a modified version of the HLL flux [29], and can be found in [2,29]. It is chosen here due to its 
contact property [6,37] (e.g. Lemma 4.1), which makes it easier to design WB methods. In order to achieve the WB property 
for general stationary hydrostatic solutions (2.2), we propose to modify the standard HLLC flux as

F̂ j+ 1
2

= F hllc

⎛⎝ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

U−
j+ 1

2
,

ρe,+
j+ 1

2
e�,+
j+ 1

2

(ρe)e,+
j+ 1

2

U+
j+ 1

2

⎞⎠ (4.1)

with the quantity U∓
j± 1

2
computed by W j({Ul}), and

e�,±
j+ 1

2
:= E

(
ρe,±

j+ 1
2
, pe,�

j+ 1
2

)
,

where pe,�
j+ 1

2
is an approximation to the equilibrium pressure at interface x j+ 1

2
, defined by

pe,�
j+ 1

2
= 1

2

(
pe,−
j+ 1

2
+ pe,+

j+ 1
2

)
. (4.2)

Above mentioned values at the interface can be obtained by the modified WENO-ZQ reconstruction. This modification to 
the HLLC flux will not destroy the high-order accuracy of the numerical scheme if both ρe(x) and pe(x) are smooth [37].

The WB approximation of the source term follows the technique in [23,24,41]. The integral of the source term in the 
momentum equation can be decomposed into

1

�x

∫
I j

S[2]dx = 1

�x

∫
I j

−ρφxdx = 1

�x

∫
I j

ρ

ρe
pexdx = 1

�x

∫
I j

(
ρ

ρe
− ρ j

ρe
j
+ ρ j

ρe
j

)
pexdx

= 1

�x

∫
I j

(
ρ

ρe
− ρ j

ρe
j

)
pexdx+ 1

�x

ρ j

ρe
j

(
pe,−
j+ 1

2
− pe,+

j− 1
2

)
. (4.3)

This motivates us to employ the following numerical approximation

S
[2]
j := L j

((
ρ

ρe
− ρ j

ρe
j

)
pex

)
+ 1

�x

ρ j

ρe
j

(
pe,�
j+ 1

2
− pe,�

j− 1
2

)
= L j

(
ρ

ρe
pex

)
+ ρ j

ρe
j
τ , (4.4)

where
9
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τ = 1

�x

(
pe,�
j+ 1

2
− pe,�

j− 1
2

)
− L j

(
pex
)

(4.5)

is the WB correction term. Similarly, the integral of the source term in the energy equation can be approximated by

S
[3]
j := L j

(
m

ρe
pex

)
+ mj

ρe
j
τ . (4.6)

The combination of (2.8), (4.1), (4.4), and (4.6) yields the New-WB WENO method for Euler equations (2.6).

Remark 4.1. As mentioned in [37, Remark 3.2], it is necessary to use the numerical approximation (4.6) for S[3]
j , which is 

consistent with (4.4) for S[2]
j , in order to accommodate the analysis of the PP property.

Now, we are ready to prove the WB property of the proposed New-WB method. As mentioned in [37], the contact 
property [6] of HLLC flux can also be extended to the general EoS case, which can be described as Lemma 4.1.

Lemma 4.1. For any two equilibrium states UL = (ρL, 0, ρLE (ρL, p)
)	

and UR = (ρR , 0, ρRE (ρR , p)
)	

, the 1D HLLC flux (4.1)
satisfies

F hllc(UL,UR) = (0, p,0)	.

Theorem 4.1. For 1D Euler equations (2.6), the New-WB method is WB for the stationary hydrostatic solutions (2.2).

Proof. At the equilibrium state, we have ρ = ρe, u = ue = 0 and ρe = (ρe)
e
which leads to

ρe,±
j+ 1

2
e�,±
j+ 1

2

(ρe)e,±
j+ 1

2

U±
j+ 1

2
=
⎛⎝ρe,±

j+ 1
2

ρe,±
j+ 1

2
e�,±
j+ 1

2

(ρe)e,±
j+ 1

2

,0,ρe,±
j+ 1

2
e�,±
j+ 1

2

⎞⎠ .

According to Lemma 4.1, the modified HLLC flux becomes

F̂ j+ 1
2

= (0, pe,�
j+ 1

2
, 0
)	

. (4.7)

On the other hand, the source term approximation S [3]
j = 0, and S[2]

j reduces to

S
[2]
j = 1

�x

(
pe,�
j+ 1

2
− pe,�

j− 1
2

)
,

since 
ρ(xνj )

ρe(xνj )
= ρ j

ρe
j
= 1. The second element of F(U) reduces to p due to u = 0, and according to (4.7), we have

1

�x

(̂
F[2]
j+ 1

2
− F̂[2]

j− 1
2

)
= 1

�x

(
pe,�
j+ 1

2
− pe,�

j− 1
2

)
,

where F̂[2]
j+ 1

2
stands for the second element of F̂ j+ 1

2
. Therefore, the numerical flux and source term of the momentum 

equation balance exactly. In addition, the numerical flux and source term both reduce to 0 for the density and energy 
equations, which implies the WB property of the proposed New-WB scheme. �
4.1.2. Analysis of PP property

In this subsection, we study the PP property of the proposed New-WB scheme. Before that, we present two Lemmas of 
the HLLC flux studied in [37].

Lemma 4.2. Given two admissible states U0, U1 ∈ G, one has

U0 − λ
(
F hllc(U0,U1) − F(U0)

)
∈ G, (4.8)

U1 − λ
(
F(U1) − F hllc(U0,U1)

)
∈ G, (4.9)

if λ ∈R+ satisfies

λ max αmax(U) ≤ 1 (4.10)

U∈{U0,U1}

10
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with

αmax(U) := |u| + ĉ, and ĉ = p

ρ
√
2e

. (4.11)

Lemma 4.3. For any parameters μL, μM , μR ∈R+ and any admissible states UL, UM , UR ∈ G, we have

μMUM − λ
(
F hllc(μMUM ,μRUR) − F hllc(μLUL,μMUM)

)
∈ G,

if λ ∈R+ satisfies

λ max
U∈{UL ,UM ,UR }αmax(U) ≤ 1

2
. (4.12)

Theorem 3.1 on PP property holds for the 1D New-WB scheme, with the parameter α̃ j := α̃F
j + α̃S1

j + α̃
S2
j defined by

α̃F
j := 2 max

⎧⎨⎩ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

,

ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

⎫⎬⎭ max
U∈{U±

j− 1
2
,U±

j+ 1
2
}
αmax(U), (4.13a)

α̃S1
j := ω1�x max

1≤ν≤L

⎧⎪⎨⎪⎩
∣∣∣pex(xνj )∣∣∣

ρe(xνj )
√
2e(xνj )

⎫⎪⎬⎪⎭ , α̃
S2
j := ω1�x

|τ |
ρe

j

√
2e j

, (4.13b)

respectively. Here α̃S1
j + α̃

S2
j = O(�x) and max

{ ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

, 
ρe,+

j− 1
2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

}
= 1 + O(�xk+1) for smooth ρe(x), ee(x). The proof of 

Theorem 3.1 for the New-WB method is presented below.

Proof. Since the proof is long and part of it can be reused in the following sections, we decompose the proof into the 
following five steps:
Step 1: Decomposition. Based on the 1D scheme (2.9), we introduce a suitable parameter η ∈ (0, 1] whose value will be 
determined later, and consider the following decomposition

U
n+1
j = U

n
j + �tL j(U

n
) = ηU

n
j − �t

�x

(̂
F j+ 1

2
− F̂ j− 1

2

)
+ (1− η)U

n
j + �tS j

=
[
ηU

n
j − ηω1

(
U+

j− 1
2

+U−
j+ 1

2

)]+
[
ηω1

(
U+

j− 1
2

+U−
j+ 1

2

)− �t

�x

(̂
F j+ 1

2
− F̂ j− 1

2

)]
+
[
(1− η)U

n
j + �tS j

]
=: W1 +W2 +W3. (4.14)

Next we need to prove that W1, W2 and W3 are in the set G and also select the suitable choice of the parameter η, which 
are presented in Steps 2-5 below.
Step 2: W1 ∈ G. Recall that W1 := ηU

n
j −ηω1

(
U+

j− 1
2

+U−
j+ 1

2

)
. Following the discussions in Section 3.1, we have the following 

formulation for the WENO reconstruction polynomial U j(x) (obtained from {Ul}) in the cell I j :

U j = L j
(
W j({Ul})

)= L∑
ν=1

ωνU(xνj ). (4.15)

Hence, from the assumption (3.19) and Lemma 2.1, we can easily obtain

W1 = η

L−1∑
ν=2

ωνU(xνj ) ∈ G. (4.16)

Step 3: W2 ∈ G. Let’s consider the term W2 := ηω1
(
U+

j− 1
2

+U−
j+ 1

2

)− �t
�x

(̂
F j+ 1

2
− F̂ j− 1

2

)
, which can be decomposed into

W2 = ηω1U
+
j− 1

2
+ ηω1U

−
j+ 1

2

− �t

�x

⎡⎣F hllc

⎛⎝ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−1

U−
j+ 1

2
,

ρe,+
j+ 1

2
e�,+
j+ 1

2

(ρe)e,+1

U+
j+ 1

2

⎞⎠− F hllc

⎛⎝ρe,−
j− 1

2
e�,−
j− 1

2

(ρe)e,−1

U−
j− 1

2
,

ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+1

U+
j− 1

2

⎞⎠⎤⎦

j+ 2 j+ 2 j− 2 j− 2

11
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=: ηω1

(ρe)e,−
j+ 1

2

ρe,−
j+ 1

2
e�,−
j+ 1

2

W+
2 + ηω1

(ρe)e,+
j− 1

2

ρe,+
j− 1

2
e�,+
j− 1

2

W−
2 ,

where

W+
2 =

ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

U−
j+ 1

2
− �t

ηω1�x

ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

×
⎡⎣F hllc

⎛⎝ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

U−
j+ 1

2
,

ρe,+
j+ 1

2
e�,+
j+ 1

2

(ρe)e,+
j+ 1

2

U+
j+ 1

2

⎞⎠− F hllc

⎛⎝ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

U+
j− 1

2
,

ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

U−
j+ 1

2

⎞⎠⎤⎦ ,

W−
2 =

ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

U+
j− 1

2
− �t

ηω1�x

ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

×
⎡⎣F hllc

⎛⎝ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

U+
j− 1

2
,

ρe,−
j+ 1

2
e�,−
j+ 1

2

(ρe)e,−
j+ 1

2

U−
j+ 1

2

⎞⎠− F hllc

⎛⎝ρe,−
j− 1

2
e�,−
j− 1

2

(ρe)e,−
j− 1

2

U−
j− 1

2
,

ρe,+
j− 1

2
e�,+
j− 1

2

(ρe)e,+
j− 1

2

U+
j− 1

2

⎞⎠⎤⎦ .

