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On the Generic Capacity of K-User Symmetric
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Abstract— Linear computation broadcast (LCBC) refers to a
setting with d dimensional data stored at a central server, where
K users, each with some prior linear side-information, wish
to compute various linear combinations of the data. For each
computation instance, the data is represented as a d-dimensional
vector with elements in a finite field F,» where p™ is a power of
a prime. The computation is to be performed many times, and
the goal is to determine the minimum amount of information
per computation instance that must be broadcast to satisfy all
the users. The reciprocal of the optimal broadcast cost per
computation instance is the capacity of LCBC. The capacity is
known for up to K = 3 users. Since LCBC includes index
coding as a special case, large K settings of LCBC are at least
as hard as the index coding problem. As such the general LCBC
problem is beyond our reach and we do not pursue it. Instead of
the general setting (all cases), by focusing on the generic setting
(almost all cases) this work shows that the generic capacity of
the symmetric LCBC (where every user has m’ dimensions
of side-information and m dimensions of demand) for large
number of users (K > d suffices) is Cq = 1/Ag,, where
Ay, = min {max{O, d—m'}, %}, is the broadcast cost
that is both achievable and unbeatable asymptotically almost
surely for large n, among all LCBC instances with the given
parameters p, K,d, m,m’. Relative to baseline schemes of
random coding or separate transmissions, Cy shows an extremal
gain by a factor of K as a function of number of users, and by a
factor of =~ d/4 as a function of data dimensions, when optimized
over remaining parameters. For arbitrary number of users, the
generic capacity of the symmetric LCBC is characterized within
a factor of 2.

Index Terms— Computation broadcast, generic capacity.

I. INTRODUCTION

ECENT observations of ‘megatrends’ in the commu-
nication industry indicate that the number of devices
connected to the internet is expected to cross 500 billion,
approaching 60 times the estimated human population over
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the next decade [1]. With machines set to become the
dominant users of future communication networks, along
with accompanying developments in artificial intelligence
and virtual/augmented/mixed reality applications, a major
paradigm shift is on the horizon where communication
networks increasingly take on a new role, as computation
networks. The changing paradigm brings with it numerous
challenges and opportunities.

One of the distinguishing features of computation net-
works is their algorithmic nature, which creates predictable
dependencies and side-information structures. To what extent
can such structures be exploited for gains in communication
efficiency? Answering this question requires an understanding
of the capacity of computation networks.

The study of the capacity of computation networks has
a rich history in information theory, spanning a variety of
ideas and directions that include zero error capacity and
confusability graphs [2], graph entropy [3], [4], conditional
graph entropy [5], multiterminal source coding [6], encoding
of correlated sources [7], [8], [9], [10], sum-networks [11],
[12], [13], computation over acyclic directed networks [14],
[15], compute-and-forward [16], federated learning [17],
private computation [18], [19], coded computing [20], [21],
[22], [23], and distributed matrix multiplication [24], [25],
[26], [27], to name a few. However, due to the enormous
scope, hardness, and inherent combinatorial complexity of
such problems, a cohesive foundation is yet to emerge.

Following the ground-up approach of classical network
information theory which focuses on elemental scenarios, and
taking cues from systems theory that builds on an elegant
foundation of linear systems, it is conceivable that a cohesive
foundation could emerge from the study of the building blocks
of linear computation networks. Linear computation networks
are characterized by the presence of side-information and
demands that are linear functions of the data. Linear side
information and dependencies are quite valuable as theoretical
abstractions because in principle they allow the study of a
complex linear computation network by breaking it down into
tractable components, while retaining some of the critical
relationships between the components in the form of side-
information. For example, multi-round/multi-hop linear com-
putation networks may be optimized one-round/hop at a time,
by accounting for the information from other rounds/hops as
side-information.

As a fundamental building block, the linear computation
broadcast (LCBC) problem is introduced in [28]. LCBC refers
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Fig. 1. LCBC (Fq, V[K],VEK]) with batch-size L. ¢ = p™ is a power of a

. _ . dxm),
prime. The coefficient matrices v, € ngm’“, v}, € qum’“ forall k € [K]
specify the desired computations and side-informations, respectively.

to the setting illustrated in Figure 1, where K users, each
with some prior side-information (w), = x’v}) comprised
of various linear combinations of d-dimensional data (x) over
a finite field (F, = F,~), wish to retrieve other individually
specialized linear combinations (wj, = x’v;) of the data,
with the help of a central server that has all the data. The
goal is to determine the minimum amount of information
that the central server must broadcast in order to satisfy
all the users’ computational demands. In addition to its
significance as an elemental building block of computational
networks, the LCBC setting is remarkably powerful by itself,
e.g., it includes index coding [29], [30], [31] as a special
case, and generalizes linear coded caching [32], [33], [34] to
allow arbitrary cached information and demands. The one-
to-many topology represented by LCBC arises naturally in
any context where distributed nodes coordinate with each
other [35], [36] with the help of a master node. Such scenarios
may be pervasive in the future as interactive networked VR
environments [37] become commonplace.

The capacity of LCBC is characterized for K = 2 users
in [28]. More recently, in [38] the capacity is fully
characterized for the K = 3 user LCBC. In addition to
such efforts that are aimed at small number of users, it is
also important to develop insights into the fundamental limits
of larger LCBC networks. However, any such attempt runs
into immediate obstacles. In addition to the combinatorial
complexity of large networks, the LCBC — because it includes
index coding as a special case — is at least as hard as the index
coding problem in general. The difficulty of the index coding
problem is well recognized [31], [39], [40], [41], [42]. How to
overcome this obstacle, is the central question that motivates
our work in this paper.

A key idea that makes this work possible is the distinction
between the general LCBC problem — which includes all
instances, and the generic LCBC problem — which includes
almost all instances. We focus on the latter. While the general
LCBC problem is necessarily at least as hard as the general
index coding problem, the generic LCBC problem may still
be tractable. Such observations are common in many fields,
for example computational complexity theory posits that for
many computation problems, the difficult cases are rare and
most (generic) instances are much easier, thereby motivating
the sub-field of generic-case complexity [43], [44]. Drawing
parallels to the degrees of freedom (DoF) studies of wireless
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interference networks, there also the general problem remains
open — for arbitrary channel realizations the DoF are not
known for even the 3-user interference channel. However, the
generic problem is settled for the K -user (any K) interference
channel; we know the DoF for almost all realizations [45],
[46], [47]. For general MIMO interference channels, even
maximizing linearly achievable DoF is shown to be NP-
hard [48], yet it is tractable in the generic sense [49], [50].
Similarly, while the index coding problem is hard, index
coding instances represent a negligible fraction of all possible
instances of LCBC. Thus, there remains hope that a foundation
for a cohesive theory of linear computation networks may yet

be built by studying the generic capacity of its building blocks.

With some oversimplification for the sake of intuition,
consider the following toy example. We have a K = 4 user
setting, say over 7, with d = 4 dimensional data represented
by x = (A,B,C,D)”. The users each have 1-dimensional
side-information and demands,

wi =A+B+C+D,

wsy = A + 3B +2C + 5D,
wj = 5A 4+ 4B + C + 3D,
wj =4A + B + 5C + 6D,

wi=A+2B+3C+4D, (1)
w2 =2A 4+ B +4C 46D, (2)
w3 =6A +3B+4C+D, (3)
wi=5A+ 2B+ 6C +3D. (4)

If we had only the first 2 users to consider, the broadcast
cost of 2 would be trivially achieved, e.g., by broadcasting
w1, Wy which satisfies both users. If we had only the first
3 users, the solution is less trivial, but we still find (see
Section IV-C) that broadcasting (S1,S2) = (2A + 6B +
3C, 4A + 4B + C + D) incurs a cost of 2, while satisfying
all 3 users’ demands — it is easy to verify that User 1 recovers
w1 = 2S; — 3w, User 2 recovers wy = 5So — 4w}, and User
3 recovers ws = S1 + So, all operations in F7, represented as
integers modulo 7. However, as the number of users increases,
the problem becomes much more challenging. It is far from
obvious that a broadcast cost of 2 could still suffice to satisty
all 4 users listed above, and highly counter-intuitive that the
optimal broadcast cost may still be only 2 for large number of
users, e.g2., K = 100 users. This surprising conclusion follows
from the results found in this work, with the important caveat
that the results are shown to be true only asymptotically almost
surely for large n. In other words, for this example, suppose
we have the 4 dimensional data (A, B, C,D) over F,, ¢ = p"
for any arbitrary prime p, and a large number (say K = 100) of
users, and the coefficients of the users’ 1-dimensional demands
and side-informations are chosen uniformly randomly from
F,~, each choice representing a particular instance of this
LCBC. Then we prove that as n — oo, almost all instances
have optimal broadcast cost 2 (in g-ary units). The larger the
number of users K, the larger n may need to be for the
convergence to take effect, but the optimal broadcast cost must
ultimately converge in probability to 2 g-ary symbols.

The main result of this work is the characterization of the
generic capacity, Cy(p, K,d, m,m') = 1/A,, where A, =
min {maX{O,d —m'}, —dm } for a K user LCBC with d

S Tt
dimensional data over [Fj», in the symmetric setting where
every user has m dimensional demands and m’ dimensional
side-information, for large enough number of users (K > d
suffices) and large n. Informally, A, represents a broadcast
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cost that is both achievable, and unbeatable, asymptotically
almost surely for large n, among the class of all LCBC
problems with fixed parameters K, p,d, m,m’. Setting aside
the trivial regimes d < m+m’ where random coding is optimal
(Ay = max{0,d—m'}), and d > K(m+m’) where separate
transmissions for each user are optimal (A, = Km), in the
remaining non-trivial regime where m+m’ < d < K(m+m'),
we have A, = dm/(m + m'). Note that this depends only
on d,m,m/, i.e., the dimensions of the data, demands, and
side-information. In particular, our generic capacity results do
not depend on the characteristic p of the finite field, and in
the non-trivial regime with sufficiently large number of users,
the generic capacity also does not depend on the number of
users K. The converse proofs are information theoretic and
make use of functional submodularity [38], [51], [52]. The
achievability arguments build upon the idea of asymptotic
interference alignment [45], both by adapting it from the
K user wireless interference channel to the K user LCBC
context, and by a non-trivial strengthening of the original
scheme involving an additional symbol-extension overhead
that is needed to harness sufficient diversity in the finite field
setting. The generic capacity characterization reveals that the
capacity can be significantly higher than what is achievable
with the baseline schemes of random coding and/or separate
transmissions. For example, the extremal gain [53] of generic
capacity over baseline schemes, as a function of the number of
users (maximized over the remaining parameters) is K, and
the extremal gain as a function of the data dimension d is
~ d/4 (Observation 3 in Section IV-D). As an immediate
corollary of the main result, the generic capacity of the
symmetric LCBC is characterized within a factor of 2 for
any number of users K (Observation 1). Notably, an exact
characterization is found (Theorem 3) for any number of users
if the side-information and demands are one-dimensional.
Some extensions to asymmetric settings are obtained as well.

II. NOTATION
A. Miscellaneous

The notation [a : b] represents the set of integers {a,a +
1,...,b} if b > a and () otherwise. The compact notation [K]
is equivalent to [1 : K. For a set of indices S, the notation
Ag represents {A,,s € S}, e.g., Ajg) = {A1, A2+, Ak }.
|S| denotes the cardinality of a set S. F, = Fyn is a finite
field with ¢ = p™ a power of a prime. The elements of the
prime field [F,, are represented as Z/pZ, i.e., integers modulo
p. The notation Fgl X"z represents the set of ny X ng matrices
with elements in F,. F, is a sub-field of Fg-, and Fg- is
an extension field of F, for = > 1. N = {1,2,---} is
the set of natural numbers. The greatest common divisor of
a,b is denoted ged(a,b). ()t £ max{0,r}. Pr(E) stands
for the probability of the event E. Given an event F,, that
depends on an integer parameter n, we say that Event £, holds
asymptotically almost surely (a.a.s.) if lim,_ o, Pr(F,) =
1. Throughout this work when we use a.a.s., the quantity
approaching infinity will be denoted by n. For variables a, b
that depend on an integer n, we use the notation a = b to
represent the statement, lim, ., Pr(a = b) = 1. Similarly,
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a.as.

a > b represents lim,, . Pr(_a >b)=1a ‘% b represents
lim,, o Pr(a < b) = 1; a < represents lim,, ., Pr(a <
b) =1, and a > b represents lim,, o, Pr(a > b) = 1.

B. Matrix Operations

By default we will consider matrices in a finite field .
For two matrices My, My with the same number of rows,
[M7, Ms] represents a concatenated matrix which can be
partitioned column-wise into My and Ms. M, denotes the -
th column of M. The notation M, stands for the sub-matrix
[M[a], M[a+1]> . 7M[b]] if b > a, and [ ] otherwise. The rank
of M € Fy"*™ is denoted by rk(M), and we say that M has
full rank if and only if k(M) = min{m,n}. (M), denotes
the IF,-linear vector space spanned by the columns of M. The
subscript ¢ will typically be suppressed as it is clear from the
context. If M has full column rank, then we say that M forms
a basis for (M). The notation M; N M, represents a matrix
whose columns form a basis of (M) N (Ms). In addition,
0%%b represents the a x b zero matrix. I**® represents the
a X a identity matrix.

