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Abstract— The K User Linear Computation Broadcast
(LCBC) problem is comprised of d dimensional data (from
Fq), that is fully available to a central server, and K users,
who require various linear computations of the data, and have
prior knowledge of various linear functions of the data as
side-information. The optimal broadcast cost is the minimum
number of q-ary symbols to be broadcast by the server per
computation instance, for every user to retrieve its desired
computation. The reciprocal of the optimal broadcast cost is
called the capacity. The main contribution of this paper is
the exact capacity characterization for the K = 3 user
LCBC for all cases, i.e., for arbitrary finite fields Fq , arbitrary
data dimension d, and arbitrary linear side-informations and
demands at each user. A remarkable aspect of the converse
(impossibility result) is that unlike the 2 user LCBC whose
capacity was determined previously, the entropic formulation
(where the entropies of demands and side-informations are
specified, but not their functional forms) is insufficient to
obtain a tight converse for the 3 user LCBC. Instead, the
converse exploits functional submodularity. Notable aspects of
achievability include sufficiency of vector linear coding schemes,
subspace decompositions that parallel those found previously
by Yao Wang in degrees of freedom (DoF) studies of wireless
broadcast networks, and efficiency tradeoffs that lead to a
constrained waterfilling solution. Random coding arguments are
invoked to resolve compatibility issues that arise as each user
has a different view of the subspace decomposition, conditioned
on its own side-information.

Index Terms— Capacity, broadcast, index coding, coded
computation.

I. INTRODUCTION

R
ECENT years have seen explosive growth both in

the number of devices connected to communication

networks, as well as in the amount of data generated, shared,

and collaboratively processed by these devices. With machine

communication expected to dominate human communication,
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future communication networks will increasingly be used in

the service of computation tasks [1]. Along with the processing

power of connected devices, a key determining factor of

the potential of these ‘computation networks’ will be the

fundamental limit of their communication-efficiency. Despite

a multitude of advances spanning several decades [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], the capac-

ity limits of computation networks remain largely unknown.

Remarkably, this is the case even in the most basic of scenarios

such as computational multiple access and broadcast, the

presumptive starting points for developing a cohesive theory

of computation networks. It is also noteworthy that many

applications of recent interest, such as coded caching [16],

[17], [18], private information retrieval [19], [20], coded

MapReduce [21], distributed storage exact repair [22], [23],

[24], index coding [25], [26], coded computing [27], [28],

data shuffling [29], federated learning [30] and secure

aggregation [31], are essentially linear computation multiple

access (LCMAC) or broadcast (LCBC) settings with additional

application-specific constraints. Future developments, say in

networked VR/AR technology [1], [32], [33], [34], [35], [36],

will similarly need linear broadcast and multiple access com-

putational networks for coordination and synchronization [37],

[38], [39] of users’ perspectives across space, typically

computed as linear projections of real-world coordinates.

Evidently, beyond their significance as building blocks,

LCMAC/LCBC networks are important in and of themselves.

The collaborative, task-oriented, and interactive character

of computation networks manifests in data dependencies, and

an abundance of side-information accumulated at each node

from prior computations on overlapping datasets. Both data

dependencies and side-information significantly impact the

capacity of computation networks. Furthermore, because of the

inherently algorithmic character of machine communication,

the underlying structures of data dependencies and side-

information are often predictable, and may be exploited in

principled ways to improve communication efficiency. Indeed,

both of these aspects are central to the computation broadcast

(CBC) problem, an elemental one-to-many computation

network studied recently in [40]. The CBC setting is comprised

of data stored at a central server, and multiple users, each of

whom is given some function of the data as side-information

and wishes to retrieve some other function of the data. The

goal is to find ∆∗, which is the least amount of information per

computation that the server must broadcast such that all the

users are able to compute their respective desired functions.

The capacity of CBC is defined as C = 1/∆∗.
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Fig. 1. The ℓth instance of the LCBC
(

Fq, K, d, (mk, m′

k)k∈[K],

(Vk,V′

k)k∈[K]

)

, ℓ ∈ N.

The main result of [40] is an exact capacity characterization

for K = 2 user linear computation broadcast (LCBC),

where each user’s demand and side-information are linear

functions of the data. The K user LCBC problem,

illustrated in Figure 1, is specified by the parameters
(
Fq, K, d, (mk, m′

k)k∈[K], (Vk,V′
k)k∈[K]

)
, namely the finite

field Fq, the number of users K, the data dimension d, matrices

Vk ∈ F
d×mk
q that identify the mk dimensions of User k’s

demand, and matrices V
′
k ∈ F

d×m′
k

q that identify the m′
k

dimensions of User k’s side-information, for all k ∈ [K]. The

index ℓ ∈ N in Figure 1 identifies the ℓth computation instance,

corresponding to the ℓth instance of the data vector, x(ℓ) ∈
F

d×1
q , such that User k, k ∈ [K], wants wk(ℓ) = x

T (ℓ)Vk

and has w
′
k(ℓ) = x

T (ℓ)V′
k as side-information. Following

a typical information theoretic formulation, multiple (say L)

instances may be considered jointly by a coding scheme for

potential gains in efficiency. L is called the batch size and

may be chosen freely by a coding scheme. A coding scheme

that satisfies all the users’ demands across L computation

instances by broadcasting a total of N q-ary symbols, achieves

rate R = L/N , and broadcast cost per computation ∆ =
N/L = 1/R. The goal is to find the supremum of achievable

rates (capacity C), or equivalently, the infimum of achievable

broadcast costs per computation (∆∗ = 1/C) across all

feasible coding schemes. We refer the reader to Section II to

clarify notational aspects, and to Section III for details of the

problem formulation. For K = 2 users, the optimal broadcast

cost is found in [40] to be ∆∗ = max
(

rkq([Vi,V
′
i]) −

rkq(V
′
i)+ rkq([V1,V2,V

′
1,V

′
2])− rkq([Vi,V

′
i,V

′
j ])

)

, where

rkq() is the matrix rank function over Fq, and the max is over

(i, j) ∈ {(1, 2), (2, 1)}.

The scope of LCBC includes problems such as index

coding [25], [41], [42] that have been extensively studied and

yet remain open in general. While many instances of index

coding have been solved from a variety of perspectives [26],

[43], [44], [45], [46], [47]db@BlasiakKleinbergLubetzky2010

, little is known about the optimal broadcast cost for the

general index coding problem. It is shown in [25] that for

scalar linear index coding, the optimal broadcast cost can be

found in general by solving a min-rank problem. The min-rank

solution has been extended to index coding with coded side-

information in [48] and is not difficult to further generalize

to LCBC. However, on top of the difficulty of matrix rank

minimizations (known to be NP-hard [49, Thm. 3.1], [50],

[51]), scalar linear coding is only one of many possible coding

schemes, and it is well known that capacity achieving schemes

need not be scalar or linear, even for index coding [52], [53],

[54]. Thus, finding the capacity of LCBC in general is at least

as hard as solving the general index coding problem.

On the other hand, index coding problems constitute only

a small subset of all possible LCBC instances. The special

cases of LCBC that yield index coding problems are precisely

those where all the columns of Vk,V′
k can be represented as

standard basis vectors. Evidently, LCBC allows a significantly

richer research space for developing new insights. This is why

for LCBC, even settings with only 2, 3 users are interesting

and insightful, whereas such settings would be trivial for index

coding. The richer space of LCBC problems is particularly

valuable if it is amenable to information theoretic analysis.

Intrigued by this possibility, in this work we explore what

new technical challenges might emerge in the LCBC setting

when we go from 2 to 3 users.

The main result of this work is the exact capacity of the

3 user LCBC for all cases, i.e., for arbitrary Fq, arbitrary

data dimension d, and arbitrary demands and side-informations

Vk, V′
k for each user, k ∈ {1, 2, 3}. An explicit expression for

the capacity, C, is presented in Theorem 1, and depends on

the dimensions (ranks) of various unions and intersections of

subspaces corresponding to the users’ desired computations

and side-information. The intuition behind the explicit form

becomes more transparent when it is viewed as the solution

to a linear program, in an alternative formulation of the

capacity result, presented in Theorem 2. The linear program

sheds light on the key ideas behind the optimal coding

scheme. One of these ideas is a decomposition of the

collective signal spaces of the three users (column spans

of the [V′
k, Vk] matrices) into distinct subspaces that allow

different levels of communication efficiency. Remarkably, this

decomposition, which is formalized in Lemma 2, closely

parallels (see Appendix D) a corresponding decomposition

previously obtained in degrees of freedom (DoF) studies of

the 3 user MIMO broadcast channel in [55], underscoring

its fundamental significance. Facilitated by the subspace

decomposition, the linear program formulation of Theorem 2

reveals a non-trivial tradeoff between the number of dimen-

sions of broadcast that are drawn from each subspace, and

leads to a constrained waterfilling solution in Section IX-B.

What makes the achievability especially challenging is that

the users have different (seemingly incompatible) views of the

useful information within each subspace depending on their

respective side-informations. Random coding arguments are

invoked to find broadcast dimensions for the optimal scheme

that are useful across the different perspectives. Another

remarkable aspect of the capacity result is that non-linear

schemes are not needed for the 3 user LCBC. While our

optimal schemes make use of both field size extensions

(Section VIII-B) and matrix extensions (Section VIII-E),

they are still vector linear schemes over Fq. In contrast,

scalar linear codes were found to be sufficient for the

2 user LCBC in [40]. In terms of the converse bound,1

1A converse bound refers to an impossibility result, i.e., a lower bound on
broadcast cost per computation, or equivalently, an upper bound on capacity.
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an interesting insight emerges from this work regarding

the entropic formulation of the LCBC problem that was

considered in [40]. In the entropic formulation of [40], the data

is assumed i.i.d. uniform, and the entropies of all subsets of

demand and side-information random-variables are specified

as constraints, but their functional forms are not specified.

It was shown in [40] that for the K = 2 user LCBC, these

entropic constraints combined with standard Shannon entropic

inequalities produce a tight converse bound on the download

cost per computation. In contrast, in this work we show

(see Remark 6.1 in Section VI) by a counterexample that the

same approach cannot work for the K = 3 user LCBC, even

if all Shannon and non-Shannon information inequalities are

applied. Instead, in this work a tight converse for the 3 user

LCBC is obtained based on functional submodularity (cf. [56],

[57], also Lemma 3 in this work) that additionally takes into

account the functional forms of the users’ demands and side-

informations.

II. NOTATION

Fq is a finite field with q = pn a power of a prime.

The elements of the prime field Fp are represented as Z/pZ,

i.e., integers modulo p. The notation F
n1×n2
q represents the

set of n1 × n2 matrices with elements in Fq. For a matrix

M , let ⟨M⟩q denote the Fq-linear vector space spanned by

the columns of M . The subscript q will often be suppressed

to simplify notation when it is clear from the context. The

notation M1 ∩ M2 represents a matrix whose columns form

a basis of ⟨M1⟩ ∩ ⟨M2⟩. [M1, M2] represents a concatenated

matrix which can be partitioned column-wise into M1 and

M2. The rank of M over Fq is denoted by rkq(M), and

when written as rk(M) for simplicity, the subscript q is

assumed by default. If rk(M) is equal to the number of

columns of M , i.e., M has full column rank, then we say

that M is a basis of ⟨M⟩. Define a ‘conditional-rank’ notation

as rk(M1|M2) ≜ rk([M1, M2]) − rk(M2). The notation [n]
represents the set {1, 2, · · · , n}. N denotes the set of positive

integers. R+ denotes the set of non-negative real numbers. C

denotes the set of complex numbers.

III. PROBLEM STATEMENT

A. The General K User LCBC(Fq, K, d, (mk, m′
k)k∈[K],

(Vk,V′
k)k∈[K])

While our focus in this work is exclusively on the

K = 3 user case, in this section let us define the LCBC

problem for the general K-user setting. As noted previously,

the general LCBC problem is specified by the parameters
(
Fq, K, d, (mk, m′

k)k∈[K], (Vk,V′
k)k∈[K]

)
. There is a stream

of data vectors x(1),x(2), · · · that is available at a central

server. For each ℓ ∈ N, x(ℓ) = (x1(ℓ), · · · , xd(ℓ))
T ∈ F

d×1
q

is a d-dimensional vector with elements in Fq. There are K
users. For all ℓ ∈ N, the kth user has side-information w

′
k(ℓ) =

x
T (ℓ)V′

k ∈ F
1×m′

k
q and wants wk(ℓ) = x

T (ℓ)Vk ∈ F
1×mk
q .

1) Coding Scheme: A coding scheme for the LCBC

is represented by a choice of parameters in the form

of a tuple
(
L, N,Φ, (Ψk)k∈[K]

)
. The coding scheme

aggregates L instances of data, collectively denoted as

X ≜ (x(1), · · · ,x(L)) ∈ F
d×L
q , and specifies an encoding

function (encoder) Φ : F
d×L
q → F

N
q , as well as K decoding

functions (decoders) Ψk : F
N
q × F

L×m′
k

q → F
L×mk
q , k ∈ [K].

For compact notation, let us define,

Wk ≜ X
T
Vk = (wk(1), · · · ,wk(L))T ∈ F

L×mk
q , (1)

W
′
k ≜ X

T
V

′
k = (w′

k(1), · · · ,w′
k(L))T ∈ F

L×m′
k

q . (2)

The encoder Φ maps the data X to the broadcast information

comprised of N symbols in Fq, represented compactly

as S ∈ F
N
q , i.e.,

Φ(X) = S ∈ F
N
q . (3)

The kth decoder, Ψk allows the kth user to retrieve Wk from

the broadcast information S and the side-information W
′
k, i.e.,

Ψk(S,W′
k) = Wk, ∀k ∈ [K], (4)

for all realizations of X.

Let us denote the set of all feasible coding schemes as C.

We refer to coding schemes with batch size L = 1 as scalar

(coding) schemes, and those with L > 1 as vector (coding)

schemes.

2) Capacity (C) and Optimal Download Cost per

Computation (∆∗): The rate of a coding scheme
(
L, N,Φ, (Ψk)k∈[K]

)
∈ C, is defined as R = L/N

representing the number of computation instances satisfied

by the coding scheme per broadcast symbol.2 The supremum

of rates across all feasible coding schemes in C is called the

capacity of LCBC, i.e.,

C ≜ sup
(
L,N,Φ,(Ψk)k∈[K]

)
∈C

L/N. (5)

Instead of rate R, it is often more convenient to consider its

reciprocal value, the broadcast cost per computation, ∆ =
1/R = N/L. The optimal broadcast cost per computation,

∆∗ is defined as,

∆∗ ≜ inf(
L,N,Φ,(Ψk)k∈[K]

)
∈C

N/L (6)

= 1/C. (7)

Since ∆∗ = 1/C, the problem of characterizing the capacity

C is equivalent to the problem of characterizing the optimal

download cost per computation ∆∗. We will find it more

convenient to state and prove results in terms of ∆∗ in this

work.

3) Data Distribution, Entropy: Note that the LCBC

problem does not specify any distribution for the data X.

This is because the capacity C and optimal broadcast cost

per computation ∆∗ do not depend on the data distribution.

By definition, any coding scheme
(
L, N,Φ, (Ψk)k∈[K]

)
∈ C,

while broadcasting no more than N q-ary symbols, must

guarantee successful decoding as in(4) for every realization

of the data, i.e., for all qdL realizations of X ∈ F
d×L
q ,

regardless of what distribution X follows, and even if X

2Viewing each q-ary broadcast symbol as one channel-use, the rate can be
equivalently viewed as the number of computation instances satisfied by the
coding scheme per channel-use.
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follows no distribution. This is significant for computation

tasks. Recall that conventional communication scenarios are

comprised of independent messages that can be compressed

prior to communication to reduce the size of the task from

the outset and subsequently uncompressed upon success-

ful reception. In principle optimal compression produces

uniformly distributed data (otherwise further compression

would be possible), thus justifying the common assumption

that messages are uniformly distributed. For the LCBC,

however, while the desired computation is a linear function

of the original uncompressed data, it may no longer be

linear after compression. Thus, compression to uniformly

distributed data cannot be taken for granted. Furthermore, it is

often the case that the data distribution is either unknown,

or the data is truly arbitrary. Therefore, assuming that data

follows a particular distribution may be overly restrictive

for computation problems. Such considerations motivate the

conservative formulation presented above, which requires

strong (maximum rather than average) communication cost

guarantees, i.e., any achievable coding scheme must guarantee

that a broadcast of N symbols suffices for every data

realization, regardless of the distribution of X.

On the other hand, it will be occasionally useful, primarily

as a thought-experiment, to consider hypothetically what might

happen if the data followed an i.i.d. uniform distribution.

