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Abstract—The K User Linear Computation Broadcast
(LCBC) problem is comprised of d dimensional data (from
Fq), that is fully available to a central server, and K users,
who require various linear computations of the data, and have
prior knowledge of various linear functions of the data as
side-information. The optimal broadcast cost is the minimum
number of g-ary symbols to be broadcast by the server per
computation instance, for every user to retrieve its desired
computation. The reciprocal of the optimal broadcast cost is
called the capacity. The main contribution of this paper is
the exact capacity characterization for the K = 3 user
LCBC for all cases, i.e., for arbitrary finite fields IF,, arbitrary
data dimension d, and arbitrary linear side-informations and
demands at each user. A remarkable aspect of the converse
(impossibility result) is that unlike the 2 user LCBC whose
capacity was determined previously, the entropic formulation
(where the entropies of demands and side-informations are
specified, but not their functional forms) is insufficient to
obtain a tight converse for the 3 user LCBC. Instead, the
converse exploits functional submodularity. Notable aspects of
achievability include sufficiency of vector linear coding schemes,
subspace decompositions that parallel those found previously
by Yao Wang in degrees of freedom (DoF) studies of wireless
broadcast networks, and efficiency tradeoffs that lead to a
constrained waterfilling solution. Random coding arguments are
invoked to resolve compatibility issues that arise as each user
has a different view of the subspace decomposition, conditioned
on its own side-information.

Index Terms— Capacity, coded

computation.

broadcast, index coding,

I. INTRODUCTION

ECENT years have seen explosive growth both in
the number of devices connected to communication
networks, as well as in the amount of data generated, shared,
and collaboratively processed by these devices. With machine
communication expected to dominate human communication,
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future communication networks will increasingly be used in
the service of computation tasks [1]. Along with the processing
power of connected devices, a key determining factor of
the potential of these ‘computation networks’ will be the
fundamental limit of their communication-efficiency. Despite
a multitude of advances spanning several decades [2], [3], [4],
[51, 161, [7], [8], [9], [10], [11], [12], [13], [14], [15], the capac-
ity limits of computation networks remain largely unknown.
Remarkably, this is the case even in the most basic of scenarios
such as computational multiple access and broadcast, the
presumptive starting points for developing a cohesive theory
of computation networks. It is also noteworthy that many
applications of recent interest, such as coded caching [16],
[17], [18], private information retrieval [19], [20], coded
MapReduce [21], distributed storage exact repair [22], [23],
[24], index coding [25], [26], coded computing [27], [28],
data shuffling [29], federated learning [30] and secure
aggregation [31], are essentially linear computation multiple
access (LCMAC) or broadcast (LCBC) settings with additional
application-specific constraints. Future developments, say in
networked VR/AR technology [1], [32], [33], [34], [35], [36],
will similarly need linear broadcast and multiple access com-
putational networks for coordination and synchronization [37],
[38], [39] of users’ perspectives across space, typically
computed as linear projections of real-world coordinates.
Evidently, beyond their significance as building blocks,
LCMAC/LCBC networks are important in and of themselves.

The collaborative, task-oriented, and interactive character
of computation networks manifests in data dependencies, and
an abundance of side-information accumulated at each node
from prior computations on overlapping datasets. Both data
dependencies and side-information significantly impact the
capacity of computation networks. Furthermore, because of the
inherently algorithmic character of machine communication,
the underlying structures of data dependencies and side-
information are often predictable, and may be exploited in
principled ways to improve communication efficiency. Indeed,
both of these aspects are central to the computation broadcast
(CBC) problem, an elemental one-to-many computation
network studied recently in [40]. The CBC setting is comprised
of data stored at a central server, and multiple users, each of
whom is given some function of the data as side-information
and wishes to retrieve some other function of the data. The
goal is to find A*, which is the least amount of information per
computation that the server must broadcast such that all the
users are able to compute their respective desired functions.
The capacity of CBC is defined as C' = 1/A*.
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Fig. 1. The ¢*" instance of the LCBC(IFq,K, d, (mx, mi)ke(k]

(Vk,V;c)ke[K]), ¢ e€N.

The main result of [40] is an exact capacity characterization
for K = 2 user linear computation broadcast (LCBC),
where each user’s demand and side-information are linear
functions of the data. The K wuser LCBC problem,
illustrated in Figure 1, is specified by the parameters
(Fq, K, d, (mi, m},)ke k], Vi, Vi)ke[x))» namely the finite
field F,;, the number of users K, the data dimension d, matrices
Vi € ]Ffllxmk‘ that identify the my dimensions of User k’s

demand, and matrices V) € ngm;ﬂ that identify the m,
dimensions of User k’s side-information, for all k € [K]. The
index ¢ € N in Figure 1 identifies the £*" computation instance,
corresponding to the ¢ instance of the data vector, x(¢) €
F2*!, such that User k, k € [K], wants wi(£) = x”(£)V},
and has w}(¢) = xT(¢)V), as side-information. Following
a typical information theoretic formulation, multiple (say L)
instances may be considered jointly by a coding scheme for
potential gains in efficiency. L is called the batch size and
may be chosen freely by a coding scheme. A coding scheme
that satisfies all the users’ demands across L computation
instances by broadcasting a total of N g-ary symbols, achieves
rate R = L/N, and broadcast cost per computation A =
N/L =1/R. The goal is to find the supremum of achievable
rates (capacity C'), or equivalently, the infimum of achievable
broadcast costs per computation (A* = 1/C) across all
feasible coding schemes. We refer the reader to Section II to
clarify notational aspects, and to Section III for details of the
problem formulation. For K = 2 users, the O()timal broadcast

cost is found in [40] to be A* = ([Vi, Vi]) —

Ky (V1) 41k ([V1, V2, V1, Vi) =1k ([Vi, VI, V1)) ), where
tky () is the matrix rank function over F,, and the max is over
(i) € {(1,2), (2. )}.

The scope of LCBC includes problems such as index
coding [25], [41], [42] that have been extensively studied and
yet remain open in general. While many instances of index
coding have been solved from a variety of perspectives [26],
[43], [44], [45], [46], [47]db@BlasiakKleinbergLubetzky2010
, little is known about the optimal broadcast cost for the
general index coding problem. It is shown in [25] that for
scalar linear index coding, the optimal broadcast cost can be
found in general by solving a min-rank problem. The min-rank
solution has been extended to index coding with coded side-
information in [48] and is not difficult to further generalize
to LCBC. However, on top of the difficulty of matrix rank
minimizations (known to be NP-hard [49, Thm. 3.1], [50],
[51]), scalar linear coding is only one of many possible coding

max (rk,
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schemes, and it is well known that capacity achieving schemes
need not be scalar or linear, even for index coding [52], [53],
[54]. Thus, finding the capacity of LCBC in general is at least
as hard as solving the general index coding problem.

On the other hand, index coding problems constitute only
a small subset of all possible LCBC instances. The special
cases of LCBC that yield index coding problems are precisely
those where all the columns of V, V. can be represented as
standard basis vectors. Evidently, LCBC allows a significantly
richer research space for developing new insights. This is why
for LCBC, even settings with only 2,3 users are interesting
and insightful, whereas such settings would be trivial for index
coding. The richer space of LCBC problems is particularly
valuable if it is amenable to information theoretic analysis.
Intrigued by this possibility, in this work we explore what
new technical challenges might emerge in the LCBC setting
when we go from 2 to 3 users.

The main result of this work is the exact capacity of the
3 user LCBC for all cases, i.e., for arbitrary IF,, arbitrary
data dimension d, and arbitrary demands and side-informations
Vi, V), for each user, k € {1,2,3}. An explicit expression for
the capacity, C, is presented in Theorem 1, and depends on
the dimensions (ranks) of various unions and intersections of
subspaces corresponding to the users’ desired computations
and side-information. The intuition behind the explicit form
becomes more transparent when it is viewed as the solution
to a linear program, in an alternative formulation of the
capacity result, presented in Theorem 2. The linear program
sheds light on the key ideas behind the optimal coding
scheme. One of these ideas is a decomposition of the
collective signal spaces of the three users (column spans
of the [V}, V] matrices) into distinct subspaces that allow
different levels of communication efficiency. Remarkably, this
decomposition, which is formalized in Lemma 2, closely
parallels (see Appendix D) a corresponding decomposition
previously obtained in degrees of freedom (DoF) studies of
the 3 user MIMO broadcast channel in [55], underscoring
its fundamental significance. Facilitated by the subspace
decomposition, the linear program formulation of Theorem 2
reveals a non-trivial tradeoff between the number of dimen-
sions of broadcast that are drawn from each subspace, and
leads to a constrained waterfilling solution in Section IX-B.
What makes the achievability especially challenging is that
the users have different (seemingly incompatible) views of the
useful information within each subspace depending on their
respective side-informations. Random coding arguments are
invoked to find broadcast dimensions for the optimal scheme
that are useful across the different perspectives. Another
remarkable aspect of the capacity result is that non-linear
schemes are not needed for the 3 user LCBC. While our
optimal schemes make use of both field size extensions
(Section VIII-B) and matrix extensions (Section VIII-E),
they are still vector linear schemes over F,. In contrast,
scalar linear codes were found to be sufficient for the
2 user LCBC in [40]. In terms of the converse bound,’

LA converse bound refers to an impossibility result, i.e., a lower bound on
broadcast cost per computation, or equivalently, an upper bound on capacity.
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an interesting insight emerges from this work regarding
the entropic formulation of the LCBC problem that was
considered in [40]. In the entropic formulation of [40], the data
is assumed i.i.d. uniform, and the entropies of all subsets of
demand and side-information random-variables are specified
as constraints, but their functional forms are not specified.
It was shown in [40] that for the K = 2 user LCBC, these
entropic constraints combined with standard Shannon entropic
inequalities produce a tight converse bound on the download
cost per computation. In contrast, in this work we show
(see Remark 6.1 in Section VI) by a counterexample that the
same approach cannot work for the K = 3 user LCBC, even
if all Shannon and non-Shannon information inequalities are
applied. Instead, in this work a tight converse for the 3 user
LCBC is obtained based on functional submodularity (cf. [56],
[57], also Lemma 3 in this work) that additionally takes into
account the functional forms of the users’ demands and side-
informations.

II. NOTATION

F, is a finite field with ¢ = p" a power of a prime.
The elements of the prime field F,, are represented as Z/pZ,
ie., integers modulo p. The notation Fy!'*"2 represents the
set of my X mo matrices with elements in [F,. For a matrix
M, let (M), denote the IF,-linear vector space spanned by
the columns of M. The subscript ¢ will often be suppressed
to simplify notation when it is clear from the context. The
notation M; N M, represents a matrix whose columns form
a basis of (M;) N (Ms). [My, M| represents a concatenated
matrix which can be partitioned column-wise into M/; and
M,. The rank of M over F, is denoted by rk,(M), and
when written as rk(M) for simplicity, the subscript ¢ is
assumed by default. If rk(M) is equal to the number of
columns of M, i.e., M has full column rank, then we say
that M is a basis of (M). Define a ‘conditional-rank’ notation
as rk(M;|Msy) £ tk([My, M3]) — tk(M>). The notation [n]
represents the set {1,2,--- ,n}. N denotes the set of positive
integers. R denotes the set of non-negative real numbers. C
denotes the set of complex numbers.

III. PROBLEM STATEMENT

A. The General K User LCBC(F,, K, d, (my, M} )ie (k)
(Vi, Vidkeix))

While our focus in this work is exclusively on the
K = 3 user case, in this section let us define the LCBC
problem for the general K-user setting. As noted previously,
the general LCBC problem is specified by the parameters
(IFq, K, d, (my, m})ke[k] (Vk,V;c)ke[K]). There is a stream
of data vectors x(1),x(2),--- that is available at a central
server. For each ¢ € N, x(¢) = (z1(£),--- ,zq(£))T € FI*!
is a d-dimensional vector with elements in F,. There are K
users. For all £ € N, the k" user has side-information w} (¢) =
xT(0)V}, € F"™* and wants wy,(£) = x7 (()V}, € FLxms,

1) Coding Scheme: A coding scheme for the LCBC
is represented by a choice of parameters in the form
of a tuple (L,N,@, (\Ilk)ke[K]). The coding scheme
aggregates L instances of data, collectively denoted as
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X £ (x(1),---,x(L)) € F&*%, and specifies an encoding
function (encoder) ® : F4*L — FY, as well as K decoding

functions (decoders) ¥y, : F) x Fqum’“ — FLm, ke [K].
For compact notation, let us define,

s wi (L) e Fyme (1)
WL(L)T e FEX™e (2)

Wi £ X"V = (wi(1), -
Wi, £ X'V = (wi(1), -

The encoder @ maps the data X to the broadcast information
comprised of N symbols in [y, represented compactly
as S € IF‘{IV, ie.,

®(X)=SeF). 3)

The k" decoder, ¥, allows the k" user to retrieve W, from
the broadcast information S and the side-information W7, i.e.,

Ui(S,W},) =Wy, Vke [K], )

for all realizations of X.

Let us denote the set of all feasible coding schemes as €.
We refer to coding schemes with batch size L = 1 as scalar
(coding) schemes, and those with L > 1 as vector (coding)
schemes.

2) Capacity (C) and Optimal Download Cost per
Computation (A*): The rate of a coding scheme
(L,N,®,(Vy)kex)) € €, is defined as R = L/N
representing the number of computation instances satisfied
by the coding scheme per broadcast symbol.> The supremum
of rates across all feasible coding schemes in € is called the
capacity of LCBC, i.e.,

Cc4 sup L/N. 5)

(LN.®.(F1)rein) €€

Instead of rate R, it is often more convenient to consider its
reciprocal value, the broadcast cost per computation, A =
1/R = N/L. The optimal broadcast cost per computation,
A* is defined as,

A* & inf N/L (6)

(L,N,@,(‘Ilk)ke[K])EC

=1/C. 7

Since A* = 1/C, the problem of characterizing the capacity
C is equivalent to the problem of characterizing the optimal
download cost per computation A*. We will find it more
convenient to state and prove results in terms of A* in this
work.

3) Data Distribution, Entropy: Note that the LCBC
problem does not specify any distribution for the data X.
This is because the capacity C' and optimal broadcast cost
per computation A* do not depend on the data distribution.
By definition, any coding scheme (L, N, d, (\Ilk)ke[K]) ec,
while broadcasting no more than N g-ary symbols, must
guarantee successful decoding as in(4) for every realization
of the data, ie., for all ¢?* realizations of X € FZXL,
regardless of what distribution X follows, and even if X

2Viewing each g-ary broadcast symbol as one channel-use, the rate can be
equivalently viewed as the number of computation instances satisfied by the
coding scheme per channel-use.
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follows no distribution. This is significant for computation
tasks. Recall that conventional communication scenarios are
comprised of independent messages that can be compressed
prior to communication to reduce the size of the task from
the outset and subsequently uncompressed upon success-
ful reception. In principle optimal compression produces
uniformly distributed data (otherwise further compression
would be possible), thus justifying the common assumption
that messages are uniformly distributed. For the LCBC,
however, while the desired computation is a linear function
of the original uncompressed data, it may no longer be
linear after compression. Thus, compression to uniformly
distributed data cannot be taken for granted. Furthermore, it is
often the case that the data distribution is either unknown,
or the data is truly arbitrary. Therefore, assuming that data
follows a particular distribution may be overly restrictive
for computation problems. Such considerations motivate the
conservative formulation presented above, which requires
strong (maximum rather than average) communication cost
guarantees, i.e., any achievable coding scheme must guarantee
that a broadcast of N symbols suffices for every data
realization, regardless of the distribution of X.