C. Conditional Matrix Notation: (M;|M,

Say M, € IF‘in“l and M € IFZX“Q. By Steinitz Exchange
Lemma, there exists a sub-matrix of M7 with full column rank,
denoted by (M;|Ms), that is comprised of rk(M;) — k(M1 N
Ms) columns of M; such that [M; N Mo, (M7|Ms)] forms a
basis for (M;). We have,

I'k(M1|M2) = I'k(Ml) — I'k(Ml N Mg)

= I‘k([Ml, Mg]) — l‘k(Mg) (5)

where we made the use of the fact that rk([My,Ms]) =
I'k(Ml) + I'k(Mg) — I'k(Ml N MQ)

III. PROBLEM FORMULATION: LINEAR COMPUTATION
BROADCAST

A. LCBC(IFq, VK] VfK])

An LCBC problem is specified by its parameters as
LCBC (Fq, V[K],va]), where [y is a finite field with ¢ = p™

. dxm},
a power of a prime, and v, € ngmk, vi € Fg"™*, for

all k& € [K], are matrices with the same number of rows,
d. The value K represents the number of users, d represents
the data dimension, and mg, mj, quantify the amounts of
desired computations and side-information corresponding to
User k. The context is as follows. A central server stores
multiple instances of d dimensional data over a finite field
F,. The ¢ instance of the data vector is denoted as x(¢) =
[21(0),. .., zq(0)]" € F and x = [x(1),...,x(L)] €
]FgXL collects L. € N data instances.! A broadcast link
connects K distributed users to the central server. The
coefficient matrices vj, and vy specify the side-information
and desired computations for the k*" user. Specifically, for 2511
k € [K], User k has side information w), = x7v/ € Fy "™,

IThe parameter L is referred to as the batch size and may be chosen freely
by a coding scheme.
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and wishes to compute wj, = x” v, € FL*™. For compact
notation in the sequel it is useful to define,

uy, £ [V, Vil 6)

A coding scheme for an LCBC problem is denoted by
a tuple (L,®,¥[g),S), which specifies a batch size I,
an encoding function  : ]FqLXd — &S that maps the data to the
broadcast information S over some alphabet S, i.e.,

d(x) =S (7)

and decoders, Wy, : S x F‘?ka — F(?ka’ that allow the ktP
user to retrieve wj, from the broadcast information S and the
side-information wy, for all k € [K], i..,

wi = Ui (S, wy,) = Up(P(x), wy,), Vk e [K]. (8)

A coding scheme that allows successful decoding for all data
realizations, i.e., satisfies (8) for all x € ]Ff]lXL, is called an

achievable scheme. Let us define A(IFq, VK], vf K]) as the set

of all achievable schemes for LCBC gﬁ' o VIK]» VE K]).

The broadcast cost (normalized by L and measured in g-ary
units) for an achievable scheme is defined as A = log, |S|/L.
The optimal broadcast cost A* (]Fq, V[K],VE K]) for an LCBC
problem is defined as,

A* (quv[K]anK]) = inf A (9
(L7q>:‘I}[K] ;S)GA(]FQ,V[K] ,va])

The capacity, C*, of an LCBC problem is the reciprocal of its
optimal broadcast cost,

C* (Fq, Vi) Vi) = 1/A" (g, Vixy, Vi )-

Note that although the side information and demands are
linear functions of the data, the achievable schemes, i.e., the
encoding and decoding operations are not restricted to be
linear.

(10)

B. Generic Capacity
Define

»Cn (p7 K7 dvm[K]vaK])

3

¢ =
Vi € qumk

= ¢ LCBC(Fy, vik], Vik) Vi e FXmE (0 (11
Vk € [K]

or L, in short, as the set of all LCBC instances with the
‘dimensional’ parameters p, n, K, miK] m/ K- Let A, be a
uniformly randomly chosen instance from £,,, and A*(A,,) be
the optimal download cost of A,,. In order to define generic
capacity, let us fix the parameters (p, K, d,m[Kpme]) and
allow n to approach infinity.

The generic optimal broadcast cost A, if exists, is defined
as the value that A*(A,,) converges to in probability, i.e.,
lim Pr<|A*(An) - Ay < s) =1,

n—oo

Ve>0. (12)

The generic capacity is then defined as the reciprocal, i.e.,

Cy=1/A,. (13)
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Since A4, C,; may not always exist, we further define the
following upper and lower extremal metrics, which always
exist and help in the analysis of generic capacity. We say
that A is achievable asymptotically almost surely (a.a.s) (cf.
Definition 1.1.2(v) [54]) if,

lim Pr(A*(An) < A) —1, (14)

n—o0
which is expressed compactly as A*(A,) ‘< A. Define the
smallest such A as AY (p, K, d, m[K],mEK}), or A’ in short,
ie.,

A* £ inf {A CA*(A,) € A} : (15)
Similarly, define A} as,
AF 2 sup {A CAR(A) S A} . (16)

Thus, A} is the infimum of broadcast costs that are achievable
a.a.s. (tightest upper bound), and Aj is the supremum of
broadcast costs that are not achievable a.a.s. (tightest lower
bound). By definition, A¥ > A7. If? A¥ = A7, then they are
equal to the generic optimal broadcast cost A, i.e.,
Ay =A, =4 17)
and Cy = 1/A, exists. If A¥ # Af, then A4, C, do not exist.
Remark 1: It is worth noting that the definition of ‘generic
capacity’ connects to the notion of generic subsets in the
literature on generic case complexity [55]. To briefly point out
this connection, following along the lines of Definition 3.1 and
Lemma 3.2 of [55], we may define a generic subset as follows:
Let I be a set of inputs with size® function o. Define I,, the
sphere of radius r, by I, = {w | w € I,o(w) = r}, the set of
inputs of size r. A subset R C [ is said to have asymptotic
density a, written p'(R) = a, if lim, oo [RN L|/|I;] = «
where |X| denotes the size of a set X. If R has asymptotic
density 1, it is called generic; and if it has asymptotic density
0, it is negligible. Now, for our problem, the set I = U, enLy,
is the set of all LCBC instances for fixed p, K, m(xy, m’[ K]
The size function ¢ = n, and the sphere I, = L,. Let
R, (A) ={LeT]|A>A*(L)} be the subset of LCBC
instances for which the broadcast cost A is achievable. Then
A% is the infimum of the values of A for which R, (A) is
generic. Similarly, A} is the supremum of the values of A
for which R;j(A) = {£L € T | A < A*(L)} is generic.
In plain words, A} is the infimum of broadcast costs that
are generically achievable, while A} is the supremum of
broadcast costs that are generically not achievable. When they
match, we have the generic optimal broadcast cost, and as its
reciprocal notion, the generic capacity.

2Note that the definition does not automatically preclude strict inequality,
e.g., as a thought experiment suppose one half of all instances have A* =
1 and the other half have A* = 2, then A}, =2 and A} = 1.

3 A size function for a set / is a map o : I — N, the nonnegative integers,
such that the preimage of each integer is finite (Definition 2.4 of [55]).
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IV. RESULTS: GENERIC CAPACITY

In this work we mainly focus on the symmetric LCBC,
where we have,

mp =M =...=MKg =M,

my=mh=...=ml =m. (18)

Note that the generic capacity (if it exists) can only be
a function of (p, K,d,m,m’'), since these are the only
parameters left.

A. K =1,2,3 Users

While we are interested primarily in LCBC settings with
large number of users (large K), it is instructive to start with
the generic capacity characterizations for K = 1,2, 3 users.
Recall that the LCBC problem is already fully solved for K =
2 in [28] and K = 3 in [38]. Therefore, the following theorem
essentially follows from [28] and [38]. The K = 1 case is
trivial and is included for the sake of completeness.

Theorem 1: The generic capacity C, = 1/A, for the
symmetric LCBC with K = 1,2, 3 users is characterized as
follows.

K =1 user:
0, d<m;
Ag=qd—m/, m'<d<m+m; (19)
m, m+m' <d.
K = 2 users:
0, d<m/;
d—m', m'<d<m+m;
Ay =1m, m+m' <d<m+2m'; (20)
d—2m', m+2m' <d<2(m+m');
2m, 2(m+m') <d.
K = 3 users:
0, d<m;
d—m/, m <d<m +m;
m, m +m <d<m+1.5m;
d—15m', m+15m' <d<15(m+m');
Ay =< 1.5m, 1.5(m+m') <d < 1.5m+2m/;
d—2m/, 1.5m+2m’ <d < 2(m+m');
2m, 2(m' +m) <d < 2m+ 3m/;
d—3m/, 2m+3m' <d<3(m+m);
3m, 3(m+m') <d.

2y

The proof of Theorem 1 is relegated to Appendix III. The
task left for the proof is to correctly account for the generic
cases (non-trivial for K = 3), after which the capacity results
from [28] and [38] can be directly applied.

B. Large K

The main result of this work appears in the following
theorem.
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Theorem 2: For the symmetric LCBC with the number of
users satisfying

K >d/ged(d, m +m'), (22)
the generic capacity Cy = 1/A, is characterized as follows,
0, d<m/;
m <d<m+m';
m+m' <d<K(m+m).
(23)

Ag=qd—m/,

dm/(m +m'),

The proof of converse for Theorem 2 appears in Section VI
while the achievability is proved in Appendix I. The main
technical challenge is to show the achievability of dm/(m +
m') + &,Ve > 0 in the non-trivial regime, m + m’ < d <
K(m 4+ m'). Remarkably, in this regime we are able to
show that Ve > 0, a broadcast cost of dm/(m + m') + ¢
is achievable a.a.s., regardless of the number of users K,
based on an asymptotic interference alignment (IA) scheme.
Examples to illustrate the asymptotic IA construction are
provided in Section V. The condition (22) on the number
of users in Theorem 2 is needed for our converse bound in
Section VI to match the achievability.

Next, let us briefly address arbitrary number of users
and asymmetric settings through the following corollary of
Theorem 2.

Corollary 1: For the (not necessarily symmetric) LCBC
with arbitrary number of users,

A > max min {d Z my, Z mk} (24)
KK kEK kex
A* < min Minaxd ,(d— Z m
u > T m1n k ’
Mmas + M ke[K]
(25)

where Mmax = maxke[K] my, and m, . = minke[K] my,.
Proof: (24) follows from a simple cooperation bound.
Consider any LCBC instance A,, € L,. For any subset
K C [K] let the users in K fully cooperate as one user,
and eliminate all other users [K] \ K, to obtain a single user
LCBC instance A, x with optimal broadcast cost A*(A,, ) <
A*(A,). The combined user has demand coefficient matrix
vi £ [vi,ke€K] with d rows and my > ek Mk
columns, and the side-information coefficient matrix V;C £
[Vi.k € K] with d rows and m}. £ Y, . mj columns.
From Theorem 1, based on the generic capacity for the single
user case, we immediately obtain (24). For (25) note that
A*(A,) <X ke[K] Mk because serving the users separately is
always an option. A*(A,) < (d—m! )" also holds because
broadcasting (d — m/;,) generic linear combinations (over a
sufficiently large field extension) of the data allows each user
a total number of generic equations (d — m/ ;. )" +m} > d,
which suffices for each user to recover all d data dimensions.
Finally, it is always possible to mimic a symmetric setting by
adding superfluous demands and discarding some of the side-
information at each user until every user has mZ;, generic
linear combinations of side-information and m,.x generic
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linear combinations of demand. Note that if d < Mmax +m

min
maxd ;
then mr:;w > (d—ml; )", and if d > K(mpax +
Myyi,)» then — m“‘j;f, — > > ke(x) k- The only remaining
case iS Mmax + Moy, < d < K(Mmax + mly,,), in which
case the achievability of —"maxd__ j5 shown in the proof of
Mmax+Mp 50

Theorem 2. (]

C. One Dimensional Case: m =m' =1

In the special case where the side-information and demands
are one-dimensional, the generic capacity is characterized for
any number of users, as follows.

Theorem 3: For LCBC with m = m’ = 1, the generic
capacity Cy = 1/A, is characterized as follows.

1) For even d,

d/2, 2<d<2K;
Ay = /2 - (26)
K, d>2K
2) For odd d,
0, d=1;
d/2 3<d<2K —1;
Ay = /2 sas ’ 27)
K-1, d=2K—1;
K, d>2K — 1.

The result for even d follows directly from Theorem 2
and Corollary 1. Specifically, note that for even d we have
d/gcd(d,2) = d/2, and thus (23) finds the generic capacity
for even d when K > d/2. Meanwhile, letting K = [K]
in (24), together with (25) proves the capacity for K < d/2.

For cases with odd d, (24) and (25) provide the capacity
for d = 1 and d > 2K — 1 (equivalently, d > 2K).
For the remaining 2 regimes, (25) shows achievability for
1 <d < 2K —1. (24) provides the converse for d = 2K —1 by
specifying £ = [1 : (d—1)/2], since min{d — (d—1)/2, (d —
1)/2} = (d—1)/2 = K — 1. To complete the proof of
Theorem 3, it remains to show the converse for 3 < d <
2K — 1, and the achievability for d = 2K — 1. These proofs
are provided in Section VII.