Thanks to the assumption (3.19) and Lemma 4.3, we have W±
2 ∈ G , if

�tα̃F
j ≤ ηω1�x, (4.17)

where α̃F
j is defined in (4.13), and αmax(U) is defined by (4.11).

Step 4: W3 ∈ G. Now we consider the term W3 := (1 − η)U
n
j + �tS j . For any parameter λ ∈ [0, 1], we have

(1 − η)mj + �t S
[2]
j =(1− η)λL j(m(x)) + (1− η)(1 − λ)mj + �t

(
L j

(
ρ

ρe
pex

)
+ ρ j

ρe
j
τ

)
,

(1− η)E j + �t S
[3]
j =(1− η)λL j(E(x)) + (1 − η)(1 − λ)E j + �t

(
L j

(
m

ρe
pex

)
+ mj

ρe
j
τ

)
.

Therefore, we have

W3 =
L∑

ν=1

ων

⎡⎣(1 − η)λU(xνj ) + �t(pe)x(xνj )

ρe(xνj )

⎛⎝ 0
ρ(xνj )
m(xνj )

⎞⎠⎤⎦+ (1 − η)(1 − λ)U j + �t

ρe
j

⎛⎝ 0
ρ jτ
mjτ

⎞⎠ . (4.18)

Following Lemma 2.1 and Lemma 2.2, we can obtain W3 ∈ G if

�tα̃S1
j ≤ ω1�x(1 − η)λ, �tα̃S2

j ≤ ω1�x(1− η)(1 − λ), (4.19)

with αS1
j and αS2

j defined in (4.13).
Combining Steps 1-4, we conclude that if �t satisfies

�t ∈ �
( j)
η,λ :=

{
s ∈R+ : sα̃F

j ≤ ηω1�x, sα̃S1
j ≤ ω1�x(1 − η)λ, sα̃S2

j ≤ ω1�x(1− η)(1 − λ)
}
, (4.20)

then Un+1
j ∈ G following Lemma 2.1.

Step 5: “optimal” parameters. Let g(η, λ) := sup�
( j)
η,λ , the condition (4.20) is equivalent to �t ≤ g(η, λ), for any η, λ ∈ (0, 1]. 

This implies that we need to determine an optimal value s∗ (s∗ = max(s)) such that

s∗ = min(A, B,C),

where A = ηω1�x
α̃F

j
, B = ω1�x(1−η)λ

α̃
S1
j

and C = ω1�x(1−η)(1−λ)

α̃
S2
j

. By setting A = B = C , we can obtain two “optimal” parameters

η = η∗ = α̃F
j

α̃ j
and λ = λ∗ = α̃S1

j

α̃S1
j + α̃

S2
j

, (4.21)

such that
12
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max
η∈(0,1],λ∈[0,1]

g(η,λ) = g(η∗, λ∗) = ω1�x

α̃F
j + α̃S1

j + α̃
S2
j

= ω1�x

α̃ j
.

Therefore, the condition (4.20) reduces to

�t ≤ g(η∗, λ∗) = ω1�x

α̃ j

which is equivalent to (3.20). This finishes the proof. �

Remark 4.2. Note that, in a special case when 
{

(pe)x(xνj )

ρe(xνj )

}L

v=1
≡ C in each cell I j (for example, the isothermal hydrostatic 

state in Section 2.1), Theorem 3.1 can be proven with a simpler condition

U j − ω1(U
+
j− 1

2
+U−

j+ 1
2
)

1− 2ω1
∈ G, and U∓

j± 1
2

∈ G, (4.22)

instead of (3.19). Under such condition, W1 ∈ G in (4.16) holds. The proof of W2 ∈ G is the same. For the term W3, we can 
decompose the first term of the right-hand side in (4.18) as:

(1 − η)λ

L∑
ν=1

ωνU(xνj ) + �t
L∑

ν=1

ων

(pe)x(xνj )

ρe(xνj )

(
0, ρ(xνj ), m(xνj )

)	 := W31 + W32.

According to [40,48], there exist some points x1j , x
2
j , x

3
j in the cell I j such that

U∗
j :=

(
ρ(x1j ),m(x2j ), E(x3j )

)
=

U j − ω1(U
+
j− 1

2
+U−

j+ 1
2
)

1− 2ω1
. (4.23)

Therefore, W31 and W32 can be rewritten as

W31 = (1− η)λ[ω1(U
+
j− 1

2
+U−

j+ 1
2
) + (1 − 2ω1)U

∗
j ],

W32 = �t[ω1(Q
+
j− 1

2
+Q−

j+ 1
2
) + (1− 2ω1)Q

∗
j ],

where Q = (0, ρpex
ρe , mpex

ρe )	 . In case of 
{

(pe)x(xνj )

ρe(xνj )

}L

v=1
≡ C, we have Q = C(0, ρ, m)	 , so that W3 ∈ G under the condition 

(4.22).

4.2. Two-dimensional New-WB scheme

4.2.1. WB numerical flux and source term discretization
Consider 2D Euler equations (2.10) with the general semidiscrete finite volume WENO method given by (2.12). WB 

numerical fluxes and the corresponding source term discretization will be presented. For 2D Euler equations, the modified 
WB HLLC fluxes are given by

F̂i+ 1
2 , j =

∑
ν

ωνF hllc

⎛⎝ρe,−
i+ 1

2 ,ν
e�,−
i+ 1

2 ,ν

(ρe)e,−
i+ 1

2 ,ν

U−
i+ 1

2 ,ν
,

ρe,+
i+ 1

2 ,ν
e�,+
i+ 1

2 ,ν

(ρe)e,+
i+ 1

2 ,ν

U+
i+ 1

2 ,ν

⎞⎠=:
∑
ν

ωνF hllc
i+ 1

2 , j, (4.24)

Ĝi, j+ 1
2

=
∑
ν

ωνG hllc

⎛⎝ρe,−
ν, j+ 1

2
e�,−
ν, j+ 1

2

(ρe)e,−
ν, j+ 1

2

U−
ν, j+ 1

2
,

ρe,+
ν, j+ 1

2
e�,+
ν, j+ 1

2

(ρe)e,+
ν, j+ 1

2

U+
ν, j+ 1

2

⎞⎠=:
∑
ν

ωνG hllc
i, j+ 1

2
, (4.25)

where F hllc and G hllc is the standard HLLC flux, ee,±
i+ 1

2 ,ν
= E

(
ρe(x±

i+ 1
2
, yν

j ), p
e(x±

i+ 1
2
, yν

j )

)
, and

e�,±
i+ 1

2 ,ν
= E

(
ρe(x±

i+ 1
2
, yν

j ), p
e,�(xi+ 1

2
, yν

j )

)
, pe,�(xi+ 1

2
, yν

j ) = 1

2

(
pe(x−

i+ 1
2
, yν

j ) + pe(x+
i+ 1

2
, yν

j )

)
.

All the boundary values U±
1 , U±

1 are obtained by the modified WENO-ZQ reconstruction.

i+ 2 ,ν ν, j+ 2

13
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Following the same WB technique for approximating source term integrals in the 1D case, we have

S
[2]
i j = Li j(

ρ

ρe
pex) + ρ i j

ρe
i j
τx, (4.26a)

S
[3]
i j = Li j(

ρ

ρe
pey) + ρ i j

ρe
i j
τy, (4.26b)

S
[4]
i j = Li j(

m

ρe
· ∇pe) + mi j

ρe
i j

· τ̃ , (4.26c)

with the WB correction term τ̃ = (τx, τy) defined by

τx = 1

�x
L j

(
pe,�(xi+ 1

2
, y)
)

− 1

�x
L j

(
pe,�(xi− 1

2
, y)
)

− Li j(p
e
x),

τy = 1

�y
Li

(
pe,�(x, y j+ 1

2
)
)

− 1

�y
Li

(
pe,�(x, y j− 1

2
)
)

− Li j(p
e
y).

(4.27)

Below we list the contact property of the HLLC flux and the WB property of the proposed method. The proof is similar 
to the 1D case and is omitted here.

Lemma 4.4. For equilibrium states UL = (ρL, 0, 0, ρLE (ρL, p)
)	

and UR = (ρR , 0, 0, ρRE (ρR , p)
)	

, the standard HLLC flux satisfies

F hllc (UL,UR) = (0, p,0,0)	, G hllc (UL,UR) = (0,0, p,0)	.

Theorem 4.2. For 2D Euler equations (2.10), the New-WB method is WB for the stationary solutions (2.2).

4.2.2. Analysis of PP property
Let point sets {xν1i } = {xνi } be Gauss-Lobatto quadrature points with algebraic precision k in the cell [xi− 1

2
, xi+ 1

2
], and 

similarly, {yν1
j } = {yν

j }. We have the following formulation for the WENO reconstruction polynomial Uij(x, y) (obtained 
from {U g,l}) in the cell Ii j :

U ij = λ1

λ1 + λ2
Li j
(
Wi j({U g,l})

)+ λ2

λ1 + λ2
Li j
(
Wi j({U g,l})

)
(4.28)

=
L∑

ν=1

ω1ων

(
λ2

λ1 + λ2

(
Uij
(
xνi , y j− 1

2

)+ Uij
(
xνi , y j+ 1

2

))+ λ1

λ1 + λ2

(
Uij
(
xi− 1

2
, yν

j

)+ Uij
(
xi+ 1

2
, yν

j

)))

+
L−1∑
ν1=2

L∑
ν=1

ωνων1

(
λ2

λ1 + λ2
Uij
(
xνi , y

ν1
j

)+ λ1

λ1 + λ2
Ui j
(
xν1i , yν

j

))
.

According to the definition of the set of Gauss-Lobatto nodes in Section 3, we have

∑
q

ω̂qUij(x
q) =

L∑
ν=1

L∑
ν1=1

ωνων1Uij
(
xνi , y

ν1
j

)= L∑
ν1=1

L∑
ν=1

ων1ωνUij
(
xν1i , yν

j

)
. (4.29)

Theorem 3.2 on PP property holds for the 2D New-WB scheme, in which α̃i j := α̃F
i j + α̃S1

i j + α̃
S2
i j with

α̃F
i j := 2max

ν

⎧⎨⎩ρe,∓
i± 1

2 ,ν
e�,∓
i± 1

2 ,ν

(ρe)e,∓
i± 1

2 ,ν

,

ρe,∓
ν, j± 1

2
e�,∓
ν, j± 1

2

(ρe)e,∓
ν, j± 1

2

⎫⎬⎭max
ν

⎧⎪⎨⎪⎩ max
U∈{U±

i± 1
2 ,ν

,U±
ν, j± 1

2
}
αmax(U)

⎫⎪⎬⎪⎭ , (4.30a)

α̃S1
i j := ω1|I|

�x+ �y
max

q

⎧⎪⎨⎪⎩
∥∥∥∇pe(xqi j)

∥∥∥
ρe(xqi j)

√
2e(xqi j)

⎫⎪⎬⎪⎭ , α̃
S2
i j := ω1|I|

�x+ �y

‖τ̃‖
ρe
i j

√
2eij

, (4.30b)

where |I| = �x�y and xqi j ∈Si j . Detailed proof of Theorem 3.2 is provided below.