On the other hand, it will be occasionally useful, primarily
as a thought-experiment, to consider hypothetically what might
happen if the data followed an i.i.d. uniform distribution.
Similar to genie-aided proofs, such thought-experiments are
useful to construct converse bounds (impossibility results)
by the following reasoning. Given any coding scheme
(L,N,@,(\Ilk.)ke[;(]) € €, we wish to find lower bounds
on the broadcast cost N. As a thought-experiment, suppose
the data X follows a distribution Px(x) and this coding
scheme is used. This imparts a corresponding distribution to
the broadcast symbol S, say Ps(s). However, since S € FY
by the definition of the coding scheme, the entropy H(S) <
log, |Fév | = N in g-ary units, which produces a lower bound
on the broadcast cost, i.e., N > H(S). Thus any choice
of Px(x) facilitates entropic analysis and leads to a lower
bound on N, by calculating the entropy of S produced by
the coding scheme. The quality of the bound depend on the
choice of Px(x). For example, if we assume the data is
deterministic, then so is S, i.e., H(S) = 0, leading to the
bound N > 0, which is not very useful. Uniform distributions
are particularly interesting because they tend to produce good
converse bounds. In preparation for the converse arguments in
the sequel, it is useful to recall the following facts.

1) For a random variable Z, that takes values in a set Z

according to the probability mass function pyz(z), the
entropy H(Z) in g-ary units is defined as,

sz

z2EZ

z)log, p.(2). ®)

2) If Z is iid. uniform over F*¥ then H(Z) =
log, [F4*¥| = log,(¢"") = pv in g-ary units.

3) If Z is i.i.d. uniform over IFf;X” and M € ngg is a
deterministic matrix, then

H(Z'M) = v -1k, (M) ©)
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in g-ary units. This is seen as follows. Let Z,;

denote the " column of Z. Then H(ZTM) =

H(ZEM, ZLM, - ZLM) = Y, H(Z5M) @
S tkg(M) = v -1k, (M). The step labeled (a) is a
direct application of [40, Lemma 2].

4) If Z is i.i.d. uniform over F{*" and M

]ng@ are deterministic matrices, then

H(ZT"M, | Z" My) = v(tk,([My, Ms]) — tk,(M))
=UV- rkq(Ml | MQ) (10)

S Ff;x&, M, €

in g-ary units, where we used the conditional-rank
notation rk,(M; | M) as defined in Section IL
Using (9), this is seen as follows: H(ZTM, | ZT M) =
H(ZTM,, ZTM,) — H(ZTM,) = H(ZT[M,, My)]) —
H(ZTMs) = v - tky([Mq, Ms]) — v - tky(Mz) = v
tky (M7 | Ma).

B. Signal Spaces U;,U,,U; and Their Intersections

Recall that in this work our focus is on the LCBC with K =
3 users, i.e., the most general setting that we consider in this
work is LCBC (]Fq, 3, d, (my, m)) k), (Vi V;c)ke[?)]). Letus
define the spaces Uj, Uy, Us, associated with the 3 users,
as follows,

Uy £ [V}, Vy], Uy £ [V, V], Uz £ [V], V3], (1)

and also define the following intersections,

Uy £U;NU;, Vi, j € [3],i # , (12)
Uiz3 £ U NU, N Us, (13)

Ui = 0N [U;, Uy,
V(i, j, k‘) S {permutations of (1, 2, 3)} (14)

Recall that the subspaces (U;) refer to the column spans of
the corresponding matrices. These subspaces will be essential
to the understanding of the 3 user LCBC.

IV. PRELIMINARY STEP: SUBSPACE DECOMPOSITION

For problems involving a vector space, the choice
of a suitable basis representation is often an important
preliminary simplification step. When multiple vector spaces
are involved, it is similarly useful to explicitly partition
them into independent subspaces that fit the needs of the
problem. For the 3 user LCBC, there are three vector
spaces of interest, namely (Uy), (Us), (Us), as defined in
Section III-B. A suitable decomposition of these spaces into
independent subspaces corresponding to various intersections
is an important preliminary simplification that is the focus of
this section. To put it concisely, we need the following two
lemmas regarding linear subspaces (U;), (Usa), (Us).

Lemma 1 (2-space decomposition): There exist 3 matrices,
Bi2,B1. and By, such that Bjs is a basis of (Ujs),
[B12,B1.] is a basis of (Uj), [B12,Ba.] is a basis of (Us),
and [B12,B1,Bs] is a basis of ([Uq, Us)).

Note that Lemma 1 also implies the following dimension
formula,

I'k(Ul) + I'k(UQ) = I‘k(Blg) + I'k(Blc) + rk(Blg) + I'k(BQC)
:rk(U1 ﬁUg) +rk([U1,U2}). (15)
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O (@’ C

Fig. 2. Decomposition of (Uy),
respective bases.

(Ugz) into 3 subspaces labeled by their

A common proof of Lemma 1 from a constructive perspective
(e.g. [58, Thm. 3, Ch. 3]) is based on incrementally growing a
basis representation, and is summarized as follows. First one
finds By € Fdxrk(UmU2) as a basis of (Uy N Us). Then,
by the basis extension theorem, one can find a submatrix
B.. € IFdxrk(Ul) of Uy such that [Bio,B;.] spans (Uy),
and similarly a submatrix By, € Fdxrk(m) of Uy such
that [B12, Bo.] spans (Us). Note that <BQC> only has trivial
intersection with (U;) because otherwise Bo.v + Uyv/ =
0 = By.v € (Byy) where v,v’ are non-zero vectors,
which contradicts that [Bqg,Bs.] form a basis. Therefore,
[B12,B1., Ba.] is a basis of ([Uy, Us]) since it also spans
(U1, Uz)). O

Figure 2 illustrates the decomposition of (U;) and (Us)
by identifying 3 subspaces, each labeled by its basis
representation.

The following lemma non-trivially extends the argument to
3 linear subspaces.

Lemma 2 (3-space decomposition): There exist 10 matrices,
Bi23, B12, Bis, Bas, By(a3), Ba1,3), B3(1,2), Bic, Bace,Bse,
such that the following properties (P1)-(P20) are satisfied.

(P1) Byag is a basis of (Uja3),

(PZ) [B123,B12] is a basis of <U12 s

(P3)
(P4)
(Ps) [

(P6) [Ui2,Uas)),
(P7) B123,B13,B23} is a basis of <[U13,U23]>,

[B123, B13] is a basis of (Uys),
[
[
[
[
(P8) [Bi23,B12,B13,By(2,3)] is a basis of (Uy(23)),
[
[
[
[
[

)
)
B123,Bos] is a basis of (Uas),
Bi23,B12, B3] is a basis of ([Ujo, Uss)),
(

B123,B12,B23} iS a basis Of

(P9)
(P10)
(P11)
(P12)
(P13)
(P14)

Bi23,B12,Bas, By 5] is a basis of (Uy(y 3y),

Bia3, B13, Bag, B3(1,2)] is a basis of (Us(y 2)),

Bi23, Bia, Bi3, By(2,3), B1c] is a basis of (Uy),

Bi2s, Bi2, Baz, By(y 3), Bac] is a basis of (Us),

Bi23, B13, Boz, B3y 2), B3] is a basis of (Us),

[Bi23, B12, B13, Bos, Bi(23), Bo(1,3), B1e, Bae]  is  a

basis of ([Uy,Us]),

(P15) [Bi23,Bi2,B13,B23,B1(23), B3(1,2), Bic, B3] is a
basis of ([Uy,Us]),

(P16) [B123,B12,B13, B2z, Bo(13), B3(1,2), Boc, Bae] is  a
basis of ([Usz, Us]),

(P17) [Bi23,Bi12, B3, B13,B1(23), Bo(1,3), Bic, Bac, Bsc] is a

basis of ([Uy,Us, Us]),
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(P18) [Bi23,Bi2, B3, Bi3,Bi(23), B3(1,2), Bic, Bac, Bc] is a
basis of ([Uy, Uy, Us)),

(P19) [Bi23,B12, Baz, B13, By(1 3), B3(1,2), Bic, Bac, Ba] is a
basis of ([Uy,Us,Us]), and

(P20) By(2,3), Bo(1,3), B3(1,2)
Bi2,3) + Ba1,3) = B3(1,2).
We leave the proof to Appendix C. Figure 3 illustrates the
decomposition of (Uj), (Us), (Us) by identifying 10 sub-
spaces, each labeled by its basis representation.
We conclude this section with the following observations.

have identical size and

Remark 4.1 The decomposition of 2 linear subspaces
in Lemma 1 resembles the decomposition of 2 sets, e.g.,
the inclusion-exclusion principle and Venn’s diagrams are
reflected in the decompositions. However, the set-theoretic
analogy is no longer true for 3 linear subspaces, as in
the decomposition the 3 yellow spaces are not mutually
independent. Appendix B provides more discussion regarding
this property.

Remark 4.2 Identifying suitable intersecting subspaces
within vector spaces is also a recurrent theme in the degrees of
freedom (DoF) studies of wireless networks, e.g., to simplify
the design of interference alignment schemes in MIMO
settings [59], [60]. In particular, the DoF study of a 3 user
wireless MIMO BC setting in the PhD thesis of Wang [55,
Ch. 3] provides a subspace decomposition that very closely
parallels Lemma 2. The correspondence and the distinctions
between the two are discussed in Appendix D, as are the
limitations that prevent the proof in [55, Ch. 3] from carrying
over directly to our finite field setting. An independent proof of
Lemma 2 for our setting is provided in Appendix C. Notably
the proof in Appendix C only relies on arguments that hold
both over finite fields as well as over the field of complex
numbers, thereby unifying the two settings.

Remark 4.3 Lemma 2 ignores the details of how each
U, is composed of V; and V}. Depending on their own
side-information and demand, each user will have a different
conditional view of these subspaces. This most essential aspect
of the LCBC problem is not reflected in the decomposition.
Thus, it is worthwhile to note that the decomposition is
primarily a preparatory step, the main technical challenge from
both achievability and converse perspectives remains focused
on accounting for the distinct side-information and demand
structures across users. See also Remark 5.2.3.

V. RESULTS

A. A Closed Form Capacity Expression for the 3 User LCBC

As our main result, the following theorem states the capacity
of the 3 user LCBC in closed form.

Theorem 1: For the K = 3 user general LCBC, i.e.,
LCBC(]FQ,?) d, (mk,mk)ke[ 3]s (Vlka)ke[B]) the capacity
C = 1/max{A1, Az}, equivalently, the optimal broadcast
cost, A* = max{Aj, Ay} where,

A, £

{a7F), ne{12},

(16)

max
(%,3,k)€{permutations of (1,2,3)}
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Fig. 3.

The top of the figure shows the decomposition of (Uy), (Us), (Us) into 10 subspaces that are labeled by corresponding bases as specified

in Lemma 2. The five blue circles in the bottom row each show (Uj), and highlight the subspaces (Ui23), (Ui2), (U13), {[Ui2,Ui3]) and (U1(273>>,

respectively. The compact notations, Uj23, Uj2, U1(2,3) etc., are defined in Section III, for example U2 = U; N Uy and U1(273)

S Ui n [UQ,U3].

The three subspaces highlighted as dashed yellow regions are not independent, the span of the union of any two of them contains the third.

and

(1>

ATE L (Vi | V1) +1k(Va | V) +1k(Vs | V5)
—1k(Uy; | V5) = tk(Upgi gy | Vi),

tk(V1 | V) +1k(Va | V) 4+ 1k(V3 | V5)

a7

(1>

ALk
1
-5 (?elﬁ (rk(Unas | V})) +1k([Uy;, Ui | Vi)

+ rk(Uj(i,k) | V;) + l"k(Uk(w') ‘ V;C))
(18)

Recall the conditional-rank notation defined in Section II,
tk(X|Y) £ rk([X, Y]) — k(Y"). The proof of Theorem 1 will
be presented along with the proof of the upcoming Theorem 2,
in Sections VII, VIII, and IX according to the proof structure
specified in Section V-C.

Remark 5.1.1 The bound A* > A; follows from a
generalization of the converse bound of the 2 user LCBC,
and is similar to the genie-aided converse bound of coded
caching (e.g., [61, (71)-(75)]). However, unlike the 2 user
LCBC, this bound is not sufficient for the 3 user LCBC,
which is why we also need the bound A* > A,. The bound
A* > A, encapsulates the new technical challenge in the
3 user LCBC from the converse perspective (see Section VII).

Remark 5.1.2 The capacity of the 3 user LCBC can
be expressed in various equivalent forms. The closed form
presented in Theorem 1 emerges naturally from the converse
bounds. Indeed, the converse in Section VII directly produces
two bounds, one each for AY* AY* The achievability
argument on the other hand, takes a different approach
which involves auxiliary parameters (the A, parameters in
Theorem 2) representing various design choices. Optimizing
the design choices amounts to a linear program, the solution
to which yields the same A* as Theorem 1. Even though
the converse and achievability perspectives ultimately lead to
the same A*, their different forms yield different insights.

The achievability perspective in particular yields constructive
insights into the tradeoffs involved in simultaneously satisfying
all 3 users’ demands. This alternative (but equivalent) form of
the capacity result is presented next.

B. An Alternative Expression for the Capacity of the 3 User
LCBC

Theorem 2:

A* = F* (19)

where A* is the optimal broadcast cost for the K = 3 user
general LCBC and F™ is the solution to the following linear
program,

Fre
rk(Vl |V/1) + I‘k(V2|V/2) + rk(V:;‘Vé)

min
A123,A12,A13, 23, A€R Y

—2X123 — A1z — A1z — A2z — A, (20)
such that?
A123 < 1k(Ujas | V5),Vi € {1 2,3}, (21)
Aij + Ar2z < min (tk(Uy; | V7), k(U | Vl))
v(i,j) € {(1,2),(1,3), (22)

(2, )}

Aij + Ak + A2z < 1k([Uyy, U] | V)
v(i,j. k) € {(1,2,3), (2,

A4 Aij 4 Aik + A2 < k(U | Vi),
Y(i, 7, k) € {(1,2,3),(2,1,3),(3,1,2)}. (24)

1,3),(3,1,2)}, (23)

Remark 5.2.1 For the sake of high level intuition, Figure 4
conveys a somewhat oversimplified (the caveat is noted
in Remark 5.2.3) understanding of the conditions (21)-(24) in
Theorem 2. The A, parameters represent the size (dimension)
of signals in various subspaces to be broadcast by the coding

3By definition the indices i and ji are interchangeable.
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A12 + A23

A123
< rk(Ui2 | V1) < k(U2 | V)

Fig. 4.