D. Observations
1) The following observations follow directly by specializ-
ing Corollary 1 to the symmetric LCBC with arbitrary
number of users K.

d<m' = A, =0; (28)
m' <d<m+m' = A;=d—-m; (29)
1< d < K = if A, exists, then
m + m/
, d d
max<d—m ,m
(m+m’) m+ m/
md
<A, < —-
<A S (30)
K(m+m')<d = Ay,=Km. (31)

Regarding (30), where A, is not fully established, note
that in this regime, if (m + m') divides d, then A, =
md/(m+m’) is settled. On the other hand, if (m +m’)
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does not divide d, and if A exists, then we have its value
within a multiplicative factor of 2 because in this regime,

md/(m +m’) _ d/(m+m') <9

mld/(m+m/)|  [d/(m+m)] =

Thus, the generic capacity of the symmetric LCBC is
characterized within a factor of 2 when it exists, for
arbitrary number of users K.

2) Theorem 2 and Corollary 1 lead to sharp generic capacity
results for various asymmetric cases as well. For example,
from Corollary 1 we find that for any number of users,
if mj, < d < my+m) foral k € [K], then A, =
d —mingeprgmy. I d 2 370, o (my +my,) then Ay =
Zke[ K] M- In Theorem 2 the optimal broadcast cost
Ay = dm/(m + m') for the non-trivial regime (m +
m’) < d < K(m+m'), remains unchanged if we include
another K’ users, say Users K +1, K +2,--- K+ K’,
with asymmetric demands and side-information such that
mp > m and mp < mforal ¥ € [K+1: K +
K']. The original converse still holds because additional
users cannot help. The original achievability still holds
because the additional users have more side-information
and less demands than original users, so they can pretend
to be like the original users by discarding some of their
side-information and adding superfluous demands. This
creates a symmetric setting with K + K’ users, but in
this regime A, = dm/(m +m') does not depend on the
number of users.

3) The generic capacity of the symmetric LCBC
Cy(p,K,d,m,m’) can be quite significantly higher
than the best of the rates achievable through the baseline
schemes of random coding (1/(d — m')) and separate
transmissions (1/(Km)). Gains up to the order of K
and d in the number of users and data dimensions are
observed. To make this precise, consider the extremal
gain [53] of generic capacity over the baseline schemes
as a function of the number of users, K,

Ay Cg<paK7d7m7m/)

p,d,m,m’ max {

(32)

m+m'
md

domm’ 11
m,m max{(d*’l’ﬂ/)*”Km}

=K, (33)

and as a function of the data dimension d,
Cg(pa K7 d7 m, m/)

n4= sup
p,K,m,m’ max {m, ﬁ}
m+m'
= sup md
K,m,m' max {m, Klm}
€ [d/4,d/4+1]. (34)

To see (33) note that it is trivial that nx < K, whereas
with d = Km +m' and m = 1,m’ — oo, we have
ng > limy oo K(1+m')/(K +m') = K. For (34),
setting m = 1,m’ = |d/2] and K > [d/2], we have
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4)

5)

6)

7

8)

9)

na > (1 + |d/2])(d — |d/2])/d > d/4, whereas we
also have g < (1 +m/)(1 —m’/d) < (d+1)?/(4d) <
d/4 + 1. The strong gains are indicative of the crucial
role of interference alignment in the capacity of linear
computation networks, especially when side-information
is abundant.

In all cases where the question of existence of generic
capacity is settled, the answer is in the affirmative.
However, it remains unknown whether this is always true,
e.g., for all p,d, K,m,m’, must we have A} = AF? We
conjecture that this is indeed the case.

In all cases where the generic capacity of the LCBC is
known, it does not depend on the characteristic, p, i.e.,
for a fixed K, the generic optimal broadcast cost can be
expressed as Ag(d, m,m’). The capacity of the general
LCBC should depend on the characteristic, because there
exist examples of network coding problems where such
dependence has been demonstrated, and there exists an
equivalence between network coding and index coding,
which in turn is a special case of the LCBC. However,
it remains unknown whether the generic capacity of
LCBC could depend on the characteristic p.

The functional form of Ag,(d,m,m’) is plotted in
Figure 2 for K = 2, K = 3 and for large K. While
Ag(d,m,m’) characterizations are only defined for non-
negative integer values of d, m,m’, the functional form
is shown as a continuous plot for simplicity. There exist
three slightly different forms of the plot for K = 3,
depending on the relationship between m and m’. The
K = 3 plot shown in Figure 2 assumes m < m’. While
the lengths of the steps for K = 3 are determined by the
relative sizes of m, m/, d, the plot always takes the shape
of a staircase function with alternating horizontal (slope
= 0) and slanted (slope = 1) edges. The slope of the outer
envelope is m/(m' +m).

A remarkable scale-invariance property is evident in
Ag(d,m,m’), in the sense that scaling d,m,m’ by the
same constant results in a scaling of A, (d, m,m’) by the
same constant as well. Specifically,

Ay(Md, dm, A m’) = AA(d,m,m'). (35)

This is reminiscent of scale-invariance noted in DoF
studies of wireless networks [56].

The initial (where d < m + m’) and final stages (d >
K (m+m')) represent somewhat trivial regimes that are
the same for all K. In the remaining non-trivial regime,
while A, for K = 2 and K = 3 takes the shape of a
slanted staircase function, for large number of users we
obtain a smooth ramp function instead. A comparison of
K = 2 with K = 3 suggests that the number of steps
in the staircase increases with K, bringing the staircase
closer to its upper linear envelope (md/(m + m')), until
K exceeds a threshold, beyond which the stairs disappear
and A, is equal to that linear envelope.

In the non-trivial regime 1 < d/(m + m’) < K for
large K (e.g., K > d) it is remarkable that A, does
not depend on K. In other words, once the number of
users exceeds a threshold (e.g., K > d), additional users

10)

1)
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do not add to the generic broadcast cost of the LCBC.
The achievable scheme in this parameter regime relies
on linear asymptotic interference alignment (IA) [45]
over a sub-field of F,, and while A, remains unaffected
by additional users, the cost of additional users may be
reflected in the need for larger n values to approach the
same broadcast cost, as the number of users increases.
As usual with asymptotic IA schemes, the achievable
scheme is far from practical, and serves primarily to
establish the fundamental limit of an asymptotic metric,
in this case A,. What is possible with practical schemes,
e.g., with limited n and other coding-theoretic complexity
constraints, remains an important open problem.

The generic capacity explored in this work is for LCBC
instances over F,» where we allow large n but p
is arbitrary. This formulation is appealing because the
large n limit allows F,» to be interpreted as high
dimensional vector subspaces over subfields of Fy», e.g.,
IF,,. This facilitates linear vector coding schemes, allows
dimensional analysis from vector space perspectives, and
leads to new insights from linear interference alignment
schemes, that may be broadly applicable. The alternative,
where p is allowed to be large but n is arbitrary
(especially n = 1) remains unexplored. By analogy
with wireless DoF studies, the latter is somewhat
reminiscent of algebraic interference alignment schemes
based on rational dimensions [46], i.e., non-linear IA
schemes.

Linear asymptotic IA has been used previously for
network coding problems, e.g., distributed storage exact
repair [57], and K user multiple unicast [58], under
the assumption of large ‘q’. Note that since ¢ = p”,
a large-g assumption is more general than a large-
n assumption, e.g., large-g also allows n = 1 with
large p. So at first sight it may seem that our IA
schemes that require large-n are weaker than conventional
asymptotic IA schemes that only require large-q. This
interpretation however misses a crucial aspect of our
construction, which is somewhat subtle but technically
quite significant. Conventional (large-q) constructions of
asymptotic TA schemes rely on a diagonal structure
of underlying linear transformations (matrices), based
on symbol extensions (batch processing), and most
importantly require these diagonal matrices to have
sufficient diversity, which is possible with time-varying
coefficients [45]. In fact, such constructions are also
possible for LCBC if we allow time-varying demands
and side-information, e.g., new coefficient matrices are
drawn ii.d. uniform for each ¢ € [L]. However, for
the LCBC with fixed demands and side-information, i.e.,
fixed coefficient matrices vy, v}, symbol extensions only
give rise to diagonal matrices that are scaled versions of
the identity matrix (consider large p and n = 1), i.e., they
lack the diversity that is needed for linear asymptotic IA
schemes. Our construction works with fixed coefficient
matrices, consistent with the original LCBC definition.
In this regard, a key technical contribution of this work
is to show that the large-n assumption allows sufficient
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Fig. 2. Functional form of Ay. The large K setting listed as K > d for brevity, also allows more general K as in (22).
diversity for linear asymptotic IA. For this we modify 5) Define the set of variables,
the conventional asymptotic IA construction to include N
an additional overhead (see Remark 2 in Section V-A), V= {Uki 1k e[K]ie [4]}
and then show that while this overhead has a negligible
. o Verieac nas a feglie U{vh ke KLicu{rl, @6
impact on A, it gives us sufficient diversity a.a.s. v

V. EXAMPLES

In this section let us present two examples to convey the
main ideas of our asymptotic IA constructions, with somewhat
simplified notation. The complete achievability proof for
Theorem 2 appears later, in Appendix I. The first example that
is presented in Section V-A is perhaps the smallest example
where asymptotic alignment is needed. However, the proof
in this limited case hides too many of the details that are
needed in the general case, so we provide a larger example
in the following subsection which may be more useful in
understanding the general proof.

A. Example 1: (p, K,d=4,m=1,m'=1)

Let L = 1. For ¢ = p", we will interpret F, as an n-
dimensional vector space over F,, and design a linear scheme
over IF),. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from F; = Fp,n.

2) The data x” = [21, 22,23, 4] € F}*?, is equivalently
represented over F, as X = [XT,XI, XTI X7]
e F**, where X; € Fp*!' is the n x 1 vector
representation of x; over I,.

3) User k£ has side information XTV;C € F, and wishes
to compute xTv, € F,, where the elements of
(Vi)" = [Vk1, Vhos Vigs Vials Vi = [Vk1, ve2, Vs, veals
are drawn ii.d. uniform in F,. Equivalently, over
F,, User k has side information XTV§C € F;]X”
and wishes to compute XTV, € Fxn  where
(V)T = [V (Vi)™ (Vig) ™, (Vi)™ e T,
(Vi)' = [(ViD)", Vi)™, (Vi) T, (Via) ™| € Fpxan
and V1, Vi, are the n x n matrix representations in I,
of v}, and vy, respectively.

4) Let r be uniformly randomly chosen in F,, and denote
by R € F;*" the matrix representation of r in F,,.

and note that |V| = 8K + 1.
Our goal is to show that A¥ < dm/(m +m’) = 2. For all
k € [K] and for all ¢ € [4], let us define tx; € F, as,

A /
lki = Uy — Vgl 37
so that we have

Uy Vk1 tk1

!
v v t

il I Bl N s (38)
v Vs t

k3 k3 k3

!
o Uk tka

Let Ty; € ]FZX” denote the n X n matrix representation of t;
in IF),, so that we have in I,

Vi Vi1 T
A
Vel [ Vae R Tko 39
! - + 9 ( )
Vis Vi3 T3
A
Via Via T
~——
VI EFR™X™ VR X" Ty R

and Ty, is defined as in (39).

Next let us construct a matrix, H € IE";}X", whose column-
span over I, is almost invariant under linear transformations
Vy; and Ty, forall k € [K],i € [4], ie., (Vi;H), ~ (H), and
(Tk:H), ~ (H),. In addition, we want 7/n =~ 1/2, so that the
columns of H span approximately half of the n-dimensional
vector space. For this, we invoke the asymptotic IA scheme
of [45].

For a natural number N whose value (as a function of n)
will be specified later, let us start first by constructing the
vector h € ]FéX" as follows,

K 4

IT TTveetis, st 0 < awi, B < N —1
k=11i=1
2 (hy, ho, ...

h= (40)

), (41)
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and similarly define h € F}*7 as follows,

K 4
h = H Hv&“tf?i, st. 0 < oy, Brs <N

(42)

k=1i=1
é(hl,hg,...,hﬁ). (43)

Note that we have,
n=N¥, p=(N+1)% (44)

This construction ensures that the elements of v;;h and ¢;;h
are contained among the elements of h for all k € [K],i € [4].
Now let Hy, Hy, ..., H, € IF;‘X” be the matrix representations
in Fp, of hy,ha,...,h,; € Fy, and Hy, Ho, ..., H, € Fp*"

be the matrix representations in I, of hi,ha, ..., hy € Fy.
Define,

H = [Hi1,H,1,... H,1] €Fp*7, (45)
and

H=[H1,H,1,... Hyl] €F>7, (46)

where 1 denotes the n x 1 vector of 1’s. By construction, the
columns of Vi;H and Ty;H are subsets of the columns of H,
which implies that Vk € [K], i € [4],

(VeiH)p C (H)p,  (ThiH)p C (H),p. (47)
Consider the matrix [H, RH] € Fp*?", and define the event

FE,, as,

E, 2 (rk([H, RH]) = 277). (48)

The next steps, (49)-(64) show that E,, holds a.a.s., which will
subsequently be essential to guarantee successful decoding by

each user.
[H, RH| € F}*" has full column rank if and only if for

all ¢ = [e1, ..y eq)t e = [dh, ..., )T € FP*! such that
[CT, c T] 7& 01><2n,
Onxl
# [H, RH] [CC] (49)
= [Hi1,H:1,..., Hy1, RH\1, RHo1, ..., RH,1] M (50)
= (C1H11 —|— C2H21 —|— et + Can].)
+ (ARH11 4+ chbRH21 + ... + ¢, RH,1) (51
= (clHl +c2Ho+ ... +cyHy
+ i\ RHy + c5RHy + ... + ¢, RH,)1 (52)
£ Fc,c’]- (53)

where F; o is an m x n matrix in IF,, which has a scalar
representation in I, as,

fc,c’ =crhy +chs+...+ Cnhn

n

+cyrhy + cyrhy + ..+ cprhy €Fq (54)

n

Note that since F,, is a sub-field of I, the scalars ci,c; in
Fy. are also scalars ¢;, ¢} in Fy. Thus, Fe o1 € Fp*! can be
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equivalently represented in IF, as the product of f. o with the
scalar representation in IFy, of 1 (the all 1 vector in F,,). Since
the IF, representation of 1 is not 0, we obtain that

Feel# 0™ <= fo o #0. (55)
Therefore, [H, RH]| has full column rank if and only if,
P2 II fewr #0. (56)

[e7 ,¢'T]eF, "\ {0}

To distinguish polynomials from polynomial functions, let us
indicate polynomials with square parentheses around them. For
example, [fc ] € Fp[V] is a polynomial in the indeterminate
variables V), with coefficients in IF,,, and fe o/ (V) : IFLV‘ — T,
is a function that maps the variables V, which take values
in F,, to a scalar value in F,. Similarly, [P] € F,[V] is a
polynomial, whereas P(V) : ]FLV‘ — [, is a function. The
condition (56), which is equivalent to the event E,,, says that
a uniformly random evaluation of the function P(}) produces
a non-zero value. We will show that this is true a.a.s. in n.