Similar to genie-aided proofs, such thought-experiments are

useful to construct converse bounds (impossibility results)

by the following reasoning. Given any coding scheme
(
L, N,Φ, (Ψk)k∈[K]

)
∈ C, we wish to find lower bounds

on the broadcast cost N . As a thought-experiment, suppose

the data X follows a distribution PX(x) and this coding

scheme is used. This imparts a corresponding distribution to

the broadcast symbol S, say PS(s). However, since S ∈ F
N
q

by the definition of the coding scheme, the entropy H(S) ≤
logq |F

N
q | = N in q-ary units, which produces a lower bound

on the broadcast cost, i.e., N ≥ H(S). Thus any choice

of PX(x) facilitates entropic analysis and leads to a lower

bound on N , by calculating the entropy of S produced by

the coding scheme. The quality of the bound depend on the

choice of PX(x). For example, if we assume the data is

deterministic, then so is S, i.e., H(S) = 0, leading to the

bound N ≥ 0, which is not very useful. Uniform distributions

are particularly interesting because they tend to produce good

converse bounds. In preparation for the converse arguments in

the sequel, it is useful to recall the following facts.

1) For a random variable Z, that takes values in a set Z
according to the probability mass function pZ(z), the

entropy H(Z) in q-ary units is defined as,

H(Z) ≜ −
∑

z∈Z

pZ(z) logq pz(z). (8)

2) If Z is i.i.d. uniform over F
µ×ν
q then H(Z) =

logq |F
µ×ν
q | = logq(q

µν) = µν in q-ary units.

3) If Z is i.i.d. uniform over F
µ×ν
q and M ∈ F

µ×ξ
q is a

deterministic matrix, then

H(ZT M) = ν · rkq(M) (9)

in q-ary units. This is seen as follows. Let Z∗i

denote the ith column of Z. Then H(ZT M) =

H(ZT
∗1M, ZT

∗2M, · · · , ZT
∗νM) =

∑ν
i=1 H(ZT

∗iM)
(a)
=

∑ν
i=1 rkq(M) = ν · rkq(M). The step labeled (a) is a

direct application of [40, Lemma 2].

4) If Z is i.i.d. uniform over F
µ×ν
q and M1 ∈ F

µ×ξ1
q , M2 ∈

F
µ×ξ2
q are deterministic matrices, then

H(ZT M1 | ZT M2) = ν(rkq([M1, M2]) − rkq(M2))

= ν · rkq(M1 | M2) (10)

in q-ary units, where we used the conditional-rank

notation rkq(M1 | M2) as defined in Section II.

Using (9), this is seen as follows: H(ZT M1 | ZT M2) =
H(ZT M1, Z

T M2) − H(ZT M2) = H(ZT [M1, M2]) −
H(ZT M2) = ν · rkq([M1, M2]) − ν · rkq(M2) = ν ·
rkq(M1 | M2).

B. Signal Spaces U1, U2, U3 and Their Intersections

Recall that in this work our focus is on the LCBC with K =
3 users, i.e., the most general setting that we consider in this

work is LCBC
(
Fq, 3, d, (mk, m′

k)k∈[3], (Vk,V′
k)k∈[3]

)
. Let us

define the spaces U1,U2,U3, associated with the 3 users,

as follows,

U1 ≜ [V′
1,V1], U2 ≜ [V′

2,V2], U3 ≜ [V′
3,V3], (11)

and also define the following intersections,

Uij ≜ Ui ∩ Uj ,∀i, j ∈ [3], i ̸= j, (12)

U123 ≜ U1 ∩ U2 ∩ U3, (13)

Ui(j,k) ≜ Ui ∩ [Uj ,Uk],

∀(i, j, k) ∈ {permutations of (1, 2, 3)}. (14)

Recall that the subspaces ⟨Ui⟩ refer to the column spans of

the corresponding matrices. These subspaces will be essential

to the understanding of the 3 user LCBC.

IV. PRELIMINARY STEP: SUBSPACE DECOMPOSITION

For problems involving a vector space, the choice

of a suitable basis representation is often an important

preliminary simplification step. When multiple vector spaces

are involved, it is similarly useful to explicitly partition

them into independent subspaces that fit the needs of the

problem. For the 3 user LCBC, there are three vector

spaces of interest, namely ⟨U1⟩, ⟨U2⟩, ⟨U3⟩, as defined in

Section III-B. A suitable decomposition of these spaces into

independent subspaces corresponding to various intersections

is an important preliminary simplification that is the focus of

this section. To put it concisely, we need the following two

lemmas regarding linear subspaces ⟨U1⟩, ⟨U2⟩, ⟨U3⟩.
Lemma 1 (2-space decomposition): There exist 3 matrices,

B12,B1c and B2c such that B12 is a basis of ⟨U12⟩,
[B12,B1c] is a basis of ⟨U1⟩, [B12,B2c] is a basis of ⟨U2⟩,
and [B12,B1,B2] is a basis of ⟨[U1,U2]⟩.
Note that Lemma 1 also implies the following dimension

formula,

rk(U1) + rk(U2) = rk(B12) + rk(B1c) + rk(B12) + rk(B2c)

= rk(U1 ∩ U2) + rk([U1,U2]). (15)
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Fig. 2. Decomposition of ⟨U1⟩, ⟨U2⟩ into 3 subspaces labeled by their
respective bases.

A common proof of Lemma 1 from a constructive perspective

(e.g. [58, Thm. 3, Ch. 3]) is based on incrementally growing a

basis representation, and is summarized as follows. First one

finds B12 ∈ F
d×rk(U1∩U2)
q as a basis of ⟨U1 ∩ U2⟩. Then,

by the basis extension theorem, one can find a submatrix

B1c ∈ F
d×rk(U1)
q of U1 such that [B12,B1c] spans ⟨U1⟩,

and similarly a submatrix B2c ∈ F
d×rk(U2)
q of U2 such

that [B12,B2c] spans ⟨U2⟩. Note that ⟨B2c⟩ only has trivial

intersection with ⟨U1⟩ because otherwise B2cv + U1v
′ =

0 =⇒ B2cv ∈ ⟨B12⟩ where v,v′ are non-zero vectors,

which contradicts that [B12,B2c] form a basis. Therefore,

[B12,B1c,B2c] is a basis of ⟨[U1,U2]⟩ since it also spans

⟨[U1,U2]⟩. □

Figure 2 illustrates the decomposition of ⟨U1⟩ and ⟨U2⟩
by identifying 3 subspaces, each labeled by its basis

representation.

The following lemma non-trivially extends the argument to

3 linear subspaces.

Lemma 2 (3-space decomposition): There exist 10 matrices,

B123, B12, B13, B23, B1(2,3), B2(1,3), B3(1,2), B1c, B2c,B3c,

such that the following properties (P1)-(P20) are satisfied.

(P1) B123 is a basis of ⟨U123⟩,

(P2) [B123, B12] is a basis of ⟨U12⟩,

(P3) [B123, B13] is a basis of ⟨U13⟩,

(P4) [B123, B23] is a basis of ⟨U23⟩,

(P5) [B123, B12, B13] is a basis of ⟨[U12, U13]⟩,

(P6) [B123, B12, B23] is a basis of ⟨[U12, U23]⟩,

(P7) [B123, B13, B23] is a basis of ⟨[U13, U23]⟩,

(P8) [B123, B12, B13, B1(2,3)] is a basis of ⟨U1(2,3)⟩,

(P9) [B123, B12, B23, B2(1,3)] is a basis of ⟨U2(1,3)⟩,

(P10) [B123, B13, B23, B3(1,2)] is a basis of ⟨U3(1,2)⟩,

(P11) [B123, B12, B13, B1(2,3), B1c] is a basis of ⟨U1⟩,

(P12) [B123, B12, B23, B2(1,3), B2c] is a basis of ⟨U2⟩,

(P13) [B123, B13, B23, B3(1,2), B3c] is a basis of ⟨U3⟩,

(P14) [B123, B12, B13, B23, B1(2,3), B2(1,3), B1c, B2c] is a

basis of ⟨[U1, U2]⟩,

(P15) [B123, B12, B13, B23, B1(2,3), B3(1,2), B1c, B3c] is a

basis of ⟨[U1, U3]⟩,

(P16) [B123, B12, B13, B23, B2(1,3), B3(1,2), B2c, B3c] is a

basis of ⟨[U2, U3]⟩,

(P17) [B123, B12, B23, B13, B1(2,3), B2(1,3), B1c, B2c, B3c] is a

basis of ⟨[U1, U2, U3]⟩,

(P18) [B123, B12, B23, B13, B1(2,3), B3(1,2), B1c, B2c, B3c] is a

basis of ⟨[U1, U2, U3]⟩,

(P19) [B123, B12, B23, B13, B2(1,3), B3(1,2), B1c, B2c, B3c] is a

basis of ⟨[U1, U2, U3]⟩, and

(P20) B1(2,3),B2(1,3),B3(1,2) have identical size and

B1(2,3) + B2(1,3) = B3(1,2).

We leave the proof to Appendix C. Figure 3 illustrates the

decomposition of ⟨U1⟩, ⟨U2⟩, ⟨U3⟩ by identifying 10 sub-

spaces, each labeled by its basis representation.

We conclude this section with the following observations.

Remark 4.1 The decomposition of 2 linear subspaces

in Lemma 1 resembles the decomposition of 2 sets, e.g.,

the inclusion-exclusion principle and Venn’s diagrams are

reflected in the decompositions. However, the set-theoretic

analogy is no longer true for 3 linear subspaces, as in

the decomposition the 3 yellow spaces are not mutually

independent. Appendix B provides more discussion regarding

this property.

Remark 4.2 Identifying suitable intersecting subspaces

within vector spaces is also a recurrent theme in the degrees of

freedom (DoF) studies of wireless networks, e.g., to simplify

the design of interference alignment schemes in MIMO

settings [59], [60]. In particular, the DoF study of a 3 user

wireless MIMO BC setting in the PhD thesis of Wang [55,

Ch. 3] provides a subspace decomposition that very closely

parallels Lemma 2. The correspondence and the distinctions

between the two are discussed in Appendix D, as are the

limitations that prevent the proof in [55, Ch. 3] from carrying

over directly to our finite field setting. An independent proof of

Lemma 2 for our setting is provided in Appendix C. Notably

the proof in Appendix C only relies on arguments that hold

both over finite fields as well as over the field of complex

numbers, thereby unifying the two settings.

Remark 4.3 Lemma 2 ignores the details of how each

Ui is composed of Vi and V
′
i. Depending on their own

side-information and demand, each user will have a different

conditional view of these subspaces. This most essential aspect

of the LCBC problem is not reflected in the decomposition.

Thus, it is worthwhile to note that the decomposition is

primarily a preparatory step, the main technical challenge from

both achievability and converse perspectives remains focused

on accounting for the distinct side-information and demand

structures across users. See also Remark 5.2.3.

V. RESULTS

A. A Closed Form Capacity Expression for the 3 User LCBC

As our main result, the following theorem states the capacity

of the 3 user LCBC in closed form.

Theorem 1: For the K = 3 user general LCBC, i.e.,

LCBC(Fq, 3, d, (mk, m′
k)k∈[3], (Vk,V′

k)k∈[3]), the capacity

C = 1/ max{∆1,∆2}, equivalently, the optimal broadcast

cost, ∆∗ = max{∆1,∆2} where,

∆n ≜ max
(i,j,k)∈{permutations of (1,2,3)}

{∆ijk
n }, n ∈ {1, 2},

(16)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 07,2024 at 19:29:56 UTC from IEEE Xplore.  Restrictions apply. 



YAO AND JAFAR: CAPACITY OF 3 USER LINEAR COMPUTATION BROADCAST 4419

Fig. 3. The top of the figure shows the decomposition of ⟨U1⟩, ⟨U2⟩, ⟨U3⟩ into 10 subspaces that are labeled by corresponding bases as specified
in Lemma 2. The five blue circles in the bottom row each show ⟨U1⟩, and highlight the subspaces ⟨U123⟩, ⟨U12⟩, ⟨U13⟩, ⟨[U12, U13]⟩ and ⟨U1(2,3)⟩,

respectively. The compact notations, U123,U12,U1(2,3) etc., are defined in Section III, for example U12 ≜ U1 ∩ U2 and U1(2,3) ≜ U1 ∩ [U2,U3].
The three subspaces highlighted as dashed yellow regions are not independent, the span of the union of any two of them contains the third.

and

∆ijk
1 ≜ rk(V1 | V′

1) + rk(V2 | V′
2) + rk(V3 | V′

3)

− rk(Uij | V′
j) − rk(Uk(i,j) | V

′
k), (17)

∆ijk
2 ≜ rk(V1 | V′

1) + rk(V2 | V′
2) + rk(V3 | V′

3)

−
1

2

(

min
ℓ∈[3]

(
rk(U123 | V′

ℓ)
)

+ rk([Uij ,Uik] | V′
i)

+ rk(Uj(i,k) | V
′
j) + rk(Uk(i,j) | V

′
k)

)

.

(18)

Recall the conditional-rank notation defined in Section II,

rk(X|Y ) ≜ rk([X, Y ])− rk(Y ). The proof of Theorem 1 will

be presented along with the proof of the upcoming Theorem 2,

in Sections VII, VIII, and IX according to the proof structure

specified in Section V-C.

Remark 5.1.1 The bound ∆∗ ≥ ∆1 follows from a

generalization of the converse bound of the 2 user LCBC,

and is similar to the genie-aided converse bound of coded

caching (e.g., [61, (71)-(75)]). However, unlike the 2 user

LCBC, this bound is not sufficient for the 3 user LCBC,

which is why we also need the bound ∆∗ ≥ ∆2. The bound

∆∗ ≥ ∆2 encapsulates the new technical challenge in the

3 user LCBC from the converse perspective (see Section VII).

Remark 5.1.2 The capacity of the 3 user LCBC can

be expressed in various equivalent forms. The closed form

presented in Theorem 1 emerges naturally from the converse

bounds. Indeed, the converse in Section VII directly produces

two bounds, one each for ∆ijk
1 ,∆ijk

2 . The achievability

argument on the other hand, takes a different approach

which involves auxiliary parameters (the λ• parameters in

Theorem 2) representing various design choices. Optimizing

the design choices amounts to a linear program, the solution

to which yields the same ∆∗ as Theorem 1. Even though

the converse and achievability perspectives ultimately lead to

the same ∆∗, their different forms yield different insights.

The achievability perspective in particular yields constructive

insights into the tradeoffs involved in simultaneously satisfying

all 3 users’ demands. This alternative (but equivalent) form of

the capacity result is presented next.

B. An Alternative Expression for the Capacity of the 3 User

LCBC

Theorem 2:

∆∗ = F ∗ (19)

where ∆∗ is the optimal broadcast cost for the K = 3 user

general LCBC and F ∗ is the solution to the following linear

program,

F ∗ ≜

min
λ123,λ12,λ13,λ23,λ∈R+

rk(V1|V
′
1) + rk(V2|V

′
2) + rk(V3|V

′
3)

− 2λ123 − λ12 − λ13 − λ23 − λ, (20)

such that3

λ123 ≤ rk(U123 | V′
i),∀i ∈ {1, 2, 3}, (21)

λij + λ123 ≤ min
(
rk(Uij | V′

i), rk(Uij | V′
j)

)
,

∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, (22)

λij + λik + λ123 ≤ rk([Uij , Uik] | V′
i),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}, (23)

λ + λij + λik + λ123 ≤ rk(Ui(j,k) | V′
i),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (24)

Remark 5.2.1 For the sake of high level intuition, Figure 4

conveys a somewhat oversimplified (the caveat is noted

in Remark 5.2.3) understanding of the conditions (21)-(24) in

Theorem 2. The λ• parameters represent the size (dimension)

of signals in various subspaces to be broadcast by the coding

3By definition the indices ij and ji are interchangeable.
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Fig. 4. Intuitive understanding of the constraints (21)-(24). Note that the blue circles in the bottom row of the figure do not show ⟨U1⟩ per se, rather they
show the space ⟨U1⟩ conditioned on User 1’s side-information, so that the corresponding sizes of all subspaces are represented with conditional ranks after
conditioning on V′

1. Each user will generally have a different perspective due to different impact of conditioning on their respective side-informations, giving
rise to different constraints (21)-(24).

scheme. Depending upon the region they fall in, the subspaces

have different communication efficiencies. For instance, note

that λ123 falls in U123, and carries information that is

simultaneously useful for all 3 users. Thus, λ123 transmitted

dimensions satisfy a total of 3λ123 dimensions of demand

(λ123 per user). Borrowing the classical metaphor, we refer

to the efficiency of such transmissions as 3 birds, 1 stone.

Transmissions corresponding to λij fall in subspaces Uij and

are simultaneously useful for Users i and j, so the efficiency

of such transmissions is similarly referred to as 2 birds,

1 stone. In other words, λij transmitted dimensions satisfy

2λij dimensions of demand. Transmissions corresponding to

λ fall in the three subspaces highlighted in yellow in Figure 3

where we previously noted that any two subspaces are disjoint

but contain the third. What this means is that the coding

scheme needs to send any 2 of the 3 subspaces marked with

λ, and the third can be automatically inferred from them.