A1z + A123
< rk(Uis | V})

A+ A1z + A3 + Ai2s
<1k(Uya,3) | V1)

A12 + A1z + 123
< 1k([Us2,Uss] | V])

Intuitive understanding of the constraints (21)-(24). Note that the blue circles in the bottom row of the figure do not show (Uj) per se, rather they

show the space (U1) conditioned on User 1’s side-information, so that the corresponding sizes of all subspaces are represented with conditional ranks after
conditioning on V. Each user will generally have a different perspective due to different impact of conditioning on their respective side-informations, giving

rise to different constraints (21)-(24).

scheme. Depending upon the region they fall in, the subspaces
have different communication efficiencies. For instance, note
that A\jo3 falls in Ujoz, and carries information that is
simultaneously useful for all 3 users. Thus, A\j23 transmitted
dimensions satisfy a total of 3)\;23 dimensions of demand
(A123 per user). Borrowing the classical metaphor, we refer
to the efficiency of such transmissions as 3 birds, 1 stone.
Transmissions corresponding to A;; fall in subspaces U;; and
are simultaneously useful for Users 7 and j, so the efficiency
of such transmissions is similarly referred to as 2 birds,
1 stone. In other words, A;; transmitted dimensions satisfy
2);; dimensions of demand. Transmissions corresponding to
A fall in the three subspaces highlighted in yellow in Figure 3
where we previously noted that any two subspaces are disjoint
but contain the third. What this means is that the coding
scheme needs to send any 2 of the 3 subspaces marked with
A, and the third can be automatically inferred from them.
Thus, a transmission of 2\ dimensions, satisfies a total of 3\
dimensions of demand (A per user), yielding an efficiency of
3 birds, 2 stones.

Remark 5.2.2 In light of the previous remark, now
consider the objective to be minimized in (20), A* =
I'k(V1|V/1) + l‘k(V2|V/2) + I‘k(V3|Vg) — 2)\123 — )\12 — )\13 —
X23 — A. We recognize the sum of the first three terms as
the broadcast cost if the users were to be served separately
and no gain in efficiency was possible by jointly satisfying
multiple demands. Let this be our baseline. Now note that
because 3)\123 dimensions of demand were satisfied with
A123 dimensions of broadcast, the cost-saving incurred relative
to the baseline is 2)\123, which explains the fourth term
that appears as a negative term in the objective. The next
three negative terms are similarly justified because each
Ai; dimensions of transmission satisfies 2);; dimensions of
demand, thus saving \;; relative to the baseline. Finally, for

the )\ term, we recall that a total transmission cost of 2\
dimensions is able to satisfy 3\ dimensions of demand, thus
saving another A in broadcast cost, which explains the last
negative term in the objective function.

Remark 5.2.3 As a caveat, note that the intuitive expla-
nation above ignores a critical aspect of the problem that
remains challenging — namely, each user’s view of useful
dimensions depends on their own side-information, and is in
general different from other users. This is indicated in Figure 4
by noting that the relevant signal spaces for User 1 are not
simply the U, spaces that appear in the decomposition at the
top of Figure 3 and Figure 4. Rather, each user’s view of useful
subspaces is conditional on his side-information. For example,
the same signal space U3 when seen by the Users 1,2, 3,
contains rk(Ujaz | V1), 1k(Uias | V5),tk(Ugaz | V3) useful
dimensions, respectively. Thus, the total number of dimensions
useful to all three users, i.e., the size of \j23 is limited by the
bound in (21). Even with the size of Ai23 constrained in this
manner, finding the broadcast dimension is not trivial because
each user may find a different A\o3 portion of Ujo3 useful to
them. Similar challenges arise in identifying );; dimensions
that are useful to Users ¢ and j, when each user’s perspective
is different, conditioned on their own side-information. Even
greater care has to be taken in identifying the A sections of the
broadcast signal, to ensure that 2 transmissions span the third,
while facing the challenge that the projections of A into each
user’s perspective are distinguished by their different side-
informations.

Remark 5.2.4 Since linear optimizations over polyma-
troidal constraints allow greedy solutions [62] that can
simplify dimensional analysis (see e.g., the DoF study in [63,
Chapter 5]), it is worth noting that the constraints (21)-(24)
do not specify a polymatroidal structure. To verify this with
a toy example, suppose Vi = V5 =V, = [1,1]T and V| =
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V2 =V;3; =0, O]T. Then we have the constraints, Aj23 < 0,
A12 + A2z <0, Az 4+ Az <0 and Mg + Az + Aoz < 1,
which violate the polymatroidal structure.

C. Structure of Proofs

Theorem 1 and Theorem 2 are equivalent alternative forms
of the same capacity result. We organize the proofs of
these two theorems as follows. In Section VII we prove the
converse (lower) bound for the optimal broadcast cost, i.e.,
A* > max{Aj,As}. Then in Section VIII we prove the
achievability (upper) bound A* < F*. Finally in Section IX
we prove that F* < max{Aj, Ay}. The three proofs together
imply that A* = F* = max{A, Az}, thus proving both
Theorem 1 and Theorem 2.

VI. Toy EXAMPLES

In this section, we present simple toy examples that illustrate
some of the ideas discussed previously, such as subspace
decompositions and linear-programming tradeoffs between
schemes with different communication efficiency (birds vs
stones), some ideas that will be important later on in the
construction of the general coding scheme, such as field
extensions, vector coding, and mixing of dimensions, and
some new insights, such as the insufficiency of entropic
structure, and the need for functional submodularity. For these
examples we use specialized notation for simplicity: (W} —
W;),i=1,2,3) to specify the setting, A, B,C, D, E instead
of x1,x9,x3, x4, x5, and Ay instead of A(L).

Example 1 (3 birds, 1 stone): Consider d = 3 dimensional
data XT = (A, B,C) over F3, and (A — B+ C),(B —
A+ C),(C — A+ B)). In other words, User 1 has A and
wants B+C, User 2 has B and wants A+C, and User 3 has C
and wants A+ B. A signal space decomposition as in Figure 3
yields for this example,

Bias Bio | Big | Bos | Bia3) | Bo@3) | B3
A+B+C| — — — A B A+ B
Blc B20 B3C

Note that for simplicity in these examples we indicate B;23 as
A+ B+ C instead of the formal representation as the vector
[1,1,1]7 in the 3 dimensional data universe. The optimal
broadcast cost is A* = 1, achieved with L = 1, N = 1,
)\12 = A23 = )\13 =\ = O, )\123 = ]., by broadcasting
S=(A+B+0).

Example 2 (2 Birds, 1 Stone, Vector Coding, Insufficiency of
Entropic Structure): Consider d = 3 dimensional data X7 =
(A,B,C) over Fs, and (A— B+C),(B— A+(),(C —
A+ 2B)). A signal space decomposition yields,

Bi23 By B3 Bos
— |A+B+C|A+2B+2C | A+2B+C
Bi2.3) | Ba(1,3) | B3(1,2) | Bic | Bac | Bac
The optimal broadcast cost is A* = 1.5, achieved with

L = 2, N = 3, )\123 =\ = 0,)\12 = )\13 = )\23 = 0.5,
by broadcasting S = (A; + By + C1, As + 2By +2Cs, (A1 +
2B1 +Cy) + (A2 + 2By + CQ))
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Evidently, 1.5 dimensions of broadcast satisfy a total of
3 dimensions of demand, as expected from a 2 birds, 1 stone
setting. Also note that this example requires vector coding,
ie., we need L > 1. Most importantly, however, this
example illustrates that unlike the 2 user LCBC, the entropic
formulation of [40] is not enough for the 3 user LCBC. The
following remark elaborates upon this observation.

Remark 6.1 Reference [40] considers an entropic for-
mulation of the LCBC that is summarized as follows.
The data X is assumed to be i.i.d. uniform, W* 2
{W1,W{, - Wg, W} denotes the set of all 2K demand
and side-information random variables, the entropies H (W)
are specified for all 225 — 1 non-empty subsets of random
variables YW C W*, the encoding constraint is represented as
H(S | W*) =0, and the decoding constraints are represented
as H(Wy | S,W}) = 0 for all £ € [K]. Subject to these
entropy specifications, as well as standard (Shannon and non-
Shannon) information inequalities, the goal is to minimize
the entropy H(S). As discussed in Section III-A3, such a
formulation produces a lower bound on the download cost,
as N > H(S), which in turn yields a lower bound on A*.
For the K = 2 user LCBC, this bound turns out to be tight.
Remarkably, however, the same approach does not work for
the K = 3 user LCBC, as we argue based on Example 1 and
Example 2. Although a bit tedious, it is not difficult to verify
that all 26 —1 = 63 entropies H (W) match for Example 1 and
Example 2. For example, consider W = {W/, W3}. Note that
HW) = H(W/{,W3) = H(A,A+ B) = H(A,B) = 2L
in Example 1, and HW) = H(W{,W3) = H(A, A+
2B) = H(A,B) = 2L in Example 2, so both examples
have the same entropy for this /. One can similarly compute
H(W) for all 63 non-empty subsets W C W?* for both
Example 1 and Example 2 and verify that in each case both
examples produce matching entropies. Therefore, since all
the entropic constraints for both examples are identical, and
all Shannon and non-Shannon information inequalities apply
to both examples, the two examples can only produce the
same entropic lower bound on H(S). However, we know that
the two examples have different capacities. Example 1 has
A* =1,C =1 while Example 2 has A* =1.5,C =1/1.5 =
2/3. Since Example 2 requires a strictly stronger bound
(impossibility result) than Example 1 for a tight converse,
it follows that the entropic formulation cannot yield a tight
converse for Example 2. Indeed, the key to the converse bound
A* > 1.5 for Example 2 is the functional submodularity
property [56], [57] that takes into account the functional forms
of the users’ side-information and demands. A converse for
Example 2 is explicitly provided in Section VII-BI.

Example 3 (3 Birds, 2 Stones, the User’s Perspective):
Consider d = 3 dimensional data X7 = (A4, B,C) over
Fy, and ((A — B),(B — C),(C — A)). A signal space
decomposition as in Figure 3 yields,

Bios | Bia | Big | Bos | Bia ) | Bo3) | B3,
“TBlAlC| - [ — 1 -
Blc BQC B?)c
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This coincides with an index coding problem, the optimal
broadcast cost is A* = 2, achieved with L = 1, N = 2,
)\123 = )\12 = )\13 = )\23 = 0,)\ = ]., by broadcasting
S=(A+B,B+0C).

This example also highlights the importance of the users’
individual perspectives conditioned on their side-information.
Without accounting for side-information, the signal space
decomposition of Figure 3 suggests that all the signals reside in
Uj2, U3, Uss, which might suggest 2 birds, 1 stone schemes
with A\j2 = A3 = Ao3 = 0.5 and a download cost of
A* = 1.5. However, this is not achievable, as we note the
optimal download cost is A* = 2. To see this, consider
individual users’ perspectives. For example, User 1 requires
A3 + A2z < 1k(Ups | V}). Now since both Uy and V)
correspond to the data dimension A, this conditional rank is
0. In other words, even though the subspace U3 has one
dimension that may suggest the opportunity to simultaneously
satisfy users 1 and 3, this dimension happens to be already
available to User 1. Thus, upon taking into account User 1’s
side-information, there is no such opportunity. We end up
with Aj23 = A2 = A3 = A3 = 0, and A = 1. Out of
the 3 dimensions, say A + B, B + C,C + A, any two yield
the third by summation (over Fs), and it suffices to send
any 2 to satisfy all 3 users. Notice the need to mix up the
dimensions, appealing to mixed dimensions (similar to random
coding arguments) will be a key idea to develop the general
coding scheme.

As noted, Example 2 used vector coding (L > 1) to
achieve the optimal download cost A* = 1.5. Vector coding
may be strictly necessary even in cases where the optimal
download cost A* is an integer value, as illustrated by the
next example. The necessity of vector coding for the 3 user
LCBC is remarkable because scalar coding was found to be
sufficient for the 2 user LCBC in [40]).

Example 4 (Field Size Extension): Consider d = 2 dimen-
sional data X7 = (A, B) over Fy, and (A — B),(B —
A+ B),(A+ B — A)). A signal space decomposition as in
Figure 3 yields,

Bios | Bia | Bis | Bas | Bi23) | Bai3) | B3a2)
AB| — - - - — -
Blc BQC B3c

We have A* = 1, achieved with L = 2, N = 2,

)\123 = 1,A12 = )\13 = )\23 = A= 0, S = (A1+A2+
By, A1 + By + Bs).

Appendix A shows that A* = 1 is not achievable with
scalar coding, i.e., neither scalar linear nor scalar non-linear
coding scheme can achieve A = 1 for L = 1 computation
for this example. However, A* = 1 and can be achieved
for L = 2 computations with N = 2. In this case, because
A123 = 1, we would like to broadcast one dimension. In the
scalar code setting L. = 1, this one dimension can be found
for each pair of users but it cannot be the same for the three
users simultaneously. To see this, note that A + B helps User
1 and User 2 but not User 3; B helps User 1 and User
3 but not User 2; A helps User 2 and User 3 but not User
1. Aside from the time-sharing type vector coding solution
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shown for Example 2, another approach is to consider L > 1
(which implies a vector code) and use a scalar code in a larger
extended field IFo- (in general F,-). For this example, with
L = 2, we can use a scalar code over Fy = Fo[z]/(22+x+1),
which results in N = 2 in F5. Representing A = A + Asx €
Fy, B = By 4+ Bsx € Fy, the transmitted symbol is simply
(1+2)A+ 2B mod (22 +z+ 1) = (A] + Az + Bs) +
2(Ag+ By + By) which corresponds to the transmitted symbol
S = (41 + Ay + B, A1 + By + Bs). Additional discussion
can be found in Appendix A as well. Indeed, field extensions
are a key element of the general coding scheme.

Example 5 (Inseparability): Consider d = 5 dimensional
data XT = (A,B,C,D,E) over F3, and (A — [B +
C,D]),(B— [A+C,E]),([C,D+E] — A+2B)). A signal
space decomposition as in Figure 3 yields,

Bi23 By B3 Bas

- A+B+C|A+2B+2C | A+2B+C
Bi23) | Bo(1.3) | Ba.2) | Bic | Bac | Bsc

D E D+ E| — — -

We have A* = 3, achieved with L = 1, N = 3, A\j23 = \i3 =
A2z = 0,\12 = A = 1, by broadcasting S = (A + B + C,
A+ D,2B+E).

Note that this problem combines Example 2 for data
(A, B, C) and another LCBC instance with data (D, F) where
User 1 wants D, User 2 wants £ and User 3 knows D + E.
Separately, these problems have download costs of 1.5 and
2, respectively. Since the two problems deal with independent
data, one might expect the solution to be separable, however
a separate solution would have a total broadcast cost of
1.5 + 2 = 3.5. The optimal A* = 3, which is better than
3.5, thus showing that even though an LCBC problem may be
a composition of instances with separate datasets, in general
a separate solution would be suboptimal. This observation
also underscores why the tradeoffs in LCBC, that we see
represented in the linear program, are non-trivial.

VII. PROOF OF CONVERSE: A* > max{A1, Az}

The converse is comprised of the two bounds, A* > Aq,
and A* > As. The first bound, A* > A; is a straightforward
generalization of the corresponding bound for the 2 user
LCBC found in [40] to the 3 user setting. The second bound,
A* > A, is novel, and requires functional submodularity.
For the sake of completeness in this section we present the
proof of both bounds. Let us begin by recalling the functional
submodularity property.

Lemma 3 (Functional Submodularity of Shannon Entropy
(Lemma A.2 of [56])): If Xy, X1, X5, X2 are random
variables such that X; and X, each determine X, and
(X1, X2) determine X5, then:

H(X1) + H(X2) > H(Xi2) + H(Xo) (25

Note that ‘A determines B’ as used in Lemma 3 is
equivalent to the statement that H(B | A) = 0, i.e., B is a
function of A. Thus, the lemma assumes that H (X, | X1) =
H(Xo | Xo) = H(X12 | X1, X5) = 0.
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As an immediate corollary, let us note the following form
in which we will apply the functional submodularity.