Proof. We again decompose the proof into the following five steps:
Step 1: Decomposition. For an arbitrary parameter η̃ ∈ (0, 1], the finite volume WENO method (2.13) can be rewritten as
14
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U
n+1
i j = η̃U

n
i j − λ1(̂Fi+ 1

2 , j − F̂i− 1
2 , j) − λ2(̂Gi, j+ 1

2
− Ĝi, j− 1

2
) + (1 − η̃)U

n
i j + �tSi j

=
[
η̃U

n
i j − M1 − M2

]
+
[
M1 + M2 − λ1(̂Fi+ 1

2 , j − F̂i− 1
2 , j) − λ2(̂Gi, j+ 1

2
− Ĝi, j− 1

2
)
]

+ (1− η̃)U
n
i j + �tSi j =: W̃1 + W̃2 + W̃3,

where

M1 = λ1

λ1 + λ2
ω1η̃

L∑
ν=1

ων

(
U−
i+ 1

2 ,ν
+U+

i− 1
2 ,ν

)
,

M2 = λ2

λ1 + λ2
ω1η̃

L∑
ν=1

ων

(
U−

ν, j+ 1
2

+U+
ν, j− 1

2

)
.

Next we will prove that W̃1, W̃2 and W̃3 are in the set G , and also select the suitable choice of the parameter η̃ in Steps 
2-5 below.
Step 2: W̃1 ∈ G. For the term W̃1, we consider the decomposition (4.28), which yields

W̃1 := η̃U
n
i j − M1 − M2 = η̃

L−1∑
ν1=2

L∑
ν=1

ωνων1

(
λ2

λ1 + λ2
Ui j
(
xνi , y

ν1
j

)+ λ1

λ1 + λ2
Ui j
(
xν1i , yν

j

))
. (4.31)

Therefore, we have W̃1 ∈ G following the assumption (3.21) and Lemma 2.1.
Step 3: W̃2 ∈ G. The term W̃2 can be further decomposed into two terms

W̃2 = λ1

λ1 + λ2
ω1η̃

L∑
ν=1

ων

(
U−
i+ 1

2 ,ν
+U+

i− 1
2 ,ν

)
− λ1(̂Fi+ 1

2 , j − F̂i− 1
2 , j)

+ λ2

λ1 + λ2
ω1η̃

L∑
ν=1

ων

(
U−

ν, j+ 1
2

+U+
ν, j− 1

2

)
− λ2(̂Gi, j+ 1

2
− Ĝi, j− 1

2
)

=:W̃21 + W̃22.

The first term can be reformulated as follows:

W̃21 =
L∑

ν=1

η̃ω1ων
λ1

λ1 + λ2
U−
i+ 1

2 ,ν
− λ1(̂Fi+ 1

2 , j − F̂∗
i j) +

L∑
ν=1

η̃ω1ων
λ1

λ1 + λ2
U+
i− 1

2 ,ν
− λ1(̂F

∗
i j − F̂i− 1

2 , j)

with the term ̂F∗
i j defined by

F̂∗
i j =

∑
ν

ωνF hllc

⎛⎝ρe,+
i− 1

2 ,ν
e�,+
i− 1

2 ,ν

(ρe)e,+
i− 1

2 ,ν

U+
i− 1

2 ,ν
,

ρe,−
i+ 1

2 ,ν
e�,−
i+ 1

2 ,ν

(ρe)e,−
i+ 1

2 ,ν

U−
i+ 1

2 ,ν

⎞⎠=:
∑
ν

ωνF hllc,∗
iν . (4.32)

With the WB numerical flux introduced in (4.24), we can further simplify this term as:

W̃21 = η̃
λ1

λ1 + λ2
ω1

L∑
ν=1

ων

⎛⎝ (ρe)e,−
i+ 1

2 ,ν

ρe,−
i+ 1

2 ,ν
e�,−
i+ 1

2 ,ν

W+
21 +

(ρe)e,+
i− 1

2 ,ν

ρe,+
i− 1

2 ,ν
e�,+
i− 1

2 ,ν

W−
21

⎞⎠ ,

where

W+
21 =

ρe,−
i+ 1

2 ,ν
e�,−
i+ 1

2 ,ν

(ρe)e,−
i+ 1

2 ,ν

U−
i+ 1

2 ,ν
− λ1 + λ2

η̃ω1

ρe,−
i+ 1

2 ,ν
e�,−
i+ 1

2 ,ν

(ρe)e,−
i+ 1

2 ,ν

× (F hllc
i+ 1

2 , j − F hllc,∗
iν);

W−
21 =

ρe,+
i− 1

2 ,ν
e�,+
i− 1

2 ,ν

(ρe)e,+
i− 1

2 ,ν

U+
i− 1

2 ,ν
− λ1 + λ2

η̃ω1

ρe,+
i− 1

2 ,ν
e�,+
i− 1

2 ,ν

(ρe)e,+
i− 1

2 ,ν

× (F hllc,∗
iν − F hllc

i− 1
2 , j).

Similarly, the second term W̃22 can be reformulated as follows:
15
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W̃22 : = η̃
λ2

λ1 + λ2
ω1

L∑
ν=1

ων

⎛⎝ (ρe)e,−
ν, j+ 1

2

ρe,−
ν, j+ 1

2
e�,−
ν, j+ 1

2

W+
22 +

(ρe)e,+
ν, j− 1

2

ρe,+
ν, j− 1

2
e�,+
ν, j− 1

2

W−
22

⎞⎠
with

W+
22 =

ρe,−
ν, j+ 1

2
e�,−
ν, j+ 1

2

(ρe)e,−
ν, j+ 1

2

U−
ν, j+ 1

2
− λ1 + λ2

η̃ω1

ρe,−
ν, j+ 1

2
e�,−
ν, j+ 1

2

(ρe)e,−
ν, j+ 1

2

× (G hllc
i, j+ 1

2
− G hllc,∗

ν j),

W−
22 =

ρe,+
ν, j− 1

2
e�,+
ν, j− 1

2

(ρe)e,+
ν, j− 1

2

U+
ν, j− 1

2
− λ1 + λ2

η̃ω1

ρe,+
ν, j− 1

2
e�,+
ν, j− 1

2

(ρe)e,+
ν, j− 1

2

× (G hllc,∗
ν j − G hllc

i, j− 1
2
),

where the definitions of G hllc
i, j± 1

2
and G hllc,∗

ν j are similar to those for F hllc
i± 1

2 , j and F hllc,∗
iν . In summary, according 

to Lemma 2.1 and Lemma 4.3, we have W̃21 + W̃22 ∈ G , under the condition �t
(

1
�x + 1

�y

)
α̃F
i j ≤ η̃ω1, with α̃F

i j defined in 
(4.30).
Step 4: W̃3 ∈ G. Now we consider the term W̃3, and start by introducing an arbitrary parameter λ̃ ∈ (0, 1). Following the 
approach in [37], we have

W̃3 := (1 − η̃)U
n
i j + �tSi j = (1− η̃)̃λ

∑
q

ω̂qU(xqi j) + (1− η̃)(1 − λ̃)U
n
i j + �tSi j

=
∑
q

ω̂q

⎡⎣(1− η̃)̃λU(xqi j) + �t

ρe(xqi j)

⎛⎝ 0
ρ(xqi j)∇pe(xqi j)
m(xqi j) · ∇pe(xqi j)

⎞⎠⎤⎦ +
⎡⎣(1− η̃)(1 − λ̃)U

n
i j +

�t

ρe
i j

⎛⎝ 0
ρ i j τ̃

	
mi j · τ̃

⎞⎠⎤⎦ .

According to Lemma 2.2, we have (1 − η̃)U
n
i j + �tSi j ∈ G , if

�t

(
1

�x
+ 1

�y

)
α̃S1
i j ≤ ω1(1− η̃)̃λ, �t

(
1

�x
+ 1

�y

)
α̃

S2
i j ≤ ω1(1− η̃)(1 − λ̃).

Step 5: “optimal parameter”. Similar to the 1D case, we take the following “optimal” parameters

η̃∗ = α̃F
i j

α̃i j
and λ̃∗ = α̃S1

i j

α̃S1
i j + α̃

S2
i j

(4.33)

such that the Un+1
i j ∈ G under the CFL condition �t

(
1

�x + 1
�y

)
α̃i j ≤ ω1. �

Remark 4.3. As discussed in Remark 4.2 for the 1D case, if both φx and φy are constants, the CFL-type condition (3.21) can 
be much simplified, which will be omitted here for saving space.

5. GLK-WB: Grosheintz-Laval and Käppeli’s method

In this section, we will analyze the PP property of the WB WENO method developed by Grosheintz-Laval and Käppeli 
in [15] (abbreviated as “GLK-WB”). We will briefly review this method here, and refer to [15] for more details. The source 
term approximation is reformulated in an equivalent way so that the framework to prove the PP property in Section 4 can 
be easily applied.

In the GLK-WB method, the constant entropy is presented to fully characterize the equilibrium state. The relevant ther-
modynamic relation for isentropic hydrostatic equilibrium is

dh = Tds + dp

ρ
, (5.1)

where h = e + p/ρ is the specific enthalpy and s is the specific entropy. The equilibrium state (2.1) for the isentropic case 
(ds = 0) can be rewritten as ∇h = 1

ρ ∇p = −∇φ, and integrating it yields

h + φ = constant, (5.2)

which is the targeting equilibrium state of the GLK-WB method in [15].
16
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5.1. One-dimensional GLK-WB scheme

5.1.1. WB numerical flux and source term discretization
We start by reviewing the numerical flux and discretization of the source term in GLK-WB method in the 1D case. The 

standard LF numerical flux

F̂ j+ 1
2

= F LF
(
U−

j+ 1
2
,U+

j+ 1
2

)
= 1

2

[
F(U−

j+ 1
2
) + F(U+

j+ 1
2
) − αLF

j+ 1
2

(
U+

j+ 1
2

−U−
j+ 1

2

)]
, (5.3)

is considered in [15], where αLF
j+ 1

2
≥ max

U∈{U−
j+1/2,U

+
j+1/2}

αmax(U) denotes the numerical viscosity parameter. In order to achieve 

the WB property, the GLK-WB method suggests building U±
j+ 1

2
via a fully equilibrium-preserving reconstruction

U j(x) = Ue
j(x) + δU j(x). (5.4)

Here Ue
j(x) and δU j(x) are computed via the local hydrostatic reconstruction, which consists of the following two parts.