Thus, a transmission of 2λ dimensions, satisfies a total of 3λ
dimensions of demand (λ per user), yielding an efficiency of

3 birds, 2 stones.

Remark 5.2.2 In light of the previous remark, now

consider the objective to be minimized in (20), ∆∗ =
rk(V1|V

′
1) + rk(V2|V

′
2) + rk(V3|V

′
3) − 2λ123 − λ12 − λ13 −

λ23 − λ. We recognize the sum of the first three terms as

the broadcast cost if the users were to be served separately

and no gain in efficiency was possible by jointly satisfying

multiple demands. Let this be our baseline. Now note that

because 3λ123 dimensions of demand were satisfied with

λ123 dimensions of broadcast, the cost-saving incurred relative

to the baseline is 2λ123, which explains the fourth term

that appears as a negative term in the objective. The next

three negative terms are similarly justified because each

λij dimensions of transmission satisfies 2λij dimensions of

demand, thus saving λij relative to the baseline. Finally, for

the λ term, we recall that a total transmission cost of 2λ
dimensions is able to satisfy 3λ dimensions of demand, thus

saving another λ in broadcast cost, which explains the last

negative term in the objective function.

Remark 5.2.3 As a caveat, note that the intuitive expla-

nation above ignores a critical aspect of the problem that

remains challenging — namely, each user’s view of useful

dimensions depends on their own side-information, and is in

general different from other users. This is indicated in Figure 4

by noting that the relevant signal spaces for User 1 are not

simply the U• spaces that appear in the decomposition at the

top of Figure 3 and Figure 4. Rather, each user’s view of useful

subspaces is conditional on his side-information. For example,

the same signal space U123 when seen by the Users 1, 2, 3,

contains rk(U123 | V′
1), rk(U123 | V′

2), rk(U123 | V′
3) useful

dimensions, respectively. Thus, the total number of dimensions

useful to all three users, i.e., the size of λ123 is limited by the

bound in (21). Even with the size of λ123 constrained in this

manner, finding the broadcast dimension is not trivial because

each user may find a different λ123 portion of U123 useful to

them. Similar challenges arise in identifying λij dimensions

that are useful to Users i and j, when each user’s perspective

is different, conditioned on their own side-information. Even

greater care has to be taken in identifying the λ sections of the

broadcast signal, to ensure that 2 transmissions span the third,

while facing the challenge that the projections of λ into each

user’s perspective are distinguished by their different side-

informations.

Remark 5.2.4 Since linear optimizations over polyma-

troidal constraints allow greedy solutions [62] that can

simplify dimensional analysis (see e.g., the DoF study in [63,

Chapter 5]), it is worth noting that the constraints (21)-(24)

do not specify a polymatroidal structure. To verify this with

a toy example, suppose V1 = V
′
2 = V

′
3 = [1, 1]T and V

′
1 =
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V2 = V3 = [0, 0]T . Then we have the constraints, λ123 ≤ 0,

λ12 + λ123 ≤ 0, λ13 + λ123 ≤ 0 and λ12 + λ13 + λ123 ≤ 1,

which violate the polymatroidal structure.

C. Structure of Proofs

Theorem 1 and Theorem 2 are equivalent alternative forms

of the same capacity result. We organize the proofs of

these two theorems as follows. In Section VII we prove the

converse (lower) bound for the optimal broadcast cost, i.e.,

∆∗ ≥ max{∆1,∆2}. Then in Section VIII we prove the

achievability (upper) bound ∆∗ ≤ F ∗. Finally in Section IX

we prove that F ∗ ≤ max{∆1,∆2}. The three proofs together

imply that ∆∗ = F ∗ = max{∆1,∆2}, thus proving both

Theorem 1 and Theorem 2.

VI. TOY EXAMPLES

In this section, we present simple toy examples that illustrate

some of the ideas discussed previously, such as subspace

decompositions and linear-programming tradeoffs between

schemes with different communication efficiency (birds vs

stones), some ideas that will be important later on in the

construction of the general coding scheme, such as field

extensions, vector coding, and mixing of dimensions, and

some new insights, such as the insufficiency of entropic

structure, and the need for functional submodularity. For these

examples we use specialized notation for simplicity: ((W′
i →

Wi), i = 1, 2, 3) to specify the setting, A, B,C, D, E instead

of x1, x2, x3, x4, x5, and Aℓ instead of A(ℓ).
Example 1 (3 birds, 1 stone): Consider d = 3 dimensional

data X
T = (A, B,C) over F3, and ((A → B + C), (B →

A + C), (C → A + B)). In other words, User 1 has A and

wants B+C, User 2 has B and wants A+C, and User 3 has C
and wants A+B. A signal space decomposition as in Figure 3

yields for this example,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

A + B + C − − − A B A + B

B1c B2c B3c

− − −

Note that for simplicity in these examples we indicate B123 as

A + B + C instead of the formal representation as the vector

[1, 1, 1]T in the 3 dimensional data universe. The optimal

broadcast cost is ∆∗ = 1, achieved with L = 1, N = 1,

λ12 = λ23 = λ13 = λ = 0, λ123 = 1, by broadcasting

S = (A + B + C).
Example 2 (2 Birds, 1 Stone, Vector Coding, Insufficiency of

Entropic Structure): Consider d = 3 dimensional data X
T =

(A, B,C) over F3, and ((A → B + C), (B → A + C), (C →
A + 2B)). A signal space decomposition yields,

B123 B12 B13 B23

− A + B + C A + 2B + 2C A + 2B + C

B1(2,3) B2(1,3) B3(1,2) B1c B2c B3c

− − − − − −

The optimal broadcast cost is ∆∗ = 1.5, achieved with

L = 2, N = 3, λ123 = λ = 0, λ12 = λ13 = λ23 = 0.5,

by broadcasting S = (A1 + B1 + C1, A2 + 2B2 + 2C2, (A1 +
2B1 + C1) + (A2 + 2B2 + C2)).

Evidently, 1.5 dimensions of broadcast satisfy a total of

3 dimensions of demand, as expected from a 2 birds, 1 stone

setting. Also note that this example requires vector coding,

i.e., we need L > 1. Most importantly, however, this

example illustrates that unlike the 2 user LCBC, the entropic

formulation of [40] is not enough for the 3 user LCBC. The

following remark elaborates upon this observation.

Remark 6.1 Reference [40] considers an entropic for-

mulation of the LCBC that is summarized as follows.

The data X is assumed to be i.i.d. uniform, W∗ ≜

{W1,W
′
1, · · · ,WK ,W′

K} denotes the set of all 2K demand

and side-information random variables, the entropies H(W)
are specified for all 22K − 1 non-empty subsets of random

variables W ⊂ W∗, the encoding constraint is represented as

H(S | W∗) = 0, and the decoding constraints are represented

as H(Wk | S,W′
k) = 0 for all k ∈ [K]. Subject to these

entropy specifications, as well as standard (Shannon and non-

Shannon) information inequalities, the goal is to minimize

the entropy H(S). As discussed in Section III-A3, such a

formulation produces a lower bound on the download cost,

as N ≥ H(S), which in turn yields a lower bound on ∆∗.

For the K = 2 user LCBC, this bound turns out to be tight.

Remarkably, however, the same approach does not work for

the K = 3 user LCBC, as we argue based on Example 1 and

Example 2. Although a bit tedious, it is not difficult to verify

that all 26−1 = 63 entropies H(W) match for Example 1 and

Example 2. For example, consider W = {W′
1,W3}. Note that

H(W) = H(W′
1,W3) = H(A, A + B) = H(A, B) = 2L

in Example 1, and H(W) = H(W′
1,W3) = H(A, A +

2B) = H(A, B) = 2L in Example 2, so both examples

have the same entropy for this W . One can similarly compute

H(W) for all 63 non-empty subsets W ⊂ W∗ for both

Example 1 and Example 2 and verify that in each case both

examples produce matching entropies. Therefore, since all

the entropic constraints for both examples are identical, and

all Shannon and non-Shannon information inequalities apply

to both examples, the two examples can only produce the

same entropic lower bound on H(S). However, we know that

the two examples have different capacities. Example 1 has

∆∗ = 1, C = 1 while Example 2 has ∆∗ = 1.5, C = 1/1.5 =
2/3. Since Example 2 requires a strictly stronger bound

(impossibility result) than Example 1 for a tight converse,

it follows that the entropic formulation cannot yield a tight

converse for Example 2. Indeed, the key to the converse bound

∆∗ ≥ 1.5 for Example 2 is the functional submodularity

property [56], [57] that takes into account the functional forms

of the users’ side-information and demands. A converse for

Example 2 is explicitly provided in Section VII-B1.

Example 3 (3 Birds, 2 Stones, the User’s Perspective):

Consider d = 3 dimensional data X
T = (A, B,C) over

F2, and ((A → B), (B → C), (C → A)). A signal space

decomposition as in Figure 3 yields,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

− B A C − − −

B1c B2c B3c

− − −
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This coincides with an index coding problem, the optimal

broadcast cost is ∆∗ = 2, achieved with L = 1, N = 2,

λ123 = λ12 = λ13 = λ23 = 0, λ = 1, by broadcasting

S = (A + B, B + C).
This example also highlights the importance of the users’

individual perspectives conditioned on their side-information.

Without accounting for side-information, the signal space

decomposition of Figure 3 suggests that all the signals reside in

U12, U13, U23, which might suggest 2 birds, 1 stone schemes

with λ12 = λ13 = λ23 = 0.5 and a download cost of

∆∗ = 1.5. However, this is not achievable, as we note the

optimal download cost is ∆∗ = 2. To see this, consider

individual users’ perspectives. For example, User 1 requires

λ13 + λ123 ≤ rk(U13 | V′
1). Now since both U13 and V′

1

correspond to the data dimension A, this conditional rank is

0. In other words, even though the subspace U13 has one

dimension that may suggest the opportunity to simultaneously

satisfy users 1 and 3, this dimension happens to be already

available to User 1. Thus, upon taking into account User 1’s

side-information, there is no such opportunity. We end up

with λ123 = λ12 = λ13 = λ23 = 0, and λ = 1. Out of

the 3 dimensions, say A + B, B + C, C + A, any two yield

the third by summation (over F2), and it suffices to send

any 2 to satisfy all 3 users. Notice the need to mix up the

dimensions, appealing to mixed dimensions (similar to random

coding arguments) will be a key idea to develop the general

coding scheme.

As noted, Example 2 used vector coding (L > 1) to

achieve the optimal download cost ∆∗ = 1.5. Vector coding

may be strictly necessary even in cases where the optimal

download cost ∆∗ is an integer value, as illustrated by the

next example. The necessity of vector coding for the 3 user

LCBC is remarkable because scalar coding was found to be

sufficient for the 2 user LCBC in [40]).

Example 4 (Field Size Extension): Consider d = 2 dimen-

sional data X
T = (A, B) over F2, and ((A → B), (B →

A + B), (A + B → A)). A signal space decomposition as in

Figure 3 yields,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

A, B − − − − − −

B1c B2c B3c

− − −

We have ∆∗ = 1, achieved with L = 2, N = 2,

λ123 = 1, λ12 = λ13 = λ23 = λ = 0, S = (A1 + A2 +
B2, A1 + B1 + B2).

Appendix A shows that ∆∗ = 1 is not achievable with

scalar coding, i.e., neither scalar linear nor scalar non-linear

coding scheme can achieve ∆ = 1 for L = 1 computation

for this example. However, ∆∗ = 1 and can be achieved

for L = 2 computations with N = 2. In this case, because

λ123 = 1, we would like to broadcast one dimension. In the

scalar code setting L = 1, this one dimension can be found

for each pair of users but it cannot be the same for the three

users simultaneously. To see this, note that A + B helps User

1 and User 2 but not User 3; B helps User 1 and User

3 but not User 2; A helps User 2 and User 3 but not User

1. Aside from the time-sharing type vector coding solution

shown for Example 2, another approach is to consider L > 1
(which implies a vector code) and use a scalar code in a larger

extended field F2z (in general Fqz ). For this example, with

L = 2, we can use a scalar code over F4 = F2[x]/(x2+x+1),
which results in N = 2 in F2. Representing A = A1 +A2x ∈
F4, B = B1 + B2x ∈ F4, the transmitted symbol is simply

(1 + x)A + xB mod (x2 + x + 1) = (A1 + A2 + B2) +
x(A2+B1+B2) which corresponds to the transmitted symbol

S = (A1 + A2 + B2, A1 + B1 + B2). Additional discussion

can be found in Appendix A as well. Indeed, field extensions

are a key element of the general coding scheme.

Example 5 (Inseparability): Consider d = 5 dimensional

data X
T = (A, B,C, D, E) over F3, and ((A → [B +

C, D]), (B → [A+C, E]), ([C, D+E] → A+2B)). A signal

space decomposition as in Figure 3 yields,

B123 B12 B13 B23

− A + B + C A + 2B + 2C A + 2B + C

B1(2,3) B2(1,3) B3(1,2) B1c B2c B3c

D E D + E − − −

We have ∆∗ = 3, achieved with L = 1, N = 3, λ123 = λ13 =
λ23 = 0, λ12 = λ = 1, by broadcasting S = (A + B + C,
A + D, 2B + E).

Note that this problem combines Example 2 for data

(A, B,C) and another LCBC instance with data (D,E) where

User 1 wants D, User 2 wants E and User 3 knows D + E.

Separately, these problems have download costs of 1.5 and

2, respectively. Since the two problems deal with independent

data, one might expect the solution to be separable, however

a separate solution would have a total broadcast cost of

1.5 + 2 = 3.5. The optimal ∆∗ = 3, which is better than

3.5, thus showing that even though an LCBC problem may be

a composition of instances with separate datasets, in general

a separate solution would be suboptimal. This observation

also underscores why the tradeoffs in LCBC, that we see

represented in the linear program, are non-trivial.

VII. PROOF OF CONVERSE: ∆∗ ≥ max{∆1,∆2}

The converse is comprised of the two bounds, ∆∗ ≥ ∆1,

and ∆∗ ≥ ∆2. The first bound, ∆∗ ≥ ∆1 is a straightforward

generalization of the corresponding bound for the 2 user

LCBC found in [40] to the 3 user setting. The second bound,

∆∗ ≥ ∆2 is novel, and requires functional submodularity.

For the sake of completeness in this section we present the

proof of both bounds. Let us begin by recalling the functional

submodularity property.

Lemma 3 (Functional Submodularity of Shannon Entropy

(Lemma A.2 of [56])): If X0, X1, X2, X12 are random

variables such that X1 and X2 each determine X0 and

(X1, X2) determine X12, then:

H(X1) + H(X2) ≥ H(X12) + H(X0) (25)

Note that ‘A determines B’ as used in Lemma 3 is

equivalent to the statement that H(B | A) = 0, i.e., B is a

function of A. Thus, the lemma assumes that H(X0 | X1) =
H(X0 | X2) = H(X12 | X1, X2) = 0.
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As an immediate corollary, let us note the following form

in which we will apply the functional submodularity.

Corollary 1: For arbitrary matrices M1 ∈ F
d×µ1
q ,M2 ∈

F
d×µ2
q , any random matrix X ∈ F

d×L
q , and any random

variable Z,

H(Z,XT
M1) + H(Z,XT

M2)

≥ H(Z,XT [M1 ∩ M2]) + H(Z,XT [M1,M2]) (26)

Proof: The corollary follows from Lemma 3 by setting

X1 = (Z,XT
M1), X2 = (Z,XT

M2), and noting that X0 =
(Z,XT [M1 ∩ M2]) can be obtained as a function of both

X1 and X2 individually, while X12 = (Z,XT [M1,M2]) is a

function of (X1, X2). □

A. Proof of the Bound: ∆∗ ≥ ∆1

As noted, the proof of this bound is straightforward.