Corollary 1: For arbitrary matrices M; € ]FgXMI,MQ €
IFZX/‘?, any random matrix X € ]FgXL, and any random
variable Z,

H(Z,XT"M,) + H(Z,XTM,)

> H(Z,X"[M; N M) + H(Z,X"[M, Mz])  (26)

Proof: The corollary follows from Lemma 3 by setting
X1 = (Z,XTM,;), Xy = (Z,XTM,), and noting that Xy =
(Z,XT[M; N Ms]) can be obtained as a function of both
X1 and X, individually, while X5 = (Z, X7 [M;, Ms]) is a
function of (X7, X5). |

A. Proof of the Bound: A* > A,

As noted, the proof of this bound is straightforward.
It follows along the same lines as the proof for the 2 user
LCBC in [40], also similar to the genie-aided bound in coded
caching (e.g., [61, (71)-(75)]) and is provided here for the sake
of completeness. In particular, it does not require functional
submodularity. As explained in Section III-A3, recall that
the converse bound is based on a thought-experiment that
supposes that the data X is i.i.d. uniform, which leads to
a lower bound N > H(S). Let W} £ (W, W,),Vk €
[3]. The bound follows essentially by iteratively using the
argument

H(S | Wi, Wi_y)

The genie-aided bound for the k*" user

since H(S | W;C,Wi‘kil]) = H(S, Wy, | W;,Wf‘kiu) >
HWy | W;,W[*kil]) + H(S | W;CH,WF,C]), where the
first step uses the decoder definition (4) and the second step
applies the chain rule of entropy and the fact that conditioning
reduces entropy. It then follows that for any coding scheme

(L,N,®, (Up)reps) €€,

N> H(S)> H(S| W) (23)
> H(Wy | W)+ H(S | W, W) (29)
> H(W; | W) + H(Wz | W5, WY)

+ H(S | W,, Wi, W3) (30)
> H(W1 | W)) + H(W2 | Wy, W)

+ H(Ws5 | Wi, Wi, W3) 31)
=L (tk(Vy | V) +1k(Vy | [Uy, V3])

+1k(Vs | [Uy, Uy, V3))) (32)
=L (k(Vy1 | V) +1k(Va | V4) — tk(Us2 | V)

+1k(V3 [ Vi) = tk(Us(y 2y | V3)) (33)
= A=N/L>A* (34)

Steps (29) — (31) follow from (27). Step (32) uses the fact
that for i.i.d. uniform data X7 € Fé Xd and an arbitrary
matrix M € F&*#, we have H(X"M) = L - k(M) in ¢-
ary units, and applies the conditional-rank notation as defined
in Section II. Step (33) follows from the observation that
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tk(Vy | [Z,Vy]) = k([Uy, Z]) — 1k([V}, Z]) = tk(Uy) —
k(V4) — (rk(Uk NZ) - k(V, N Z)) = tk(Vy, | V2) —

tk(U,NZ | V}). Similarly, A > A* for all (i, j, k) that are
permutations of (1,2,3). Since this holds for every coding
scheme (L,N,®,(Vj)reiz) € €, it follows that A* > A,
U

B. Proof of the Bound: A* > A,

The main idea of this proof is to successfully identify and
introduce the entropies of certain (linear) functions of users’
demands and side-information that are critical in determining
the capacity, with the application of Lemma 3. To build
intuition, let us start with the converse proof for a toy example,
specifically Example 2 of Section VI.

1) Converse Proof for a Toy Example: Consider any
coding scheme (L,N,<I>, (\Ifk)ke[g]) € ¢ for Example 2 of
Section VI. Recall that User 1 has A, and wants B, + Cy;
User 2 has By and wants A, + Cy; User 3 has C, and wants
Ap + 2By for all £ € [L]. We want to prove the converse
bound A* > 1.5. Let us denote A as (Ay,---,AL) € ]FéXL,
Bas (By,---,Br) € Fy* and C as (Cy,--- ,Cp) e F*0
As mentioned in Section III-A3 let us start the converse proof
with the thought-experiment that A, B, C' are i.i.d. uniform in
IF,, which allows the following entropic arguments.

2H(S) + H(A) + H(B) — I(S; A) — I(S; B)

= H(S,A)+ H(S,B) (35)
>H(S,A,B+C)+H(S,B,A+C) (36)
>H(S,A+B+C)+ H(S,A,B,C) 37
>H(S)+ H(A+B+C|S)+H(A B,C). (38)
Similarly,
2H(S) + H(A) + H(C) —I(S; A) — I(S;C)
=H(S,A)+ H(S,C) (39)
> H(S,A,B+C)+H(S,C,A+2B) (40)
> H(S,A+2B+2C)+ H(S,A,B,C) 41)
>H(S)+H(A+2B+2C|S)+ H(A,B,C). (42)

Steps (35) and (39) use the definition of mutual information
I(A;B) = H(A) + H(B) — H(A, B). Steps (36) and (40)
use the decoder definition (4). Step (37) uses functional
submodularity (Lemma 3) by recognizing that (A, B + C)
and (B, A + C) each determine A + B + C, and (A4, B +
C, B, A+ C) determines (A, B, C). Step (41) uses functional
submodularity by recognizing that (A, B+C') and (C, A+2B)
each determine A + 2B + 2C, and (A,B + C,C, A + 2B)
determines (A, B, C).
Adding the above two inequalities, we have
4H(S)+2H(A)+ H(B) + H(C)
—2I(S;A) —I(S;B) —I(S;C)
>2H(S)+ HA+B+C|S)
+ HA+2B+2C |S)+2H(A,B,C).
It follows that

2H(S) > H(A+ B+C |S)+ H(A+2B+2C | S)

(43)
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+I(S; A) + 2L (44)
>H(A+B+C,A+2B+2C|S)

+I(S; A) + 2L (45)
> H(A|S)+I(S; A) + 2L (46)
= H(A) +2L A7)
=3L. (48)

Step (44) and (48) apply the assumption that A, B, C are i.i.d.
uniform in [F,. Step (45) uses the general property of joint
entropy that H(X | Z)+ H(Y | Z) > H(X,Y | Z) for any
random variables X,Y, Z. Step (46) is obtained by recognizing
that A is a function of (A+ B+ C, A+ 2B +2C). Step (47)
uses the information equality I(A; B) = H(A) — H(A|B).
Therefore, we have the desired converse bound, A = N/L >
H(S)/L > 1.5 for the coding scheme. Since this is true for
every feasible coding scheme, we have the bound A* > 1.5.

2) General Proof of Converse Bound A* > Aj;: As
mentioned in Section III-A3 let us start the converse proof
based on the thought-experiment that supposes the elements
of the data X are i.i.d. uniform in IF,.

2H(S)+2)  H(W})

k=1
3 3
=23 H(S,Wj)+2) I(S;W}) —4H(S) (49)
k= k=
31 ' 3
=2 H(S, W}, Wi) +2> I(S;W}) —4H(S) (50)
k=1 k=1

(4,9)€{(1,2),(2,3),(1,3)}
3

+2) I(S;W}) — 4H(S)
k=1
> [H(S,X"Uz) + H(S,X"Uy3)]
+ [H(S,X"[Uy, Uy]) + H(S, X" Us)]
+ [H(S,X"[U,Us)) + H(S,X"Uy)]

(H(S,XTUi) n H(S,XTUj))

(51

3
+2) I(S; W) — 4H(S) (52)

=1
> H(S,X"Uj93) + H(S, X" Uy, Uys))

+ H(S,X"Us(19)) + H(S,X"Uyy 3))

3
+2H(S, X [Uy, Uy, Us]) +2 > I(S; Wy) — 4H(S)

k=1
(53)

> H(XTU93|S) + H(XT[U12, U5]|S)

+ H(XTUjz(19)S) + H(X"Usy(y 3))

3
+2H (X" Uy, Uy, Us]) + 2 I(S; W) (54)
k=1

> max H(X" (U3 NV})[S) + H(X"[Uyz, Uss)|S)

= re{1,2,3)
+ H(X"Us(1,9)|S) + H(X" Uy(1,3)S)
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3
+2H(XT[U, Uy, Us]) + 2 I(S; W) (55)
k=1
> max H(X" (U3 N'Vy)) + H(X Uz, Uys]|S)
£e{1,2,3}
+ H(XTUjy(19)|S) + H(X Uy 3)8)
3
+2H(XT[U, Up, Ug]) + > I(S; W) (56)

k=1
> max H(XT(Up3nV)))

+ H(X"([Us2,Uss] N V1)) + H(X" (Us(q 2) NV))
+ H(XT(Uy1,3) N V3)) + 2H(XT[U, Uy, Us)) (57)

In the deduction, the most critical steps are Step (52)
and Step (53). Specifically, Step (52) uses functional
submodularity property from Corollary 1 twice, once for
(4,7) = (1,2) and once for (4,j) = (1,3). Step (53) uses
functional submodularity from Corollary 1 three times, once
for each of the collections of terms inside the three square
parantheses in (52), making use of the fact that Ujo N U3 =
U2, [U1, Ua]NUsz = Us(q 2, and [Uy, Us]NUs = Uy(q 3y by
definition. The other steps follow from conventional entropic
inequalities. Specifically, Step (49) uses the definition of
mutual information I(A; B) = H(A) + H(B) — H(A, B).
Step (50) uses the decoder definition (4), i.e., Wy, is a function
of (S, W}). Step (51) uses the definition of Uy = [V}, V]
from (11) to recognize XU, = [W},W,]. Step (54)
uses the chain rule of entropy to extract H(S) from the
first four terms, and the property that H(A,B) > H(B)
to drop S from the fifth term. Step (55) uses the property
that H(A | B) > H(f(A) | B), and the fact that
XT(Uya3 N'Vy) is a function of X7 Uja3. Step (56) uses
the fact that H(XT (U3 N'V})|S) = H(XT (U3 NVY)) —
I(S; X7 (Uy23 N V})) by definition of mutual information,
and I(S;XT(Uizs NV))) < I(S;XTV)) = I(S; W) <
Zi’zl I(S; W) by data-processing inequality, and the non-
negativity of mutual information. Similar reasoning is applied
to the third, fourth and fifth terms of (56) to obtain (57) by
removing the conditioning on S and by absorbing one of the
I(S; W},) terms each. The reasoning can be summarized as
HA|S)+I(B;S)>H(C|S)+I(C;S)=H(C)if Cis
a function of both A and B individually.

Evaluating the entropies in terms of the corresponding
ranks, and normalizing by L, we obtain,

A =N/L>H(S)/L

= i 1k((Unas 01 VD) +1k([Un, Uss] 0 V)

+ 1k(Us(1,2) N 'V3) 4 1k(Ug(y 3y N V'z))

3
+1k([Uy, Uy, Us)) — > 1k(V}) (58)
k=1
1 , )
= 5 (rk(U123) — ZE?BQS} I'k(U123 | VZ) + rk([Ulg, Ulg])

—1k([U12, Uss] | V) + tk(Us(1,2)) — tk(Us(12) | V3)
+1k(Ug(1,3)) — tk(Ug(1 3y | Vlz))
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w

+1k([Uy, Up, Us)) = > rk(V})
k=1

1 . ’
= 5 (rk(Ulg) + l‘k(Ulg) - ZGI{IRS,S} l‘k(U123 | VZ)

— tk([Uz, Uss] | V1) + 1k(Us) + 1k([Uy, Ug))
— I‘k(Ug(Lg) | Vé) + I‘k(UQ) + I'k([Ul7 Ug])

(59)

3
— k(U1 3) | V’2)) - > k(V}) (60)
k=1

M«

= 1k(Uy) + tk(Us) + tk(Us) — Y rk(V})

k=1

1 .
_ 5(%?}}23} tk(Uygs | V) + 1tk([Uye, Uss] | V)

+1k(Uy(1,2) | Vi) + 1k(Usqr) | V2))
=1k(V1 | V}) +1k(V2 | V5) +1k(V3 | V5)

(61)

1 .
- 5(56?11?33} tk(Uigs | V) +1k([Uy2, Uss] | V)

+ 1k(Us(1,9) | V3) + 1k(Usz( 3 | V/2)> (62)

Step (58) uses the fact that for i.i.d. uniform data X” € F. >4
and an arbitrary matrix M € F&*#, H(XTM) = L - rk(M)
in g-ary units. Step (59) applies the conditional-rank notation,
k(A | B) = 1k([A, B]) — 1k(B) as defined in Section II
Step (60) uses the fact that rk(Ujas) = rk(Ujp N Usz) =
1tk(Usz) + 1k(Uss) — 1k([Uy2, Uss)), similarly tk(Us(; ) =
l‘k(Ug n [Ul, UQ]) = I‘k(Ug) —I-I'k([Ul, UQ]) — I‘k([Ul, Us, Ug]),
and by the same token rk(Usy(y 3)) = rk(Uz N [Uy,Us]) =
rk(Usy)+1k([Uy, Us])—rk([Uy, Uy, Us)). Step (61) uses the fact
that 1k(U,;) = rk(U;)+1k(U;)—rk([U;, U;]). Finally, step (62)
uses the fact that rk(U;) — rk(V}) = rtk([V}, V;]) — tk(V}) =
(V; | V).

Since  this holds for every coding scheme
(L,N,®,(Vy)kez) € €, it follows that A* > A%,
Similarly, A* > A;jk, V(i,7,k) that are permutations of
(1,2,3), which implies that A* > A,. O

VIII. PROOF OF ACHIEVABILITY: A* < F*

In this section, we will construct a general scheme for the
3 user LCBC that achieves broadcast cost per computation
equal to F'* as specified in the form of a linear program in
Theorem 2, thus establishing an upper bound on the optimal
broadcast cost per computation, A* < F*. Finding an explicit
solution to the linear program in closed form will be left for
Section IX. We start this proof with some preliminary steps.

A. Eliminating Redundancies

As a first step let us eliminate redundancies, if any, that
exist in the users’ side-information and demands by removing
redundant columns in Vy, V), such that Uy, = [V}, V] has
full column rank for each k € [3]. Essentially, we retain
only linearly independent columns because the remaining
columns either represent information desired by a user that
is already available to the user (overlap between (V) and
(V}.)), or information that is already accounted for by the
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independent columns (redundancies within 'V, or within V7).
Thus, henceforth let us assume, without loss of generality, that

tk(Uy) = tk([V},, Vi]) = tk(V}) + tk(Vi) = m), + my..
(63)

B. Field Size Extension

Recall that the problem formulation specifies a field g,
but allows us to choose the number of computations L to
be encoded together as a free parameter in the achievable
scheme. The freedom in the choice of L in fact allows field
extensions that translate the specified field of operations from
F, to FF,- for arbitrary z € N. Specifically, consider L = z
computations, and denote V}, = V| @ I***, V; = V, @ I?X*
and Uy, = U, ® I?*# as the z-extension of the coefficient
matrices, where ® denotes the Kronecker product. Denote
X = vec(XT), where vec(-) is the vectorization function.
By this notation, we can restate the problem such that User
k has side-information X7V} and wants to compute X7V,
for k = [1 : 3], where X € F&x! V| e Fd=xm'= and
Vi € Fl*m= Now, since F, is a subfield of Fg-, this
problem is equivalent to the problem where X € Fg?l,
vV, € ]ngxm/ and V, € FIZX™ for L = 1 computation.
By considering the elements in [Fy- instead of F;, we have
more flexibility in designing schemes by choosing symbols
in the extension field to jointly code over z computations.
Since the achievable scheme allows joint coding over any
L computations, considering . = L’z computations in the
original problem with field F, is equivalent to considering
L’ computations in the extended field with F,-. Appendix A
illustrates the idea of field size extension with an example.