First let us show that [fco] € Fp[V] is a non-zero
polynomial for all [c?,¢?] € FL*27\ 0. We consider two
cases.

1) Case I: At least one of cy,ca,...,c, is not zero. Let us
set r = 0, which implies tx; = v}, by (38). Meanwhile,
hi, ha, ..., hy, are different monomials in the elements of
v},; and vg; due to (40). Since different monomials are
linearly independent, we have that [fc o] = c1h1+c2ho+
...+ cyhy is a non-zero polynomial.

2) Case II: ¢; = c3 = ... = ¢; = 0 and thus at least one
of ¢f,¢c,...,¢c, # 0. For this case, we have [fc o] =
r(cihi + cyha + ... + ¢ hy), which is also a non-zero
polynomial since it is a product of r with a non-zero
polynomial.

Thus, [fc,c] € Fp[V] is a non-zero polynomial. It has degree
not more than 12K (N — 1) + 1. Therefore, [P] € F,[V] is
a non-zero polynomial with degree not more than (p?7 —
1)[12K (N — 1) + 1]. By Schwartz-Zippel Lemma, when all
the variables V are assigned i.i.d. uniformly chosen values in
F

q»

(p*" — 1)[12K (N — 1) + 1]

Pr(P(V) ” 0) >1- (57)
q
2~ D[I2K(N —1)+1
SRR ViE (O VR T
p
N
>1-— 12KW (59)
—1 (60)
as n — oo if lim,_, % =0.
Now let us specify tﬁe value of N as follows,
B 1/(8K)
N = K” ﬁ) J , (61)
2
from which it follows that,
B 1/(8K)
N < <” 2ﬁ> (62)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 07,2024 at 19:26:12 UTC from IEEE Xplore. Restrictions apply.



3702
and
n—2n=n—2N% > /n. (63)
Therefore,
(niﬁ)l/@K)
J o < Jm =0
N

and since N > 0, we have lim,,_ ST = 0. Thus, we have
shown that E,, holds a.a.s., i.e., [H, RH] € Fg“” has full
column rank 27, a.a.s.

Now let Z = (I"*"|[H,RH]) € Fr*"™) 5o that
[H, RH, Z] € F*™ has full rank n. Let the server broadcast

S = (S0,81,8, -+ ,Sg) € FpWTHEC=20) "gych that,
H 0 0 0
_x7T 0 ﬁ 0 0 1x47m
So=X"1g o & ol % (65)
0 0 0 H

and for all k € [K],

Si=X"V,Z eFLn2, (66)

Remark 2: From (63) we note that n > 27+ y/n. The /n
term represents an overhead that is not present in conventional
asymptotic A constructions. The overhead is evident in
the separate transmissions, of the projections of the desired
information along the columns of Z, for each of the K
users, as in Sy,So,---,Sk. Digging deeper, this overhead
is essential for our scheme to ensure that F, holds a.a.s.
Note that it is because of this /n overhead that we have
lim,, oo p(nNTn) = 0 in (60),(64), because in the fraction
pn%, the numerator is sub-linear in 7 (roughy n'/3%), while
the denominator is super-polynomial in n, roughly (p\/ﬁ).
Fortunately, the extra broadcast cost of K+/n due to this
overhead, is negligible compared to n for large n, so it does
not affect the asymptotic achievability.

The decoding process works as follows. User k is able to
compute X7V, H directly from its side information X7V .
The user is able to compute XTV,H and XTT,H from S,

since,
[V, H M 0 0 0]
] |VieH 0 Ho o
<VkH>P_< VisH > C< 0 0 H 0 > ©7)
|ViaH| "7 0 0 0o H| "
and
[T H| M@ 0 0 O]
/| TweH 0 Ho o
<T}€H>p—< TosH > C< 0 0 H 0 > (68)
| TpaH| " P 0 0o 0o H|'”

due to (47). Thus, User k is able to compute
X"V,RH =X"V,H - X"T,H (69)
according to (39). Together with Sy, User k thus obtains,

XT"V,H, X"V.RH, S;| = X"V,[H,RH,Z] (70)
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and since [H, RH,Z] € F}*" is invertible (has full rank)
a.a.s., User k is able to retrieve its desired computation,
XTv,, € IF‘;,X” a.a.s.

For ¢ = p™, the cost of broadcasting each p-ary symbol is
1/n in g-ary units. Thus, the broadcast cost of this scheme is,

4+ K(n—2
A, = T F K= 2n) (71)
n
The next few steps (72)-(77) show that lim,, ., A, = 2.
By (61), we have that,
n= N < "’T\/ﬁ SN+ =7 (72
which implies that
NB8K — 1
lim 2 = lim < lim PVP L g3
n—oo N n—o0 n n—oo 2n 2
On the other hand,
N+ 185 /((1 4+ 1/N)8K
b T (N DS/ (14 1/N))
n—oo M n—oo n
n—+/n
> i li
= Noee (11 1/N)SK none 21
1 1
=1x-=-. 74
57 74
Thus, we have that
lim ==, (75)
n—oo 1 2
which also implies that
] .M . sk 1 1
| - =1 - | 1+1/N =-x1=-.
s = m 2o Him (L /NP =5 <1 =35
(76)
Combining (71) with (75) and (76) we have
. 1
lim A, =4x=-4+0=2 77)
n—oo 2

since K is independent of n. Thus, for any ¢ > 0, Ing >
0 such that A,, < 2+¢ for all n > ng. Recall that the broadcast
cost A, is achievable if E,, holds, i.e., A*(A,) < A,, < 2+¢
if n > ng and E,, holds. Now let us show that 2 + € is
achievable a.a.s., by evaluating the limit in (14) as follows,

lim Pr(A*(A") <2+ e)

> lim Pr((A*(An) <24 e) A E) (78)
= lim Pr(E,)Pr(A7(A,) <2+¢ ‘ E.) (19
=1 (80)

which implies that lim,, ., Pr{ A*(A,) <2+ ¢) = 1. Since

this is true for all € > 0, according to (15) we have A} <
inf{2+¢|e>0} =2 O
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B. Example 2: (p, K,d=4,m =2,m' =1)

Let L = 1. For ¢ = p", we will interpret F, as an n-
dimensional vector space over IF,,, and design a linear scheme
over IF),. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from F, = Fj,».

2) The data xT = |11, 29,73, 24] € Féx‘l, is equivalently
represented over F, as X7 = [X{,XI, XTI X7
c F},X‘l”, where X; € Fp*' is the n x 1 vector
representation of x; over IF,.

3) User k£ has side
wishes to compute x’vj, =
where the elements of (v})T = [v};, Vg, Vhss Vsls
(VIOT = [vh, vl v, vl ], p € [2] are drawn iid.
uniform in F,. Equivalently, over IF,, User k has side
information X7V} and wishes to compute X7V,

information x’v), € TF, and

xT [Vk,Vi] € ]F}]XQ,

where (V)" = [(V/)", (V/,)", (Vi3)" (Vk4) Tl e
IF;"X‘”", Vi, = [VL Vi and (V“) =

1 AT AT uNT nx4n
[(Vkl) (Vi)™ (Vi)™ (Vi) ] € Ty

Vi Vk’l7 p e [2] are the n x n matrix representations in
F,, of v}, and v}, respectively.

4) Let 7,01, 02 be uniformly randomly chosen in IF,. Denote
by R the matrix representations of 7,601,602 in Fp,
respectively.

5) Define the set of variables,

ya {vii kelK|iel,je [2]}

{v ke lKlieMfu{no,o}, @D
and note that |V| = 12K + 3.
Our goal is to show that A} < dm/(m + m’) = $. For all
k e [K],i € [4], n € [2], let us define ¢, such that
Uka | _ | Vk2 bro
Vs | Vks T the 2
Uka Vka .

Let T}, € F2*™ denote the n x n matrix representations of
th.. in Fp, so that we have in F,

/ Iz 13
W T
Vk2 — Vk2 R Tk2 83
vel = Vi + | (83)
i 3 i
Vk4 Vk4 Tk4
——
4 4 3
V;c e]Fann Vgeran T:E]F;l;nxn

forall k € [K], € [2], and T}, p € [2] are defined as in (83).
Since m = 2 > 1 in this example, unlike what we did
in the previous m = 1 example, this time we will need
to create two H matrices, namely, H; and H,, such that
H, is almost invariant under linear transformations V,f and
TLVE € [Kli € 4 € 2 ie. (VH), ~ (H),
and (T, Hy), ~ (Hy),. H is almost invariant under linear
transformations V, and T2,Vk € [K],i € [4],j € [2],
ie., (V/Ha), ~ (H), and (T2H,), ~ (Ha),. In addition,
we want 17/n ~ 1/3 so that the columns of H,,, u € [2] span
approximately one third of the n-dimensional vector space.
Moreover, H; and Hy are required to be linearly independent
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a.a.s. For these, we invoke the asymptotic IA scheme of [45],
and design h,,, h,, 1 € [2] in the following way,

hW=hﬁ@ﬁﬁ%%Xﬁm%)
k=1

i=1j=1 i=1
st.0<al, Bl <N-1 (84)
£ (hy, h2 R, Vu € [2], (85)
4
71 ozj, ‘o
- ol ((HH o) (e ),
i=1j=1 i=1
st.0<al, B <N (86)
a 71 72 i
2 (hyo by b)), Ve (2], (87)
Note that we have,
n=NZK 5= (N+1)"" (88)

This construction ensures that for p € [2], the elements of
Uhh# and t" h, are contained among the elements of h,,

for all i € [4],j € [2]. Now let Hy, Ha, ..., H, € F}*" be
the matrix representations in [F), of hy,ho,..., h,7 S IFq, and

Hi,Hs,...,Hy € Fp =" be the matrix representations in [,
of hq, hg, ceey h,f] € Fq. Define,
H,=[H)1,H1,... . H1] €F>",  pel2] (89)
and
— 1 —2 —7n AXT
H,=[H1H,21,. . H¢1] €eF>, 1€ [2], (90)

where 1 denotes the n x 1 vector of 1’s. By construction, the
columns of V;H,, and T};H, are subsets of the columns of
H,,, which implies that Vu € 2],k € [K],7 € [4],]j € [2],

(VIH,), C )y (TEHL, C Hy)p 91

Consider the m = 2 matrices, [Hy, Hy, RH;| € F**" and
[Hy,Hy, RH;] € F*37, and define the event E,, as,

En £ (I‘k([Hl, H27 RH1D = 377)
A (rk([Hla H27 RH2]) = 377) . (92)

The next steps (93)-(108), show that E,, holds a.a.s., which
will subsequently be essential to guarantee successfully
decoding by each user. In fact, due to symmetry, it suffices
to prove that rk([Hy, Ho, RH;|) = 3.

[H,,H,, RH,] € FZX?’” has full column rank if and only
if for all ¢; = [e},c3,...,¢]]T,ca = [&3,c3,...,c0)T, ¢ =
[t ¢, dMT e FPt such that € = [c],cf, 7] #
01><3n’

0"*! #£ [Hy,H,, RH,Jc
=H;c; + Hycy + RH ¢’

U n 7
= dH{1+) dH{1+) ’RH]{1
j=1 j=1 j=1

93)
(94)

95)

n n
> dH] +> dH] +Zc'JRHJ 1 (96)
j=1 j=1

£ Fa o7)
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where Fg is an n X n matrix in F,, which has a scalar
representation in [y as,

€F,.

n n
93)

fE:ZC{h{-‘r
J

Jj=1

n
cAhd + Z Airhd

=1 j=1

Note that since [, is a sub-field of F, the scalars c{, cjé, e

in F,, are also scalars ¢}, c,c” in Fy.

Thus, Fe € IFZXl can be equivalently represented in I, as
the product of fe with the scalar representation in F,, of 1
(the all 1 vector in [F),). Since the [F, representation of 1 is
not 0, we obtain that

Fel A0 = fo #£0. (99)

Therefore, [Hy, Hy, RH;] € IF;‘XB77 has full column rank if
and only if,

cer3"*1\ {0}

pa fs #0. (100)

The condition of (100), which is equivalent to the event E,,,
says that a uniformly random evaluation of the function P(V)
produces a non-zero value. We will show that this is true a.a.s.
in n.