• First, we construct an equilibrium profile in each cell. Within the cell I j , a subcell equilibrium reconstruction of the 
specific enthalpy

hej(x) = h0, j + φ(x j) − φ(x), (5.5)

is considered, with h0, j to be determined. Therefore, the equilibrium density ρe
j (x) and internal energy density (ρe)ej(x)

profiles can be computed, hence Ue
j(x). The constant h0, j and s0, j can be determined by solving

ρ j − ρe
j = 0, and ρe j − (ρe)

e
j = 0, (5.6)

where ρ j and ρe j are the current numerical solutions and

ρe
j := L j(ρ

e
j (x)), (ρe)

e
j := L j

(
(ρe)ej(x)

)
. (5.7)

Once h0, j and s0, j are fixed, we have the following high-order accurate representation of the equilibrium in the cell I j :

Ue
j(x) =

(
ρe

j (x),0, (ρe)ej(x)
)	

, (5.8)

which can also be extended to neighboring cells to compute equilibrium perturbation cell averages Ul − Ll(Ue
j(x)), for 

l = j, j ± 1, · · · .
• Second, the perturbation part δU j(x) of the local hydrostatic reconstruction can be obtained by applying the high-order 

WENO-ZQ reconstruction procedure on the equilibrium perturbation cell averages:

δU j(x) = W j

(
{Ul − Ll(U

e
j)}
)

= W j
({δUl}

)
. (5.9)

Remark 5.1. It is worth noting that in numerical simulations, hej(x) defined by (5.5) can be negative value at some points in 
the cell I j . In this case, we should replace (5.5) with hej(x) = max{0, h0, j + φ(x j) − φ(x)}. The same treatment will also be 
employed in the 2D case.

The discretization of the source term integral is decomposed into two parts: the equilibrium part which can be directly 
integrated, and the perturbation part which is approximated by numerical quadrature. Specifically, the discretization of the 
source term integral in the momentum equation is computed by

S
[2]
j =

pej(x j+ 1
2
) − pej(x j− 1

2
)

�x
− L j

(
δρ j(x)

∂φ

∂x

)
. (5.10)

In fact, the above formula can also be rewritten as follows:

S
[2]
j =

pej(x j+ 1
2
) − pej(x j− 1

2
)

�x
+ L j

(
ρ j(x) − ρe

j (x)

ρe
j (x)

(pej)x

)

= ρ j

ρe
j

(
pej(x j+ 1

2
) − pej(x j− 1

2
)
)

�x
+ L j

((
ρ j(x)

ρe
j (x)

− ρ j

ρe
j

)
(pej)x

)

= L j

(
ρ j(x)

ρe
j (x)

(pej)x

)
+ ρ j

ρe
j
τ , (5.11)
17
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where the second equality uses the fact that ρ j = ρe
j in (5.6), and

τ = 1

�x

(
pej(x j+ 1

2
) − pej(x j− 1

2
)
)

− L j

(
(pej)x

)
(5.12)

is the WB correction term for the 1D GLK-WB method. Note that this source term approximation takes a similar form as 
that in (4.4). In the original GLK-WB method [15], the source term integral S[3]

j in the energy equation is approximated by 
a standard Gauss quadrature, which is sufficient for the WB property. However, we suggest, to accommodate the theoretical 
PP property, the following discretization should be adopted:

S
[3]
j := L j

(
mj(x)

ρe
j (x)

(pej)x

)
+ mj

ρe
j
τ . (5.13)

As an FV method (2.8) with the LF numerical flux (5.3) and source term discretization (5.10) and (5.13), the GLK-WB
scheme can be shown to have the WB property, and preserves the discrete version of the hydrostatic equilibrium (5.2)
(combined with u = 0) exactly. The proof can be found in [15] and is omitted here.

5.1.2. Analysis of PP property
First of all, we present the following lemma for LF numerical flux:

Lemma 5.1. [50,51] For any constants λM , λ ∈R+ , and three admissible states UL, UM , UR ∈ G, we have

λMUM − λ
(
F LF(UM ,UR) − F LF(UL,UM)

) ∈ G,

if λαLF ≤ λM.

Note that the equilibrium component Ue
j(x) may not necessarily be a polynomial vector, hence in general U j(x) is not a 

polynomial vector. Nevertheless, the following identity still holds:

L j

(
Ue

j(x) + W j({δUl})
)

︸ ︷︷ ︸
=

L∑
ν=1

ωνU j(x
ν
j )

= L j

(
Ue

j(x)
)

+ δU j =
⎛⎝ ρ j

0
ρe j

⎞⎠+
⎛⎝ 0

mj

E j − ρe j

⎞⎠= U j, (5.14)

where (5.6), (5.7), (5.9) are used to derive the second equality, and we use the fact that W j({δUl}) is the WENO reconstructed 
polynomial whose cell average is same as δU j in the cell I j .

We are now in the position to analyze the PP property of the GLK-WB scheme. Theorem 3.1 holds for the 1D GLK-WB
scheme, with the parameter α̃ j := α̃F

j + α̃S1
j + α̃

S2
j given by

α̃F
j := max

j
{αLF

j+ 1
2
}, α̃S1

j := ω1�x max
1≤ν≤L

⎧⎪⎨⎪⎩
∣∣∣(pej)x(xνj )∣∣∣

ρe
j (x

ν
j )
√
2e(xνj )

⎫⎪⎬⎪⎭ , α̃
S2
j := ω1�x

|τ |
ρe

j

√
2e j

, (5.15)

respectively, where α̃S1
j + α̃

S2
j = O(�x) for smooth ρe(x) and pe(x).

Proof. Since the proof follows the same lines as that in Section 4.1.2, we shall only highlight the main steps and point out 
the differences.
Step 1: Decomposition. This same decomposition is introduced.
Step 2: W1 ∈ G. Note that (5.14) can be viewed as the analog of (4.15). Hence, from the assumption (3.19) and Lemma 2.1, 
we can easily conclude that W1 ∈ G .
Step 3: W2 ∈ G. In GLK-WB method, the LF numerical flux is used, and W2 can be decomposed into:

W2 = ηω1U
−
j+ 1

2
− �t

�x

[
F LF

(
U−

j+ 1
2
,U+

j+ 1
2

)
− F LF

(
U+

j− 1
2
,U−

j+ 1
2

)]
+ ηω1U

+
j− 1

2
− �t

�x

[
F LF

(
U+

j− 1
2
,U−

j+ 1
2

)
− F LF

(
U−

j− 1
2
,U+

j− 1
2

)]
.

(5.16)

Thanks to Lemma 2.1, Lemma 5.1 and the assumption (3.19), we have W2 ∈ G under the condition �t
�x α̃

F
j ≤ ηω1.

Step 4: W3 ∈ G. Since the source term approximations (5.10) and (5.13) are exactly the same as (4.4) and (4.6), we conclude 
18
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that W3 ∈ G following the same analysis.
Step 5: “optimal” parameters. The “optimal” values of η and λ have the same form as in (4.21). Combining these results and 

using Lemma 2.1, we conclude that Un+1
j ∈ G . �

5.2. Two-dimensional GLK-WB scheme

5.2.1. WB numerical flux and source term discretization
The 2D semidiscrete finite volume WENO method is given by (2.12). We consider the following LF numerical flux

F̂i+ 1
2 , j =

∑
ν

ωνF LF
(
U−
i+ 1

2 ,ν
,U+

i+ 1
2 ,ν

)
= 1

2

∑
ν

ων

[
F(U−

i+ 1
2 ,ν

) + F(U+
i+ 1

2 ,ν
) − αLF

i+ 1
2 ,ν

(
U+
i+ 1

2 ,ν
−U−

i+ 1
2 ,ν

)]
, (5.17)

Ĝi, j+ 1
2

=
∑
ν

ωνG LF
(
U−

ν, j+ 1
2
,U+

ν, j+ 1
2

)
= 1

2

∑
ν

ων

[
G(U−

ν, j+ 1
2
) + G(U+

ν, j+ 1
2
) − αLF

ν, j+ 1
2

(
U+

ν, j+ 1
2

−U−
ν, j+ 1

2

)]
,

(5.18)

where αLF
i+ 1

2 ,ν
≥ max

U∈{U−
i+ 1

2 ,ν
,U+

i+ 1
2 ,ν

}
αmax(U) denotes the numerical viscosity parameter, and αLF

ν, j+ 1
2
is defined in a similar way. 

The numerical flux is based on an equilibrium preserving reconstruction of U±
i+ 1

2 ,ν
defined by

Ui j(x) = Ue
i j(x) + δUi j(x). (5.19)

The flowchart of the local hydrostatic reconstruction is the same as the 1D case, with

Ue
i j(x) =

(
ρe
i j(x),0, (ρe)ei j(x)

)
,

δUi j(x) = Wi j({Ug,l − Lg,l(U
e
i j)}) =: Wi j({δUg,l}). (5.20)

Based on the dimension-by-dimension approach, the source term discretization can be rewritten in the same way as in 
(5.11):

S
[2]
i j = Li j

(
ρi j

ρe
i j

(pei j)x

)
+ ρ i j

ρe
i j
τ̃x, (5.21a)

S
[3]
i j = Li j

(
ρi j

ρe
i j

(pei j)y

)
+ ρ i j

ρe
i j
τ̃y, (5.21b)

S
[4]
i j = Li j

(
mi j

ρe
i j

· ∇pei j

)
+ mi j

ρe
i j

· τ̃ , (5.21c)

with the WB correction term τ̃ = (τ̃x, ̃τy) given by

τ̃x = 1

�x
L j

(
pei j(xi+ 1

2
, y)
)

− 1

�x
L j

(
pei j(xi− 1

2
, y)
)

− Li j

(
(pei j)x

)
,

τ̃y = 1

�y
Li

(
pei j(x, y j+ 1

2
)
)

− 1

�y
Li

(
pei j(x, y j− 1

2
)
)

− Li j

(
(pei j)y

)
.

(5.22)

With the LF numerical flux (5.17)-(5.18) and the source term discretization (5.21)-(5.22), the 2D GLK-WB scheme has the 
WB property, and its proof can be found in [15].