C. Useful Lemma

Next let us introduce a useful lemma.

Lemma 4: Let A € FI** B, € FI*" and B, € F$*"2 be
arbitrary matrices with full column rank (bases), i.e., rk(A) =
a,tk(B1) = by1,1k(B2) = by. Denote tk(By | A) = 714,
tk(By | A) = rg)4 and 1k([By, Ba] | A) = 7y /4. Then for
any non-negative integers ni,ny such that ny < r1a,N2 <
r214 and ny +na < 7y 914, there exist submatrices of By, Bo,
namely Bj € IFZX’“ and B} € FZXW, respectively, such that
[A, By, Bj] has full column rank a + nj + na.

Proof: ~ Consider first the case that ny + no =
T1,2(4- By Steinitz Exchange lemma there exist submatrices
BY”A),BQW‘A), comprised of 71|4,79)4 columns of By, By,
respectively, such that [A, B\"*], [4, B?Y)] have full
column ranks (the superscripts within the parantheses
indicate the number of columns). Now, we claim that if
y(atriatraa) [A,BY”A),BéTZ'A)] does not have full

column rank, i.e., a+7yj4 +724 > k(Y (@triatraa)y — g 4

71,24, then it is always possible to drop a column of BY”A)

to yield Y(@+riia+raa=1) = (4, B4 BU24)) which has
one less column but the same column rank as Y (¢#F71ja+7214)
The claim is proved as follows. Since Y (*t7114+7214) does
not have full column rank, there exists a non-zero column
vector Z, such that Y(@triatrza) 7z = 0, ;. This non-zero
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vector Z must have more than one non-zero element (because
Y (atmija+7r214) has non-zero columns), and at least one of
its non-zero elements must be in a row-index that maps to

one of the columns of BY”A) (because [A, B;TQ‘A)] has full

column rank). This column of BY”A) can be dropped because

it is spanned by the remaining columns of Y (¢+7114+7214) that
are selected by the support of Z, so that Y (a+71atr2a—1)
has the same rank as Y (¢+7114+7214) The same claim holds
for BQT2‘A) as well. Repeating this argument we can drop
columns of BY”A), BéTQ‘A), one-by-one, in any order we wish,
until we meet the target values nj,ns at which point the
resulting matrix [A, Bf, B5] has full column rank, equal to
a + 71 2)4. Finally, if ny +n2 < rj 94, then we continue the
process for an additional ry 54 — (71 + n2) steps, but each
additional column that is dropped now reduces both the rank
and the number of columns by 1, until B}, B} are left with
only n1,7n, columns, respectively, and rk(Y (@+71atr214)) —
a+ri2a = (T1,214 — (1 +n2)) = a+n1 + ne. u

Let us also note the following direct corollary of Lemma 4
which will be used multiple times in our construction of the
coding scheme.

Corollary 2: Let A € F&*® and B € F2*" be arbitrary
matrices with full column rank (bases), ie., tk(4) =
a,tk(B) = b. Denote tk(B | A) = r. Then for any non-
negative integer n such that n < r, there exists a submatrix
of B, namely B’ € F&*" such that [A, B'] has full column
rank a + n.

Proof: Corollary 2 is implied by Lemma 4, by map-
ping A, B here to A, B; in Lemma 4, respectively,
and setting by = 0. O

D. Construction of the Optimal Broadcast Scheme

The construction of the optimal broadcast information
follows the formulation of Theorem 2 and the depiction in
Figure 4. At a high level, the goal is to construct a scheme
that broadcasts Ajo3 dimensions that are simultaneously
useful to all 3 users (3 birds, 1 stone), A;; dimensions
that are simultaneously useful to Users i,7 (2 birds,
1 stone) for (4,7) € {(1,2),(1,3),(2,3)}, and A dimensions
that are of the type (3 birds, 2 stones), i.e., where
transmission of 2 dimensions collectively satisfies 1 demand
dimension for every user. For this construction, let us
first consider non-negative integers Ajo3, A12, A13, A2z, A that
satisfy the constraints (21)-(24) specified in Theorem 2.
Generalization of A123, A12, A13, A23, A to rationals is handled
in Section VIII-E and VIII-F.

Let us start with the (3 birds, 1 stone) component of the
construction, and for now let us focus on User 1. Some
adjustments will be necessary eventually to make the scheme
work for all 3 users. We wish to broadcast \j23 dimensions
for this (3 birds, 1 stone) component of our scheme, but it
remains to determine the actual information to be transmitted.
For this, let us recall Corollary 2, which guarantees that there
exists a submatrix of Ujog, namely U§;g23) IS IB‘ZZX M23such
that the following matrix has full column rank,

tk([VE, UGE)) = m) + Aras. (64)
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Broadcasting XTU%},)ZS) would help User 1 acquire A3
desired dimensions based on his side-information X7 V7.

As a cautionary note, let us point out that this particular
U%??’) which is useful for User 1 may not be useful for
User 2 or User 3, i.e., [V}, U%?f‘)] may not have full column
rank for £k = 2,3. One can similarly find submatrices of
U123 of size (number of columns) Ajo3 that are useful for
User 2, or 3 individually, but in general these will be different
matrices. In the end the challenge will be to find the same
matrix that is useful for all three users. For now we ignore
this challenge and proceed with only User 1 as our focus.

Next, consider the (2 birds, 1 stone) components,
specifically let us find Aj» dimensions within (U;s), and
another \13 dimensions within (Uy3) that will be useful to
User 1, conditioned on the user’s side-information V/l. Letting
A= '1,U§§;,,23)], By = Uy, and By = Uj3 in Lemma 4,
we have a = m/ + A123, 71j4 = tk(Usz | Vi) = Aas, TojA =
tk(Uss | V]) = Mgz, and 71 914 = 1k([Us2, Uss] | V1) — Aizs.
Then according to Lemma 4, there exists a submatrix of Ujs,
namely, Ug;lz € ngx 22 and a submatrix of Ujs, namely,

U3 e FM2, guch that the following matrix has full
column rank,

tk([V5, UG UG UR)) = m) + Aag + Az + A
(65)

Once again, note that these choices may not work for Users
2,3, so that challenge remains to be overcome later.

Next, consider the (2 stones, 3 birds) component of
the scheme. Keeping our focus on User 1, let us find
A dimensions of broadcast information from the subspace
(Ui(2,3)) that will be useful for User 1. Since we only
consider parameters that satisfy the conditions in Theorem 2,
which include in particular (24), it follows that A <
tk(Uy2.3) | V1) — A2 — A1 — A123 by definition. Letting A =
v, UL Ul Ul B = Uy in Corollary 2,
we have a = m’l + A23 + A2 + A3 and r = rk(U1(213) |
V) — A2 — A3 — A123 > . Then Corollary 2 implies that
there exists a submatrix of Uj(s 3), namely, U(l)(‘) € FZZX’\

2,3)
such that the following matrix has full column rank,

A A A1s A
k([V1, UG, UG Uy, o) )

=m) + Aa2g + A2 + A + A (66)

Next, by letting A be the above matrix and B = U;j in
Corollary 2, we have a = m| + Aag + A2 + A3 + A,
r=r1k(U; | V1) —(M2s+ A2+ A3+ A) = mi— (Aiaz+ Ao+
A13 + A) £ t1. Then by Corollary 2, there exists a submatrix
of Uy, namely, Ugtl) IS IFZZX“ such that the following matrix
has full column rank.

(V1 URg U U, Ul

1@3ngﬂ)=Wh+”ﬂ7

(67)

which implies that it is a basis of (U;) since each column of
the matrix is in (Uy).

Finally, in Corollary 2 let A be the matrix in (67) and B =
19%4 be the d x d identity matrix. We have a = m; + m)
and r = d — my — m/. Then by Corollary 2, there exists a
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(d—m1—my)

submatrix of IX¢, namely, Z, € ngx such that the

following d x d matrix has full rank.

(VA U, U, UG U

t
1(2,3)7Ug l)vzﬂ) =d.

(68)

In particular, the determinant of the matrix is non-zero.

The following step allows a mixing of information,
leading to a random-coding argument that will be important
to reconcile the users’ different perspectives. So consider
the following determinant, which is a polynomial in the
variables corresponding to the elements of the matrices
Ni23,Ni2, N3, M9, M3, M, while the remaining matrices
are fixed.

’

my A123 A12 A1s
"//\ —
Py =det ([ V], U123N193, U1aN1g, Ug3Nyg,
A

U1,Mis + UisMis + By ) M, U™, Z1]) (69)
The sizes of the variable matrices are specified below.

Nios : tk(Uja3) X A123,  Nig :tk(Uiz) X A1,
N13 : rk(Ulg) X )\137 M12 ZI'k(Ulg) X /\,

M13 : rk(Ulg) X )\, M : I‘k(Bl(Q’g)) X . (70)

We claim that P; is not a zero polynomial. This is because we
can assign values to the variables such that the matrix in (69)
becomes identical to the constant matrix in (68), which has
non-zero determinant. Note that by Lemma 2, (P5) and (PS),
(Uy(2,3)) = ([Bi23, B12,B13,B1(2,3)]) = ([Ui2, U1z, Bi(2,3))),
therefore, U{Y) ;) = U1sMio+U13Mi5+By (2 3)M for some
realization of Mo, M73, M. Since there exists a non-zero
evaluation of P it cannot be the zero polynomial.

So far our discussion focused on User 1. Proceeding
similarly for Users 2 and 3 we arrive at corresponding
polynomials P», P3 as shown below,

m/2 A123 A12 A23
P e Y- \ 4 ‘
Py =det([ V5, Ui23N123, U1oNig, UgsNas,
A
“U12M2 + Uz3Mas + Bor 5 M, US?, Z5)) (71)
mé A123 A13 A23
P e - Nk '
P3 = det([ V5, U123N123, U1sNi3, UgzNog,
A

U1sMi3 + UazMas + Bs(1 2y M, Uy zs])  (72)

that are similarly shown to be non-zero polynomials, in the
variables corresponding to the elements of the matrices N 23,
N2, Ni3, Naosg, Mo, M3, Mss, M, with the following
remaining specifications in addition to those in (70).

Moys : tk(Usgz) x A, Nas : tk(Usz) X A3, (73)
and
Z, € By (e, (74)
Ziy € B (4maTms), (75)
ta £ mg — (A123 + A2 + Aoz + A), (76)
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t3 2 m3 — (23 + A1z + Aoz + ). 77

Note that the minus sign before U12M 5 in (71) still allows
the entries of —M 5 to be any element in F -, and thus we
can still evaluate the determinants individually to non-zero by
choosing appropriate elements in Fj-. Now since P;, P and
P3 are non-zero polynomials, their product P = Py P, Ps is
also a non-zero polynomial in the variables corresponding to
the elements of the matrices N3, N2, Ni3, Nog, Mo,
M3, Mas, and M. Furthermore, the polynomial P has a
degree D loosely (the loose bound suffices for our purpose)
bounded above as,

D < 3d. (78)
By Schwartz-Zippel Lemma, if the elements of
Ni23, Ni2, Ni3, Nog, Mo, Myz, Moz, M are  chosen

iid uniformly from [F,-, then the probability of P
evaluating to 0 is not more than D < 3—5. Thus,
by choosing z > log,(3d), we ensure that there
exist such Ni23,N12,Ni3,Na3, M2, M3, Ma3, M
that produce a non-zero evaluation of P, which
implies that P;, P, and Ps; are evaluated to non-zero
simultaneously. Recall that we previously found three
constructions, by identifying submatrices of subspace
matrices, and each such construction could only be
guaranteed to work for one user. The formulation based
on Njs3,Nio,Ni3, No3g, Mis, M3, Mo3, M represents
essentially a generic solution for each user. Whereas the
original solutions comprised of specific submatrices may not
be compatible, the generic solutions turn out to be compatible,
as evident in the argument that P;, Py, P53 are simultaneously
non-zero for appropriate choices of the variables. This is
essentially a random coding argument, because it shows
the existence of a good code among randomly chosen
possibilities.

With any such choice, we are able to construct the broadcast
symbol as follows.

S = X" [U123N123, U1aN12, Ui3Ny3, UssNas,  (79)
U2Mie +UisMis + By2,3M, (80)

— U12Mi2 + UzsMas + By(1 3yM, (1)

Ui ul ul). (82)

With S, User 1 is able to obtain (using its side-information)
X"V, U123N123, U1aNis, UgsNys,
UMz + UisMis + B2 3)M, UY”], (83)

and thus compute XTU,, since the columns of the matrix to
the right of X7 form a basis of (U;), guaranteed by the fact
that P; has a non-zero evaluation. Similarly, User 2 is able to
obtain (with its side-information)

XT[V4, U123Ni23, U1aNig, Uz Nag,
— U1aMi + UazsMas + By(q 3 M, Uétz)L (34)

and thus compute XTU,, since the columns of the matrix on
the right of X7 form a basis of (Us), guaranteed by the fact
that P, has a non-zero evaluation.
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User 3 first computes

X" (UpMi2 4+ UsMys + Bi23M) (85)
+ X" (~U12Mi2 + UpsMa; + By(1 5 M) (86)
= X" (U13My3 + UgsMas + By(1,2)M) (87)

where we used (P20) from Lemma 2, i.e., By (3 3) +Ba(1,3) =
Bg3(1,2)- Using its side-information, User 3 is then able to
obtain,

X[V}, Up93N193, U13Ni3, UpsNog,

U1sMi3 + U2zMas + By(1 2) M, Ul (88

Thus, it can compute XTUj, since the matrix on the right of
XT' is a basis of (Us), guaranteed by the fact that P3 evaluates
to a non-zero value.

The cost of this broadcast S, as noted in Theorem 2, is found

as,

A=N/L (39)

— N/z (90)

= A123 + A2 + A1z + Aoz +2A + 1 +ta + t3 on

=my +mz +m3 —2A123 — A2 — A1z — Aoz — A (92)
=rk(V1|V]) + 1k(V2|V5) + 1k(V3|V5)

—2X123 — A1z — A1z — A2z — A 93)

£ f(M23, A2, A1z, Aag, A). 94)

This implies that A* < f(A123, A2, A13, Aes, A) if

A123, A12, A13, A23 and A are non-negative integers subject
to the constraints specified in Theorem 2. Next let us show
that the arguments extend to rational A, by a simple matrix
extension.