1) Case I ¢ or cp is not the zero vector. Let us set
r = 0, which implies fo = >7_, cihi + >07_; chha,
and that ), = v;,Vu € [2],4 € [4] by (82). Meanwhile,
hi,hi,... k] are different monomials in the elements
of v, v}, and 0y. Similarly, hy,h3, ..., hJ are different
monomials in the elements of vj,, vj; and 6y due
to (84). Moreover, since any hJ has the factor 0; but
does not have the factor 65, and any h% has the factor
0> but does not have the factor #;, it follows that
hi,h3 ... h] hi h3, ... h] are different monomials.
Since different monomials are linearly independent,
we have that [fz] is a non-zero polynomial.

2) Case II: ¢; = c3 = 0 and thus ¢’ # 0. For this case,
we have [fz] = r('hi + ?h? + ...+ "hT), which is
also a non-zero polynomial since it is a product of r with
a non-zero polynomial (since hi, h?, ... h! are linearly
independent). ,

Thus, [fz] is a non-zero polynomial. Since i) has degree not
more than 16(N — 1)K + 1, [fe] has degree not more than
16 NK + 2. Therefore, [P] € F,[V] is a non-zero polynomial
with degree not more than (p*”—1)(16 N K +2). By Schwartz-
Zippel Lemma, when all the variables V' are assigned i.i.d.
uniformly chosen values in F,

(p*" —1)[16(N — 1)K + 2]

Pr(P # O) >1- (101)

q

3n _ _

1 (p 1[16(N — 1)K + 2] (102)

pn

N
>1-— 16KW (103)
—1 (104)
as n — oo if lim,,_ o0 == = 0.

pn—3n

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

Now let us specify the value of N as follows,

_ 1/(12K)
N = K” 3\/ﬁ) J , (105)
from which it follows that,
B 1/(12K)
N < (n 3ﬁ> (106)
and
n—3n=n—3N2EK > /n. (107)
Therefore,
(niﬁ)u(ul{)
Ay S % =0, (0%
and since N > 0, we have limn_,oo% = 0. Thus,

tk([Hy,Hy, RH;]) = 37, and due to symmetry it can
be proved that rk([H;, Hs, RHy]) = 37. Thus, we have

shown that E, holds a.as. Now for p € [2], let (Z, =

I""|[Hy, Ho, RH,]) € ng(nf?’”), so that
[H17H27RHM7ZM] (109)

has full column rarllk(sn. 2];(6? tdhe))server broadcast S =
X (8n+ n—=a
(SO,S[lK]7 S[QK]) e, ™" ) where

H H, 0 0 0 0 0 O
g _xr|0 O H H, 0 0 0 0
0 0 0 0o o0 H H, 0 0
0 0 0 0O 0 0 H, H
e F*%" (110)
and for k € [K], 1 € [2],
Sk =X"ViZ,. (111)

The decoding process works as follows. User k is able to
compute

XT"ViH,,, w € [2] (112)

directly from its side information XTVQC. Meanwhile, it is
able to compute

XTVIH,, jel2, pel2 (113)

and
XTTHH,,,

pE 2] (114)

from Sy, since for j € [2], u € [2],

_Vlng#
(vim), -

ij_QHlt
J HM
C <

] p
H,

I — |
~—

S

o
o O O

0
, 0

H, > ; (115)
0 p

L H

coo
coflo
as]
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and for p € [2],
T'H H, 0 0 0
T ,H, 0 H, 0 o
< i, ) “\lo o H, o (116)
TH, | " o o o H, "’

due to (91). Thus, User k is able to compute

X"VERH, = X"V H, - X"T{H,, pel2] (117)

according to (83). Together with S’', User k thus obtains,

(XT"ViH,, X"V{RH,,S}], je2, pnel2] 118)

which are

X"V} [Hi,Hy, RHy,Z ], XTVE[Hy,Hy, RH,, Zs]

(119)

IE‘TL Xn

and since [H;,H,, RH;,Z ] € and
[Hy,Hy, RHy,Z;] € Fp*" are invertible (have full
rank) a.a.s., User k is able to retrieve its desired computation,
XTIV, = [XTVE XTV?] e FL*2" aas.

For ¢ = p™, the cost of broadcasting each p-ary symbol is
1/n in g-ary units. Thus, the broadcast cost of this scheme is,

87 + 2K (n — 3n)

A, = . (120)
n
The next few steps (121)-(128) show that lim,, .., A, = %.
By (105), we have that
= N2 < # <S(N+1)PE =7 (121)
which implies that
12K _ 1 1
lim 2 = lim < hm 22V 2 (122
On the other hand,
N 1 12K 1 1/N 12K
fim 2 =y YDA N (123)
n—oo n n— oo n
1 n—+yn 1
> i li - (124
1
= _, 125
3 (125)
Thus, we have that
lim 2 =2 (126)
n—oo N 3
which also implies that
lim 1 = lim 7 x Jim (141/N)12K = (127)
n—oo n n—oo N
Combining (120) with (126) and (127) we have
1 8
lim A, =8x=-+4+0= = 128
oo “gti=g3 (128)

since K is independent of n. Thus, for any ¢ > 0, dng >
0 such that A,, < % + ¢ for all n > ng. Recall that the
broadcast cost A,, is achievable if E,, holds, i.e., A*(A,) <
A, < 8 +¢€if n > ng and E, holds. Now let us show that
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% + € is achievable a.a.s., by evaluating the limit in (14) as

follows,

lim Pr(A*(An) < §+ e)

n—oo

> lim Pr((A*(An) < g —i—e) /\En> (129)
. . 8
= lim Pr(En)Pr(A (An) < 5 +e En> (130)

-1 (131)
which implies that lim,, Pr(A*(An) < % + e) = 1. Since
this is true for all € > 0, according to (15) we have A <
inf{% +¢|e>0}=3. O

VI. PROOF OF CONVERSE: THEOREM 2

Recall that uy, £ [v},, vi],Vk € [K], and the data x € Faxk
for a scheme with batch size equal to L. Since a scheme must
work for all data realizations, it must work if x is uniformly
distributed. The decoding constraint (8) implies

H(S,x"v}) = H(S,x"uy), Vk € [K]. (132)

The converse for d > K(m + m’) is obtained trivially by
allowing all K users to cooperate fully, see proof of (24) in
Corollary 1. The converse for d < m + m/’ is obtained as

A*(A,) = H(S)/L (133)
> H(S | x"v])/L (134)
= H(S,xTu; | x'Vv})/L (135)
> H(xTu1 | xTvh)/L (136)
> (H(x"uy) — H(x"v}))/L (137)
=rk(u;) —rk(v]) = (d —m')* (138)

Step (133) is due to Shannon’s source coding theorem.
Steps (134), (136) and (137) follow from basic information
inequalities. Step (135) is because User 1 must decode
xTu; from S and x7v). Step (138) applies the useful
connection between entropy and ranks, that H(xTu) =
L - 1k(u) for a uniformly distributed x and a deterministic
matrix u. This leaves us with the only non-trivial regime,

(m+m ) < d < K(m+ m'), for which we will show that
A*(Ay) > dm/(m -+ m’) in the remainder of this section.
Let us provide an intuitive outline before launching into
the technical details. Recall that Theorem 2 considers K >
d/ ged(d,m+m’). If m+m' divides d, it immediately follows
that K > d/ ged(d,m+m') =d/(m+m') = d> K(m+
m'). Therefore, the non-trivial cases must be that m + m/’
does not divide d. What we want for the converse argument,
intuitively, is to still have the first d/(m+m’) users cooperate
fully. This is not directly possible because d/(m+m’) is not a
natural number, but let us set that concern aside for a moment.
The d/(m+m’) users together already have side information
that is equivalent to m’d/(m + m') dimensional projection of
the data, which together with the broadcast symbol S allows
them to recover (m + m’)d/(m + m') = d dimensions of the
data. If so, then we would have that H(S)/L > d—m/d(m+
m’) = dm/(m+m') as the desired converse bound. Now, how
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do we overcome the obstacle that we cannot have a fractional
number of users? Intuitively, this is achieved by invoking
functional submodularity (Lemma 1 of [38], [51], [52]). The
idea is that functional submodularity helps to identify and
introduce additional entropic terms of certain (linear) functions
of the side information and demands. These functions are
essentially the projection of the data into finer subspaces. If we
regard the entropies of the subsets of the side information and
demands as a set of regular building blocks, the additional
entropies introduced by functional submodularity are similar
to finer fragments. By rearranging and combining these regular
building blocks and fragments in a more efficient way, we are
able to derive a better converse bound. To make the details
concrete, the readers may refer to the following proof sketch
for the example with m + m’ = 6,d = 10 and K =
d/ ged(d,m + m) = 5. For this example, we want to show
that A*(A,,) > md/(m +m') = 5m/3.

In the following, steps labeled () uses functional
submodularity (Lemma 1 of [38], [51], [52]). We proceed as

follows.
H(S, XTV/1) + H(S, XTV’Q)

T12

U2 g(s, xTwy) + H(S,xTup) (139)
(g H(S,x"[uy,up]) + H(S,x" (u; Nuy)) (140)
> H(x"[uy,uz)) + H(S,x" (u; Nuy)) (141)
= 10L + H(S,x" (u; Nuy)) (142)

The last step is because as n — oo the rank of [uy,us] is
equal to 10 a.a.s. (The proof is omitted here but can be found
in the proof for the general case). Then,

T12 —+ H(S, XTV:IS)

T123

(132)

Tho + H(S,x"us) (143)
(2) 10L + H(S,x"[u; Nuy, uz]) + H(S) (144)
It follows that,
Tios + H(S,x"v})
Ti234

U2 Py + H(S, % uy) (145)
(2) 10L + H(S) + H(S,x"[u; Nuy,uz, uy))

+ H(S,x"[(u; N'uy,uz) Nuy)) (146)
> 10L + H(S) + H(x"[u; Nug, uz, uy))

+ H(S,x"[(u; N'uz,u3) Nuy)) (147)
= 20L + H(S) + H(S,x” [(u; Nug,uz) Nuy])  (148)

The last step is because as n — oo the rank of [u; Nug, us, uy]
is equal to 10 a.a.s. Then,

Tig34 + H(S,x"v})

T12345

132
( )T1234 + H(S,x"us)

(149)
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> 20L + H(S) + H(S,x[(u; Ny, u3) Nuy))

+ H(S,x"us) (150)

(*)
> 20L + 2H(S) + H(S,x”[(u; Nuy, uz) Nuy, us))

(151)
> 20L + 2H(S) + H(x"[(u; Nug,u3) Nug, us])  (152)
= 30L + 2H(S) (153)

The last step is because as n — oo the rank of [(u; Nug, uz)N
uy, us) is equal to 10 a.a.s.
On the other hand,

Tiats = H(S,x0V0) + H(S,x7v4) + -+ H(S, x"v})
(154)
H(S)+ H(x"v}) + H(S) + H(x"v}) + -
H(S) + H(x"v}) (155)
S 5H(S) +5m'L (156)

We thus obtain
5H(S) +5m'L > 30L + 2H(S)
— A*(A,) > H(S)/L > (30— 5m/)/3 = 5m/3 (157)

as desired.

The general proof starts as follows. Let us start with a useful
lemma, whose proof is relegated to Appendix IVv.

Lemma 1: Consider any M’ € FOX* (4 < d) that has
full column rank p'. Let M € dex“ If the elements of
M are chosen i.i.d uniform in Fn, then [M’, M| has rank
min{d, ' + p} a.a.s.

Define m, and the constants K, K1, --- , K7 as follows,

a m—+m’

—a m4+m |
" ged(d,m +m')’ (158)
id . __
K, 2 L%mﬂ Wie[o:ml, (159)
so that,
md d
D) Kyg=0, Kiz = = 1
) 0 O, m lrm_’_m,—‘ gcd(d,m—i—m’)’ ( 60)

2) (K; —1)(m+m') <id < K;(m+m'),Vi € [m], (161)
3) K;— K;_y >0, Vi € [m]. (162)
Define the matrices Yq,---, Y, 1, .-, I, and
Iy, -+, ', as follows,
To=[] (163)
r, £ (Yo, uky+1, UKot2,-- -, UK, 1),
T: 2T Nug,, ) £[[,ug,], (164)
Ty 2 [T, s, 41, UK, 425 - -5 UKy —1),s
To £TNug,, My £ [ uk,] (165)
P [Yi, Uk, 41, UK, 42, - UK, —1],
Tiy1 =1 N ug, .., i1 £ Civ1,ur,, ] (166)
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Do 2 [T 1, Uk 41, Uk 425 - - - » Wi 1),
so that for all i € [m],
r; € ng(rk('l”i,l)—&-(Ki—Ki,l—1)(7n+7n’))7 (168)
Hi c F;IX(I‘k(Ti_l)Jr(KifKi_l)(m%»m,))' (169)
Define the event FE,, as follows,
E, = (rk(v}e) =m/, Vke [K])
A (rk(Hi) =d, Vie [m}). (170)
The next steps (171)-(179) show that F,, holds a.a.s.