5.2.2. Analysis of PP property
Similar as the 1D case, the following formula on the decomposition of the cell average holds

λ1

λ1 + λ2
Li j

(
Ue
i j(x) + Wi j({δUg,l})

)
+ λ2

λ1 + λ2
Li j

(
Ue
i j(x) + Wi j({δUg,l}

)
︸ ︷︷ ︸

LHS

= λ1

λ1 + λ2

(
Li j

(
Ue
i j(x)

)
+ δUi j

)
+ λ2

λ1 + λ2

(
Li j

(
Ue
i j(x)

)
+ δUi j

)
=
⎛⎝ ρ i j

0
ρeij

⎞⎠+
⎛⎝ 0

mi j

Ei j − ρeij

⎞⎠= Ui j, (5.23)
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where LHS can be expanded as

LHS =
L∑

ν=1

ω1ων

(
λ2

λ1 + λ2

(
Ui j
(
xνi , y j− 1

2

)+Ui j
(
xνi , y j+ 1

2

))+ λ1

λ1 + λ2

(
Ui j
(
xi− 1

2
, yν

j

)+Ui j
(
xi+ 1

2
, yν

j

)))

+
L−1∑
ν1=2

L∑
ν=1

ωνων1

(
λ2

λ1 + λ2
Ui j
(
xνi , y

ν1
j

)+ λ1

λ1 + λ2
Ui j
(
xν1i , yν

j

))
. (5.24)

The PP property of the 2D GLK-WB scheme can be found in Theorem 3.2, with the parameter α̃i j := α̃F
i j + α̃S1

i j + α̃
S2
i j given 

by

α̃F
i j := max

i, j,ν

{
αLF
i+ 1

2 ,ν
,αLF

ν, j+ 1
2

}
, (5.25a)

α̃S1
i j := ω1|I|

�x+ �y
max

q

⎧⎪⎨⎪⎩ 1

ρe
i j(x

q
i j)

∥∥∥∇pei j(x
q
i j)

∥∥∥√
2e(xqi j)

⎫⎪⎬⎪⎭ , (5.25b)

α̃
S2
i j := ω1|I|

�x+ �y

‖τ̃‖
ρe
i j

√
2eij

. (5.25c)

Proof. Since the proof follows the same lines as that in Section 4.2.2, we shall only highlight the main steps and point out 
the differences.
Step 1: Decomposition. This same decomposition is introduced.
Step 2: W̃1 ∈ G. Note that (5.23) can be viewed as the analog of (4.28). Hence, from the assumption (3.21) and Lemma 2.1, 
we can conclude that W̃1 ∈ G .
Step 3: W̃2 ∈ G. Similar to the analysis of W2 ∈ G in the 1D case as in (5.16), it is easy to show that W̃2 ∈ G under the 

condition �t
(

1
�x + 1

�y

)
α̃F
i j ≤ η̃ω1.

Step 4: W̃3 ∈ G. Because the source term approximation (5.21) is exactly the same as (4.26) (with the only difference being 
the definition of Ue), the analysis of W̃3 ∈ G is the same as its analogue in Section 4.2.2.

Step 5: “optimal” parameters. The “optimal” values of η̃ and ̃λ have the same form as in (4.33), and we obtain Un+1
i j ∈ G under 

the CFL condition (3.22). �
6. KPS-WB: Klingenberg, Puppo, and Semplice’s method

In this section, we will analyze the PP property of the third WB WENO method, recently developed by Klingenberg, 
Puppo, and Semplice in [20] (abbreviated as “KPS-WB” scheme). We will briefly review the KPS-WB method and refer to 
[20] for more details. We only focus on the ideal gas in this section.

6.1. One-dimensional KPS-WB scheme

6.1.1. WB numerical flux and source term discretization
Consider hydrostatic stationary solutions ρe(x) and pe(x), satisfying ∇pe = −ρe∇φ, which is the targeting equilibrium 

state. The LF numerical flux (5.3) is used in the KPS-WB method, in which the numerical viscosity parameter satisfying 
αLF

j+ 1
2

≥ max
U∈{U−

j+ 1
2
,U+

j+ 1
2
}
αid
max(U) with αid = |u| +

√
γ p

ρ , where the superscript “id” indicates the ideal gas. In fact, any numer-

ical flux can be used, which has been commented in [20, Remark 1].
In order to achieve the WB property, the KPS-WB method suggests to reconstruct the fluctuations of ρ(x, t) and p(x, t)

from ρe and pe . Denote them by r(x) and π(x), i.e.,

ρ(x) = ρe(x) + r(x), p(x) = pe(x) + π(x). (6.1)

To do so, we first compute cell average values of auxiliary variables r(x)

r j = ρ j − R j
(
ρe(x)

)= ρ j − ρe
j, (6.2)

and then apply the WENO reconstruction operator to obtain r j(x) via W j({rl}), hence ρ j(x) = W j({rl}) + ρe(x). The momen-
tum polynomial mj(x) can be obtained via W j({ml}). To recover the total energy, we first compute cell average values of 
auxiliary variables π(x) as
20
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π j = p j − R j
(
pe(x)

)= p j − pej, (6.3)

where p j = (γ − 1) 
(
E j − Ek j

)
with Ek j = R j

(
mj(x)2/2/ρ j(x)

)
using the WENO reconstructed m(x) and ρ(x) from above. 

Then the pressure can be recovered as p j(x) = W j({π l}) + pe(x). Therefore, the conservative variables can be recovered as 
follows:

U j(x) =
⎛⎜⎝ ρ j(x)

mj(x)
p j(x)
γ −1 +

(
mj(x)

)2
2ρ j(x)

⎞⎟⎠=
⎛⎜⎝ W j({rl}) + ρe(x)

W j({ml})
W j({π l})+pe(x)

γ −1 + 1
2

(
W j({ml})

)2
W j({rl})+ρe(x)

⎞⎟⎠ , (6.4)

which can be used to evaluate the values at the interfaces and interior Romberg’s quadrature nodes.
Next, we consider the WB source term discretization of momentum and energy equations

S
[2]
j ≈ 1

�x

x
j+ 1

2∫
x
j− 1

2

ρ

ρe
pexdx and S

[3]
j ≈ 1

�x

x
j+ 1

2∫
x
j− 1

2

m

ρe
pexdx. (6.5)

Romberg’s method [20] is used to achieve the high-order WB approximation. Let us decompose the cell I j into 2l (l ≥
k−1
2 , l ∈ N∗) equal subintervals of size �x/2l , and the nodes are denoted by xκj = x j− 1

2
+ (κ−1)

2l
�x, κ = 1, · · · , 2l + 1 = N . 

We first introduce the following second-order WB form as the basis of the WB source term approximation: for a function 
w = ρ or m,

Q (0)
2l

(w) = 1

2

2l∑
κ=1

(
w(xκj )

ρe(xκj )
+ w(xκ+1

j )

ρe(xκ+1
j )

)
pe(xκ+1

j ) − pe(xκj )

�x
f or l ≥ 0.

When l = 0, Q (0)
1 is a second order WB approximation of source term [20]. To obtain a higher-order approximation without 

losing the WB property, Romberg’s method is applied, which requires us to define the following recursion

Q (n)

2l
(w) = 4nQ (n−1)

2l
(w) − Q (n−1)

2l−1 (w)

4n − 1
f or l ≥ 1, n = 1,2, · · · , l. (6.6)

For example, for the example l = 2, we have the following equality from (6.6)

Q (2)
4 (w) = 16

15
Q (1)

4 (w) − 1

15
Q (1)

2 (w) = 16

15

(
4

3
Q 0

4 (w) − 1

3
Q (0)

2 (w)

)
− 1

15

(
4

3
Q 0

2 (w) − 1

3
Q (0)

1 (w)

)
.

The WB source term discretization in the momentum equation and energy equation with (k + 1)th order accuracy can be 
written and simplified as

S[2]
j = Q (l)

2l
(ρ) =

N∑
κ=1

ωκ

ρ(xκj )

ρe(xκj )
Aκ

j , S[3]
j = Q (l)

2l
(m) =

N∑
κ=1

ωκ

m(xκj )

ρe(xκj )
Aκ

j . (6.7)

where the term A j is a vector depending on average values of pex in the subcells of I j , and the specific forms of A j for 
k = 1, 3, 5 are presented in Appendix A.

The 1D KPS-WB method (2.8) with LF numerical flux (5.3) and the source term approximation (6.7) has the WB property, 
and we refer to [20] for the proof.

6.1.2. Analysis of PP property
Theorem 3.1 on the PP property holds for the KPS-WB scheme, with the parameter α̃ j := α̃F

j + α̃S1
j defined by

α̃F
j := max

j
{αLF

j+ 1
2
}, α̃S1

j := ω1�x max
1≤κ≤N

⎧⎪⎨⎪⎩
∣∣∣Aκ

j

∣∣∣
ρe(xκj )

√
2e(xκj )

⎫⎪⎬⎪⎭ , (6.8)

where Aκ
j depends on average values of pex in the subcells of I j .

Proof. Since the proof follows the same lines as that in Section 4.1.2, we shall only highlight the main steps and point out 
the differences.
Step 1: Decomposition. This same decomposition is introduced.
Step 2: W1 ∈ G. Similar to the equality (4.15), the following identity holds for the KPS-WB method
21
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R j(U j(x)) =
⎛⎜⎝ R j(W j({rl}) + ρe(x))

R j(W j({ml}))
R j(

W j({π l})+pe(x)
γ −1 ) + Ek j,

⎞⎟⎠=
⎛⎝ r j + ρe

j
m j

E j − Ek j + Ek j

⎞⎠=
⎛⎝ρ j
m j

E j

⎞⎠= U j.

Hence W1 ∈ G , according to Lemma 2.1 and the assumption (3.19).
Step 3: W2 ∈ G. Following the proof of W2 ∈ G in Step 3 in Section 5.1.2, we have W2 ∈ G if �t

�x α̃
F
j ≤ ηω1 with ω1 being the 

quadrature weight in the Romberg’s quadrature rule.
Step 4: W3 ∈ G. We can rewrite the vector W3 in the KPS-WB method as

(1 − η)U
n
j + �tS j =

N∑
κ=1

ωκ

[
(1 − η)U j(x

κ
j ) + �t

Aκ
j

ρe
j (x

κ
j )

(
0,ρ j(x

κ
j ),mj(x

κ
j )
)	]

,

where Aκ
j depends on average values of pex in the subcells of I j . Thanks to Lemma 2.2, we have W3 ∈ G for all κ , if 

�t
�x α̃

S1
j ≤ ω1(1 − η).