E. Matrix Extension

Technically, the choice of z > 1 that enables field extensions
in the achievable scheme, already amounts to vector coding,
because it requires joint coding of L = z symbols. However,
after the field extension, the solution presented above reduces
to a scalar coding solution over the extended field IFy-. This
formulation only allows integer values of A\, parameters.
However, it is quite straightforward to extend the scheme to
all rational values of A\, parameters (subject to the constraints
specified in Theorem 2) by a typical vector coding extension,
labeled here as a Matrix Extension to avoid confusion with
field extensions that also require L > 1. This is described
as follows. Recall that we are allowed to choose any L € N
in the coding schemes, by letting L = L’z (meaning that
the computations are in F,- and we jointly code for L’ such
computations), the ranks of all subspaces scale by L’ as
the data dimension increases by a factor of L’. Essentially,
this amounts to treating successive instances of the data
vector as new data dimensions. For example, consider the

m = 1 dimensional computation of A + B over d = 2
dimensional data (A,B), say over Fg-. Considering
L’ = 2 instances, the data becomes (A,B) =

((A(1), A(2)),(B(1),B(2)), and the desired computation is
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A + B, which can also be interpreted as m,, =
dimensional computations (A + C,B + D) over d,,
2d = 4 dimensional data (A, B,C,D) in F,-, by mapping
((A(1), A(2)),(B(1),B(2)) to (A,B,C,D). A bit more
formally, by considering L’ data instances as one instance of
L’d dimensional data (both in Fy-), User k € [1 : 3] has side-
information X'V, which is equivalent to vec” (X)I*' %X @
V. User k wants to compute vec” (X)IX'*L" © V. The
problem is then equivalent to that with data X € Féz/dx !, with
coefficient matrices now changed to IQV,, 1@V, k = [1 : 3].
The signal spaces Uy are also changed to I ® Uj. Note
that this is essentially different from the field size extension
presented in Section VIII-B, where the dimensions of the
coefficient matrices are not changed after the extension, only
the field size is changed. We refer to this as the matrix
extension, since the dimensions (sizes) of the coefficient
matrices scale by a factor of L’ (but the field size remains
unchanged). The ranks of U, and V) also scale by L/,
as do the ranks of all subspaces considered in (21)-(24).
Thus, the RHS of all constraints in (21)-(24) scale by
L’, implying a similar scaling of the A\, parameters. Thus,
all rational values of )\, parameters can be transformed
into integer values by considering a matrix extension by
a factor L' where L’ is the common denominator of the
rational values.

[l o

F. Completing the Proof of Achievability

At this point we have the bound that A* <
f(>\1237 )\127)\137)\23,>\) if  A123, A12, A13, A2z, A are non-
negative rational numbers subject to the constraints specified
in (21)-(24). The final step of the achievability proof is to
recall [64], [65] that for any linear programming problem,
say max c’x, s.t. Ax < b, x > 0, if all the elements of
A b, c are rational, and the optimal exists, then there exists an
optimizing x whose elements are also rational, and so is the
optimal value of the objective function. Note that in the linear
program in Theorem 2 all coefficients are indeed rational,
in fact the coefficients of A\, parameters in the constraints
and the objective are all either 0,1 or 2, and the constants
on the RHS of the constraints (21)-(24) are conditional-ranks,
so they are integers as well, by definition. The feasible region
is a rational polytope, so all vertices are rational, and one
of the vertices must be optimal for a linear program over a
rational polytope. Therefore, there exist non-negative rational
values Aly3, Ao, Al3, Ad3, A™ that satisfy (21)-(24), for which
we we have f(Ajgs, NI, A3, Asq, A*) = F™*. This gives us the
desired bound, A* < F*. O

IX. MATCHING ACHIEVABILITY WITH
CONVERSE: F* < max{A1, Ay}

The converse proof in Section VII established the lower
bound A* > max{A;, Ay}, whereas the achievability proof
in Section VIII established the upper bound A* < F*. In this
section we show that the bounds are tight. To do so, we will
prove that F* < max{A1, As}.
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Recall that, subject to the constraints (21)-(24), the linear
program in Theorem 2 finds

F* = min
A123,A12,A13, 23, A€R Y

—2X23 — A2 — Az — Az — A (99)
f(Ai23, A2, A13, A23, A). (96)

mi + mo + ms

= min

A123,A12,M13, 23, A\ER 4.
We will proceed with the proof in two steps. First,
in Subsection IX-A, we manipulate max{A;, Ay} into an
equivalent compact form. Then, in Subsection IX-B we show
that in all cases there exist feasible (A123, A12, A13, A2, A)
for which f()\lgg,Alg,Alg,)\Qg,)\) S maX{Al,AQ} and
therefore by (96), we have F* < max{A1, As}.

A. Equivalent Expression for A;, Ay With Compact Notation

To avoid lengthy notation due to the repetitive use of
conditional ranks, let us introduce the following compact
forms.

1>

. k U V/
T123 ;?él[?]r (U123 | V),

lI>

in rk(U;s | V,
kg{lgg}r( 12 | Vi),

in rk(Uys |V,
kg{lgg}r( 13 | Vi),

in rk(Uss | V/
kg{g%}r( 23 | Vi),

tk([Us2, Uss] | V1),

T12

>

T13

T23

lI>

712,13

712,23

(> 1>
-
=X
c
o
@
e
¥
&,
<
=
S~—

713,23

T1(2,3)

>l
—
=3
c
[~
_

T2(1,3)

1>

T3(1,2) o7

It follows that,

T12,13 > max{ria, T3},

712,23 > max{ria, ra3},

13,23 > max{ris,ra3}. (98)

Note that by these notations, the constraints (21)-(24) for A,
can be equivalently posed as

(21) <= Ai23 <7123, (99)
(22) <= Nij + Ai2s <1y,

V(i,j) S {(1,2),(1,3),(2,3)} (100)
(23) = Aij + i + A23 < i,

v(i,7,k) € {(1,2,3),(2,1,3),(3,1,2)} (101)
(24) <= A4 Aij + Air + Ai23 < 1),

V(i,jJi‘) S {(1,2,3),(2,173),(3,1,2)} (102)

With these notations, we are able to express the Ay, Ay values
defined in Theorem 1 in the following equivalent forms. For
AY * we have

AP = 1k(V1|V]) +1k(V2|V3) +1k(V3[V5)

—1k(U12| V) — 1k(Usg(1,9)| V) (103)
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= tk(V1) + 1k(V3) + 1k(V3)

—1k(U12|Vy) — rk(U3(172)|Vg) (104)
=ma + mo —+ ms — I'k(U12|V/2) — 7"3(172) (105)
where (104) is due to (63), and similarly
A%ls =mi +mg +m3 — rk(U12|V'1) —T'3(1,2) (106)
which implies that,
max{A1%3 A213}
=my +ma + M3 —T3(1,2)
— min{rk(U;2|V}), k(U2 V5)} 107)
=my +mg +m3g — 12 — T3(1,2) (108)
£ 53 (109)

By taking the pairwise maximum of {Al*2 A3$12} and
{A231 A%21} respectively, we similarly obtain &; and Js as
follows.
61 2 max{AP? A2} = m) 4 my 4+ mg — 193 — T1(2,3)»
(110)
max{AP", AP} = my +mo 4+ my — 113 — (13
(111)

02

For AY¥, first note that A123 = A132 Thus, we have,
max{A3%3 A}?} = A}
1
- — i k(U \%W/
2(?% (k(Usas [ V7))
+1k([Ui2, Uns] | V1) +1k(Ug(r 3y | V)
+ rk(Ug(LQ) ‘ Vé))
= rk(Vl) + I'k(VQ) + I'k(Vg)
17 .
- 5(?&%} (k(Ui23 | VY))
+1k([Ui2, Uns] | V1) +1k(Ug(1 3y | Vo)

+1k(Us(1,) | Vé))

(112)

(113)

1
=mj +mg +m3 — 5(7"123 + 712,13 + To1,3) + 7‘3(1,2))
(114)

2 da3 (115)

where (113) is due to (63). By taking the pairwise maximum
of {A213 A231} and {A3'2) A32!} respectively, we similarly
obtain,

(513 é max{A%l?’, A%Bl}
1
=my +mg+mg — 3 (7“123 + 712,23 +1r1(2,3) + 7‘3(1,2)),
(116)
d12 = maX{A%lQ, Agzl}
1
=my+mg+mg— (7"123 + 113,23 +7r1(2,3) + 7“2(1,3))~

2
(117)
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Thus, we have,

max{A1, Ay} = max{dy, d2, 03,012, 013, 023 }. (118)

The next step is to that F™* <

max{d1, d2, 03, 612, 613, 023 }.

prove

B. Proving F* < max{d;, 02,93, 012, 013, 023} Constrained
Waterfilling

By definition, F* <  f(A123, A12,A13, A2, A) for any
(M23, A12, A13, Aag, A) that satisfies (99)-(102). Therefore,
it suffices to show that

f(r123, M2, A3, A2z, ') < max{d1, 02, 83, 012, 013, 023 },
(119)

where )\/ é min{rl(g)g) — /\12 — /\13, 7’2(1’3) — )\12 -
)\237 1"3(1,2) — )\13 — )\23} —T123. In other WOI'dS, we fix )\123 to
r123 and X to . It can be easily verified that 123 = 7123, A =
A are in the feasible region specified by (99)-(102). As will
be shown in the end, fixing A123 = 7123, A = A’ will not hurt
the optimality. It is also intuitive because Aj23 corresponds to
the amount of transmission that has the highest efficiency (3
birds, 1 stone) so it should be set as large as possible to r123.
Then, A = )\ is also the largest possible we can set after Ai23
is fixed to rio3.

Setting A123 and A to these values (note that both values
are non-negative), the objective simplifies to the minimization
of,

f=mi+mo+mz—2ri23 — A2 — A1z — A2z
- min{ﬁ(zs) — A12 — A1,

T2(1,3) — A12 — A23,

T3(1,2) — A13 — A23} + 123 (120)
= (mq +mg +m3 —r123)
constant
—min{ry2,3) + 23, T2(1,3) + A3, T3(1,2) + A2}
(121)

We focus on the remaining three parameters, \12, A\13 and Ao3.
Note that minimization of f is equivalent to the maximization
of the minimum of the three terms: 712 3y + A23, r2(1,3) + A13,
and 73(1,2) + A12. Intuitively, this optimization may be seen as
a constrained waterfilling problem. To make the connection
to waterfilling clear, let us further introduce the following
notation.

b £ 71(2,3), Wi £ rog — g3, (122)
bo £ ro(1,3), WY £ ri3 — 193, (123)
bs £ r3(1,2), W £ 71y — r123, (124)
wy = Aas, wi'y® £ r13.93 — T123, (125)
wy 2 13, wi'§® £ 11993 — 123, (126)
w3 = g, wWHST £ i 13 — T103. (127)
With this notation, the optimization problem becomes
maxmize Ao, = min{b; + wy, by + wa, b3 +ws}, (128)
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h'min

d A

Constrained Waterfilling.

Fig. 5.

w1 S w{naxa
w2 S wgnama

w3 S wéﬂama

max

s.t.Qwp +wy < wi'g”, (129)

wy +wz < wi'g,

max

wo + wz < wy's

w1, wa, w3 € Ry

Let us explain the waterfilling analogy. There are three
adjacent vessels as shown in Figure 5, labeled 1,2,3 from
left to right. Vessels 1,2, 3 have base levels (shown in gray)
at heights by, bs, b3, respectively. We are allowed to add
w1, ws, w3 amounts of water to Vessel 1, Vessel 2 and Vessel
3, respectively according to the constraints (129), in order to
maximize Ry, i.., the minimum of the heights of water in
the three vessels. The objective from (121) now maps to the
waterfilling problem as,

f=m1+mg+ms—ria3 — hmin- (130)

Note that the first three constraints in (129) are constraints
on the capacity (for holding water) of individual vessels, and
the next three constraints are for pairs of vessels. Furthermore,
we have max{w("**, wy**} < w{'y® by (98), which ensures
that the pairwise capacity constraints do not dominate the
individual capacity constraints. Since the only constraints are
on individual vessel capacities and pairwise vessel capacities,
the optimal value of h,,;, must correspond to one of the
following outcomes.

1) hpmin is limited by the individual capacity of Vessel ¢,

i € {1,2,3}, which holds the maximum water it can,
w; = w***. In this case, Apin = by +w;"** and F* <
f=my+mg+m3—ria3 — hmin = ;.

2) hmin is limited by the pairwise capacity of Vessels i, j,
(1,7) € {(1,2),(1,3),(2,3)}, which together hold the
maximum water they can, ie., w; + w; = wzzjam’ and

have the same final water level h,,,;,,. In this case, we have

(Bmin—=bi)+(hmin—b;) = wi"{" which gives us hyin =

%andF*ﬁf:ml—%mg—i—mg—ﬁgg—
Romin = 4.
Thus, in every case we have F* <
max{él,52,53,512,513,523} = max{Al, AQ}, which
completes the proof. (]

X. CONCLUSION

The exact capacity of the 3 user LCBC is found for all cases,
i.e., for arbitrary finite field IF, arbitrary data dimension d, and
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arbitrary specifications of the users’ desired computations and
side-information V7, V. The 3 user setting introduces several
intricacies that were not encountered in the 2 user LCBC,
such as the insufficiency of the entropic formulation for tight
converse bounds, the need for functional submodularity, the
rich variety of subspaces involved, random coding arguments
to resolve discrepancies between the users’ differing views of
the same subspaces, the tradeoffs between the communication
efficiencies associated with these subspaces, and the inherent
optimization that led us to a constrained waterfilling solution.
The fact that the 3 user LCBC capacity turns out to be fully
tractable despite these intricacies is surprising. In particular,
we note that even though the 3 user LCBC involves at least
6 key subspaces in Vi, V., k € {1,2,3}, the solution did
not require the Ingleton inequality, nor were non-Shannon
inequalities required for the converse. Instead, the main tools
used were Steinitz Exchange lemma, the dimension counting
of pairwise unions and intersections of subspaces, functional
submodularity, and the random coding argument invoked
through the Schwartz-Zippel lemma. The tractability of the
3 user LCBC is indicative of the potential for further progress
in understanding the fundamental limits of basic computation
networks in future efforts. Indeed, there are many promising
directions for future work. Building on the K = 2 and
K = 3 cases, the K = 4 user LCBC in particular is an
important next step, as it might either reveal a consistent
pattern that holds for arbitrary K users or present obstacles
that are indicative of the difficulty of the large K setting. Also
of interest are asymptotic LCBC settings with large number
of users. An intriguing generalization of the LCBC problem is
the LCBC with partially informed server, LCBC-PIS in short,
where the central server has only limited knowledge of the
data in the form of some linear functions of the data. The
LCBC-PIS setting has been introduced and solved recently
for K = 2 users in [66]. The capacity remains open for
K > 3 users. Studies of linear computation multiple access
settings (LCMAC) represent another promising research
avenue, partially explored in [38] from a coding perspective.
Approximate linear computations over real or complex
numbers, as well as non-linear computations that connect to
coded distributed computing represent other challenging and
important research directions for future work. From a practical
perspective, studies of computational and communication
tradeoffs of AR/VR applications that take advantage of
the coding schemes discovered through the studies of
LCBC/LCMAC settings would be valuable complements to
the theoretical efforts.