It follows along the same lines as the proof for the 2 user

LCBC in [40], also similar to the genie-aided bound in coded

caching (e.g., [61, (71)-(75)]) and is provided here for the sake

of completeness. In particular, it does not require functional

submodularity. As explained in Section III-A3, recall that

the converse bound is based on a thought-experiment that

supposes that the data X is i.i.d. uniform, which leads to

a lower bound N ≥ H(S). Let W
∗
k ≜ (Wk,W′

k),∀k ∈
[3]. The bound follows essentially by iteratively using the

argument

H(S | W′
k,W∗

[k−1])

≥ H(Wk | W′
k,W∗

[k−1])
︸ ︷︷ ︸

The genie-aided bound for the kth user

+ H(S | W′
k+1,W

∗
[k]), (27)

since H(S | W
′
k,W∗

[k−1]) = H(S,Wk | W
′
k,W∗

[k−1]) ≥
H(Wk | W

′
k,W∗

[k−1]) + H(S | W
′
k+1,W

∗
[k]), where the

first step uses the decoder definition (4) and the second step

applies the chain rule of entropy and the fact that conditioning

reduces entropy. It then follows that for any coding scheme
(
L, N,Φ, (Ψk)k∈[3]

)
∈ C,

N ≥ H(S) ≥ H(S | W′
1) (28)

≥ H(W1 | W′
1) + H(S | W′

2,W
∗
1) (29)

≥ H(W1 | W′
1) + H(W2 | W′

2,W
∗
1)

+ H(S | W′
3,W

∗
1,W

∗
2) (30)

≥ H(W1 | W′
1) + H(W2 | W′

2,W
∗
1)

+ H(W3 | W′
3,W

∗
1,W

∗
2) (31)

= L ·
(
rk(V1 | V′

1) + rk(V2 | [U1,V
′
2])

+ rk(V3 | [U1,U2,V
′
3])

)
(32)

= L ·
(
rk(V1 | V′

1) + rk(V2 | V′
2) − rk(U12 | V′

2)

+ rk(V3 | V′
3) − rk(U3(1,2) | V′

3)
)

(33)

=⇒ ∆ = N/L ≥ ∆123
1 (34)

Steps (29) – (31) follow from (27). Step (32) uses the fact

that for i.i.d. uniform data X
T ∈ F

L×d
q and an arbitrary

matrix M ∈ F
d×µ
q , we have H(XT

M) = L · rk(M) in q-

ary units, and applies the conditional-rank notation as defined

in Section II. Step (33) follows from the observation that

rk(Vk | [Z,V′
k]) = rk([Uk,Z]) − rk([V′

k,Z]) = rk(Uk) −

rk(V′
k) −

(

rk(Uk ∩ Z) − rk(V′
k ∩ Z)

)

= rk(Vk | V
′
k) −

rk(Uk ∩Z | V′
k). Similarly, ∆ ≥ ∆ijk

1 for all (i, j, k) that are

permutations of (1, 2, 3). Since this holds for every coding

scheme
(
L, N,Φ, (Ψk)k∈[3]

)
∈ C, it follows that ∆∗ ≥ ∆1.

□

B. Proof of the Bound: ∆∗ ≥ ∆2

The main idea of this proof is to successfully identify and

introduce the entropies of certain (linear) functions of users’

demands and side-information that are critical in determining

the capacity, with the application of Lemma 3. To build

intuition, let us start with the converse proof for a toy example,

specifically Example 2 of Section VI.

1) Converse Proof for a Toy Example: Consider any

coding scheme
(
L, N,Φ, (Ψk)k∈[3]

)
∈ C for Example 2 of

Section VI. Recall that User 1 has Aℓ and wants Bℓ + Cℓ;

User 2 has Bℓ and wants Aℓ + Cℓ; User 3 has Cℓ and wants

Aℓ + 2Bℓ for all ℓ ∈ [L]. We want to prove the converse

bound ∆∗ ≥ 1.5. Let us denote A as (A1, · · · , AL) ∈ F
1×L
q ,

B as (B1, · · · , BL) ∈ F
1×L
q and C as (C1, · · · , CL) ∈ F

1×L
q .

As mentioned in Section III-A3 let us start the converse proof

with the thought-experiment that A, B,C are i.i.d. uniform in

Fq, which allows the following entropic arguments.

2H(S) + H(A) + H(B) − I(S;A) − I(S;B)

= H(S, A) + H(S, B) (35)

≥ H(S, A,B + C) + H(S, B, A + C) (36)

≥ H(S, A + B + C) + H(S, A,B, C) (37)

≥ H(S) + H(A + B + C | S) + H(A, B, C). (38)

Similarly,

2H(S) + H(A) + H(C) − I(S;A) − I(S;C)

= H(S, A) + H(S, C) (39)

≥ H(S, A,B + C) + H(S, C,A + 2B) (40)

≥ H(S, A + 2B + 2C) + H(S, A,B,C) (41)

≥ H(S) + H(A + 2B + 2C | S) + H(A, B,C). (42)

Steps (35) and (39) use the definition of mutual information

I(A;B) = H(A) + H(B) − H(A, B). Steps (36) and (40)

use the decoder definition (4). Step (37) uses functional

submodularity (Lemma 3) by recognizing that (A, B + C)
and (B, A + C) each determine A + B + C, and (A, B +
C, B,A+C) determines (A, B,C). Step (41) uses functional

submodularity by recognizing that (A, B+C) and (C, A+2B)
each determine A + 2B + 2C, and (A, B + C, C,A + 2B)
determines (A, B,C).

Adding the above two inequalities, we have

4H(S) + 2H(A) + H(B) + H(C)

− 2I(S;A) − I(S;B) − I(S;C)

≥ 2H(S) + H(A + B + C | S)

+ H(A + 2B + 2C | S) + 2H(A, B,C). (43)

It follows that

2H(S) ≥ H(A + B + C | S) + H(A + 2B + 2C | S)
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+ I(S;A) + 2L (44)

≥ H(A + B + C, A + 2B + 2C | S)

+ I(S;A) + 2L (45)

≥ H(A | S) + I(S;A) + 2L (46)

= H(A) + 2L (47)

= 3L. (48)

Step (44) and (48) apply the assumption that A, B,C are i.i.d.

uniform in Fq. Step (45) uses the general property of joint

entropy that H(X | Z) + H(Y | Z) ≥ H(X, Y | Z) for any

random variables X, Y, Z. Step (46) is obtained by recognizing

that A is a function of (A + B + C, A + 2B + 2C). Step (47)

uses the information equality I(A;B) = H(A) − H(A|B).
Therefore, we have the desired converse bound, ∆ = N/L ≥
H(S)/L ≥ 1.5 for the coding scheme. Since this is true for

every feasible coding scheme, we have the bound ∆∗ ≥ 1.5.

2) General Proof of Converse Bound ∆∗ ≥ ∆2: As

mentioned in Section III-A3 let us start the converse proof

based on the thought-experiment that supposes the elements

of the data X are i.i.d. uniform in Fq.

2H(S) + 2

3∑

k=1

H(W′
k)

= 2

3∑

k=1

H(S,W′
k) + 2

3∑

k=1

I(S;W′
k) − 4H(S) (49)

= 2

3∑

k=1

H(S,W′
k,Wk) + 2

3∑

k=1

I(S;W′
k) − 4H(S) (50)

=
∑

(i,j)∈{(1,2),(2,3),(1,3)}

(

H(S,XT Ui) + H(S,XT Uj)
)

+ 2

3∑

k=1

I(S;W′
k) − 4H(S) (51)

≥
[
H(S,XT U12) + H(S,XT U13)

]

+
[
H(S,XT [U1,U2]) + H(S,XT

U3)
]

+
[
H(S,XT [U1,U3]) + H(S,XT

U2)
]

+ 2

3∑

k=1

I(S;W′
k) − 4H(S) (52)

≥ H(S,XT
U123) + H(S,XT [U12,U13])

+ H(S,XT
U3(1,2)) + H(S,XT

U2(1,3))

+ 2H(S,XT [U1,U2,U3]) + 2

3∑

k=1

I(S;W′
k) − 4H(S)

(53)

≥ H(XT
U123|S) + H(XT [U12,U13]|S)

+ H(XT
U3(1,2)|S) + H(XT

U2(1,3)|S)

+ 2H(XT [U1,U2,U3]) + 2

3∑

k=1

I(S;W′
k) (54)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩ V′
ℓ)|S) + H(XT [U12,U13]|S)

+ H(XT
U3(1,2)|S) + H(XT

U2(1,3)|S)

+ 2H(XT [U1,U2,U3]) + 2
3∑

k=1

I(S;W′
k) (55)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩ V
′
ℓ)) + H(XT [U12,U13]|S)

+ H(XT
U3(1,2)|S) + H(XT

U2(1,3)|S)

+ 2H(XT [U1,U2,U3]) +

3∑

k=1

I(S;W′
k) (56)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩ V
′
ℓ))

+ H(XT ([U12,U13] ∩ V
′
1)) + H(XT (U3(1,2) ∩ V

′
3))

+ H(XT (U2(1,3) ∩ V
′
2)) + 2H(XT [U1,U2,U3]) (57)

In the deduction, the most critical steps are Step (52)

and Step (53). Specifically, Step (52) uses functional

submodularity property from Corollary 1 twice, once for

(i, j) = (1, 2) and once for (i, j) = (1, 3). Step (53) uses

functional submodularity from Corollary 1 three times, once

for each of the collections of terms inside the three square

parantheses in (52), making use of the fact that U12 ∩ U13 =
U123, [U1, U2]∩U3 = U3(1,2), and [U1, U3]∩U2 = U2(1,3) by

definition. The other steps follow from conventional entropic

inequalities. Specifically, Step (49) uses the definition of

mutual information I(A;B) = H(A) + H(B) − H(A, B).
Step (50) uses the decoder definition (4), i.e., Wk is a function

of (S,W′
k). Step (51) uses the definition of Uk = [V′

k, Vk]
from (11) to recognize X

T
Uk = [W′

k,Wk]. Step (54)

uses the chain rule of entropy to extract H(S) from the

first four terms, and the property that H(A, B) ≥ H(B)
to drop S from the fifth term. Step (55) uses the property

that H(A | B) ≥ H(f(A) | B), and the fact that

X
T (U123 ∩ V′

ℓ) is a function of X
T
U123. Step (56) uses

the fact that H(XT (U123 ∩ V′
ℓ)|S) = H(XT (U123 ∩ V′

ℓ)) −
I(S;XT (U123 ∩ V′

ℓ)) by definition of mutual information,

and I(S;XT (U123 ∩ V′
ℓ)) ≤ I(S;XT V′

ℓ) = I(S;W′
ℓ) ≤

∑3
k=1 I(S;W′

k) by data-processing inequality, and the non-

negativity of mutual information. Similar reasoning is applied

to the third, fourth and fifth terms of (56) to obtain (57) by

removing the conditioning on S and by absorbing one of the

I(S;W′
k) terms each. The reasoning can be summarized as

H(A | S) + I(B;S) ≥ H(C | S) + I(C;S) = H(C) if C is

a function of both A and B individually.

Evaluating the entropies in terms of the corresponding

ranks, and normalizing by L, we obtain,

∆ = N/L ≥ H(S)/L

≥
1

2

(

max
l∈{1,2,3}

rk((U123 ∩ V
′
l)) + rk([U12,U13] ∩ V

′
1)

+ rk(U3(1,2) ∩ V
′
3) + rk(U2(1,3) ∩ V

′
2)

)

+ rk([U1,U2,U3]) −
3∑

k=1

rk(V′
k) (58)

=
1

2

(

rk(U123) − min
ℓ∈{1,2,3}

rk(U123 | V′
ℓ) + rk([U12,U13])

− rk([U12,U13] | V′
1) + rk(U3(1,2)) − rk(U3(1,2) | V′

3)

+ rk(U2(1,3)) − rk(U2(1,3) | V′
2)

)
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+ rk([U1,U2,U3]) −
3∑

k=1

rk(V′
k) (59)

=
1

2

(

rk(U12) + rk(U13) − min
ℓ∈{1,2,3}

rk(U123 | V′
ℓ)

− rk([U12,U13] | V′
1) + rk(U3) + rk([U1, U2])

− rk(U3(1,2) | V′
3) + rk(U2) + rk([U1, U3])

− rk(U2(1,3) | V′
2)

)

−
3∑

k=1

rk(V′
k) (60)

= rk(U1) + rk(U2) + rk(U3) −
3∑

k=1

rk(V′
k)

−
1

2

(

min
ℓ∈{1,2,3}

rk(U123 | V′
ℓ) + rk([U12,U13] | V′

1)

+ rk(U3(1,2) | V′
3) + rk(U2(1,3) | V′

2)
)

(61)

= rk(V1 | V′
1) + rk(V2 | V′

2) + rk(V3 | V′
3)

−
1

2

(

min
ℓ∈{1,2,3}

rk(U123 | V′
ℓ) + rk([U12,U13] | V′

1)

+ rk(U3(1,2) | V′
3) + rk(U2(1,3) | V′

2)
)

(62)

Step (58) uses the fact that for i.i.d. uniform data X
T ∈ F

L×d
q

and an arbitrary matrix M ∈ F
d×µ
q , H(XT

M) = L · rk(M)
in q-ary units. Step (59) applies the conditional-rank notation,

rk(A | B) = rk([A, B]) − rk(B) as defined in Section II.

Step (60) uses the fact that rk(U123) = rk(U12 ∩ U13) =
rk(U12) + rk(U13) − rk([U12, U13]), similarly rk(U3(1,2)) =
rk(U3 ∩ [U1, U2]) = rk(U3)+ rk([U1, U2])− rk([U1, U2, U3]),
and by the same token rk(U2(1,3)) = rk(U2 ∩ [U1, U3]) =
rk(U2)+rk([U1, U3])−rk([U1, U2, U3]). Step (61) uses the fact

that rk(Uij) = rk(Ui)+rk(Uj)−rk([Ui, Uj ]). Finally, step (62)

uses the fact that rk(Ui) − rk(V′
i) = rk([V′

i, Vi]) − rk(V′
i) =

rk(Vi | V′
i).

Since this holds for every coding scheme
(
L, N,Φ, (Ψk)k∈[3]

)
∈ C, it follows that ∆∗ ≥ ∆123

2 .

Similarly, ∆∗ ≥ ∆ijk
2 , ∀(i, j, k) that are permutations of

(1, 2, 3), which implies that ∆∗ ≥ ∆2. □

VIII. PROOF OF ACHIEVABILITY: ∆∗ ≤ F ∗

In this section, we will construct a general scheme for the

3 user LCBC that achieves broadcast cost per computation

equal to F ∗ as specified in the form of a linear program in

Theorem 2, thus establishing an upper bound on the optimal

broadcast cost per computation, ∆∗ ≤ F ∗. Finding an explicit

solution to the linear program in closed form will be left for

Section IX. We start this proof with some preliminary steps.

A. Eliminating Redundancies

As a first step let us eliminate redundancies, if any, that

exist in the users’ side-information and demands by removing

redundant columns in Vk,V′
k such that Uk = [V′

k,Vk] has

full column rank for each k ∈ [3]. Essentially, we retain

only linearly independent columns because the remaining

columns either represent information desired by a user that

is already available to the user (overlap between ⟨Vk⟩ and

⟨V′
k⟩), or information that is already accounted for by the

independent columns (redundancies within Vk or within V
′
k).

Thus, henceforth let us assume, without loss of generality, that

rk(Uk) = rk([V′
k, Vk]) = rk(V′

k) + rk(Vk) = m′
k + mk.

(63)

B. Field Size Extension

Recall that the problem formulation specifies a field Fq,

but allows us to choose the number of computations L to

be encoded together as a free parameter in the achievable

scheme. The freedom in the choice of L in fact allows field

extensions that translate the specified field of operations from

Fq to Fqz for arbitrary z ∈ N. Specifically, consider L = z
computations, and denote V̄

′
k = V

′
k ⊗I

z×z , V̄k = Vk ⊗I
z×z

and Ūk = Uk ⊗ I
z×z as the z-extension of the coefficient

matrices, where ⊗ denotes the Kronecker product. Denote

X̄ = vec(XT ), where vec(·) is the vectorization function.

By this notation, we can restate the problem such that User

k has side-information X̄
T
V̄

′
k and wants to compute X̄

T
V̄k

for k = [1 : 3], where X̄ ∈ F
dz×1
q , V̄

′
k ∈ F

dz×m′z
q and

V̄k ∈ F
dz×mz
q . Now, since Fq is a subfield of Fqz , this

problem is equivalent to the problem where X ∈ F
d×1
qz ,

V
′
k ∈ F

d×m′

qz and Vk ∈ F
d×m
qz for L = 1 computation.

By considering the elements in Fqz instead of Fq, we have

more flexibility in designing schemes by choosing symbols

in the extension field to jointly code over z computations.

Since the achievable scheme allows joint coding over any

L computations, considering L = L′z computations in the

original problem with field Fq is equivalent to considering

L′ computations in the extended field with Fqz . Appendix A

illustrates the idea of field size extension with an example.

C. Useful Lemma

Next let us introduce a useful lemma.

Lemma 4: Let A ∈ F
d×a
q , B1 ∈ F

d×b1
q and B2 ∈ F

d×b2
q be

arbitrary matrices with full column rank (bases), i.e., rk(A) =
a, rk(B1) = b1, rk(B2) = b2. Denote rk(B1 | A) = r1|A,

rk(B2 | A) = r2|A and rk([B1, B2] | A) = r1,2|A. Then for

any non-negative integers n1, n2 such that n1 ≤ r1|A, n2 ≤
r2|A and n1 + n2 ≤ r1,2|A, there exist submatrices of B1, B2,

namely B′
1 ∈ F

d×n1
q and B′

2 ∈ F
d×n2
q , respectively, such that

[A, B′
1, B

′
2] has full column rank a + n1 + n2.