From Lemma 1 (let M’ = [ ], M = v},)), we have tk(v}) =
m/, since m’ < m +m' < d. Similarly by Lemma 1, (letting
M =[]and M =11, M = ug,, M = II;, respectively),
we have

k(1) = (Ky — 1)(m +m'), (171)
tk(ug,) = m+m’, (172)
rk(IT;) 2 (173)

where (171) and (173) are due to (161), and (172) follows from
m~+m’ < d. Then since tk(Y1) = rk(T'y) +rk(ug, ) —rk(I1y),
we have that

k(Y1) = Ki(m+m') —d. (174)

Next, to set up an inductive argument, suppose for some ¢,
1 <e<m,

Conditioned on (rk(T,-) = K;(m + m') — id), from
Lemma 1 and (161),(168),(169) we have

tk(Ci41) = (Kip1 — D(m +m') —id, (176)
k() 2 d, (177)
k(ug,,,) = m+m’, (178)
k(Tit1) = Kipa(m+m') — (i + 1)d. (179)

where in order to obtain (179), we used the property
k(Y1) = rk(Tiq1) + rk(ug,,,) — rk(Il;1 ), along with
(176), (177) and (178). By induction, we obtain rk(II;) =
d, Vi € [m], which implies that E,, holds a.a.s.

Figure 3 may be useful in understanding the construction
above and the proof.

For the next stage of the proof, we consider any
given LCBC(IF‘pn,V[K],vEK]) where FE, holds. Note that
V[K],va] are now arbitrary constant matrices that satisfy
E,,. Our goal now is to bound the optimal broadcast cost
A* (IF ViK]» V] K]) Let x be uniformly distributed to facilitate
entropic accounting. Recall that there is no loss of generality
in this assumption, because x is independent of E,, and any
achievable scheme must work for all data realizations, SO it
must also work for all data distributions. Thus, we have,

2mH(S) + K*Lm/

+ZHX Vi)

(180)

(181)
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(u2) (uz) (ug) (us)

m+m' =6

° ° ° . ° d =10
° ° o< 2>o ° m=3
(1)
° ° ° ° ° Km=5
° ° ° 0<H_>o K, =2
° o o o '@ Ky=4
° ® ° ° ° K;=5
(Y1) (T2)

Fig. 3. Illustration of the converse proof for m + m’ = 6,d = 10. Each
dot represents one dimension. The number of dots represents the dimension
for the corresponding space a.a.s. (uy), k € [5] has dimension 6 a.a.s. (Y1)
is the intersection of (uj) and (u2), which has dimension 2 a.a.s. (Y2) is
the intersection of ([Y1,us]) and (u4), which has dimension 4 a.a.s. (II1)
is the union of (u1) and (u2), which has dimension 10 a.a.s. (II2) is the
union of ([T, us]) and (u4), which has dimension 10 a.a.s. (II3) is the
union of (Y2) and (us), which has dimension 10 a.a.s.

—1

3

I
™

[(H(S) + H"Vic, 1) + H Vi 12) + ..

+ HO Vi, 1)) + (HS) + B Vie,,,))|
m—1
Z (H(SaXT[VII(i+13V/I(i+27"'aV/K'i+1—1})
1=0
+H(S,xTv}<i+1)) (182)
m—1
@ (H(S,XT[uKi+1,uKi+2,...,uKHl,l])
=0
+H(s,xTuKi+1)) (183)
= H(S,x" [ui,us,...,ux,—1]) + H(S,x ux,)
m—1
(H(S7XT[uK7‘,+17uK7‘,+27‘"7uK7’,+171])
=1
+ H(S,x uml)) (184)
= H(S,x"T1)+ H(S,x" ux,)
m—1 "
+ (H(S,x [uKi+17uKi+27...7uKi+171])
=1
+ H(S,x" us,,,)) (185)
(©
> H(x H1)+H(Sx T)
Z ( S X [uK +1,uK +27"'7uK1‘+1—1])
+H(s,xTuKm)) (186)

= H(x"I,) + H(S,x" 1)

+ H(S XT[UK1+1,UK1+2, cey uKzfﬂ) + H(S7XTUK2)

+Z( SX [LIK+1,L1K+2,...,

uKi+1—1])

+ H(s,xTuKM)) (187)

—~

m—1

0
> (H xT1Ly) + H(S)) + H(S,x"T2) + H(S,x ux,)
+

( S xT[uKi+1,uKi+2,...,uKH_l_l])

1=2

+ H(s,xTuKi+1)) (188)
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; (H(me) + H(S)) oot (H(xTnm_l) + H(S))

+ H(S,x"Tm) + H(S,x" uk..,) (189)
© (H(le'Il) + H(S)) o+ (H(xTHW) + H(S))
(190)
@
> m(Ld+ H(S)) (191)
= mH(S) + KmLm' > mLd (192)

Steps labeled (a) hold because FE,, holds. Steps labeled (b)
follow from the decodability constraint, i.e., H(S,x ;) =
H(S,xTv}). Steps labeled (c) use functional submodularity
(Lemma 1 of [38], [51], [52]).

Note that (160) implies that

Ky d
om . 193
m m +m/ (193)
Thus, we obtain that
H Ky
AZQZd—jmm’:d— d m = md .
L m m+m/ m+m/
(194)
This in turn implies that for any € > 0,
lim Pr (A*(An) s _md__ e) (195)
n—o00 m+m/
> lim Pr ([A*(An) > md — e] /\En> (196)
n—oo m + ml

— lim Pr(En)Pr(A*(An) >

n—oo

;| B aom

-1 (198)

Thus A*(A,) > md/(m +m’) — . Since this is true for all
e > 0, according to (16) we have A > md/(m+m’). O

VII. PROOF OF THEOREM 3

In this section, let us show the converse for odd d with
3 <d < 2K — 1, and the achievability for d = 2K — 1.

A. Converse for Odd d With 3 < d < 2K — 1

The condition for this regime is equivalent to 2 < % < K.
Since the generic capacity for this regime is only a function
of d, and assuming a smaller K will not hurt the converse,
it suffices to show the converse for K = % + 1, that is,
A] > d/2. We start with the following lemma.

Lemma 2: For LCBC(Fy, vix7, vf K]), the broadcast cost A
satisfies,

1
A > 3 <rk(v'1 N [u; Nug,,u Nuk,]) + rk(fug, ug,))

+rk([u, ug, ]) — 2rk(vh) — rk(vi,) — rk(V?cQ) :
(199)

where Ky and Ko are subsets of [K].
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Proof: For simplicity, we will make use of the converse
in [59]. Denote the original LCBC as A and its optimal
download cost as A*(A). Now, consider another LCBC setting
L’ with 3 users, where User 1 has side information xTv’1
and desires xTvy; User 2 has side information XTV;Cl and
desires xTv;gl; User 3 has side information xTv§C2 and desires
xTv,. Denote by A*(A’) the optimal download cost of A’.
We have A*(A) > A*(A’) since for any scheme that works
for A, we can construct another scheme that works for A’ with
a same download cost by letting the users in Ky cooperate,
and the users in [Co cooperate. Note that £C; and /o can have
a non-empty intersection. Also note that although the capacity
result in [59] is only for my = m), = 1,Vk € [3], the converse
holds for any LCBC with 3 users. Now let us make use of the
converse in [59]. Since A*(A) > A*(A’), by (7) of [59], and
by rearranging the terms, we have the desired bound. [ ]

Next we show the converse for the generic capacity, i.e.,
A} >d/2 for K = <L +1. Note that 41 +1 = 3+ 453, Let
Ko=[K—-92+1: K], Ki = {2} UKo and K2 = {3} UK.
Note that Ky = @ if d = 3. Since the converse bound in
Lemma 2 is composed of ranks of certain matrices, we then
finds these ranks in the a.a.s. sense.

First, since 2(1 + |[K4]) = 2(1 + |Kq|) =
by Lemma 1,

d+1 > d,

tk([ug, uk,]) = d, rk([ug, ug,]) = d, (200)

and
a.as. a.as. d - 1 a.a.s. d - 1
th(vi) =1, rk(vi,) T tk(vi,) S (200)

This leaves us the only non-trivial term, rk(v]N[u; Nug,, u;N
Ui, |). To avoid complex notations, within this section let

A=uy €FP? (202)
B =uy, = [ux,,up] € FI*(@1), (203)
C = ux, = [ux,,ug] € F*-1, (204)
Then let
D = [A,0"=2]([A, B.a—2)]) Bpa—1) € F&*,  (205)
E = [A,0" " 2]([A, Cl1.4-9)]) Cla—1) € FIX1,  (206)

where M™* denotes the adjugate matrix of a square matrix
M such that MM* = det(M)I. By construction, we have
(D) C (A) and (E) C (A). Then note that

D + [0 By.g—9]([4, Bp.a—2)]) Bla_1

= det([A, B[l:d—Q]])B[d—l]' (207)

We obtain that (D) C (B). Similarly, we have (E) C (C).
Therefore, (D) C (AN B) and (E) C (AN C). Next, let
@x(472) "We claim that

Z el
P =det([D, E, Z]) (208)

is a non-zero polynomial in the elements of ukj, Z. To see
this, specify

dxd

u; = 1[1:2]7 U, = I[3:d—1]; (209)
up = [If5 T, (210)
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uz = [Ided,IéTd], (211)
Z = Ifgg. (212)

We then have
[A, B.g—2)] = [A, Cpiog—g] = 1479, (213)

and it follows that

D=1y, E=1Iy = det([D,E,Z]) = det(I"*%) = 1.
(214)
Therefore, P is a non-zero polynomial, with degree not more
than 2(d + 1) + (d — 2). By Schwartz-Zippel Lemma, the

probability of P evaluating to a non-zero value is not less
than

2(d+1)+ (d—2)
pn
which approaches 1 as n — oo. Thus,

1—

(215)

k([D, E]) > 2 = rk([uy Nug,, u; Nugy]) > 2. (216)

Since ([u;Nuk,, u3Nuk,]) C (uy), and rk(u;) < 2, we have
that

([ur Nug,, w1 Nuk,]) = (ug). (217)
Since (v}) C (u1), we obtain that
k(v N [ur Nug,,u; Nu,]) =rk(v) = 1. (218)
Now let us consider (199) in the a.a.s. sense. We have
nZ 1+2d—22—(d—1) :g’ 219)
or, equivalently,
A} > g (220)
which proves the desired converse. (I
B. Achievability for Odd d With d = 2K — 1
Consider the following K matrices
My = [Vigp, vigpgey) € e, k€ [K]. (221)
By Lemma 1, we have,
tk(My) = d, Vk e [K]. (222)

For any LCBC instance that satisfies k(M) = d, Vk € [K],

we are able to find non-zero F, elements oy, ,...,ax_1
and Fy elements o, o, ..., o) such that
K-1 K
Vi = Z apvy + Z akv%. (223)
k=1 k=1

To see this, first note that since tk(Myg) = d, vk can be
represented by a linear combination of the 2/ — 1 vectors
Vi,V ..., VK_1,V], V), ..., V. Now let us show that the
coefficients «q,q9,...,ax—1 are non-zero. We prove by
contradiction. Suppose «o; = 0. We then have

K
g apvi + g apvy, — vi =0,

ke[1: K —1]\{i} k=1

(224)
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which implies that M; does not have full column rank d. This
contradiction proves that ay, # 0,Vk € [1 : K — 1]. Let the
batch size L = 1. The server broadcasts S = Sk 1}, where

Sk = x" (apvi +ajvy) €Fy, ke [K —1]. (225)

User k, k € [K—1] can get its desired computation by x* v, =
(1/a)(Sk—ajxTv}). User K can get its desired computation
by xTvi = S r " Sp4alxT V.. The broadcast cost is then
A = K — 1. By (222), we conclude that

A <K —1. (226)

which is the desired upper bound. |

VIII. CONCLUSION

The take home message of this work is optimistic. While
a general capacity characterization of the LCBC for large
number of users remains out of reach because it includes
recognized hard problems such as index coding, a generic
capacity characterization is shown to be tractable. As such, the
LCBC setting that generalizes index coding, combined with
the generic capacity formulation that focuses on almost all
instances of the LCBC, presents a promising path forward for
future progress. This is analogous to DoF studies of wireless
networks where much progress has come about by focusing on
generic settings (‘almost all’ channel realizations rather than
‘all’ channel realizations) while the DoF of arbitrary instances
still remain largely open.

The latter limitation is worth emphasizing. While a generic
capacity characterization reveals the capacity of most LCBC
settings, it is notable that the LCBC settings that have received
the most attention thus far, say index coding and coded caching
for example, have specialized demand and side-information
structures that are not generic. Thus, open questions in
index coding and caching remain open and as important as
ever for future work. The study of generic capacity is not
intended to supersede the studies of caching, index coding
or other specialized applications, but to complement those
efforts with an understanding of what is missed in the study
of specializations — the generic case. Understanding the
capacity limits for structureless, i.e., generic side-information
and demands is especially important because the scope of
possible linear computation scenarios that may arise in future
applications is far too broad to be understood through studies
of specialized structures alone. For example, arbitrary linear
filters may be applied by different users on large datasets
held by a central server, with side-information arising from
previously retrieved outputs of other filtering operations on
the same datasets. Depending on the application, there may
be little or no freedom to optimize the structure of the
demand and side-information. Also, a theory cannot be
built out of special cases while ignoring the generic case.
So if a cohesive information theoretical understanding of
communication networks used for computation tasks is to ever
emerge, the generic case has to be at its foundation.