Step 5: “optimal” parameters. We specify η to be the “optimal” parameter η∗ = α̃F
j

α̃ j
. Combining these results and using 

Lemma 2.1, we conclude that Un+1
j ∈ G . �

6.2. Two-dimensional KPS-WB scheme

6.2.1. WB numerical flux and source term discretization
The 2D semidiscrete finite volume WENO method takes the form (2.12), with the LF numerical flux (5.17)-(5.18). The 

reconstruction of U±
i+ 1

2 ,ν
is similar to the 1D case, with the introduction of variables

r(x) = ρ(x) − ρe(x), π(x) = p(x) − pe(x). (6.9)

We skip the details and refer interested readers to [20].
For the discretization of the 2D source term in [20], Romberg’s quadrature is used in one direction and the Gauss 

quadrature is used in the other direction. However, in this paper, Romberg’s quadrature will be used in both directions at 
the same time. One purpose of doing this is to reduce the number of Gaussian quadrature points, and the other purpose is 
to simplify the analysis of the PP property. The discretization of source terms takes the form

S[2]
i j =

∑
q

ω̂q

ρ(xqi j)

ρe(xqi j)
τ x(xqi j), S[3]

i j =
∑
q

ω̂q

ρ(xqi j)

ρe(xqi j)
τ y(xqi j), (6.10a)

S[4]
i j =

∑
q

ω̂q

m(xqi j)

ρe(xqi j)
τ x(xqi j) +

∑
q

ω̂q

n(xqi j)

ρe(xqi j)
τ y(xqi j), (6.10b)

where both τ x and τ y are N × N matrices (N = 2
k−1
2 + 1) presented in Appendix A. Such 2D KPS-WB scheme has the WB 

property, and the proof can be found in [20].

6.2.2. Analysis of PP property
The PP property of the 2D KPS-WB scheme can be found in Theorem 3.2, with the parameter α̃i j := α̃F

i j + α̃S1
i j + α̃

S2
i j

given by

α̃F
i j := max

i, j,κ

{
αLF
i+ 1

2 ,κ
,αLF

κ, j+ 1
2

}
, (6.11a)

α̃S1
i j :=

(
ω1|I|

�x+ �y

)
max
κ,ν

⎧⎪⎨⎪⎩ 1

ρe(xqi j)

‖a‖√
2e(xqi j)

⎫⎪⎬⎪⎭ , (6.11b)

α̃
S2
i j :=

(
ω1|I|

�x+ �y

)
max
κ,ν

⎧⎪⎨⎪⎩ 1

ρe(xqi j)

‖b‖√
2e(xqi j)

⎫⎪⎬⎪⎭ , (6.11c)

where a = (τ x, 0) and b = (0, τ y).
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Proof. Since the proof follows the same lines as that in Section 4.2.2, we shall only highlight the main steps and point out 
the differences.
Step 1: Decomposition. This same decomposition is introduced.
Step 2: W̃1 ∈ G. Similar to the 1D case, we can obtain W̃1 ∈ G following (3.21) and Lemma 2.1.

Step 3: W̃2 ∈ G. Similar to the analysis of W2 ∈ G in the 1D case in (5.16), it is easy to show that W̃2 ∈ G under the condition 

�t
(

1
�x + 1

�y

)
α̃F
i j ≤ η̃ω1.

Step 4: W̃3 ∈ G. For the KPS-WB method, the term W̃3 can be decomposed into

W̃3 = (1 − η̃)

(̃
λ
∑
q

ω̂qU(xqi j) + (1 − λ̃)
∑
q

ω̂qU(xqi j)

)
+ �tSi j

=
∑
q

ω̂q

⎡⎣(1− η̃)̃λU(xqi j) + �t

ρe(xqi j)

⎛⎝ 0
ρ(xqi j)aq
m(xqi j) · aq

⎞⎠⎤⎦
+
∑
q

ω̂q

⎡⎣(1 − η̃)(1− λ̃)U(xqi j) + �t

ρe(xqi j)

⎛⎝ 0
ρ(xqi j)bq
m(xqi j) · bq

⎞⎠⎤⎦ .

According to Lemma 2.2, we conclude that W̃3 ∈ G , if

�t

(
1

�x
+ 1

�y

)
α̃S1
i j ≤ ω1(1− η̃)̃λ and �t

(
1

�x
+ 1

�y

)
α̃

S2
i j ≤ ω1(1− η̃)(1 − λ̃).

Step 5: “optimal” parameters. The “optimal” values of η̃ and ̃λ have the same form as in (4.33), we obtain Un+1
i j ∈ G under the 

CFL condition �t
(

1
�x + 1

�y

)
α̃i j ≤ ω1. �

7. Numerical examples

In this section, we present extensive 1D and 2D numerical examples to validate the WB and PP properties of the proposed 
methods. For comparison, we will also present numerical results of non-well-balanced (“non-WB”) FV WENO schemes with 
the standard HLLC flux. We use the explicit third-order SSP-RK time discretization and the ideal gas with γ = 1.4 in (1.3), 
unless otherwise stated. The CFL number is taken as 0.4 as discussed in Remark 3.1. In the 1D and 2D accuracy tests only, 
we use �t = 0.4�x

5
3 /α̃ for the fifth-order scheme in order to match the temporal and spatial accuracy. The linear weights 

in the WENO-ZQ reconstruction (2.17) are taken γ1 = 0.998 and γ2 = γ3 = 0.001. In all the numerical examples, the cell 
averages of the initial solution at t = 0 are computed via the fifth order Gauss-Lobatto quadrature. We also compute the cell 
averages of ρe and pe in a similar way.

Example 1 (Accuracy test). This example is used to test the high-order accuracy of WENO schemes. Consider the exact 
solutions given by

ρ(x, t) = 1+ 1

5
sin(π(x − u0t)), u(x, t) = 1, p(x, t) = 9

2
− (x− u0t) + 1

5π
cos(π(x − u0t)),

with the static gravitational field φ(x) = gx = x on the computational domain x ∈ [0, 2]. We perform the simulation up to 
T = 0.1, and use the exact solutions on the ghost cells for the boundary treatment. All three WB PP methods have been 
tested, and Table 7.1 lists their numerical errors and convergence rates at different grid resolutions. It can be observed that 
the fifth-order convergence is achieved for all three methods, and the modified HLLC flux does not affect the accuracy of 
the New-WB method.

Example 2. (1D polytropic equilibrium). We use this example to test the well-balancedness of three methods for the 
polytropic equilibrium states. The stationary hydrostatic solutions are given by

ρe(x) =
(
ρ

γ −1
0 − 1

K0

γ − 1

γ
gx

) 1
γ −1

, ue(x) = 0, pe(x) = K0(ρ
e(x))γ , (7.1)

where g = 1, γ = 5
3 , ρ0 = p0 = 1, and K0 = p0/ρ

γ
0 . The gravitational potential φ(x) = gx on the computational domain 

x ∈ [0, 2]. Both bounds are arranged as outflow boundary conditions.
To validate the well-balancedness of the three methods, we use double precision to perform the computation with the 

initial data (7.1), and simulate this problem up to T = 4. Table 7.2 lists L1 errors of numerical solutions, which shows that 
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Table 7.1
Example 1. L1 errors and convergence rates of three methods.

New-WB

N ρ m E

32 1.94e-07 – 2.12e-07 – 2.51e-07 –
64 6.13e-09 4.98 6.63e-09 5.00 7.90e-09 4.99
128 1.92e-10 4.99 2.06e-10 5.00 2.47e-10 4.99
256 6.02e-12 4.99 6.46e-12 5.00 7.87e-12 4.97

GLK-WB

N ρ m E

32 7.28e-07 – 7.30e-07 – 4.88e-07 –
64 2.53e-08 4.84 2.57e-08 4.82 2.38e-08 4.35
128 7.19e-10 5.13 7.18e-10 5.16 5.20e-10 5.51
256 2.25e-11 4.99 2.24e-11 5.00 1.46e-11 5.15

KPS-WB

N ρ m E

32 7.27e-07 – 7.30e-07 4.80e-07 –
64 2.29e-08 4.98 2.29e-08 4.99 1.49e-08 5.00
128 7.19e-10 4.99 7.17e-10 4.99 4.68e-10 5.00
256 2.24e-11 4.99 2.24e-11 4.99 1.47e-11 4.98

Table 7.2
Example 2. L1 errors of three methods with equilibrium initial data.

New-WB GLK-WB KPS-WB

N ρ m E ρ m E ρ m E

100 1.00e-14 1.21e-15 3.21e-14 9.40e-15 4.95e-16 2.93e-14 7.21e-15 7.35e-16 2.35e-14
200 2.07e-14 2.32e-15 6.83e-14 2.04e-14 8.9e-16 6.30e-14 1.55e-14 1.30e-15 4.90e-14

Table 7.3
Example 2. L1 errors of non-WB method with equilibrium initial data.
N ρ m E

50 2.45e-08 – 2.66e-08 – 2.57e-08 –
100 7.21e-10 5.08 7.50e-10 5.14 7.29e-10 5.14
200 1.91e-11 5.23 1.91e-11 5.29 1.86e-11 5.29

the numerical errors are all at the level of round-off error, therefore these methods have well-balanced properties. For 
comparison, we also listed L1 errors of the non-WB scheme in Table 7.3, and observe that the errors did not reduce to the 
expected round-off error, although the fifth-order accuracy is obtained.

Next, in order to compare the performance of WB and non-WB schemes in capturing the small perturbation of equilib-
rium states, we add a small periodic velocity perturbation

u(0, t) = A sin(4πt)

with A = 10−9 at the left boundary. The solutions are computed up to T = 1.5. The pressure perturbation and the velocity 
computed by three WB methods and non-WB methods on 100 cells are plotted in the top row of Fig. 7.1, in which the 
reference solutions are computed using 500 computational cells. It can be observed the three methods perform very well in 
capturing the small perturbation of equilibrium states, while the non-WB method performs poorly, especially in the region 
where x > 1.5.

In the last test case, we consider the perturbation with a larger amplitude A = 10−1. We perform the simulation until 
T = 1.5, the pressure perturbation and the velocity computed by the proposed methods and non-WB method on a mesh 
of 200 cells are plotted in the middle row of Fig. 7.1, together with a reference solution computed on 1000 cells. Both WB 
and non-WB methods can produce satisfactory results, which shows that the performance of the two types of methods is 
similar in capturing solutions that are far away from steady states. Finally, we adopt the New-WB method with (unmodified) 
traditional WENO-ZQ reconstruction for the case of A = 10−1, as shown in the bottom row of Fig. 7.1. Some oscillations and 
overfitting phenomena near the shock wave can be observed, which may be due to the lack of scaling-invariant property as 
discussed in Remark 2.1.