Proof: Consider first the case that n1 + n2 =
r1,2|A. By Steinitz Exchange lemma there exist submatrices

B
(r1|A)
1 , B

(r2|A)
2 , comprised of r1|A, r2|A columns of B1, B2,

respectively, such that [A, B
(r1|A)
1 ], [A, B

(r2|A)
2 ] have full

column ranks (the superscripts within the parantheses

indicate the number of columns). Now, we claim that if

Y (a+r1|A+r2|A) = [A, B
(r1|A)
1 , B

(r2|A)
2 ] does not have full

column rank, i.e., a+r1|A +r2|A > rk(Y (a+r1|A+r2|A)) = a+

r1,2|A, then it is always possible to drop a column of B
(r1|A)
1

to yield Y (a+r1|A+r2|A−1) = [A, B
(r1|A−1)
1 , B

(r2|A)
2 ] which has

one less column but the same column rank as Y (a+r1|A+r2|A).

The claim is proved as follows. Since Y (a+r1|A+r2|A) does

not have full column rank, there exists a non-zero column

vector Z, such that Y (a+r1|A+r2|A)Z = 0d×1. This non-zero

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 07,2024 at 19:29:56 UTC from IEEE Xplore.  Restrictions apply. 



4426 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

vector Z must have more than one non-zero element (because

Y (a+r1|A+r2|A) has non-zero columns), and at least one of

its non-zero elements must be in a row-index that maps to

one of the columns of B
(r1|A)
1 (because [A, B

(r2|A)
2 ] has full

column rank). This column of B
(r1|A)
1 can be dropped because

it is spanned by the remaining columns of Y (a+r1|A+r2|A) that

are selected by the support of Z, so that Y (a+r1|A+r2|A−1)

has the same rank as Y (a+r1|A+r2|A). The same claim holds

for B
(r2|A)
2 as well. Repeating this argument we can drop

columns of B
(r1|A)
1 , B

(r2|A)
2 , one-by-one, in any order we wish,

until we meet the target values n1, n2 at which point the

resulting matrix [A, B′
1, B

′
2] has full column rank, equal to

a + r1,2|A. Finally, if n1 + n2 < r1,2|A, then we continue the

process for an additional r1,2|A − (n1 + n2) steps, but each

additional column that is dropped now reduces both the rank

and the number of columns by 1, until B′
1, B

′
2 are left with

only n1, n2 columns, respectively, and rk(Y (a+r1|A+r2|A)) =
a + r1,2|A − (r1,2|A − (n1 + n2)) = a + n1 + n2. □

Let us also note the following direct corollary of Lemma 4

which will be used multiple times in our construction of the

coding scheme.

Corollary 2: Let A ∈ F
d×a
q and B ∈ F

d×b
q be arbitrary

matrices with full column rank (bases), i.e., rk(A) =
a, rk(B) = b. Denote rk(B | A) = r. Then for any non-

negative integer n such that n ≤ r, there exists a submatrix

of B, namely B′ ∈ F
d×n
q such that [A, B′] has full column

rank a + n.

Proof: Corollary 2 is implied by Lemma 4, by map-

ping A, B here to A, B1 in Lemma 4, respectively,

and setting b2 = 0. □

D. Construction of the Optimal Broadcast Scheme

The construction of the optimal broadcast information

follows the formulation of Theorem 2 and the depiction in

Figure 4. At a high level, the goal is to construct a scheme

that broadcasts λ123 dimensions that are simultaneously

useful to all 3 users (3 birds, 1 stone), λij dimensions

that are simultaneously useful to Users i, j (2 birds,

1 stone) for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, and λ dimensions

that are of the type (3 birds, 2 stones), i.e., where

transmission of 2 dimensions collectively satisfies 1 demand

dimension for every user. For this construction, let us

first consider non-negative integers λ123, λ12, λ13, λ23, λ that

satisfy the constraints (21)-(24) specified in Theorem 2.

Generalization of λ123, λ12, λ13, λ23, λ to rationals is handled

in Section VIII-E and VIII-F.

Let us start with the (3 birds, 1 stone) component of the

construction, and for now let us focus on User 1. Some

adjustments will be necessary eventually to make the scheme

work for all 3 users. We wish to broadcast λ123 dimensions

for this (3 birds, 1 stone) component of our scheme, but it

remains to determine the actual information to be transmitted.

For this, let us recall Corollary 2, which guarantees that there

exists a submatrix of U123, namely U
(λ123)
123 ∈ F

d×λ123
qz , such

that the following matrix has full column rank,

rk([V′
1,U

(λ123)
123 ]) = m′

1 + λ123. (64)

Broadcasting X
T
U

(λ123)
123 would help User 1 acquire λ123

desired dimensions based on his side-information X
T V′

1.

As a cautionary note, let us point out that this particular

U
(λ123)
123 which is useful for User 1 may not be useful for

User 2 or User 3, i.e., [V′
k,U

(λ123)
123 ] may not have full column

rank for k = 2, 3. One can similarly find submatrices of

U123 of size (number of columns) λ123 that are useful for

User 2, or 3 individually, but in general these will be different

matrices. In the end the challenge will be to find the same

matrix that is useful for all three users. For now we ignore

this challenge and proceed with only User 1 as our focus.

Next, consider the (2 birds, 1 stone) components,

specifically let us find λ12 dimensions within ⟨U12⟩, and

another λ13 dimensions within ⟨U13⟩ that will be useful to

User 1, conditioned on the user’s side-information V′
1. Letting

A = [V′
1,U

(λ123)
123 ], B1 = U12 and B2 = U13 in Lemma 4,

we have a = m′
1 + λ123, r1|A = rk(U12 | V′

1) − λ123, r2|A =
rk(U13 | V′

1)− λ123, and r1,2|A = rk([U12, U13] | V′
1)− λ123.

Then according to Lemma 4, there exists a submatrix of U12,

namely, U
(λ12)
12 ∈ F

d×λ12
qz , and a submatrix of U13, namely,

U
(λ13)
13 ∈ F

d×λ13
qz , such that the following matrix has full

column rank,

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ]) = m′

1 + λ123 + λ12 + λ13.

(65)

Once again, note that these choices may not work for Users

2, 3, so that challenge remains to be overcome later.

Next, consider the (2 stones, 3 birds) component of

the scheme. Keeping our focus on User 1, let us find

λ dimensions of broadcast information from the subspace

⟨U1(2,3)⟩ that will be useful for User 1. Since we only

consider parameters that satisfy the conditions in Theorem 2,

which include in particular (24), it follows that λ ≤
rk(U1(2,3) | V′

1)−λ12−λ13−λ123 by definition. Letting A =

[V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ], B = U1(2,3) in Corollary 2,

we have a = m′
1 + λ123 + λ12 + λ13 and r = rk(U1(2,3) |

V′
1) − λ12 − λ13 − λ123 ≥ λ. Then Corollary 2 implies that

there exists a submatrix of U1(2,3), namely, U
(λ)
1(2,3) ∈ F

d×λ
qz

such that the following matrix has full column rank,

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3)])

= m′
1 + λ123 + λ12 + λ13 + λ. (66)

Next, by letting A be the above matrix and B = U1 in

Corollary 2, we have a = m′
1 + λ123 + λ12 + λ13 + λ,

r = rk(U1 | V′
1)−(λ123+λ12+λ13+λ) = m1−(λ123+λ12+

λ13 + λ) ≜ t1. Then by Corollary 2, there exists a submatrix

of U1, namely, U
(t1)
1 ∈ F

d×t1
qz such that the following matrix

has full column rank.

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3),U

(t1)
1 ]) = m1 + m′

1,

(67)

which implies that it is a basis of ⟨U1⟩ since each column of

the matrix is in ⟨U1⟩.
Finally, in Corollary 2 let A be the matrix in (67) and B =

I
d×d be the d × d identity matrix. We have a = m1 + m′

1

and r = d − m1 − m′
1. Then by Corollary 2, there exists a
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submatrix of I
d×d, namely, Z1 ∈ F

d×(d−m1−m′
1)

qz such that the

following d × d matrix has full rank.

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3),U

(t1)
1 ,Z1]) = d.

(68)

In particular, the determinant of the matrix is non-zero.

The following step allows a mixing of information,

leading to a random-coding argument that will be important

to reconcile the users’ different perspectives. So consider

the following determinant, which is a polynomial in the

variables corresponding to the elements of the matrices

N123,N12,N13,M12,M13,M, while the remaining matrices

are fixed.

P1 = det
(
[

m′
1

︷︸︸︷

V
′
1 ,

λ123
︷ ︸︸ ︷

U123N123,

λ12
︷ ︸︸ ︷

U12N12,

λ13
︷ ︸︸ ︷

U13N13,
λ

︷ ︸︸ ︷

U12M12 + U13M13 + B1(2,3)M,U
(t1)
1 ,Z1]

)
(69)

The sizes of the variable matrices are specified below.

N123 : rk(U123) × λ123, N12 : rk(U12) × λ12,

N13 : rk(U13) × λ13, M12 : rk(U12) × λ,

M13 : rk(U13) × λ, M : rk(B1(2,3)) × λ. (70)

We claim that P1 is not a zero polynomial. This is because we

can assign values to the variables such that the matrix in (69)

becomes identical to the constant matrix in (68), which has

non-zero determinant. Note that by Lemma 2, (P5) and (P8),

⟨U1(2,3)⟩ = ⟨[B123, B12, B13, B1(2,3)]⟩ = ⟨[U12, U13, B1(2,3)]⟩,

therefore, U
(λ)
1(2,3) = U12M12+U13M13+B1(2,3)M for some

realization of M12,M13,M. Since there exists a non-zero

evaluation of P1 it cannot be the zero polynomial.

So far our discussion focused on User 1. Proceeding

similarly for Users 2 and 3 we arrive at corresponding

polynomials P2, P3 as shown below,

P2 = det([

m′
2

︷︸︸︷

V
′
2 ,

λ123
︷ ︸︸ ︷

U123N123,

λ12
︷ ︸︸ ︷

U12N12,

λ23
︷ ︸︸ ︷

U23N23,
λ

︷ ︸︸ ︷

−U12M12 + U23M23 + B2(1,3)M,U
(t2)
2 ,Z2]) (71)

P3 = det([

m′
3

︷︸︸︷

V
′
3 ,

λ123
︷ ︸︸ ︷

U123N123,

λ13
︷ ︸︸ ︷

U13N13,

λ23
︷ ︸︸ ︷

U23N23,
λ

︷ ︸︸ ︷

U13M13 + U23M23 + B3(1,2)M,U
(t3)
3 ,Z3]) (72)

that are similarly shown to be non-zero polynomials, in the

variables corresponding to the elements of the matrices N123,

N12, N13, N23, M12, M13, M23, M, with the following

remaining specifications in addition to those in (70).

M23 : rk(U23) × λ, N23 : rk(U23) × λ23, (73)

and

Z2 ∈ F
d×(d−m2−m′

2)
qz , (74)

Z3 ∈ F
d×(d−m3−m′

3)
qz , (75)

t2 ≜ m2 − (λ123 + λ12 + λ23 + λ), (76)

t3 ≜ m3 − (λ123 + λ13 + λ23 + λ). (77)

Note that the minus sign before U12M12 in (71) still allows

the entries of −M12 to be any element in Fqz , and thus we

can still evaluate the determinants individually to non-zero by

choosing appropriate elements in Fqz . Now since P1, P2 and

P3 are non-zero polynomials, their product P ≜ P1P2P3 is

also a non-zero polynomial in the variables corresponding to

the elements of the matrices N123, N12, N13, N23, M12,

M13, M23, and M. Furthermore, the polynomial P has a

degree D loosely (the loose bound suffices for our purpose)

bounded above as,

D ≤ 3d. (78)

By Schwartz-Zippel Lemma, if the elements of

N123,N12,N13,N23,M12,M13,M23,M are chosen

i.i.d uniformly from Fqz , then the probability of P
evaluating to 0 is not more than D

qz ≤ 3d
qz . Thus,

by choosing z > logq(3d), we ensure that there

exist such N123,N12,N13,N23,M12,M13,M23,M
that produce a non-zero evaluation of P , which

implies that P1, P2 and P3 are evaluated to non-zero

simultaneously. Recall that we previously found three

constructions, by identifying submatrices of subspace

matrices, and each such construction could only be

guaranteed to work for one user. The formulation based

on N123,N12,N13,N23,M12,M13,M23,M represents

essentially a generic solution for each user. Whereas the

original solutions comprised of specific submatrices may not

be compatible, the generic solutions turn out to be compatible,

as evident in the argument that P1, P2, P3 are simultaneously

non-zero for appropriate choices of the variables. This is

essentially a random coding argument, because it shows

the existence of a good code among randomly chosen

possibilities.

With any such choice, we are able to construct the broadcast

symbol as follows.

S = X
T [U123N123,U12N12,U13N13,U23N23, (79)

U12M12 + U13M13 + B1(2,3)M, (80)

− U12M12 + U23M23 + B2(1,3)M, (81)

U
(t1)
1 ,U

(t2)
2 ,U

(t3)
3 ]. (82)

With S, User 1 is able to obtain (using its side-information)

X
T [V′

1,U123N123,U12N12,U13N13,

U12M12 + U13M13 + B1(2,3)M,U
(t1)
1 ], (83)

and thus compute X
T
U1, since the columns of the matrix to

the right of X
T form a basis of ⟨U1⟩, guaranteed by the fact

that P1 has a non-zero evaluation. Similarly, User 2 is able to

obtain (with its side-information)

X
T [V′

2,U123N123,U12N12,U23N23,

− U12M12 + U23M23 + B2(1,3)M,U
(t2)
2 ], (84)

and thus compute X
T
U2, since the columns of the matrix on

the right of X
T form a basis of ⟨U2⟩, guaranteed by the fact

that P2 has a non-zero evaluation.
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User 3 first computes

X
T (U12M12 + U13M13 + B1(2,3)M) (85)

+ X
T (−U12M12 + U23M23 + B2(1,3)M) (86)

= X
T (U13M13 + U23M23 + B3(1,2)M) (87)

where we used (P20) from Lemma 2, i.e., B1(2,3) +B2(1,3) =
B3(1,2). Using its side-information, User 3 is then able to

obtain,

X
T [V′

3,U123N123,U13N13,U23N23,

U13M13 + U23M23 + B3(1,2)M,U
(t3)
3 ]. (88)

Thus, it can compute X
T
U3, since the matrix on the right of

X
T is a basis of ⟨U3⟩, guaranteed by the fact that P3 evaluates

to a non-zero value.

The cost of this broadcast S, as noted in Theorem 2, is found

as,

∆ = N/L (89)

= N/z (90)

= λ123 + λ12 + λ13 + λ23 + 2λ + t1 + t2 + t3 (91)

= m1 + m2 + m3 − 2λ123 − λ12 − λ13 − λ23 − λ (92)

= rk(V1|V
′
1) + rk(V2|V

′
2) + rk(V3|V

′
3)

− 2λ123 − λ12 − λ13 − λ23 − λ (93)

≜ f(λ123, λ12, λ13, λ23, λ). (94)

This implies that ∆∗ ≤ f(λ123, λ12, λ13, λ23, λ) if

λ123, λ12, λ13, λ23 and λ are non-negative integers subject

to the constraints specified in Theorem 2. Next let us show

that the arguments extend to rational λ• by a simple matrix

extension.

E. Matrix Extension

Technically, the choice of z > 1 that enables field extensions

in the achievable scheme, already amounts to vector coding,

because it requires joint coding of L = z symbols. However,

after the field extension, the solution presented above reduces

to a scalar coding solution over the extended field Fqz . This

formulation only allows integer values of λ• parameters.

However, it is quite straightforward to extend the scheme to

all rational values of λ• parameters (subject to the constraints

specified in Theorem 2) by a typical vector coding extension,

labeled here as a Matrix Extension to avoid confusion with

field extensions that also require L > 1. This is described

as follows. Recall that we are allowed to choose any L ∈ N

in the coding schemes, by letting L = L′z (meaning that

the computations are in Fqz and we jointly code for L′ such

computations), the ranks of all subspaces scale by L′ as

the data dimension increases by a factor of L′. Essentially,

this amounts to treating successive instances of the data

vector as new data dimensions. For example, consider the

m = 1 dimensional computation of A + B over d = 2
dimensional data (A, B), say over Fqz . Considering

L′ = 2 instances, the data becomes (A,B) =
((A(1), A(2)), (B(1), B(2)), and the desired computation is

A + B, which can also be interpreted as mnew = 2
dimensional computations (A + C, B + D) over dnew =
2d = 4 dimensional data (A, B, C,D) in Fqz , by mapping

((A(1), A(2)), (B(1), B(2)) to (A, B,C, D). A bit more

formally, by considering L′ data instances as one instance of

L′d dimensional data (both in Fqz ), User k ∈ [1 : 3] has side-

information X
T
V

′
k, which is equivalent to vecT (X)IL′×L′

⊗
V

′
k. User k wants to compute vecT (X)IL′×L′

⊗ Vk. The

problem is then equivalent to that with data X ∈ F
L′d×1
qz , with

coefficient matrices now changed to I⊗V
′
k, I⊗Vk, k = [1 : 3].