APPENDIX A
FIELD EXTENSION
To clarify the notation and illustrate the utility of field
extensions, let us present an example. Consider ¢ = 2, K =

3,d =2,m =m' =1 and the following coefficient matrices
Uy = [V}, Vil k € [3] as

10 0 1 11
U2 = {0 1] Ui“:{1 1],U§X2={1 0]. (131)

By the problem formulation, x € F%Xl denotes the data
for each computation, and X € IF%XL denotes the data for
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L computations. Let us first try to design a coding scheme
with L = 1. Denote X7 = [21(1),22(1)] and then W/ =
XTV/1 = xl(l), W1 = XTV1 = xg(l), W/Q = XTV/2 =
$2(1), W, = XTVQ = :Cl(l) +$2(1), = XTV/3 =
21(1) + 22(1), W3 = XTV3 = 2,(1). The following table
shows all possible outcomes of (W7, Wy)jc(s).

l‘l(l) :L’Q(l) Wll W1 W/g W2 Wé W3
0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0
1 0 1 0 0 1 1 1
1 1 1 1 1 0 0 1

A coding scheme must satisfy the property that for any two
outcomes, the broadcast information S corresponding to these
outcomes has to be different if 3k € [3] such that W/, is
the same but Wy, is different for these two outcomes. This
is necessary to ensure that User k will not be confused when
decoding under these two outcomes. Following this rule it is
easy to verify from the table that the realization of S has to be
different for any two outcomes in this example, which implies
S has to be different in all outcomes. Thus, |S| > 4, which
implies N > 2 and thus A = N/L > 2 for L = 1. In other

words, scalar coding schemes cannot achieve A < 2.

Let us now consider field extension. Let z = 2 and consider
L =z =2. Denote V|, = V|, @ I?*2, V;, = V;, ® I?*? and
U, = U, QI2%2 as the 2-extension of the coefficient matrices,
where ® denotes the Kronecker product. We have

1 0 0 0]
01 00
G =ViVil= g o 1 ol
0 0 0 1]
0 0 1 0]
4x4 00 01
T =Va Vo= o 1 of
10 1 0 1]
1 0 1 O]
= S 01 01
T =V =1 o o o (132)
0 1 0 0
Then denote X = [z1(1),x1(2);22(1),z2(2)] as the data

matrix for L = 2, and denote X = VCC(XT)L where
vec(:) is the Vectorlzatlon function. We have X7 =
[21(1),21(2), 22(1), 22(2)] € F3**. We can see that User k
has side- 1nf0rmat10n X V’ , and wants to compute XTV,.
Then by the property of ﬁnlte field extensions, we can regard
[z1(1),21(2)] as Z; € F4 and similarly [1'2(1),1'2(2)] as
ZTo € F4. Accordingly, the extended coefficient matrices are
regarded as 2 x 2 matrices in F, as

10 0 1 11
U = {0 1], U3*? = {1 1], Uz*? = {1 0} . (133)

Note that the matrices are exactly the same as the matrices
in (131) but considered in the extended field F4. To avoid
complex notations, we redefine the data matrix as X =
[Z1;@2] € F2*!. Thus, by considering L = 2 computations,
we have an equivalent problem where ¢ = 4,d = 2,m =
m’ = 1 and the same coefficient matrices Uy, = [V}, V], k €
[3], but now all elements are from F4. As a coding scheme
with L = 2, it suffices to send S = X7*[l;a], where
a ¢ {0,1} and o € Fy. Since the column vector [1;«] is
linearly independent of each of Vi, V), VY, each user has two
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independent equations in X7 from which it can decode all of
X, and recover the desired Wy, Since S is chosen as 1 symbol
from F4, we have N = 2 (1 symbol in F4 corresponds to
2 symbols in Fs) and thus A = N/L = 1, thus a better
A = N/L is achieved by considering L > 1.

In general, by considering L. = z computations, the
original problem is equivalent to the problem with all the
same parameters including the coefficient matrices but in
the extended field IFy-. By considering z computations in
the original problem as 1 computation in the extended field,
the original problem over F, for L = zL' computations,
is equivalent to the new problem with the same parameters
in the extended field F,- for L’ computations.

APPENDIX B
SOME DISCUSSION ON LEMMA 2

As we go to 3 spaces, (Uj),(Usy),(Us), generalizing
the decomposition for (U;) and (Uy) as in Lemma I
is not so straightforward. Analogies to set-theoretic ideas
such as inclusion-exclusion principle and Venn’s diagrams
do not quite work for 3 vector spaces. For example,
if (Uy),(Us), (Us) are three independent lines in a plane,
i.e., pairwise independent one-dimensional subspaces of a
2 dimensional vector space, then (U;) has no non-trivial
intersection with either of (Us) or (Uj) individually, yet (U)
is contained in ([Usg, Us)), a situation for which there is no
direct set-theoretic analogy. This is why we need the subspace
decomposition for (Uy), (Us), (Us), as illustrated in Figure 3
and formalized in Lemma 2. As noted, the decomposition
parallels a corresponding decomposition in the DoF studies
of the 3 user MIMO BC by Wang in [55], highlighting its
fundamental conceptual significance.

Following the idea of growing the basis to cover larger
and larger subspaces, similar to the constructive proof for
Lemma 1, let us interpret Figure 3, so that Lemma 2 will
be intuitively transparent. Consider the space (Uj), ie.,
the column space of U;. This space is decomposed into
5 subspaces as follows. First we have the space within (Uy)
which overlaps with both (Usy) and (Uj). This is the space
(Uja3) £ (U;) N (Usy) N (U3). The basis for this space is
labeled in the figure as the matrix Bi3. Now consider the
space within (U1) which overlaps with (Us). This is the space
(Uj,) £ (U;)N(Uy). The basis for this space is [B123, Bia].
Note that (Uja3) C (Ujs), which is also reflected in the
fact that the basis for (Uys) explicitly contains the basis for
(Uja3). It is important to recall that the columns of a basis
matrix must be linearly independent by definition. Therefore,
not only do we have a basis [B123, B1a] for (U12), but also
by the linear independence of the basis vectors, it follows that
(U12) is decomposed into two independent subspaces, namely
the subspaces (Bia3) and (Bjo). This can also be expressed
as* a direct sum, i.e., (Up) = (Bias) @ (B1o). Similarly,
(Uy3), i.e., the intersection of (U;) and (Ugs) is decomposed
into independent subspaces (B123) and (Bas), ie., (U1s) =

“4For vector spaces V,V1,--+, Vg, we have V =V, @V @ --- @ Vi
iff for every v € V, there exist unique vy, € Vy, for all k € [K] such that
v=v1+v2+-+Vk.
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(B123) @ (B13). Continuing the process further, now consider
the space within (U, ) which overlaps with ([Us, Us]), i.e., the
space denoted as (Uj(z 3). As indicated in the figure, the basis
for this space is [B123, B12, B13, B1(2,3)], which immediately
decomposes (Ujy(z3)) into 4 independent subspaces, i.e.,
(Ui(2,3)) = (Bi2s) © (B12) ® (Bas) & (By(23)). Finally,
consider all of (Uy), for which Figure 3 identifies the basis
as the matrix [B123, B12, B13, Bi(2,3), B1c], thus completing
the decomposition of (U;) into 5 disjoint subspaces, (U;) =
(Bi2s) @ (B12) @ (Baz) ® (Biga3)) & (Bic). Similar
decompositions apply to (Us) and (Us) as well.

The description thus far is similar to set-theoretic
decompositions into disjoint sets, as one might represent
through disjoint regions in a Venn’s diagram. This brings us to
the most interesting aspect of the 3-subspace decomposition,
highlighted as the yellow regions with dashed boundaries in
Figure 3. The subspaces corresponding to these three regions,
namely (By(23)), (B2(1,3)), and (Bg(y,2y) are only pairwise
independent, and the span of the union of any two of them
contains the third. In fact, it is always possible to choose
the basis matrices such that Bys3) + Ba13) = Bs(,2),
which will simplify the construction of the coding scheme.
Thus, Figure 3 shows 10 subspaces, including the 3 subspaces
highlighted in yellow, and if we exclude any one of the
3 yellow subspaces, the remaining 9 are independent spaces.
Mathematically,

([U1,U02,U3))
= (B1(2,3)) ® (Ba(1,3)) ® (Bic) @ (Bac) @ (Bae)

@ (B12) @ (Ba2s) @ (B13) @ (Bi23) (134)
= (Ba(1,3)) © (B3(1,2)) @ (B1c) ® (Bac) @ (Bsc)

® (Bi2) ® (Ba3) ® (B13) ® (Bi23) (135)
= <BS(1,2)> & <B1(2,3)> & <B1c> @ <B2c> D <B3c>

@ (B12) ® (B2s) © (B13) © (Bi23) (136)

APPENDIX C
PROOF OF LEMMA 2: DECOMPOSITION OF
<U1>7 <U2>7 <U5>

Let us begin by informally summarizing the key facts that

are used extensively in this section.

1) A matrix M forms a basis of the column-space of a
matrix U, if and only if (U) C (M) and the number
of columns of M is equal to rk(U). Note that a basis
matrix must have full column-rank, i.e., all its columns
are linearly independent, and it has only as many columns
as needed to span (U), i.e., tk(U) columns.

2) If A € FI** and B € F2* are basis matrices (i..,
they each have full column-rank) and (B) C (A), then
there exists a matrix C' € ng(“—b) such that [B,C] is
a basis of (A). It follows that (C') C (A). Let us call C
the complement of B in A and denote it as C' = A\B.
Note that such C' is not unique, and one feasible choice
of such C' follows from the Steinitz Exchange Lemma,
which produces a C' that is a submatrix of A. Other
feasible choices of C' can be constructed as follows.
Denote C° as the choice from the Steinitz Exchange
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Lemma. Other feasible choices can be constructed as
Crew — COMpR 4 BR/, where R € FY X0 pr ¢
IFZX(Q_b) and R is invertible. To see this, first note that
C™V has the same size as C°9. Then note that any
v € (A) can be represented as v = Bry, + C°Yr,
because [B,C°9] is a basis of (A). It follows that
v = B(r,— R'R~'r.)+ C"™V R~1r., which implies that
v € ([B, C"WV]).
3) Also recall the dimension formula (15), i.e., rk(M;) +

I‘k(MQ) = I‘k(Ml n Mg) + rk([Ml, MQ])

We will now construct the 10 bases that are mentioned in

Lemma 2, collectively referred to as B.

B = {B123, Bi2, B13, B23, B1(2,3), B2(1,3), B3(1,2)
B107 B207 B3c}

First, let us define the compact notation, b, = rk(B,) where
«€{1,2,3,12,13,23,1(2,3),2(1,3), 3(1,2), Lc, 2c, 3c}.

For example, by (2 3) £ k(B (2,3)). Since the vector space is
d-dimensional, and B, are basis matrices, it follows that the
size of B, is dxb,. The construction now proceeds as follows.

Step 1: Bios = Ujoags.

Step 2: Blg = U12\B123.

Step 3: B13 = U13\B123.

Step 4: B2z = Uy3\Bi23.
These four steps are direct applications of the Steinitz
Exchange Lemma, which also guarantees that properties (P1)
- (P4) are satisfied. Next let us prove that (P5) - (P7) are
also satisfied. Consider (P5). It follows from the construction
that [B123, B12, B13] spans ([U12, Uj3]) because it explicitly
contains the bases for both spaces, but we wish to show
that it is itself a basis, i.e., it has full column-rank. Now,
since [B123,B127B13] has b123 + b12 + b13 columns and
1k([U12, Uss]) = tk(Usz) 4 tk(Uss) — tk(U1a3) = (b123 +
bi2) + (b123 + b13) — bi2g = b123 + bi2 + bys, it follows that
[B123, B12, By3] has full column rank. Thus, (P5) is satisfied.
(P6) and (P7) are similarly proved by symmetry. We continue
the construction of B.

Step 5: Bi2,3) = Uy(2,3)\[Bi23, B2, B13].

Step 6: By(1,3) = Uz(1,3)\[Bi23, Bi2, Bag].

Step 7: By(1,2) = Us(1,2)\[Bi23, Bi3, Bas].

Step 8: By = U;\[Bi23, Bi2, B13, Bi2,3)].

Step 9: By, = Uz \[Bi23, Bi2, Ba3, By1 3)].

Step 10: B3, = U3\[B123, B137B23, B3(172)}.
Again, Steps 5-10 are applications of the Steinitz
Exchange Lemma, which implies that [Bja3, B2,
B13,B1(2,3), Blc] is a basis of <U1>, [B123,B12,B23,
By(1,3),Ba] is a basis of (Up), and [Bia3,Bis,
B3, B3(1,2), B3] is a basis of (Us). Furthermore,
[B123, B12, Bi3, Baz, Ba(1,3), Ba(1,2), Bac, Bac] is a basis of
([Ug, Us]) because it spans ([Ug, Us]) by construction, and
has full column-rank because

k([U,, Us))

= rk(Us) + rk(Us) — tk(Uas)

(b123 + b12 + baz + ba(13) + bac)

+ (b123 + b1z + baz + b3(1,2) + b3c)

(137)
(138)
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— (b123 + ba3) (139)
= b123 + b12 + b13 + bag + ba(1,3) + b3(1,2) + b2c + bsc
(140)

which happens to be the number of columns of
[Bi23, Bi2, B3, Bas, Bo1,3), By(1,2), Bac, Bac|- Thus,
(P14) - (P16) are satisfied.

Next let us show that (P17) - (P19) are satisfied. Consider
(P17), i.e., we wish to show that B~ £ [B123, B12,B13, Bog,
B1(273)7 B2(173)7 Blc, Bgc, Bgc] is a basis for <[LT17 Ug, U3]>
First let us show that ([Uy, Us, Us]) is contained in the span
of By7. From (P11), (P12) note that the basis for (Uj) is
explicitly contained in Bj7, and so is the basis for (Usj).
Then, noting that (Bj3(1,2)) C ([U1, Us]) by its construction
in Step 7, it follows from (P13) that (Uj) is also contained
in the span of By7. Thus, ([Uy, Us, Us]) is contained in the
column-span of Bi7. Next let us show that B;7 has only as
many columns as rk([U;, Ug, Us)), so it must be a basis.

rk([U1, U, Ug)) (141)
= 1k([Uy, Ug]) + 1k(Us) — rk(Us(1,2)) (142)
= (b123 + b12 + b1z + baz + bi(2,3) + b2(1,3) + bic + bac)

+ (b123 + b13 + bas + bs(1,2) + b3c)

— (b123 + b13 + b2z + b3(1,2)) (143)
= bi2g + bi2 + b1z + bas + by(2,3) + b2(1,3)
+ blc + b20 + b3c (144)

which is the number of columns of Bi7;. Thus, (P17) is
satisfied, and by symmetry (PI8) and (P19) are satisfied as
well.

At this point, only (P20) remains to be shown. It is
worthwhile to note that we always have,

bi(2,3) = ba(1,3) = b3(1,2)- (145)

This is because properties (P17)-(P19) together imply that
biz,3) + ba1,3) = bie3) + bz = baas) + b3z
and thus the three components must be equal. If by(33) =
ba(1,3) = b3(1,2) = 0, then (P20) can be neglected. Otherwise,
we continue the process from Step 11.
Step 11: Since (Bg(;,2)) C ([Uy, Us]) as noted above, let
us uniquely represent B 5) in the basis of ([Uy, Us])
according to (P14) as,

B3(1,2) = B12sR1 + B12Ro + BisRs + BazRy

+ Bi2,3)Rs + BicRg + Ba(1,3)R7 + BacRg  (146)

where R; to Rg are [, matrices with appropriate sizes.
In particular, from (145) it follows that R5 and R; are square
matrices. A key goal in the remainder of the proof will be to
show that Rs and R are invertible.