Example 3 (Test on the PP property). We consider a gravitational field φ(x) = x2/2 centered around x = 0. The initial state 
is given by [50]
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Fig. 7.1. Example 2, Top-Row: the propagation of small perturbation with A = 10−9 by various methods in the polytropic hydrostatic atmosphere. Middle-
Row: the propagation of small perturbation with A = 10−1 by various methods in the polytropic hydrostatic atmosphere. Bottom-Row: Small perturbation 
with A = 10−1 by the New-WB method with (unmodified) classical WENO-ZQ reconstruction. Left: Pressure perturbation; Right: Velocity.

ρ(x,0) = 7, p(x,0) = 0.2, u(x,0) =
{

−1, −1 ≤ x < 0,

1, 0 < x ≤ 1.

The outflow boundary conditions are use at x = −1 and x = 1. A PP limiter is needed for this problem due to the appearance 
of extremely low density and pressure at the center of the domain. We simulate the problem up to T = 0.6. The numerical 
results at T = 0.6 of all the methods on a computational mesh with 500 cells are plotted in Fig. 7.2, together with a 
reference solution obtained with much refined 2000 cells. It can be seen that the structure of low-density and low-pressure 
waves can be well captured by all three methods.

Example 4. (Leblanc shock tube). We focus on an extension of the 1D Leblanc shock tube problem with the linear gravita-
tional field φ(x) = x. The initial solutions are given as follows

(ρ,u, p)(x,0) =
{

(2, 0, 109), 0 ≤ x < 5,

(10−3, 0, 1), 5 < x ≤ 10.

Reflection boundary conditions are arranged on both sides. The numerical results at T = 0.00004 of the proposed methods 
on 1600 cells are shown in Fig. 7.3, compared with a reference solution obtained on 6400 cells. We can observe that strong 
shocks are well captured by all the methods with high resolution.
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Fig. 7.2. Example 3, density, momentum and energy obtained by three methods with 500 cells. Left: ρ , Middle: m, Right: E .

Fig. 7.3. Example 4: log plot of density, velocity, and log plot of pressure obtained by three methods with 1600 cells. Left: ρ , Middle: u, Right: p.

Example 5 (2D accuracy test). In this test case, we test the convergence rate of three methods in the 2D case. A linear 
gravitational potential function is given by φx = φy = 1 in the computational domain � = [0, 2]2. The exact solutions are 
given as follows

ρ(x, y, t) = 1+ 0.2sin(π(x + y − t(u0 + v0))), u(x, y) = v(x, y) = 1,

p(x, y, t) = p0 + t(u0 + v0) − x− y + 0.2

π
cos(π(x + y − t(u0 + v0))),

(7.2)

with u0 = v0 = 1 and p0 = 4.5 and the adiabatic index γ = 5/3. The boundary conditions are specified by the exact 
solutions on ∂�. We compute the problem up to T = 0.1. The L1 errors and the corresponding orders of convergence 
obtained by the proposed approaches on different meshes are listed in Table 7.4. We can observe that the expected high-
order convergence rate is achieved for all three methods. In addition, the modified HLLC flux and the non-trivial source 
term approximation do not destroy the accuracy of the New-WB method.

Example 6 (2D polytropic equilibrium). The purpose of this example is to verify the well-balancedness of three methods in 
the polytropic case and their performance in capturing small perturbations of such solutions. We consider a static adiabatic 
gaseous sphere, which is held together by self-gravitation and can be constructed from the hydrostatic equilibrium dp

dr =
−ρ dφ

dr with γ = 2. The equilibrium solutions take the form

ρ(r) = ρc
sin(αr)

αr
, u(r) = 0, v(r) = 0, p(r) = K0ρ(r)2, (7.3)

under the gravitational field

φ(r) = −2K0ρc
sin(αr)

αr
, (7.4)

where α = √
2π g/K0 with K0 = g = ρc = 1, and r = √x2 + y2 denotes the radial variable. The computational domain is 

taken as [−0.5, 0.5]2. To validate the WB property, we use double precision to perform the computation with the initial 
data (7.3) up to T = 1 on different meshes. The L1 errors are presented in Table 7.5. As expected, the steady-state solutions 
are maintained up to the round-off errors, which shows the well-balancedness of three methods. For a long time simulation, 
the errors of New-WB method will be slightly larger compared to the other two methods. This difference can be attributed to 
the use of different numerical fluxes. Specifically, the New-WB method utilizes the HLLC flux, while the other two schemes 
use the LF flux. Numerical investigation demonstrates that different numerical fluxes (LF and HLLC) for the same KPS-WB or
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Table 7.4
Example 5. L1 errors and convergence rates of three methods.

New-WB

N ρ m n E

8 3.34e-04 – 3.50e-04 – 3.50e-04 – 5.01e-04 –
16 1.18e-05 4.81 1.27e-05 4.77 1.27e-05 4.77 1.80e-05 4.79
32 3.83e-07 4.95 4.05e-07 4.97 4.05e-07 4.97 5.85e-07 4.94
64 1.19e-08 5.00 1.26e-08 5.00 1.26e-08 5.00 1.83e-08 4.99

GLK-WB

N ρ m n E

8 1.08e-03 – 1.09e-03 – 1.09e-03 – 1.25e-03 –
16 4.30e-05 4.65 4.32e-05 4.66 4.32e-05 4.66 4.72e-05 4.73
32 1.46e-06 4.88 1.46e-06 4.88 1.46e-06 4.88 1.59e-06 4.89
64 5.13e-08 4.83 5.12e-08 4.83 5.12e-08 4.83 5.58e-08 4.83

KPS-WB

N ρ m n E

8 1.08e-03 – 1.09e-03 – 1.09e-03 – 1.24e-03 –
16 4.25e-05 4.67 4.27e-05 4.67 4.27e-05 4.67 4.58e-05 4.76
32 1.40e-06 4.92 1.41e-06 4.92 1.41e-06 4.92 1.47e-06 4.95
64 4.43e-08 4.98 4.47e-08 4.97 4.47e-08 4.97 4.50e-08 5.03

Table 7.5
Example 6. L1 errors of three methods with equilibrium initial data at T = 1.

New-WB

N ρ m n E

20 5.94e-17 6.54e-16 6.98e-16 5.71e-16
40 5.93e-17 8.44e-16 8.51e-16 4.94e-16

GLK-WB

N ρ m n E

20 1.63e-15 5.99e-16 6.03e-16 9.96e-16
40 2.76e-15 5.50e-16 5.68e-16 1.78e-15

KPS-WB

N ρ m n E

20 5.75e-17 5.28e-16 5.75e-16 5.72e-17
40 5.83e-17 7.35e-16 7.54e-16 4.98e-17

Fig. 7.4. Example 6: From left to right: New-WB pressure perturbation; New-WB velocity magnitude; non-WB pressure perturbation; non-WB velocity 
magnitude.

New-WB method yield comparable errors for cases with small stopping times and the scheme using the HLLC flux exhibited 
larger errors when the stopping time is large.

Next, we impose a small perturbation to the initial pressure state

p(r) = K0ρ(r)2 + η exp(−100r2)

with η = 10−3 and simulate the problem up to T = 0.2 using the New-WB method on 100 × 100 uniform cells. The trans-
missive boundary conditions are used. Fig. 7.4 shows the contour plots of the pressure perturbation and density velocity 
magnitude r = √

u2 + v2. The non-WB method was not able to capture such a small perturbation well on coarse mesh, 
whereas the WB method performs very well.
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Fig. 7.5. Example 7: From top to bottom: New-WB; GLK-WB; KPS-WB; From left to right: ρ , log(p), p along the line y = x.

Example 7 (2D blast problem). The purpose of this example is to verify the PP performance of three methods in the 2D 
case, where strong discontinuity also exists. We consider a 2D blast problem under the gravitational field (7.4). The initial 
data is obtained by adding a huge jump to the pressure term of the equilibrium (7.3), that is

p(x, y,0) = K0ρ(r)2 +
{
100, r < 0.1,

0, r > 0.1.

We set K0 = g = 1 and γ = 2, and ρc = 0.01 which leads to the appearance of low pressure and low density in the solution. 
Again, the transmissive boundary conditions are considered. Fig. 7.5 shows surface plots of ρ and log(p) at T = 0.005
computed by three methods with 200 ×200 cells. We also present the plot of p along the line y = x, and a strong shock can 
be observed at 

√
x2 + y2/

√
2 ≈ 0.28. All three methods preserve the positivity of density and pressure and the axisymmetric 

structure of the solution well.

Example 8 (Inertia-gravity wave). This is a benchmark test problem arising from atmospheric flows and the setup follows 
[11,12]. The computational domain is a [0, 300000] × [0, 10000] m2 channel, with inviscid wall boundary conditions on 
the bottom and top boundaries, and periodic boundary conditions on the left and right boundaries. The linear gravitational 
fields are taken as φx = 0 and φy = g = 9.8 m/s2. A constant velocity is considered as u = (20 m/s, 0 m/s), and the potential 
temperature and Exner pressure are given by

� = T0 exp

(
N 2

g
y

)
, � = 1+ (γ − 1)g2

γ RT0N 2

[
exp

(
−N 2

g
y

)
− 1

]
,

where the Brunt–Väisälä frequency N = 0.01 /s, the reference temperature T0 = 300 K at y = 0 m, and the gas 
constant R = 287.058 J/kg K. Initially, a small perturbation is added to the potential temperature: ��(x, y, 0) =
θc sin

(
π y
hc

)[
1+ (x− xc)2/a2c

]−1
, where θc = 0.01 K, hc = 10000 m, xc = 100000 m, and ac = 5000 m. The pressure and 

density are computed by � and � via
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Fig. 7.6. Example 8: Top-Left: ��(x, y, t = 0 s); Top-Right: ��(x, y, t = 1000 s); Bottom-Left: ��(x, y, t = 2000 s); Bottom-Right: ��(x, y, t = 3000 s).

Fig. 7.7. Example 8 with New-WB: ��(x, y, t = 3000 s) along with y = 5000m.

p = p0�
γ

γ −1 , ρ = p0

R�
�

1
γ −1 , (7.5)

with the reference pressure p0 = 105 N/m2 at y = 0 m.
We compute this problem up to T = 3000 s on a mesh of 1200 × 50 uniform cells using the proposed New-WB

method. The contours of the potential temperature perturbation at various times, ��(x, y, t = 0 s), ��(x, y, t = 1000 s), 
��(x, y, t = 2000 s) and ��(x, y, t = 3000 s), are presented in Fig. 7.6. In addition, Fig. 7.7 displays the profiles of 
��(x, y = 5000 m, t = 3000 s) on different mesh sizes. We observe that the evolution of potential temperature per-
turbation can be well captured and that the solution structures agree well with those presented in [11,12].