The signal spaces Uk are also changed to I ⊗ Uk. Note

that this is essentially different from the field size extension

presented in Section VIII-B, where the dimensions of the

coefficient matrices are not changed after the extension, only

the field size is changed. We refer to this as the matrix

extension, since the dimensions (sizes) of the coefficient

matrices scale by a factor of L′ (but the field size remains

unchanged). The ranks of Uk and V
′
k also scale by L′,

as do the ranks of all subspaces considered in (21)-(24).

Thus, the RHS of all constraints in (21)-(24) scale by

L′, implying a similar scaling of the λ• parameters. Thus,

all rational values of λ• parameters can be transformed

into integer values by considering a matrix extension by

a factor L′ where L′ is the common denominator of the

rational values.

F. Completing the Proof of Achievability

At this point we have the bound that ∆∗ ≤
f(λ123, λ12, λ13, λ23, λ) if λ123, λ12, λ13, λ23, λ are non-

negative rational numbers subject to the constraints specified

in (21)-(24). The final step of the achievability proof is to

recall [64], [65] that for any linear programming problem,

say max c
T
x, s.t. Ax ≤ b, x ≥ 0, if all the elements of

A,b, c are rational, and the optimal exists, then there exists an

optimizing x whose elements are also rational, and so is the

optimal value of the objective function. Note that in the linear

program in Theorem 2 all coefficients are indeed rational,

in fact the coefficients of λ• parameters in the constraints

and the objective are all either 0, 1 or 2, and the constants

on the RHS of the constraints (21)-(24) are conditional-ranks,

so they are integers as well, by definition. The feasible region

is a rational polytope, so all vertices are rational, and one

of the vertices must be optimal for a linear program over a

rational polytope. Therefore, there exist non-negative rational

values λ∗
123, λ

∗
12, λ

∗
13, λ

∗
23, λ

∗ that satisfy (21)-(24), for which

we we have f(λ∗
123, λ

∗
12, λ

∗
13, λ

∗
23, λ

∗) = F ∗. This gives us the

desired bound, ∆∗ ≤ F ∗. □

IX. MATCHING ACHIEVABILITY WITH

CONVERSE: F ∗ ≤ max{∆1,∆2}

The converse proof in Section VII established the lower

bound ∆∗ ≥ max{∆1,∆2}, whereas the achievability proof

in Section VIII established the upper bound ∆∗ ≤ F ∗. In this

section we show that the bounds are tight. To do so, we will

prove that F ∗ ≤ max{∆1,∆2}.
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Recall that, subject to the constraints (21)-(24), the linear

program in Theorem 2 finds

F ∗ = min
λ123,λ12,λ13,λ23,λ∈R+

m1 + m2 + m3

− 2λ123 − λ12 − λ13 − λ23 − λ (95)

= min
λ123,λ12,λ13,λ23,λ∈R+

f(λ123, λ12, λ13, λ23, λ). (96)

We will proceed with the proof in two steps. First,

in Subsection IX-A, we manipulate max{∆1,∆2} into an

equivalent compact form. Then, in Subsection IX-B we show

that in all cases there exist feasible (λ123, λ12, λ13, λ23, λ)
for which f(λ123, λ12, λ13, λ23, λ) ≤ max{∆1,∆2} and

therefore by (96), we have F ∗ ≤ max{∆1,∆2}.

A. Equivalent Expression for ∆1,∆2 With Compact Notation

To avoid lengthy notation due to the repetitive use of

conditional ranks, let us introduce the following compact

forms.

r123 ≜ min
k∈[3]

rk(U123 | V′
k),

r12 ≜ min
k∈{1,2}

rk(U12 | V′
k),

r13 ≜ min
k∈{1,3}

rk(U13 | V′
k),

r23 ≜ min
k∈{2,3}

rk(U23 | V′
k),

r12,13 ≜ rk([U12, U13] | V′
1),

r12,23 ≜ rk([U12, U23] | V′
2),

r13,23 ≜ rk([U13, U23] | V′
3),

r1(2,3) ≜ rk(U1(2,3) | V′
1),

r2(1,3) ≜ rk(U2(1,3) | V′
2),

r3(1,2) ≜ rk(U3(1,2) | V′
3). (97)

It follows that,

r12,13 ≥ max{r12, r13},

r12,23 ≥ max{r12, r23},

r13,23 ≥ max{r13, r23}. (98)

Note that by these notations, the constraints (21)-(24) for λ•

can be equivalently posed as

(21) ⇐⇒ λ123 ≤ r123, (99)

(22) ⇐⇒ λij + λ123 ≤ rij ,

∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)} (100)

(23) ⇐⇒ λij + λik + λ123 ≤ rij,ik,

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)} (101)

(24) ⇐⇒ λ + λij + λik + λ123 ≤ ri(j,k),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)} (102)

With these notations, we are able to express the ∆1,∆2 values

defined in Theorem 1 in the following equivalent forms. For

∆ijk
1 , we have

∆123
1 = rk(V1|V

′
1) + rk(V2|V

′
2) + rk(V3|V

′
3)

− rk(U12|V
′
2) − rk(U3(1,2)|V

′
3) (103)

= rk(V1) + rk(V2) + rk(V3)

− rk(U12|V
′
2) − rk(U3(1,2)|V

′
3) (104)

= m1 + m2 + m3 − rk(U12|V
′
2) − r3(1,2) (105)

where (104) is due to (63), and similarly

∆213
1 = m1 + m2 + m3 − rk(U12|V

′
1) − r3(1,2) (106)

which implies that,

max{∆123
1 ,∆213

1 }

= m1 + m2 + m3 − r3(1,2)

− min{rk(U12|V
′
1), rk(U12|V

′
2)} (107)

= m1 + m2 + m3 − r12 − r3(1,2) (108)

≜ δ3 (109)

By taking the pairwise maximum of {∆132
1 ,∆312

1 } and

{∆231
1 ,∆321

1 } respectively, we similarly obtain δ1 and δ2 as

follows.

δ1 ≜ max{∆132
1 ,∆312

1 } = m1 + m2 + m3 − r23 − r1(2,3),

(110)

δ2 ≜ max{∆231
1 ,∆321

1 } = m1 + m2 + m3 − r13 − r2(1,3).

(111)

For ∆ijk
2 , first note that ∆123

2 = ∆132
2 . Thus, we have,

max{∆123
2 ,∆132

2 } = ∆123
2

= rk(V1 | V′
1) + rk(V2 | V′

2) + rk(V3 | V′
3)

−
1

2

(

min
ℓ∈[3]

(
rk(U123 | V′

ℓ)
)

+ rk([U12,U13] | V
′
1) + rk(U2(1,3) | V

′
2)

+ rk(U3(1,2) | V
′
3)

)

(112)

= rk(V1) + rk(V2) + rk(V3)

−
1

2

(

min
ℓ∈[3]

(
rk(U123 | V′

ℓ)
)

+ rk([U12,U13] | V
′
1) + rk(U2(1,3) | V2)

+ rk(U3(1,2) | V
′
3)

)

(113)

= m1 + m2 + m3 −
1

2

(
r123 + r12,13 + r2(1,3) + r3(1,2)

)

(114)

≜ δ23 (115)

where (113) is due to (63). By taking the pairwise maximum

of {∆213
2 ,∆231

2 } and {∆312
2 ,∆321

2 } respectively, we similarly

obtain,

δ13 ≜ max{∆213
2 ,∆231

2 }

= m1 + m2 + m3 −
1

2

(

r123 + r12,23 + r1(2,3) + r3(1,2)

)

,

(116)

δ12 ≜ max{∆312
2 ,∆321

2 }

= m1 + m2 + m3 −
1

2

(

r123 + r13,23 + r1(2,3) + r2(1,3)

)

.

(117)
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Thus, we have,

max{∆1,∆2} = max{δ1, δ2, δ3, δ12, δ13, δ23}. (118)

The next step is to prove that F ∗ ≤
max{δ1, δ2, δ3, δ12, δ13, δ23}.

B. Proving F ∗ ≤ max{δ1, δ2, δ3, δ12, δ13, δ23}: Constrained

Waterfilling

By definition, F ∗ ≤ f(λ123, λ12, λ13, λ23, λ) for any

(λ123, λ12, λ13, λ23, λ) that satisfies (99)-(102). Therefore,

it suffices to show that

f(r123, λ12, λ13, λ23, λ
′) ≤ max{δ1, δ2, δ3, δ12, δ13, δ23},

(119)

where λ′ ≜ min{r1(2,3) − λ12 − λ13, r2(1,3) − λ12 −
λ23, r3(1,2)−λ13−λ23}−r123. In other words, we fix λ123 to

r123 and λ to λ′. It can be easily verified that λ123 = r123, λ =
λ′ are in the feasible region specified by (99)-(102). As will

be shown in the end, fixing λ123 = r123, λ = λ′ will not hurt

the optimality. It is also intuitive because λ123 corresponds to

the amount of transmission that has the highest efficiency (3

birds, 1 stone) so it should be set as large as possible to r123.

Then, λ = λ′ is also the largest possible we can set after λ123

is fixed to r123.

Setting λ123 and λ to these values (note that both values

are non-negative), the objective simplifies to the minimization

of,

f = m1 + m2 + m3 − 2r123 − λ12 − λ13 − λ23

− min{r1(2,3) − λ12 − λ13,

r2(1,3) − λ12 − λ23,

r3(1,2) − λ13 − λ23} + r123 (120)

= (m1 + m2 + m3 − r123)
︸ ︷︷ ︸

constant

− min{r1(2,3) + λ23, r2(1,3) + λ13, r3(1,2) + λ12}.

(121)

We focus on the remaining three parameters, λ12, λ13 and λ23.

Note that minimization of f is equivalent to the maximization

of the minimum of the three terms: r1(2,3)+λ23, r2(1,3)+λ13,

and r3(1,2) +λ12. Intuitively, this optimization may be seen as

a constrained waterfilling problem. To make the connection

to waterfilling clear, let us further introduce the following

notation.

b1 ≜ r1(2,3), wmax
1 ≜ r23 − r123, (122)

b2 ≜ r2(1,3), wmax
2 ≜ r13 − r123, (123)

b3 ≜ r3(1,2), wmax
3 ≜ r12 − r123, (124)

w1 ≜ λ23, wmax
1,2 ≜ r13,23 − r123, (125)

w2 ≜ λ13, wmax
1,3 ≜ r12,23 − r123, (126)

w3 ≜ λ12, wmax
2,3 ≜ r12,13 − r123. (127)

With this notation, the optimization problem becomes

maxmize hmin ≜ min{b1 + w1, b2 + w2, b3 + w3}, (128)

Fig. 5. Constrained Waterfilling.

s.t.







w1 ≤ wmax
1 ,

w2 ≤ wmax
2 ,

w3 ≤ wmax
3 ,

w1 + w2 ≤ wmax
1,2 ,

w1 + w3 ≤ wmax
1,3 ,

w2 + w3 ≤ wmax
2,3 .

w1, w2, w3 ∈ R+

(129)

Let us explain the waterfilling analogy. There are three

adjacent vessels as shown in Figure 5, labeled 1, 2, 3 from

left to right. Vessels 1, 2, 3 have base levels (shown in gray)

at heights b1, b2, b3, respectively. We are allowed to add

w1, w2, w3 amounts of water to Vessel 1, Vessel 2 and Vessel

3, respectively according to the constraints (129), in order to

maximize hmin, i.e., the minimum of the heights of water in

the three vessels. The objective from (121) now maps to the

waterfilling problem as,

f = m1 + m2 + m3 − r123 − hmin. (130)

Note that the first three constraints in (129) are constraints

on the capacity (for holding water) of individual vessels, and

the next three constraints are for pairs of vessels. Furthermore,

we have max{wmax
1 , wmax

2 } ≤ wmax
1,2 by (98), which ensures

that the pairwise capacity constraints do not dominate the

individual capacity constraints. Since the only constraints are

on individual vessel capacities and pairwise vessel capacities,

the optimal value of hmin must correspond to one of the

following outcomes.
1) hmin is limited by the individual capacity of Vessel i,

i ∈ {1, 2, 3}, which holds the maximum water it can,

wi = wmax
i . In this case, hmin = bi + wmax

i and F ∗ ≤
f = m1 + m2 + m3 − r123 − hmin = δi.

2) hmin is limited by the pairwise capacity of Vessels i, j,

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, which together hold the

maximum water they can, i.e., wi + wj = wmax
i,j , and

have the same final water level hmin. In this case, we have

(hmin−bi)+(hmin−bj) = wmax
i,j which gives us hmin =

bi+bj+wmax
i,j

2 and F ∗ ≤ f = m1 + m2 + m3 − r123 −
hmin = δij .

Thus, in every case we have F ∗ ≤
max{δ1, δ2, δ3, δ12, δ13, δ23} = max{∆1,∆2}, which

completes the proof. □

X. CONCLUSION

The exact capacity of the 3 user LCBC is found for all cases,

i.e., for arbitrary finite field Fq, arbitrary data dimension d, and
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arbitrary specifications of the users’ desired computations and

side-information V′
k, Vk. The 3 user setting introduces several

intricacies that were not encountered in the 2 user LCBC,

such as the insufficiency of the entropic formulation for tight

converse bounds, the need for functional submodularity, the

rich variety of subspaces involved, random coding arguments

to resolve discrepancies between the users’ differing views of

the same subspaces, the tradeoffs between the communication

efficiencies associated with these subspaces, and the inherent

optimization that led us to a constrained waterfilling solution.

The fact that the 3 user LCBC capacity turns out to be fully

tractable despite these intricacies is surprising. In particular,

we note that even though the 3 user LCBC involves at least

6 key subspaces in Vk, V′
k, k ∈ {1, 2, 3}, the solution did

not require the Ingleton inequality, nor were non-Shannon

inequalities required for the converse. Instead, the main tools

used were Steinitz Exchange lemma, the dimension counting

of pairwise unions and intersections of subspaces, functional

submodularity, and the random coding argument invoked

through the Schwartz-Zippel lemma. The tractability of the

3 user LCBC is indicative of the potential for further progress

in understanding the fundamental limits of basic computation

networks in future efforts. Indeed, there are many promising

directions for future work. Building on the K = 2 and

K = 3 cases, the K = 4 user LCBC in particular is an

important next step, as it might either reveal a consistent

pattern that holds for arbitrary K users or present obstacles

that are indicative of the difficulty of the large K setting. Also

of interest are asymptotic LCBC settings with large number

of users. An intriguing generalization of the LCBC problem is

the LCBC with partially informed server, LCBC-PIS in short,

where the central server has only limited knowledge of the

data in the form of some linear functions of the data. The

LCBC-PIS setting has been introduced and solved recently

for K = 2 users in [66]. The capacity remains open for

K ≥ 3 users. Studies of linear computation multiple access

settings (LCMAC) represent another promising research

avenue, partially explored in [38] from a coding perspective.

Approximate linear computations over real or complex

numbers, as well as non-linear computations that connect to

coded distributed computing represent other challenging and

important research directions for future work. From a practical

perspective, studies of computational and communication

tradeoffs of AR/VR applications that take advantage of

the coding schemes discovered through the studies of

LCBC/LCMAC settings would be valuable complements to

the theoretical efforts.

APPENDIX A

FIELD EXTENSION

To clarify the notation and illustrate the utility of field
extensions, let us present an example. Consider q = 2, K =
3, d = 2, m = m′ = 1 and the following coefficient matrices
Uk = [V′

k,Vk], k ∈ [3] as

U
2×2
1 =

[

1 0
0 1

]

, U
2×2
2 =

[

0 1
1 1

]

, U
2×2
3 =

[

1 1
1 0

]

. (131)

By the problem formulation, x ∈ F
2×1
2 denotes the data

for each computation, and X ∈ F
2×L
2 denotes the data for

L computations. Let us first try to design a coding scheme
with L = 1. Denote X

T = [x1(1), x2(1)] and then W
′
1 =

X
T
V

′
1 = x1(1), W1 = X

T
V1 = x2(1), W

′
2 = X

T
V

′
2 =

x2(1), W2 = X
T
V2 = x1(1) + x2(1), W

′
3 = X

T
V

′
3 =

x1(1) + x2(1), W3 = X
T
V3 = x1(1). The following table

shows all possible outcomes of (W′
k,Wk)k∈[3].

x1(1) x2(1) W
′

1 W1 W
′

2 W2 W
′

3 W3

0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0

1 0 1 0 0 1 1 1

1 1 1 1 1 0 0 1

A coding scheme must satisfy the property that for any two

outcomes, the broadcast information S corresponding to these

outcomes has to be different if ∃k ∈ [3] such that W
′
k is

the same but Wk is different for these two outcomes. This

is necessary to ensure that User k will not be confused when

decoding under these two outcomes. Following this rule it is

easy to verify from the table that the realization of S has to be

different for any two outcomes in this example, which implies

S has to be different in all outcomes. Thus, |S| ≥ 4, which

implies N ≥ 2 and thus ∆ = N/L ≥ 2 for L = 1. In other

words, scalar coding schemes cannot achieve ∆ < 2.
Let us now consider field extension. Let z = 2 and consider

L = z = 2. Denote V̄
′
k = V

′
k ⊗ I

2×2, V̄k = Vk ⊗ I
2×2 and

Ūk = Uk⊗I
2×2 as the 2-extension of the coefficient matrices,

where ⊗ denotes the Kronecker product. We have

Ū
4×4
1 = [V̄′

1, V̄1] =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,

Ū
4×4
2 = [V̄′

2, V̄2] =







0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1






,

Ū
4×4
3 = [V̄′

3, V̄3] =







1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0






. (132)

Then denote X = [x1(1), x1(2);x2(1), x2(2)] as the data
matrix for L = 2, and denote X̄ = vec(XT ), where
vec(·) is the vectorization function. We have X̄

T =
[x1(1), x1(2), x2(1), x2(2)] ∈ F

1×4
2 . We can see that User k

has side-information X̄
T
V̄

′
k, and wants to compute X̄

T
V̄k.