Promising directions for future work include the exploration
of generic capacity for asymmetric settings, analysis of the
LCBC download cost vs complexity tradeoff, and generic
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capacity in the large ¢ sense (especially for n = 1). Extensions
of finite field results to degrees of freedom (DoF) results over
real/complex numbers, and studies of the tradeoffs between
precision and communication cost in the GDoF sense (as
in [60]) are promising as well. Last but not the least, while
the capacity results in this work establish the information
theoretic fundamental limits, asymptotic IA schemes are far
from practical. Therefore, the extent to which the fundamental
limit can be approached with practical coding schemes, is a
most interesting open question where future coding-theoretic
analysis can shed light.

APPENDIX I
THEOREM 2: PROOF OF ACHIEVABILITY

Let us recall the compact notation u, £ [v},v],Vk € [K].
For d > K(m + m’), the broadcast cost Km is trivially
achievable, simply by broadcasting each user’s demand
separately, i.e., S = x7[vy,...,vg|. The achievability for
the remaining regimes is shown next.

A. Achievability for d < m +m’

Define the event
E, 2 (rk(vﬁc) = min{m’,d}) A (rk(uk) = d).

In Lemma 1, letting M’ = [ ], M = v}, and M = uy,
respectively, we obtain that F,, holds a.a.s. The following
argument is true if E,, holds.

(227)

1) If d < m/, each of the K users is able to compute x,
since rk(v},) = d. This implies that A* = 0.

2) Using field extensions (cf. Appendix II of [38]), let
us consider the equivalent LCBC with field size ¢ =
"z If m < /d < m + m/, for each k € [K], let
u’ € Fgf(dfm ). We claim that P, = det([ug, uc) is
a non-zero polynomial in the elements of ug, u®. To see
this, for each k, we can choose u¢ = (I*?ju;) €
ngx(d_m/) such that [uy, u¢| spans (I¢*4). It follows that
P =[], Px is a non-zero polynomial in the elements
of ujgj, u®. By Schwartz-Zippel Lemma, if the elements
of u® are chosen uniformly in Fy-, the probability of
P evaluating to zero is not more than deglre;#fp <

K(d—m')

. Thus, by choosing z > log, (K(d — m')),
we ensure that there exists such u® that satisfies
det([ug,u]) # 0 for all k& € [K]. Broadcasting S =
xTu¢, we have A = d — m/, and each User k is able to
compute x with S and its side information x” v},

Thus we have the desired achievability, A*(A,) <

max{0,d — m'}.

B. Achievability for (m +m’) <d < K(m +m/)

Let L = 1. For ¢ = p", we will interpret F, as an n-
dimensional vector space over F,, and design a linear scheme
over IF),. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from F, = Fj».
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2) The data xT = [371,1‘2, o ,de] e Fixd jg equivalently

represented over F, as XT = [X{, X7, ..., X1
c F;,Xd”, where X; € Fg“ is the n x 1 vector
representation of x; over IF,,.

3) User k has side information x”'v}, € F1*™ and wishes
to compute x” vy € F}*™, where

Vi = [v,lC vz VZL] (228)
1 2 m
U1 Uk Vg1
Ukog Ukg --- Ui
= . eFPm™  (229)
1 2 m
Vkd Vkd Vkd
and
’
vy, = [v§€1 vf B ] (230)
/1 m’
Vk1 ”kl U1,
/1 12 m
v v v
k2 Vk2 k2 /
=77 _ € Fixm (231)
/1 /2
Ykd Vkd Vkd
4) Let rq,r9,...,7m/,01,02,...,0,, be chosen i.i.d uni-

formly in F,.
5) Define the set of variables,

ve{ul, ke Kied,jeml}
U{v,ﬂ ke [K]i [d},j’e[m’]}
u{rl,m,...,rm/,ol,eQ,...,em}, (232)

and note that |V| = (m +m/)(dK + 1).

6) We will also introduce the corresponding n X n matrix
representations in F,, for several I, variables (some of
the IF, variables will be introduced later). The following
table specifies them.

. F2X" matri
F, variable p M ?IX Comment
representation
J J ke }
Vki Vii v € ld,
j€ m]
y it ke K],
Uka ng z € d],/
] € [m/]
Ty Ry Jj € m]
k € [K],
ug'’ pi’ € [d],
Ui Ty € [m),
J € [m]
j j j €,
h, Hj, e [m]
77 77 J € 7],
r, H, € [m]

Our goal is to show that A¥ < dm/(m + m’). Note that if
d=0orm =0, A =0 is trivially achieved for all cases.
If m’ = 0, then A < d is trivially achieved for all cases by
broadcasting S = X. Thus, in the following we consider the
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cases when d > 0,m > 0,m' > 0. First, for k € [K],u €
[m], " € [m/], let us define

’Ulj/ tllfj/
3 Vi1 y
Jj Hi
v v t
k2 k2
. = S| T + (233)
v /_L -/
vﬁjd Vkd e
We have
V’j/ VA Tuj/
kl/ k1 kl‘/
Via Viiz Ty3
= | 7| Ry+ (234)
17’ Vi ng’
Vied kd T
——r g ——
VieFgm "

. 4 - a

V;CJ eran T;:] eran
-/

by (233), and T/, 1 €

[m],j" s '] are defined as in (234).
Next, construct h, € Fy

i’ € [m
<1 hy, € FP*Y e [m] as

K m’
wer = o T (I e (1 ) )
k=1 i=1j=1 i=1j'=1
st.0<al, B9 <N - 1] (235)
2 (h)y, b2y R, Y € [m]. (236)
d m d m'

71 i ol 5
G !
k=1 i=1j=1 i=1j5'=1

st 0< a,m, 5’” < N] (237)
2 (R by b)), Ve [m). (238)
Note that we have,

This constructlon ensures that for ;1 € [m], the elements of
vl h, and #9'h,, are contained among the elements of h,,

for all ¢ € [d], jE[ 1,7" € [m/]. Define,
H,=[H)1,H1,... H1| €F>"  pelm]
(240)
and
H,=[H1HA,. . H1 eFX7,  uem)
(241)

where 1 denotes the n x 1 vector of 1’s. By construction, the
columns of Vk]iH and 7, ,é‘ZH are subsets of the columns of H,,
which implies that Vi € [m], k € [K],i € [d],j € [m],j €

[m],
(ViHL), C <ﬁu>p7 (T L) C <ﬁ#>l7' (242)
Consider the m matrices,
[Hi,H,, ..., Hy, RiHy, RoHy, ., Ry H,y | € FRX(memOn

(243)
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[Hl, H,,...,H,,, RiHs, RoHo, ..., Rm’Hz] e F;X(m+m/)n
(244)
[H1, H,,...,H,,,RiH,,, R:H,,, ..., Rm’Hm] c sz(m-&-m/)n.

(245)

Define event F,, as,
E, = /\ (rk([Hh Hs,...,Hp, RlHM: R2HM7 Tt Rm'HM})
p=1

= (m+ m’)n). (246)

The following lemma establishes a sufficient condition when
E,, holds a.a.s., which will subsequently be essential to
guarantee successfully decodlng by each user.
Lemma 3: If lim,, = 0, then FE,, holds
a.a.s.
Proof: See Appendix II. [ ]
Let us specify the value of N as follows,

pln— (m+m/)77]

1
_ Kd(m+m’)
N = K” \/ﬁ) J : (247)
m+ m/
from which it follows that
1
_ Kd(m+m')
N < (” ﬁ) (248)
m+m’
and
n—(m+m'n>n. (249)
Therefore,
n—y/n m
i < i (erm/)
ngrolo pn—(m+m’)n - ngrolo p\/ﬁ
. O(n?)
= nlgx;o o =0 (250)

where « is independent of n. Since N > 0, we have
= 0. Applying Lemma 3, we have
m], let Z, =

: N
lim,, o0 T (mTm

that E,, holds a.a.s. Now for u € [1

(I"™"|[H,,...,H,, RiH,..., R, /H]) € an(n (m+m) )7
so that
[Hl,Hg,...,Hm,RlHN,RgHM,...,Rm/HM,ZH] (251)

has full rank n. For compact notation, let

H 2 [H,Hy, ..., H,|"™. (252)
Let the server broad/cast S = (SO,S[K],...,SF}(]) €
FLX IramtKmn—(mamIn] - pere
H 0 ... 0
H ... 0
Sy = XT € Fpdxmdn (253)
0 0 ... H
and for k € [K], p € [m],
Sk =X"ViZ,. (254)
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The decoding process works as follows. User k is able to
compute

X"VIH, — jem), pem] (255)

directly from its side information. Meanwhile, it is able to
compute

XTVIH,,  jeclm], pem] (256)

and
XTTH'H,, €], pem (257)

from Sy, since for j € [m], u € [m],

Vi H, H,L 0 0 0
_ Vi,H, 0 H, 0 0
<V{€HM> = < _ c(|. o :
p : . . .
. P i p
V. H, 0 0 o0 H,

(258)
and for j' € [m/], p € [m],
T/ H, H, 0 0 0
T H 0 H, O
< kQ. ! > C < : .u . > (259)
, » . . . - »
Tyq Hy, 0 0 0 "
due to (242). Thus, User k is then able to compute
XT"ViR;H, =X"VY/ H, -X"T} H, (260)

for all 5/ € [m/], n € [m] according to (234). Together with
S, User k is able to compute
XT"VviH,, XTVIR;H, and SV, (261)
for all j € [m],j’ € [m'], u € [m], which are
X"V [Hi,Hs,...,Hy, RiH1, RoHy, .
X"Vi[Hi,Hy,...,Hy, RiHs, RoHo, ..

i) Rm’Hla Zl] ) (262)
B Rm’H27 Z2] ) (263)

X'V [Hy, He, ..., Ho, RiHy, RoHo,, .., Ry Ho, Zon
(264)

Since [HhHg,...,Hm,RlHM,RgHM,...,Rm/HH,ZM] is
invertible (has full rank) aas. for p € [m], User k
is able to compute its desired computation, X7V, =
XT[VE, VE,..., V] aas.

For ¢ = p™, the cost of broadcasting each p-ary symbol is
1/n in g-ary units. Thus, the broadcast cost of this scheme is,

mdn + Km(n — (m +m/)n)

A, = (265)
n
By (247), we have that
g = NKdmin) < LEVE (v qyRamant) g
m+m'
(266)
which implies that
n NKd(m+m’)
lim — = lim
n—oo N, n—oo n
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< lim n_\/ﬁx !
n—oo m—+m/
1
=—. 267
p—— (267)

On the other hand,
(N + 1)Kd(m+m')/(1 + 1/N)Kd(m+m/)

lim n_ lim
n—oo M n—oo n
(268)
1 n—n
Y .
N (T )R < T
1
X — 269
m+m/ (269)
1
= —. 270
p—— (270)
Thus, we have that
1
lim 2 = 71)
n—oon m-+m
which also implies that
_ / 1
lim L= lim L x lim (14 1/N)Kdm+m) — =
n—oo N n—oo N N—o0o m+m/
(272)
Combining (265) with (271) and (272) we have
d
lim A, =md x +0=—" (273)
n—oo m+m/ m+m/

since K, m,m’, d are independent of n. Thus, for any £ > 0,
Ing > 0 such that A,, < m’:ﬁi, + ¢ for all n > ng. Recall
that the broadcast cost A, is achievable if E, holds, i.e.,
A*(An) < A, < 245 4 € if n > ng and E,, holds. Now
let us show that m”lfn, + € is achievable a.a.s., by evaluating
the limit in (14) as follows,

Jim Pr(A%(A,) < ﬂ*dm +¢)

n—oo

> lim Pr<(A*(An)§ 5
m m

4y €) En> (274)

md
= 1 * <
lim. Pr(En)Pr(A (An) € =25t ’ En) (275)
=1 (276)
which implies that lim,, ., Pr{ A*(A,) < m”_ile, +€) =1.
Since this is true for all € > 0, according to (15) we have
Ay <inf{ 245 4 e|e> 0} = md 0

APPENDIX II
PROOF OF LEMMA 3

By Lemma 1.1.3(v) [54], it suffices to prove that Vi € [m)],
rk([Hl,Hg, o Hy, RiH,, RH,, ... ,Rm/HM])
= (m 4 m')n. (277)
Due to symmetry, without loss of generality, we will show the
proof for 1 = 1, which is
rk([Hl,Hg, ..., Hp, RiHy, RoH,, ..
= (m+m)n.

R, Hy))
(278)
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Note that [Hl,HQ,..-,H»ﬁL,RlHl’R2H17...,Rm/Hl] has
full column rank (m + m/)p if and only if for all
ci = [ei,cz,.... ¢l e FPli e [m], and ¢ =
2T e FiXtioe [m] such that € =

T T T T T T 1x !
[l e, .. .cl el e, ... cL)] # otxtmtmin,

s “my s m/
0""! # [Hy, Hy, ..

[c
B Hma RlHla R2H17 e 7RTI’L’H1}E
(279)
= H1C1 + H2C2 + ...+ Hmcm
+ Rlchll + R2H1C/2 + ...+ Rm/ch;n/ (280)

n 7
= dH{1+...+> d,H)1
j=1 j=1

n n
+> PR H{1+...+Y R, HI1L (281)

=1
n i )

= (Zc{H{—F...-ﬁ-
=1

n 7
D VRS S

j=1

Jj=1

ch H},

n
=1

J

j=1

2R (283)

where Fg is an n X n matrix in [F,, which has a scalar
representation in [, as,

ar
[
M=

n
Ahl+...+> c,h,
j=1

.
Il
_

+

-

n
bl + .+ b €F, (284)
1 j=1

J

Note that since F, is a sub-field of IF,, the elements of €
in ), are also in IFy. Thus, Fg € Fg“ can be equivalently
represented in [, as the product of fe with the scalar
representation in [Fy, of 1 (the all 1 vector in F). Since the
IF, representation of 1 is not 0, we obtain that

Fel £ 0™ = fo #£0. (285)

Therefore, [Hy,H,,...,H,,, RiH,, RoH;,...,R,vHy] €
F2X (™M has full column rank if and only if,

P2 II fz # 0. (286)

cer{m <1y 1o}

The condition of (286), which is equivalent to the event E,,,
says that a uniformly random evaluation of the function P())
produces a non-zero value. We will show that this is true a.a.s.
in n.