Remark 7.1. In the numerical implementation of Example 8, we adopted the following boundary treatment method. Let S
and Se represent numerical solutions and equilibrium solutions. Denote the perturbation by P = S −Se. The inviscid boundary 
and periodic boundary conditions are applied to the variable P only, and the values of S in the ghost cells can be obtained 
by S = P + Se, where the values of Se in the ghost cells are known. Note that this boundary treatment does not affect the 
WB property of the scheme.

Example 9 (Rising thermal bubble). The last example is also a benchmark test problem for atmospheric flows, and simulates 
the dynamics of a warm bubble. The setup follows that in [11,12]. The computational domain is [0, 1000] ×[0, 1000]m2 and 
the inviscid wall boundary conditions are applied, with the boundary treatment in Remark 7.1. A linear gravitational field 
is given by φx = 0 and φy = g = 9.8 m/s2. Here we consider a stratified atmosphere, with zero velocity u = 0, a constant 
potential temperature � = T0 = 300 K, and Exner pressure � = 1 − (γ −1)gy

γ RT0
, where R = 287.058 J/kg K is the gas constant. 

Initially, the warm bubble is added as a potential temperature perturbation to the hydrostatic balance

��(x, y, t = 0) =
{
0, r > rc
θc (1+ cos(πr/rc)) , r ≤ rc,

r =
√

(x− xc)2 + (y − yc)2,

2
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Fig. 7.8. Example 9: The potential temperature perturbation ��. From left to right: t = 0s, t = 300s, t = 500s, t = 700s; Top: 100 × 100 cells; Bottom: 
200 × 200 cells.

where θc = 0.5 K, (xc, yc) = (500, 350) m, and rc = 250 m. The pressure and density are computed by � and � via the 
formulas in (7.5), with the reference pressure p0 = 105 N/m2. Fig. 7.8 demonstrates the potential temperature perturbation 
�� obtained by the New-WB method on 100 × 100 cells (10m resolution) and 200 × 200 cells (5m resolution), respec-
tively. It can be observed that the initial circular bubble deforms into a mushroom-shaped cloud, and this solution is very 
consistent with the solution proposed in [11,12].

8. Conclusions

This paper presented three high-order structure-preserving FV WENO methods for the Euler equations with gravitation, 
based on a newly developed scheme and two schemes proposed in [15,20]. A notable feature of these three methods is that 
they are not only WB for hydrostatic equilibrium states but also preserve the positivity of density and pressure. They were 
built on a simple local scaling PP limiter and a modified WENO-ZQ reconstruction exactly preserving the cell average value 
and scaling invariance. We introduced suitable numerical fluxes and approximations to the gravitational source terms for 
the three methods to achieve the WB property. Based on some convex decomposition techniques as well as several critical 
properties of the admissible states and numerical flux, we carried out rigorous positivity-preserving analyses for these three 
WB schemes. We rigorously proved that the three WB methods, coupled with the PP limiter and a strong-stability-preserving 
time discretization, are always PP under suitable CFL conditions. Extensive numerical examples were provided to confirm 
the WB and PP properties of the three methods.

At the end, we would like to provide an quick overview of the three methods in terms of relative accuracy, computational 
cost, and time step restrictions. Numerical tests have demonstrated that the errors of the three methods are comparable 
under the same fifth-order accuracy, especially in simulations with small termination times. In terms of CPU time, the 
numerical examples indicate that the New-WB method and the KPS-WB method have comparable computation times, which 
is less than that of the GLK-WB method. Regarding the CFL condition, all three methods have the same CFL condition when 
considering only the WB property. However, when taking the theoretical PP property into account, the CFL condition is 
influenced by the value of ω1. For fifth-order schemes, both the New-WB and GLK-WB methods have ω1 = 1/12, while the
KPS-WB method has ω1 = 7/90 which is slightly smaller.
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Appendix A. A j in the KPS-WBmethod

1D case: We are taking the sixth order source term discretization (l = 2 in (6.7)) as an example to illustrate it. We 
decompose cell I j = [x j− 1

2
, x j+ 1

2
] into 2l = 4 subcells as shown in Fig. A.9, where xκj are quadrature nodes, I jκ = xκ+1

j − xκj
with κ = 1, · · · , 4, and I j12 = I j1 ∪ I j2 and I j34 = I j3 ∪ I j4 .

We define ( f (x)) j, jn as the average value of f (x) on the subcell I jn of the cell I j . For example, ( f ) j, j1 = 4
�x

∫
I j1

f dx and 

( f ) j, j12 = 2
�x

∫
I j12

f dx. To simplify the notation, we use the ρκ instead of ρ(xκj ), and ρe
κ and peκ defined similarly. Hence, 

for the discretization of the source term in the momentum equation, we have (after applying Romberg’s method twice)

S
[2]
j = 32

45

(
(
ρ1

ρe
1

+ ρ2

ρe
2
)
pe2 − pe1

�x
+ (

ρ2

ρe
2

+ ρ3

ρe
3
)
pe3 − pe2

�x
+ (

ρ3

ρe
3

+ ρ4

ρe
4
)
pe4 − pe3

�x
+ (

ρ4

ρe
4

+ ρ5

ρe
5
)
pe5 − pe4

�x

)
− 10

45

(
(
ρ1

ρe
1

+ ρ3

ρe
3
)
pe3 − pe1

�x
+ (

ρ3

ρe
3

+ ρ5

ρe
5
)
pe5 − pe3

�x

)
+ 1

90
(
ρ1

ρe
1

+ ρ5

ρe
5
)
pe5 − pe1

�x

= 7

90

ρ1

ρe
1

(
1

7

(
16(pex) j, j1 − 10(pex) j, j12 + (pex) j

))
+ 16

45

ρ2

ρe
2

(
1

2

(
(pex) j, j1 + (pex) j, j2

))
+ 6

45

ρ3

ρe
3

(
1

6

(
8(pex) j, j2 + 8(pex) j, j3 − 5(pex) j, j12 − 5(pex) j, j34

))
+ 16

45

ρ4

ρe
4

(
1

2

(
(pex) j, j3 + (pex) j, j4

))
+ 7

90

ρ5

ρe
5

(
1

7

(
16(pex) j, j4 − 10(pex) j, j34 + (pex) j

))

=
5∑

κ=1

ωκ
ρκ

ρe
κ

Aκ
j ,

where ω = [ 7
90 , 1645 , 645 , 1645 , 790 ] is the Romberg’s quadrature weights, and

A j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
7

(
16(pex) j, j1 − 10(pex) j, j12 + (pex) j

)
1
2

(
(pex) j, j1 + (pex) j, j2

)
1
6

(
8(pex) j, j2 + 8(pex) j, j3 − 5(pex) j, j12 − 5(pex) j, j34

)
1
2

(
(pex) j, j3 + (pex) j, j4

)
1
7

(
16(pex) j, j4 − 10(pex) j, j34 + (pex) j

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.6)

The definition of S[3]
j is similar to S[2]

j for this sixth order scheme, with the only difference being ρκ/ρe
κ replaced by mκ/ρe

κ .
Similarly, for the fourth-order source term approximation, the form of A j can be obtained as

S
[2]
j = 4

3

(
1

2
(
ρ1

ρe
1

+ ρ3

ρe
3
)
pe3 − pe1

�x
+ 1

2
(
ρ3

ρe
3

+ ρ5

ρe
5
)
pe5 − pe3

�x

)
− 1

3

(
1

2
(
ρ1

ρe
1

+ ρ5

ρe
5
)
pe5 − pe1

�x

)
= 1

6

ρ1

ρe
1

(
2(pex) j, j12 − (pex) j

)
+ 4

6

ρ3

ρe
3

(
1

2
(pex) j, j12 + 1

2
(pex) j, j34

)
+ 1

6

ρ5

ρe
5

(
2(pex) j, j34 − (pex) j

)

x1j = x j− 1
2

I j1

x2j

I j2

x3j

I j3

x4j

I j4

x5j = x j+ 1
2

I j12 I j34

Fig. A.9. Segment for sixth order Romberg’s method.
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=
3∑

κ=1

ωκ
ρκ

ρe
κ

Aκ
j ,

where ω = [ 16 , 46 , 16 ] and A j =
(
2(pex) j, j12 − (pex) j,

1
2 (pex) j, j12 + 1

2 (pex) j, j34 ,2(p
e
x) j, j34 − (pex) j

)	
. Finally, for the second-order 

scheme, we have ω = ( 12 , 12 ) and A j = ((pex) j, (pex) j)	 .
2D case: Following a similar way as in the 1D case, we can express τ x and τ y for l = 2 as follows:

(τ x)5×5 = (τ x
1 , · · · , τ x

5

)
, (τ y)5×5 =

⎛⎜⎝τ
y
1
...

τ
y
5

⎞⎟⎠ , (A.7)

where

τ x
κ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
7

(
16(pex(x, y

κ
j ))Ii j ,i1 − 10(pex(x, y

κ
j ))Ii j ,i12 + (pex(x, y

κ
j ))i

)
1
2

(
(pex(x, y

κ
j ))Ii j ,i1 + (pex(x, y

κ
j ))Ii j ,i2

)
1
6

(
8(pex(x, y

κ
j ))Ii j ,i2 + 8(pex(x, y

κ
j ))Ii j ,i3 − 5(pex(x, y

κ
j ))Ii j ,i12 − 5(pex(x, y

κ
j ))Ii j ,i34

)
1
2

(
(pex(x, y

κ
j ))Ii j ,i3 + (pex(x, y

κ
j ))Ii j ,i4

)
1
7

(
16(pex(x, y

κ
j ))Ii j ,i4 − 10(pex(x, y

κ
j ))Ii j ,i34 + (pex(x, y

κ
j ))i

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.8)

τ
y
κ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
7

(
16(pey(x

κ
i , y))Ii j , j1 − 10(pey(x

κ
i , y))Ii j , j12 + (pey(x

κ
i , y)) j

)
1
2

(
(pey(x

κ
i , y))Ii j , j1 + (pey(x

κ
i , y))Ii j , j2

)
1
6

(
8(pey(x

κ
i , y))Ii j , j2 + 8(pey(x

κ
i , y))Ii j , j3 − 5(pey(x

κ
i , y))Ii j , j12 − 5(pey(x

κ
i , y))Ii j , j34

)
1
2

(
(pey(x

κ
i , y))Ii j , j3 + (pey(x

κ
i , y))Ii j , j4

)
1
7

(
16(pey(x

κ
i , y))Ii j , j4 − 10(pey(x

κ
i , y))Ii j , j34 + (pey(x

κ
i , y))Ii j , j

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

	

, (A.9)

for κ = 1, · · · , 5. The values of τ x and τ y for the fourth- and second-order source term approximations follow a similar 
analysis and are skipped here.
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