Then by the property of finite field extensions, we can regard
[x1(1), x1(2)] as x̄1 ∈ F4 and similarly [x2(1), x2(2)] as
x̄2 ∈ F4. Accordingly, the extended coefficient matrices are
regarded as 2 × 2 matrices in F4 as

U
2×2
1 =

[

1 0
0 1

]

, U
2×2
2 =

[

0 1
1 1

]

, U
2×2
3 =

[

1 1
1 0

]

. (133)

Note that the matrices are exactly the same as the matrices

in (131) but considered in the extended field F4. To avoid

complex notations, we redefine the data matrix as X =
[x̄1; x̄2] ∈ F

2×1
4 . Thus, by considering L = 2 computations,

we have an equivalent problem where q = 4, d = 2, m =
m′ = 1 and the same coefficient matrices Uk = [V′

k,Vk], k ∈
[3], but now all elements are from F4. As a coding scheme

with L = 2, it suffices to send S = X
T [1;α], where

α ̸∈ {0, 1} and α ∈ F4. Since the column vector [1;α] is

linearly independent of each of V
′
1,V

′
2,V

′
3, each user has two
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independent equations in X
T from which it can decode all of

X, and recover the desired Wk. Since S is chosen as 1 symbol

from F4, we have N = 2 (1 symbol in F4 corresponds to

2 symbols in F2) and thus ∆ = N/L = 1, thus a better

∆ = N/L is achieved by considering L > 1.

In general, by considering L = z computations, the

original problem is equivalent to the problem with all the

same parameters including the coefficient matrices but in

the extended field Fqz . By considering z computations in

the original problem as 1 computation in the extended field,

the original problem over Fq for L = zL′ computations,

is equivalent to the new problem with the same parameters

in the extended field Fqz for L′ computations.

APPENDIX B

SOME DISCUSSION ON LEMMA 2

As we go to 3 spaces, ⟨U1⟩, ⟨U2⟩, ⟨U3⟩, generalizing

the decomposition for ⟨U1⟩ and ⟨U2⟩ as in Lemma 1

is not so straightforward. Analogies to set-theoretic ideas

such as inclusion-exclusion principle and Venn’s diagrams

do not quite work for 3 vector spaces. For example,

if ⟨U1⟩, ⟨U2⟩, ⟨U3⟩ are three independent lines in a plane,

i.e., pairwise independent one-dimensional subspaces of a

2 dimensional vector space, then ⟨U1⟩ has no non-trivial

intersection with either of ⟨U2⟩ or ⟨U3⟩ individually, yet ⟨U1⟩
is contained in ⟨[U2,U3]⟩, a situation for which there is no

direct set-theoretic analogy. This is why we need the subspace

decomposition for ⟨U1⟩, ⟨U2⟩, ⟨U3⟩, as illustrated in Figure 3

and formalized in Lemma 2. As noted, the decomposition

parallels a corresponding decomposition in the DoF studies

of the 3 user MIMO BC by Wang in [55], highlighting its

fundamental conceptual significance.

Following the idea of growing the basis to cover larger

and larger subspaces, similar to the constructive proof for

Lemma 1, let us interpret Figure 3, so that Lemma 2 will

be intuitively transparent. Consider the space ⟨U1⟩, i.e.,

the column space of U1. This space is decomposed into

5 subspaces as follows. First we have the space within ⟨U1⟩
which overlaps with both ⟨U2⟩ and ⟨U3⟩. This is the space

⟨U123⟩ ≜ ⟨U1⟩ ∩ ⟨U2⟩ ∩ ⟨U3⟩. The basis for this space is

labeled in the figure as the matrix B123. Now consider the

space within ⟨U1⟩ which overlaps with ⟨U2⟩. This is the space

⟨U12⟩ ≜ ⟨U1⟩∩⟨U2⟩. The basis for this space is [B123,B12].
Note that ⟨U123⟩ ⊂ ⟨U12⟩, which is also reflected in the

fact that the basis for ⟨U12⟩ explicitly contains the basis for

⟨U123⟩. It is important to recall that the columns of a basis

matrix must be linearly independent by definition. Therefore,

not only do we have a basis [B123,B12] for ⟨U12⟩, but also

by the linear independence of the basis vectors, it follows that

⟨U12⟩ is decomposed into two independent subspaces, namely

the subspaces ⟨B123⟩ and ⟨B12⟩. This can also be expressed

as4 a direct sum, i.e., ⟨U12⟩ = ⟨B123⟩ ⊕ ⟨B12⟩. Similarly,

⟨U13⟩, i.e., the intersection of ⟨U1⟩ and ⟨U3⟩ is decomposed

into independent subspaces ⟨B123⟩ and ⟨B23⟩, i.e., ⟨U13⟩ =

4For vector spaces V,V1, · · · ,VK , we have V = V1 ⊕ V2 ⊕ · · · ⊕ VK

iff for every v ∈ V , there exist unique vk ∈ Vk for all k ∈ [K] such that
v = v1 + v2 + · · · + vK .

⟨B123⟩⊕ ⟨B13⟩. Continuing the process further, now consider

the space within ⟨U1⟩ which overlaps with ⟨[U2,U3]⟩, i.e., the

space denoted as ⟨U1(2,3)⟩. As indicated in the figure, the basis

for this space is [B123,B12,B13,B1(2,3)], which immediately

decomposes ⟨U1(2,3)⟩ into 4 independent subspaces, i.e.,

⟨U1(2,3)⟩ = ⟨B123⟩ ⊕ ⟨B12⟩ ⊕ ⟨B23⟩ ⊕ ⟨B1(2,3)⟩. Finally,

consider all of ⟨U1⟩, for which Figure 3 identifies the basis

as the matrix [B123,B12,B13,B1(2,3),B1c], thus completing

the decomposition of ⟨U1⟩ into 5 disjoint subspaces, ⟨U1⟩ =
⟨B123⟩ ⊕ ⟨B12⟩ ⊕ ⟨B23⟩ ⊕ ⟨B1(2,3)⟩ ⊕ ⟨B1c⟩. Similar

decompositions apply to ⟨U2⟩ and ⟨U3⟩ as well.

The description thus far is similar to set-theoretic

decompositions into disjoint sets, as one might represent

through disjoint regions in a Venn’s diagram. This brings us to

the most interesting aspect of the 3-subspace decomposition,

highlighted as the yellow regions with dashed boundaries in

Figure 3. The subspaces corresponding to these three regions,

namely ⟨B1(2,3)⟩, ⟨B2(1,3)⟩, and ⟨B3(1,2)⟩ are only pairwise

independent, and the span of the union of any two of them

contains the third. In fact, it is always possible to choose

the basis matrices such that B1(2,3) + B2(1,3) = B3(1,2),

which will simplify the construction of the coding scheme.

Thus, Figure 3 shows 10 subspaces, including the 3 subspaces

highlighted in yellow, and if we exclude any one of the

3 yellow subspaces, the remaining 9 are independent spaces.

Mathematically,

⟨[U1,U2,U3]⟩

= ⟨B1(2,3)⟩ ⊕ ⟨B2(1,3)⟩ ⊕ ⟨B1c⟩ ⊕ ⟨B2c⟩ ⊕ ⟨B3c⟩

⊕ ⟨B12⟩ ⊕ ⟨B23⟩ ⊕ ⟨B13⟩ ⊕ ⟨B123⟩ (134)

= ⟨B2(1,3)⟩ ⊕ ⟨B3(1,2)⟩ ⊕ ⟨B1c⟩ ⊕ ⟨B2c⟩ ⊕ ⟨B3c⟩

⊕ ⟨B12⟩ ⊕ ⟨B23⟩ ⊕ ⟨B13⟩ ⊕ ⟨B123⟩ (135)

= ⟨B3(1,2)⟩ ⊕ ⟨B1(2,3)⟩ ⊕ ⟨B1c⟩ ⊕ ⟨B2c⟩ ⊕ ⟨B3c⟩

⊕ ⟨B12⟩ ⊕ ⟨B23⟩ ⊕ ⟨B13⟩ ⊕ ⟨B123⟩ (136)

APPENDIX C

PROOF OF LEMMA 2: DECOMPOSITION OF

⟨U1⟩, ⟨U2⟩, ⟨U3⟩

Let us begin by informally summarizing the key facts that

are used extensively in this section.

1) A matrix M forms a basis of the column-space of a

matrix U , if and only if ⟨U⟩ ⊂ ⟨M⟩ and the number

of columns of M is equal to rk(U). Note that a basis

matrix must have full column-rank, i.e., all its columns

are linearly independent, and it has only as many columns

as needed to span ⟨U⟩, i.e., rk(U) columns.

2) If A ∈ F
d×a
q and B ∈ F

d×b
q are basis matrices (i.e.,

they each have full column-rank) and ⟨B⟩ ⊂ ⟨A⟩, then

there exists a matrix C ∈ F
d×(a−b)
q such that [B, C] is

a basis of ⟨A⟩. It follows that ⟨C⟩ ⊂ ⟨A⟩. Let us call C
the complement of B in A and denote it as C = A\B.

Note that such C is not unique, and one feasible choice

of such C follows from the Steinitz Exchange Lemma,

which produces a C that is a submatrix of A. Other

feasible choices of C can be constructed as follows.

Denote Cold as the choice from the Steinitz Exchange
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Lemma. Other feasible choices can be constructed as

Cnew = ColdR + BR′, where R ∈ F
(a−b)×(a−b)
q , R′ ∈

F
b×(a−b)
q and R is invertible. To see this, first note that

Cnew has the same size as Cold. Then note that any

v ∈ ⟨A⟩ can be represented as v = Brb + Coldrc

because [B, Cold] is a basis of ⟨A⟩. It follows that

v = B(rb −R′R−1rc)+CnewR−1rc, which implies that

v ∈ ⟨[B, Cnew]⟩.
3) Also recall the dimension formula (15), i.e., rk(M1) +

rk(M2) = rk(M1 ∩ M2) + rk([M1, M2]).
We will now construct the 10 bases that are mentioned in

Lemma 2, collectively referred to as B.

B = {B123,B12,B13,B23,B1(2,3),B2(1,3),B3(1,2),

B1c,B2c,B3c}

First, let us define the compact notation, b∗ ≜ rk(B∗) where

∗ ∈ {1, 2, 3, 12, 13, 23, 1(2, 3), 2(1, 3), 3(1, 2), 1c, 2c, 3c}.

For example, b1(2,3) ≜ rk(B1(2,3)). Since the vector space is

d-dimensional, and B∗ are basis matrices, it follows that the

size of B∗ is d×b∗. The construction now proceeds as follows.

Step 1: B123 = U123.

Step 2: B12 = U12\B123.

Step 3: B13 = U13\B123.

Step 4: B23 = U23\B123.
These four steps are direct applications of the Steinitz

Exchange Lemma, which also guarantees that properties (P1)

- (P4) are satisfied. Next let us prove that (P5) - (P7) are

also satisfied. Consider (P5). It follows from the construction

that [B123,B12,B13] spans ⟨[U12,U13]⟩ because it explicitly

contains the bases for both spaces, but we wish to show

that it is itself a basis, i.e., it has full column-rank. Now,

since [B123,B12,B13] has b123 + b12 + b13 columns and

rk([U12,U13]) = rk(U12) + rk(U13) − rk(U123) = (b123 +
b12) + (b123 + b13) − b123 = b123 + b12 + b13, it follows that

[B123,B12,B13] has full column rank. Thus, (P5) is satisfied.

(P6) and (P7) are similarly proved by symmetry. We continue

the construction of B.

Step 5: B1(2,3) = U1(2,3)\[B123,B12,B13].
Step 6: B2(1,3) = U2(1,3)\[B123,B12,B23].
Step 7: B3(1,2) = U3(1,2)\[B123,B13,B23].
Step 8: B1c = U1\[B123,B12,B13,B1(2,3)].
Step 9: B2c = U2\[B123,B12,B23,B2(1,3)].
Step 10: B3c = U3\[B123,B13,B23,B3(1,2)].

Again, Steps 5-10 are applications of the Steinitz

Exchange Lemma, which implies that [B123,B12,

B13,B1(2,3), B1c] is a basis of ⟨U1⟩, [B123,B12,B23,

B2(1,3),B2c] is a basis of ⟨U2⟩, and [B123,B13,

B23,B3(1,2),B3c] is a basis of ⟨U3⟩. Furthermore,

[B123,B12,B13,B23,B2(1,3),B3(1,2),B2c,B3c] is a basis of

⟨[U2,U3]⟩ because it spans ⟨[U2,U3]⟩ by construction, and

has full column-rank because

rk([U2,U3]) (137)

= rk(U2) + rk(U3) − rk(U23) (138)

= (b123 + b12 + b23 + b2(1,3) + b2c)

+ (b123 + b13 + b23 + b3(1,2) + b3c)

− (b123 + b23) (139)

= b123 + b12 + b13 + b23 + b2(1,3) + b3(1,2) + b2c + b3c

(140)

which happens to be the number of columns of

[B123,B12,B13,B23,B2(1,3),B3(1,2),B2c,B3c]. Thus,

(P14) - (P16) are satisfied.

Next let us show that (P17) - (P19) are satisfied. Consider

(P17), i.e., we wish to show that B17 ≜ [B123,B12,B13,B23,

B1(2,3),B2(1,3),B1c,B2c,B3c] is a basis for ⟨[U1,U2,U3]⟩.
First let us show that ⟨[U1,U2,U3]⟩ is contained in the span

of B17. From (P11), (P12) note that the basis for ⟨U1⟩ is

explicitly contained in B17, and so is the basis for ⟨U2⟩.
Then, noting that ⟨B3(1,2)⟩ ⊂ ⟨[U1,U2]⟩ by its construction

in Step 7, it follows from (P13) that ⟨U3⟩ is also contained

in the span of B17. Thus, ⟨[U1,U2,U3]⟩ is contained in the

column-span of B17. Next let us show that B17 has only as

many columns as rk([U1,U2,U3]), so it must be a basis.

rk([U1,U2,U3]) (141)

= rk([U1,U2]) + rk(U3) − rk(U3(1,2)) (142)

= (b123 + b12 + b13 + b23 + b1(2,3) + b2(1,3) + b1c + b2c)

+ (b123 + b13 + b23 + b3(1,2) + b3c)

− (b123 + b13 + b23 + b3(1,2)) (143)

= b123 + b12 + b13 + b23 + b1(2,3) + b2(1,3)

+ b1c + b2c + b3c (144)

which is the number of columns of B17. Thus, (P17) is

satisfied, and by symmetry (P18) and (P19) are satisfied as

well.

At this point, only (P20) remains to be shown. It is

worthwhile to note that we always have,

b1(2,3) = b2(1,3) = b3(1,2). (145)

This is because properties (P17)-(P19) together imply that

b1(2,3) + b2(1,3) = b1(2,3) + b3(1,2) = b2(1,3) + b3(1,2)

and thus the three components must be equal. If b1(2,3) =
b2(1,3) = b3(1,2) = 0, then (P20) can be neglected. Otherwise,

we continue the process from Step 11.

Step 11: Since ⟨B3(1,2)⟩ ⊂ ⟨[U1,U2]⟩ as noted above, let

us uniquely represent B3(1,2) in the basis of ⟨[U1,U2]⟩
according to (P14) as,

B3(1,2) = B123R1 + B12R2 + B13R3 + B23R4

+ B1(2,3)R5 + B1cR6 + B2(1,3)R7 + B2cR8 (146)

where R1 to R8 are Fq matrices with appropriate sizes.

In particular, from (145) it follows that R5 and R7 are square

matrices. A key goal in the remainder of the proof will be to

show that R5 and R7 are invertible.

First we claim that R6 and R8 must be zero matrices.