First we claim that Rg and Rg must be zero matrices.
We prove this by contradiction. Suppose Rg is not the zero
matrix, say its first column is a non-zero vector r, then By.r #
0 will lie in ([Ug, Us]). However, by construction, rk(B;. N
[UQ, Ug]) = I'k(Blc ﬂUl N [UQ, UgD = I'k(Blc ﬂU1(2,3)) =
0, meaning that (B;.) and ([Ug, Us]) are independent spaces.
This completes the proof by contradiction, confirming that
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R is a zero matrix. Similar argument is true for Rg due
to symmetry. Thus, we have

B3(1,2) = B123R1 + B1oRa + BisRs + BasRy

+ Bi2,3)Rs + By 3Ry (147)

We now claim that R5 and R~ have full column rank, i.e., they
are invertible square matrices. The proof is by contradiction as
well. Suppose R does not have full column rank, then there
exists a non-zero vector ‘a’ such that Rsa = 0, which then
implies that

(Bs(1,2) — B123R1 — BisR3 — BysRy) a

€(Us)

= (B12R2 + By 3R7)a = b. (148)

€(Uz)

Since Bj(1,2), B123, B13, Bos are disjoint submatrices of the
basis matrix for (Us(; )) according to (P10), they are linearly
independent by construction. It follows that,

1) (B3 1,2) B123R1 — B13R3 — B23R4) has full column-
rank equal to b3(1,2). This is because if on the contrary,
there exists a non-zero vector z such that (B3(172) —
B123R1 — B13R3 — B23R4)Z = 0, then B3(172)Z S
([B123, B13, Bas]). Since Bg(q 2y has full column rank
and z # O, this means (Bg(;2)) has non-trivial
intersection with ([B123, B3, Bag]), contradicting their
linear independence.

2) (B31,2) — B12sR1 — BisRs — BysRy)a £ b # 0,
because of the previous observation and because a is a
non-zero vector.

3) b ¢ <[B123,B23]> = <U23>, because if b €
([B123, Bas]) then the non-zero vector Bs(; 2ya = b +
Bi2sRia + BisRsa + BasRya € ([Bias, Bos, Bis)),
which is a contradiction because Bj(1 2), B123, B13, Bos
are linearly independent.

4) b € (Ujs). This follows from (148). Specifically, since
B3(1,2), B123, B13, B2 are all submatrices of the basis
matrix for (Us) according to (P13), and b is their linear
combination, this implies that b € (Us).

5) b € (U,). This also follows from (148) by similar
reasoning.

6) From enumerated items 4 and 5 above, we have, b €
<U2> and b € <U3>, and thus b € <U2>ﬂ<U3> = <U23>,
which contradicts item 3.

The contradiction proves the desired result that R5 has full
column rank, i.e., it is an invertible square matrix. Similarly
we can prove that R has full column rank, also an invertible
square matrix. The last three steps hinge on this property.

Step 12: Redefine B3y 2) as

3(12) = B3(1 9y — Bi2sR1 — BisR3 — BasRa.
(149)
Step 13: Redefine By(; 3 as
BYY,) = BY 5 R + BioRo. (150)
Step 14: Redefine B2 3) as
Bi{}s) =BG Rs. (151)
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Since R5 and Ry are invertible square matrices it follows
by (P6) and (P7) that B‘f?;’ 3) an(’w and Bjf are also
feasible choices in Steps 5,6, and 7. Thus, (P8§)- (PI 9) are still

satisfied after By (2 3), Ba(1,3) and Bs(; o) are replaced with

B“‘gvg), B“?XV?)), Bg(l 5y, respectively. However, because of the
last three steps and (147) (P20) is now satisfied as well with
BHCW Bl’leW Bl’l
1(2,3)7 P2(1,3)> 23(1,2)> 1
3(12) = Bo(1s) + Bi(as)- (152)
This concludes the proof of Lemma 2. (]

APPENDIX D
COMPARISON OF LEMMA 2 TO THE CHANNEL
DECOMPOSITION OF [55]

Reference [55, Chapter 3] explores the DoF of a 3 user
MIMO broadcast channel where the transmitter has m
antennas, and the k‘" receiver has n;, antennas, k € [3]. The
channel is specified by Y1 = H1 X + 7, Y5 = H, X + Z5 and
Y3 = H3X + Z3, where X € C™*! denotes the input of
the channel and Y, € C™*! k € [3] denotes the output of
the broadcast channel at the k*" receiver. H, € C™*™ [k €
[3] denotes the channel matrix between the transmitter and
the k'™ receiver. Z1,Z» and Zs are independent Gaussian
noise vectors with zero mean and identity covariance matrix.
There are independent messages desired by various subsets
of receivers. As apparent from the high level description, the
overall 3 user MIMO BC DoF question does not allow any
direct mapping to our 3 user LCBC capacity question, e.g.,
the LCBC formulation has no notion of channel matrices,
all users receive the same broadcast symbols, whereas the
MIMO BC problem has no notion of side-information or linear
computations.

What connects the two problems is that they both involve a
decomposition of 3 subspaces. In the LCBC, the 3 subspaces
of interest are (U;), (Usy),(Us) as in Lemma 2. In the
MIMO BC the corresponding subspaces are (N7), (Na), (N3),
defined as the null spaces of the channel matrices H{, H,
HY, respectively. The decompositions parallel each other very
closely. Intuitively, even though the context surrounding these
subspaces is quite different in each problem, the subspaces
are similar mathematical objects, so it makes sense that they
should have similar properties, e.g., similar decompositions.
The following table establishes a one-to-one correspondence of
the subspace decompositions in the two settings. The notation
in the right column of the table follows the definitions in [55].

A distinction is apparent in the first and last rows of
the table. According to the first row, [55] assumes that the
three subspaces have empty intersection, whereas Lemma 2
accounts for this space with the basis representation Bjos.
On the other hand, according to the last row, Lemma 2
assumes the complement of the span of three subspaces is
empty, whereas [55] accounts for this space with the basis
representation Vio3. This distinction arises mainly because
in the LCBC setting the complement of span of the three
spaces is uninteresting (data dimensions that are neither known
nor desired by any user), whereas in the MIMO BC the
intersection of the three nullspaces is similarly uninteresting
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TABLE I

CORRESPONDENCE BETWEEN LEMMA 2 AND
THE CHANNEL DECOMPOSITION IN [55]

Lemma 1 [55]
Field F, C
Dimension of universe d m
3 subspaces to decompose | (U1), (U2), (Us) | (N1),(Na2), (N3)
Bios 0
B2 V3
Bis Va
Bas |4t
Bi(2,3) Vasx
Corresponding Bases By1,3 Visx
B3(1,2 Viax
Bic Vasr
Bac Visr
Bs. Vigr
0 Vias

(transmit dimensions that are nulled at every receiver), and
each problem naturally eliminates the uninteresting spaces for
simplicity. The distinction is not significant, however, since
the omitted spaces can be trivially included. A bit more
significant distinction that is not apparent from the table is that
as an additional feature, Lemma 2 chooses the basis matrices
Bi(2,3), Ba(1,3), Ba(1,2) carefully to satisfy the matrix-sum
condition By (3 3) + Bgy(1,3) = B3(1,2), which facilitates code
design in the LCBC. Such an explicit specialization of bases
is not considered by the corresponding construction in [55].
Setting aside these finer distinctions, it is quite remarkable
that the subspace decompositions in [55] and Lemma 2,
obtained independently in different contexts, turn out to be
in one-to-one correspondence. The one-to-one correspondence
constitutes strong evidence of the fundamental significance
of the decomposition, as well as a verification of the same
concept from two perspectives.

While the two decompositions are intuitively similar, there
are several underlying technical details that prevent the direct
application of the decomposition in [55] to the LCBC problem.
Note that the proof in [55, Sec. 3] relies on the existence of
an orthogonal complement, i.e., a linear subspace that is both
orthogonal and complementary to a given linear subspace. The
existence of an orthogonal complement is guaranteed over C,
but not over IF,,. For instance, self-orthogonality is a prominent
theme in error correction code design over finite fields.
Removing the requirement of orthogonality and just using
any complement space instead does not automatically resolve
the issue, because the complement space needs to be chosen
carefully to achieve the correct alignment of spaces. The
orthogonality of the complement space helps to achieve the
desired alignment in the proof of [55, Sec. 3]. Over Iy, since
we are not guaranteed orthogonal complements, this choice
is non-trivial). This is important because the alignment aspect
of subspaces (any two subspaces contain the third) is what
makes the subspace decomposition non-trivial. Furthermore,
the proof of correctness of the subspace decomposition in [55,
Sec. 3] applies to almost all spaces, since the argument relies
on the values taken by ranks almost surely. Over arbitrary [Fy,
an ‘almost-surely’ guarantee is not meaningful. Indeed, the
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proof of correctness of the decomposition is shown for all
realizations in Lemma 2.5

Let us introduce a simple setup to further illustrate
these points. Consider the following three (complex) channel
matrices Hy, Ho, Hs.

100 110
m_bIOYm_mo1ym_%01}
(153)

Denote A/ (A) as the nullspace of A, i.e., the set of X such
that AX = 0. Let Ni,k € {1,2,3} be a basis (written in
columns vectors) of N(Hk), ie.,

0 10 1
Ny = (0], Na= 1[0 1], N3=]1 (154)
1 0 0 0

Let (A) denote the linear subspace spanned by the columns
of A. For example, (N1) = N'(H;). AN B denotes a basis
that spans the subspace (A) N (B). In addition, if (A) is a
subspace of (U), then let Af; denote a basis of the intersection
of N(AT) with (U). It follows that AT Aj; = 0 and rk(A) +
tk(A#) = rk(U). Note that for A defined in C, [4, A:] spans
(U). Thus, A is the ‘orthogonal complement’ of A (within
the subspace (U)). In particular, (4) and (A#) have no non-
trivial intersection. However, this is not always true in finite
fields, e.g, A = [1,1]7 € F3*!, and A+ = [1,1]T = A.
Using the same notation as in [55, Sec. 3], let us define

1 0 0
H; 010
Hip3 2 |Ha| = |0 0 1,
H| |11 0
0 01

Hpy £ [g;] , Hiz = {gﬂ , Hoz = {gﬂ : (155)
With these definitions, let us apply the decomposition
method in [55, Sec. 3.4.6] on Ny, Ny, N3. A summary of the
steps is given below.
1) Find V; = N5 N N3 as a basis of A(Hag).
2) Find Vo = Ny N N3 as a basis of N'(Hi3).
3) Find V3 = Ny N N, as a basis of N (Hya).
4) Find Vi3 as a basis of the orthogonal complement of
([V4, V3]) within (N3).
5) Find Va3 as a basis of the orthogonal complement of
([Va, V5]) within (N7).
6) Find Vj5 as a basis of the orthogonal complement of
([V1, Va]) within (N3).
7) Find independent bases Visx, Viax, Viar, Visr, Vesr by
(3.43) - (3.47) of [55].

By Steps 1-3,
Vi=N,nNs=[1 1 0], (156)
Va=Ni1NN3=[], (157)
Va=NiNNy =[] (158)

5t is noteworthy that the proof of Lemma 2 also extends to the field of
complex numbers. The proof is based on linear independence/dependence of
subspaces which holds over both Fy and C.
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At this point, note that the next step, which is to construct Vi3
does not work. According to [55] (3.38),

Vis = (HigsHi23) ' Hipg(Hi2s[Vi, Vi) H0un,s (159

but (Hi,3Hie3) is not invertible although Hjpz has full
column rank 3. This is because the orthogonal complement of
Hy53 has nontrivial intersection with itself. This can happen
in F, but not in C.

Alternatively, if we use the implicit definition, [55, (3.37)],
we may avoid the inversion of HlTQ?,H 123, but a similar
problem will again emerge. [55, (3.37)] requires that

Hi23Vis = (Hi23[Vi, Va)) i, v, (160)

which is a basis of the orthogonal complement of
(H123[V1, V3]) within the subspace (Hp23N5). Note that

Higs[Vi,Vs]=[1 1 0 0 O]T (161)

and
T
11 0 00

H123Nz—[1 00 1 O} . (162)
It is readily verified that the only solution to
(ngg[%,%])ﬁmm = [1,1,0,0,0]7.  Therefore,
we obtain that Hyp3Vi3 = [1,1,0,0,0]7. This gives us

Viz = [1,1,0]T = Vi, which is linearly dependent on V.
However, Vi3 is required to be linearly independent of V; in
Step 4.

Next let us consider Step 7. At a high level, the
motivation of Step 7 is that the three spaces Vi3, Vi
and Vb3 are not independent in general and therefore
a finer decomposition is needed. In [55], 6 subspaces
are introduced, namely Visx,Visr, Viax, Vier, Vesx, Vesr,
so that [Vizx, Viagr] spans (Via), [Viax, Viar] spans (Vi2),
and ([Vasx, Vasg]) spans (Vi2). Note that these subspaces
identified by the algorithm have such properties that

« [Visx, Visr, Viax, Viar, Vagr] are independent and span
([Vis, Via, Va3]). Besides, [Viix, Vixr| spans (Vi.), for
o € {13,12,23}.

e In addition, Vhsx is linearly representable by
Visx, Viax], ie, (Vazx) C ([Visx,Viax]). Also,
(Viex) C ([Visx, Vasx]) and (Visx) C ([Viex, Vasx]).

o Visx,Viex,Vosx are aligned in a way such that
(HiVisx) = (H1Viax), (H2Viax) = (H2Va3x) and
(H3Vizx) = (H3Vazx).

The critical alignment is the second one, i.e., we need
Visx, Viex, Vagx such that each one is contained in the span
of the other two. Let us see what happens if we replace the
‘orthogonal complement’ space (which may not exist over )
with any ‘complement’ space (which do exist over F,). The
following toy example shows that simply replacing ‘orthogonal
complement’ with ‘any complement’ may not work. Suppose
we are given,

10 10 1
Ny=10 1|, No=|1 1|, Ns=|1], (163)
00 0 1 1
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with entries all defined in Fs. It follows by definition that,

Vi=NoaNN3=[], Va=NNN3=[],
1

V3=NiNNy= |1 (164)
0

Next, say we choose the complements (not necessarily
orthogonal) as,

0 1 0
Vis= (1], Via= (1], Vaz= 1], (165)
1 1 0

so that [V, V5,Vi3] span (Na), [Vi,Va,Via] span (N3),
and [Va, V3, Vas] span (Np). Such an attempt to translate
Steps 1 — 6 to the finite field case does not work because
now we see that [V, Vo, V3, Vi3, V1o, Vog] are not linearly
independent. In particular, with this choice there is no non-
trivial Visx, Vasx, Viax so that any one is contained in the
span of the other two. What this shows is that the complement
spaces Vi3, Vi, Vo3 need to be chosen carefully. The proof
in [55] does not face this problem, because orthogonal spaces
and complement spaces are compatible for complex numbers
and therefore calculations of orthogonal complements help to
identify the appropriate Vi3, Vi, Vag. Over I, this does not
work. Fortunately, there does exist a solution to [Vi3, V12, Va3]
so that such non-trivial Vizx, Vosx, Viex can be found (see
Steps 11-14 in Appendix C for the details of this key aspect
of the proof in the general case). Indeed, with a more careful
choice of subspaces we have,

0 1 1
Vig= (1], Viza=|1], Vaz= |0}, (166)
1 1 0
0 1 1
Visx = |1, Viex = |1|, Vazx = |0}, (167)
1 1 0
and then
Visp = Viagp = Vasp = [ |. (168)
Thus, following our proof we successfully found the

Visx, Visgr, Vi2x, Vi2r, Vasx, Vasg that satisfy the desired
(first two) properties described in Step 7.
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