We prove this by contradiction. Suppose R6 is not the zero

matrix, say its first column is a non-zero vector r, then B1cr ̸=
0 will lie in ⟨[U2,U3]⟩. However, by construction, rk(B1c ∩
[U2,U3]) = rk(B1c ∩U1 ∩ [U2,U3]) = rk(B1c ∩U1(2,3)) =
0, meaning that ⟨B1c⟩ and ⟨[U2,U3]⟩ are independent spaces.

This completes the proof by contradiction, confirming that
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R6 is a zero matrix. Similar argument is true for R8 due

to symmetry. Thus, we have

B3(1,2) = B123R1 + B12R2 + B13R3 + B23R4

+ B1(2,3)R5 + B2(1,3)R7. (147)

We now claim that R5 and R7 have full column rank, i.e., they

are invertible square matrices. The proof is by contradiction as

well. Suppose R5 does not have full column rank, then there

exists a non-zero vector ‘a’ such that R5a = 0, which then

implies that

(B3(1,2) − B123R1 − B13R3 − B23R4)
︸ ︷︷ ︸

∈⟨U3⟩

a

= (B12R2 + B2(1,3)R7)
︸ ︷︷ ︸

∈⟨U2⟩

a ≜ b. (148)

Since B3(1,2),B123,B13,B23 are disjoint submatrices of the

basis matrix for ⟨U3(1,2)⟩ according to (P10), they are linearly

independent by construction. It follows that,
1) (B3(1,2) −B123R1 −B13R3 −B23R4) has full column-

rank equal to b3(1,2). This is because if on the contrary,

there exists a non-zero vector z such that (B3(1,2) −
B123R1 − B13R3 − B23R4)z = 0, then B3(1,2)z ∈
⟨[B123,B13,B23]⟩. Since B3(1,2) has full column rank

and z ̸= 0, this means ⟨B3(1,2)⟩ has non-trivial

intersection with ⟨[B123,B13,B23]⟩, contradicting their

linear independence.

2) (B3(1,2) − B123R1 − B13R3 − B23R4)a ≜ b ̸= 0,

because of the previous observation and because a is a

non-zero vector.

3) b ̸∈ ⟨[B123,B23]⟩ = ⟨U23⟩, because if b ∈
⟨[B123,B23]⟩ then the non-zero vector B3(1,2)a = b +
B123R1a + B13R3a + B23R4a ∈ ⟨[B123,B23,B13]⟩,
which is a contradiction because B3(1,2),B123,B13,B23

are linearly independent.

4) b ∈ ⟨U3⟩. This follows from (148). Specifically, since

B3(1,2),B123,B13,B23 are all submatrices of the basis

matrix for ⟨U3⟩ according to (P13), and b is their linear

combination, this implies that b ∈ ⟨U3⟩.
5) b ∈ ⟨U2⟩. This also follows from (148) by similar

reasoning.

6) From enumerated items 4 and 5 above, we have, b ∈
⟨U2⟩ and b ∈ ⟨U3⟩, and thus b ∈ ⟨U2⟩∩⟨U3⟩ = ⟨U23⟩,
which contradicts item 3.

The contradiction proves the desired result that R5 has full

column rank, i.e., it is an invertible square matrix. Similarly

we can prove that R7 has full column rank, also an invertible

square matrix. The last three steps hinge on this property.

Step 12: Redefine B3(1,2) as

B
new
3(1,2) = B

old
3(1,2) − B123R1 − B13R3 − B23R4.

(149)

Step 13: Redefine B2(1,3) as

B
new
2(1,3) = B

old
2(1,3)R7 + B12R2. (150)

Step 14: Redefine B1(2,3) as

B
new
1(2,3) = B

old
1(2,3)R5. (151)

Since R5 and R7 are invertible square matrices, it follows

by (P6) and (P7) that B
new
1(2,3), B

new
2(1,3) and B

new
3(1,2) are also

feasible choices in Steps 5,6, and 7. Thus, (P8)-(P19) are still

satisfied after B1(2,3), B2(1,3) and B3(1,2) are replaced with

B
new
1(2,3),B

new
2(1,3),B

new
3(1,2), respectively. However, because of the

last three steps and (147), (P20) is now satisfied as well with

B
new
1(2,3),B

new
2(1,3),B

new
3(1,2), i.e.,

B
new
3(1,2) = B

new
2(1,3) + B

new
1(2,3). (152)

This concludes the proof of Lemma 2. □

APPENDIX D

COMPARISON OF LEMMA 2 TO THE CHANNEL

DECOMPOSITION OF [55]

Reference [55, Chapter 3] explores the DoF of a 3 user

MIMO broadcast channel where the transmitter has m
antennas, and the kth receiver has nk antennas, k ∈ [3]. The

channel is specified by Y1 = H1X +Z1, Y2 = H2X +Z2 and

Y3 = H3X + Z3, where X ∈ C
m×1 denotes the input of

the channel and Yk ∈ C
nk×1, k ∈ [3] denotes the output of

the broadcast channel at the kth receiver. Hk ∈ C
nk×m, k ∈

[3] denotes the channel matrix between the transmitter and

the kth receiver. Z1, Z2 and Z3 are independent Gaussian

noise vectors with zero mean and identity covariance matrix.

There are independent messages desired by various subsets

of receivers. As apparent from the high level description, the

overall 3 user MIMO BC DoF question does not allow any

direct mapping to our 3 user LCBC capacity question, e.g.,

the LCBC formulation has no notion of channel matrices,

all users receive the same broadcast symbols, whereas the

MIMO BC problem has no notion of side-information or linear

computations.

What connects the two problems is that they both involve a

decomposition of 3 subspaces. In the LCBC, the 3 subspaces

of interest are ⟨U1⟩, ⟨U2⟩, ⟨U3⟩ as in Lemma 2. In the

MIMO BC the corresponding subspaces are ⟨N1⟩, ⟨N2⟩, ⟨N3⟩,
defined as the null spaces of the channel matrices HT

1 , HT
2 ,

HT
3 , respectively. The decompositions parallel each other very

closely. Intuitively, even though the context surrounding these

subspaces is quite different in each problem, the subspaces

are similar mathematical objects, so it makes sense that they

should have similar properties, e.g., similar decompositions.

The following table establishes a one-to-one correspondence of

the subspace decompositions in the two settings. The notation

in the right column of the table follows the definitions in [55].

A distinction is apparent in the first and last rows of

the table. According to the first row, [55] assumes that the

three subspaces have empty intersection, whereas Lemma 2

accounts for this space with the basis representation B123.

On the other hand, according to the last row, Lemma 2

assumes the complement of the span of three subspaces is

empty, whereas [55] accounts for this space with the basis

representation V123. This distinction arises mainly because

in the LCBC setting the complement of span of the three

spaces is uninteresting (data dimensions that are neither known

nor desired by any user), whereas in the MIMO BC the

intersection of the three nullspaces is similarly uninteresting
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TABLE I

CORRESPONDENCE BETWEEN LEMMA 2 AND

THE CHANNEL DECOMPOSITION IN [55]

(transmit dimensions that are nulled at every receiver), and

each problem naturally eliminates the uninteresting spaces for

simplicity. The distinction is not significant, however, since

the omitted spaces can be trivially included. A bit more

significant distinction that is not apparent from the table is that

as an additional feature, Lemma 2 chooses the basis matrices

B1(2,3),B2(1,3),B3(1,2) carefully to satisfy the matrix-sum

condition B1(2,3) + B2(1,3) = B3(1,2), which facilitates code

design in the LCBC. Such an explicit specialization of bases

is not considered by the corresponding construction in [55].

Setting aside these finer distinctions, it is quite remarkable

that the subspace decompositions in [55] and Lemma 2,

obtained independently in different contexts, turn out to be

in one-to-one correspondence. The one-to-one correspondence

constitutes strong evidence of the fundamental significance

of the decomposition, as well as a verification of the same

concept from two perspectives.

While the two decompositions are intuitively similar, there

are several underlying technical details that prevent the direct

application of the decomposition in [55] to the LCBC problem.

Note that the proof in [55, Sec. 3] relies on the existence of

an orthogonal complement, i.e., a linear subspace that is both

orthogonal and complementary to a given linear subspace. The

existence of an orthogonal complement is guaranteed over C,

but not over Fq. For instance, self-orthogonality is a prominent

theme in error correction code design over finite fields.

Removing the requirement of orthogonality and just using

any complement space instead does not automatically resolve

the issue, because the complement space needs to be chosen

carefully to achieve the correct alignment of spaces. The

orthogonality of the complement space helps to achieve the

desired alignment in the proof of [55, Sec. 3]. Over Fq, since

we are not guaranteed orthogonal complements, this choice

is non-trivial). This is important because the alignment aspect

of subspaces (any two subspaces contain the third) is what

makes the subspace decomposition non-trivial. Furthermore,

the proof of correctness of the subspace decomposition in [55,

Sec. 3] applies to almost all spaces, since the argument relies

on the values taken by ranks almost surely. Over arbitrary Fq,

an ‘almost-surely’ guarantee is not meaningful. Indeed, the

proof of correctness of the decomposition is shown for all

realizations in Lemma 2.5

Let us introduce a simple setup to further illustrate

these points. Consider the following three (complex) channel

matrices H1, H2, H3.

H1 =

[
1 0 0
0 1 0

]

, H2 =
[
0 0 1

]
, H3 =

[
1 1 0
0 0 1

]

.

(153)

Denote N (A) as the nullspace of A, i.e., the set of X such

that AX = 0. Let Nk, k ∈ {1, 2, 3} be a basis (written in

columns vectors) of N (Hk), i.e.,

N1 =





0
0
1



 , N2 =





1 0
0 1
0 0



 , N3 =





1
1
0



 . (154)

Let ⟨A⟩ denote the linear subspace spanned by the columns

of A. For example, ⟨N1⟩ = N (H1). A ∩ B denotes a basis

that spans the subspace ⟨A⟩ ∩ ⟨B⟩. In addition, if ⟨A⟩ is a

subspace of ⟨U⟩, then let A⊥
U denote a basis of the intersection

of N (AT ) with ⟨U⟩. It follows that AT A⊥
U = 0 and rk(A) +

rk(A⊥
U ) = rk(U). Note that for A defined in C, [A, A⊥

U ] spans

⟨U⟩. Thus, A⊥
U is the ‘orthogonal complement’ of A (within

the subspace ⟨U⟩). In particular, ⟨A⟩ and ⟨A⊥
U ⟩ have no non-

trivial intersection. However, this is not always true in finite

fields, e.g, A = [1, 1]T ∈ F
2×1
2 , and A⊥ = [1, 1]T = A.

Using the same notation as in [55, Sec. 3], let us define

H123 ≜





H1

H2

H3



 =









1 0 0
0 1 0
0 0 1
1 1 0
0 0 1









,

H12 ≜

[
H1

H2

]

, H13 ≜

[
H1

H3

]

, H23 ≜

[
H2

H3

]

. (155)

With these definitions, let us apply the decomposition

method in [55, Sec. 3.4.6] on N1, N2, N3. A summary of the

steps is given below.

1) Find V1 = N2 ∩ N3 as a basis of N (H23).
2) Find V2 = N1 ∩ N3 as a basis of N (H13).
3) Find V3 = N1 ∩ N2 as a basis of N (H12).
4) Find V13 as a basis of the orthogonal complement of

⟨[V1, V3]⟩ within ⟨N2⟩.
5) Find V23 as a basis of the orthogonal complement of

⟨[V2, V3]⟩ within ⟨N1⟩.
6) Find V12 as a basis of the orthogonal complement of

⟨[V1, V2]⟩ within ⟨N3⟩.
7) Find independent bases V13X , V12X , V12R, V13R, V23R by

(3.43) - (3.47) of [55].
By Steps 1-3,

V1 = N2 ∩ N3 =
[
1 1 0

]T
, (156)

V2 = N1 ∩ N3 = [ ], (157)

V3 = N1 ∩ N2 = [ ]. (158)

5It is noteworthy that the proof of Lemma 2 also extends to the field of
complex numbers. The proof is based on linear independence/dependence of
subspaces which holds over both Fq and C.
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At this point, note that the next step, which is to construct V13

does not work. According to [55] (3.38),

V13 = (HT
123H123)

−1HT
123(H123[V1, V3])

⊥
H123N2

, (159)

but (HT
123H123) is not invertible although H123 has full

column rank 3. This is because the orthogonal complement of

H123 has nontrivial intersection with itself. This can happen

in Fq but not in C.

Alternatively, if we use the implicit definition, [55, (3.37)],

we may avoid the inversion of HT
123H123, but a similar

problem will again emerge. [55, (3.37)] requires that

H123V13 = (H123[V1, V3])
⊥
H123N2

, (160)

which is a basis of the orthogonal complement of

⟨H123[V1, V3]⟩ within the subspace ⟨H123N2⟩. Note that

H123[V1, V3] =
[
1 1 0 0 0

]T
(161)

and

H123N2 =

[
1 1 0 0 0
1 0 0 1 0

]T

. (162)

It is readily verified that the only solution to

(H123[V1, V3])
⊥
H123N2

= [1, 1, 0, 0, 0]T . Therefore,

we obtain that H123V13 = [1, 1, 0, 0, 0]T . This gives us

V13 = [1, 1, 0]T = V1, which is linearly dependent on V1.

However, V13 is required to be linearly independent of V1 in

Step 4.

Next let us consider Step 7. At a high level, the

motivation of Step 7 is that the three spaces V13, V12

and V23 are not independent in general and therefore

a finer decomposition is needed. In [55], 6 subspaces

are introduced, namely V13X , V13R, V12X , V12R, V23X , V23R,

so that [V13X , V13R] spans ⟨V13⟩, [V12X , V12R] spans ⟨V12⟩,
and ⟨[V23X , V23R]⟩ spans ⟨V12⟩. Note that these subspaces

identified by the algorithm have such properties that

• [V13X , V13R, V12X , V12R, V23R] are independent and span

⟨[V13, V12, V23]⟩. Besides, [V∗∗X , V∗∗R] spans ⟨V∗∗⟩, for

∗∗ ∈ {13, 12, 23}.

• In addition, V23X is linearly representable by

[V13X , V12X ], i.e., ⟨V23X⟩ ⊂ ⟨[V13X , V12X ]⟩. Also,

⟨V12X⟩ ⊂ ⟨[V13X , V23X ]⟩ and ⟨V13X⟩ ⊂ ⟨[V12X , V23X ]⟩.
• V13X , V12X , V23X are aligned in a way such that

⟨H1V13X⟩ = ⟨H1V12X⟩, ⟨H2V12X⟩ = ⟨H2V23X⟩ and

⟨H3V13X⟩ = ⟨H3V23X⟩.
The critical alignment is the second one, i.e., we need

V13X , V12X , V23X such that each one is contained in the span

of the other two. Let us see what happens if we replace the

‘orthogonal complement’ space (which may not exist over Fq)

with any ‘complement’ space (which do exist over Fq). The

following toy example shows that simply replacing ‘orthogonal

complement’ with ‘any complement’ may not work. Suppose

we are given,

N1 =





1 0
0 1
0 0



 , N2 =





1 0
1 1
0 1



 , N3 =





1
1
1



 , (163)

with entries all defined in F2. It follows by definition that,

V1 = N2 ∩ N3 = [ ], V2 = N1 ∩ N3 = [ ],

V3 = N1 ∩ N2 =





1
1
0



 . (164)

Next, say we choose the complements (not necessarily

orthogonal) as,

V13 =





0
1
1



 , V12 =





1
1
1



 , V23 =





0
1
0



 , (165)

so that [V1, V3, V13] span ⟨N2⟩, [V1, V2, V12] span ⟨N3⟩,
and [V2, V3, V23] span ⟨N1⟩. Such an attempt to translate

Steps 1 – 6 to the finite field case does not work because

now we see that [V1, V2, V3, V13, V12, V23] are not linearly

independent. In particular, with this choice there is no non-

trivial V13X , V23X , V12X so that any one is contained in the

span of the other two. What this shows is that the complement

spaces V13, V12, V23 need to be chosen carefully. The proof

in [55] does not face this problem, because orthogonal spaces

and complement spaces are compatible for complex numbers

and therefore calculations of orthogonal complements help to

identify the appropriate V13, V12, V23. Over Fq this does not

work. Fortunately, there does exist a solution to [V13, V12, V23]
so that such non-trivial V13X , V23X , V12X can be found (see

Steps 11–14 in Appendix C for the details of this key aspect

of the proof in the general case). Indeed, with a more careful

choice of subspaces we have,

V13 =





0
1
1



 , V12 =





1
1
1



 , V23 =





1
0
0



 , (166)

V13X =





0
1
1



 , V12X =





1
1
1



 , V23X =





1
0
0



 , (167)

and then

V13R = V12R = V23R = [ ]. (168)

Thus, following our proof we successfully found the

V13X , V13R, V12X , V12R, V23X , V23R that satisfy the desired

(first two) properties described in Step 7.
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