1) Case I: At least one of {ci,ca2,...,Cp} is not 07x1,
then set =Ty = ... = Ty = 0, which implies
f?/: dchl + .o+ 0 ),y and that ¢ =

v Vi € [ml,i € [d],j/ € [m/] by (233). Meanwhile,
hj,h%,... k7 are different monomials in the elements
of viz v;gi and 0,,. Moreover, since any hfL has the factor
6,, but does not have the factor 6, if p’ # p, it follows
that hl,h%, ... RY RS B3, KD, ... L B2, ... R,

s Homy Tomyy -
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(mn in total) are different monomials. Since different
monomials are linearly independent, we have that [fz]
is a non-zero polynomial.

2) Case II: ¢y = ¢c3 = ... = ¢, = 0 and thus at least
one of {c},ch,...,c,, } is not 0"*'. For this case,
we have fez = ;7:1 il + ..+ Z;’Zl ¢ by,

From the discussion in the previous case, we know

that hi,h? ... k] are non-zero polynomials, and

none of them has a factor in {ry,ro,...,7m}

(because otherwise letting 71 = 1o = ... =

polynomial to

vy = 0 would evaluate that
0, which is a contradiction). Thus, we obtain
that Tlh%,’f‘lh%,...,Tlh;],’f’gh%77’2h%,...7T2h;’7

oy P hd B3 b are linearly independent.

It then follows that [fg] is a non-zero polynomial.
Thus, [fz] is a non-zero polynomial. Since i) has degree not
more than (N —1)Kd(2m’+m)+1, [fz] has degree not more
than (N — 1)Kd(2m’' + m) + 2. Therefore, [P] € F,[V] is a
non-zero polynomial with degree not more than (p(m“”/)” —
D[(N = 1)Kd(2m' + m) + 2]. By Schwartz-Zippel Lemma,
when all the variables ) are assigned i.i.d. uniformly chosen
values in ¥y,

Pr(P #* 0)
(m4+m")n _ _ /
1o (p DN — 1) Kd@2m' +m) + 2] (287)
q
(mtmn — D[N = 1) Kd(2m/ 2
N N~ DEdEm +m) +2] o
pn
/
—1 (290)
as n — oo if lim,,_, W = 0.
APPENDIX III
PROOF OF THEOREM 1
For compact notation, let us define,
Y1 £ (min{3(m +m') —d,m+m’,d})+ (291)
o 2 (min{2(m +m') — d,m +m',d}) " (292)
s 2 (min{3(m +m') —2d,m+m',d})"  (293)

and define E,, £ CLAC2 A --- A C6 as the event that the

following conditions hold. We will show that E,, holds a.a.s.

The values of A, for K = 1,2,3 then follow by evaluating

the capacity expression from [38] by applying conditions C1

to C6 for the symmetric LCBC with K < 3.

Cl  1k(vy) =min{m/,d}, Vke[l:K];

C2 rk(ug) = min{m +m’',d}, Vke[l:K];

C3  tk([v),u]) = min{m’' + v2,m + m/,d}, Vi #
Ji,j€1: K], K> 2;

C4  1k([v},ui23]) = min{m'+~3,m+m’,d}, Vke|[l:
3], K=3;

C5  1k([v],u;j,uk]) = min{m’ + 2v,,m + m’,d}, for
distinct 4, j,k € [1: 3], K =3;

C6  rk([vi,ui; ) = min{m' + y,m + m’,d}, for
distinct 4,5,k € [1: 3], K =3,
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where

Vi,jel: K],i#j,
if K =3.

(294)
(295)

A
u;; = u; n u;,
A
uje3 = u; Nug MNug,

By Lemma 1.1.3(v) [54], we then show that F,, holds a.a.s.
by showing that each of the conditions C1 to C6 holds a.a.s.

A. Conditions C1, C2, C3 and C6

In Lemma 1, let M’ = [ ], M = v}, uy, respectively.
We obtain that Conditions C1 and C2 hold a.a.s. Then let

M = [u;,v}], M = [u;, u;], respectively. We obtain that
tk([u;, v]) = min{m + 2m/, d}, (296)
tk([u;, u;]) = min{2(m + m'), d}. (297)
Since
rk([u;, u]) — rk([uy, vi])
= rk(u;) + rk(u;) — rk(u;;)
— [tk(u;) + rk(v}) — rk(u; Nv})] (298)
= rk(w;) + rk(u;) — rk(u;;)
— [rk(u;) + tk(v}) — rk(u; Nw; N ;)] (299)
= rk(w;) — [rk(u;;) + rk(v}) — rk(u;; N v})] (300)
= rk(w;) — rk([v, uy]), (301)

it follows that

rk([vi, ug))

= min{m +m',d} — min{2(m +m’),d} + min{m + 2m’, d}

(302)
=min{m’ + v2,m +m’,d} (303)
which proves the result for C3. Next, let M = [u;, u, v}],
M = [u;, u;, uy], respectively. We obtain that
rk([u;, ug, vi]) = min{2m + 3m/, d}, (304)
k([u;, uj, ug]) = min{3(m +m’), d}. (305)
Since
rk([ug, uy, ug]) — rk([u;, ug, vi)
= rk([uy, ug]) + rk(u;) — k(g p))
— [rk([u;, ug]) + tk(v}) — rk([u;, ug] N v})] (306)
= rk([u;, ug]) + rk(u;) — rk(ui(j,k))—
[rk([u;, ug]) + 1k(v;) — k([uj, ux] Nu; Nvy)|  (307)
= rk(u;) — [rk(u;( ) + 1k(v) — tk(w;(;0) N Vi) (308)
rk(u;) — rk([vi, wigm)), (309)
it follows that
rk([Vi, Wijm)])
= min{m +m’,d} — min{3(m +m'),d}
+ min{2m + 3m’, d} (310)
= min{m’ + v1,m +m’,d} (311)

which proves the result for C6.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

B. Condition C4

To see that C4 holds a.a.s., we need the following lemma.
Lemma 4: Let A € ]F;lf“ ,B,C e IFZTT”, such that p’ < p.
Denote

%o ol (312)

A= {A B 0]
If the elements of A, B, C are chosen i.i.d uniform, then M
has full rank min{2d, ' + 2u} a.a.s.

Proof: Consider the following cases.

1) If 2d > ' + 2u, which implies ¢/ < p < d and
thus ¢/ + p < 2d. Let P; = det([M, Z]), where Z €
F24* (4= +2m) be 4 polynomial in the elements of
A, B,C, Z. To verify that it is not the zero polynomial,
consider the following realizations of A,B,C,Z for

: dxd _ d><d
which P| # 0. Let A = I[1 M/], =C = I[u TR
Let v, € FY XL, ve € ]FgXl Then M[v,, vy, ve|T =

0 = (ABlpwul" = 0)A (4,Clve,vl” =
00 = v, = v, = v, = 0. Therefore, M
has independent columns. Let Z = (I¢*¢|M) €

F24* RA=020] o that [M, Z] has full rank, which
yields a non-zero evaluation for P;. Now, since P is not
the zero-polynomial, if the elements of A, B,C,Z are
chosen i.i.d uniform, then by Schwartz-Zippel Lemma,
we obtain that as n — oo, the evaluation of P; is almost
surely non-zero, which implies that tk(M) =y’ + 24.
2) If 2u < 2d < u' + 2, then we have 2u —d >
d—p >d—p >0 Let P, = det([MT,Z1]T),

where Zd § ]Féﬂ/wu_zd)x(’:f“). Let I; = If'llxzi a°
I, = I[2>/<1 d+1:p)’ Iy = I,uxld’ B = [11712} ¢ =

[I1,I5], Ag = [I2, Is]. Then we have (4oNBNC) = {0},
which implies that the following matrix has full rank.

24X {ﬁg ff g} (313)
(2d—2u) x1

To see this, let v, € Fy . Up, Ve € F*1 Then
Myv = Myvg,vp,v]T =0 = Agv, = —Bu, =
—Cv. € (Ag N B N C). Since Ag, B,C have only
trivial intersection, the only solution for v is 0. Letting
A = [0 H+2u=2d) A1 we obtain that M has 2d
linearly independent rows. Let Z7 = (I?*4MT) ¢
FU 22X W20 i s constituted by (' + 24—
2d) rows of T +2m)x (W +21) 5o that [MT,ZT]T has
full rank. Therefore, P, is not the zero polynomial.
By Schwartz-Zippel Lemma, we obtain that for i.i.d.
uniform A, B, C, Z, as n — oo, P, will evaluate to a non-
zero value almost surely, which implies that rk(M) = 2d.
3) If d < p, then by Lemma 1, we have that tk(B) =
k(C) = d = 1k(M) > 2d holds asymptotically
almost surely. Since M has 2d rows, we conclude that

k(M) = 2d.
|

In Lemma 4 let

uz 0] : (314)

_|wm
M_{ul 0 wus
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We obtain that rk(M) = min{3(m+m'), 2d}. It then follows
from [61] that,

tk(uy23) = rk(u; Nuz Nugy) (315)
=rk(uy) + rk(uz) + rk(ugz) — rk(M) (316)
= 3min{(m +m’),d} — min{3(m +m’),2d}  (317)
=73, (318)

Then applying Lemma 4 to
M= [X% ‘32 1?3} , (319)

aas.

we obtain that tk(M’) = min{2m + 3m/, 2d}. By [61],
I'k(Vll N U123) = I‘k(V’l Nug N 113) (320)
= tk(v}) + tk(us) + tk(ug) — tk(M')  (321)

Therefore,
I'k([Vll, u123]) (322)
= I'k(Vll) + rk(ulgg) — I'k(Vll n II123) (323)
= rk(u123) — I'k(UQ) — I‘k(ug) + I'k(M/) (324)
= y3 — 2min{m + m/,d} + min{2m + 3m’,2d} (325)
= min{m’ + v3,m +m’,d} (326)

C. Condition C5

Finally let us prove for C5. In Lemma 1, let M = [u;, u;].
We have

tk([u;, u;]) = min{2(m +m'), d}, (327)

By the result for C2 and (327), we have that for distinct ¢, 7 €
[1:3],

tk(u;;) = rk(uw;) + rk(u;) — rk([u;, uy]) (328)
= 2min{m + m’,d} — min{2(m +m’), d} (329)
= (min{2(m +m') —d,m +m',d}) " (330)
=72 (331)

To prove that CS5 holds asymptotically almost surely, due to
symmetry, it suffices to prove for i = 1,57 = 2,k = 3. Let us
consider the following cases.

If v = 0, then we almost surely have rk([v], uj2,u3]) =
tk(v]) = min{m’, d} = min{m’+2vy2, m+m/, d}, as desired.
Otherwise, let us consider two sub-cases.

1) v2 = min{m +m’,d} > 0. By C2,

k([v], a1z, uy3)) < rk(uy) = min{m +m’,d} (332)
On the other hand, by C3,

rk([v/h Uiz, ulB]) > rk([vll, ll12])
= min{m + vo,m +m’,d} (333)
= min{m + m’, d} (334)

This implies that

tk([v}, uig, uy3]) = min{m +m’, d}
= min{m’ + 2v2,m +m/,d} (335)

as desired.

2) v2 = 2(m +m’) —d > 0. This implies that m 4+ m’ <

d < 2(m-+m’). Denote A = uy, B = ug, C = us. Then
V1 = Ap1.m)- Denote a = d — (m +m/'), and let

D = [Auodxa] [A7B[l:a]]*B[a+1:m+m’]7 (336)
E = [Aa dea] [Aa C[l:a]}*c[aJrl:erm’] . (337)

Recall that M* denotes the adjoint matrix of the square
matrix M. We claim that (D) C (u;2) and (E) C (uy3).
It is obvious that (D) C (u;) and (E) C (uy). To see
that (D) C (uz) and (E) C (us), note that

D+ [de(m-&-m/)’ B[l:a]} [Aa B[l:a]]*B[a+1:m+m’] (338)
= [A7 B[l:a]][Aa B[l:a]]*B[a+1:m+m’] (339)
= det([A7B[l:a]])B[aJrl:erm’]a (340)

where we used the fact that for any square matrix M, the
product of M and its adjoint M* is equal to the product
of the determinant of M and the identity matrix. Thus,
every column of D is a linear combination of the columns
of B = uy, which implies that (D) C (us). Similarly,

E + [de(m+m')7 C[l:a]] [Av C[l:a]]*C[aJrl:erm’] (341)
= det([A7 C[l:a]])c[a+1:m+m’]7 (342)

which implies that (E) C (us).
Let us now show that rk([A[1.p,), D, E]) > min{m/ +
272, m-+m’} holds asymptotically almost surely. Denote
b = min{m,y2} and ¢ = min{m,2v,}. Let Z €
ng(dfmlfc). The following determinant is a polynomial
in the elements of (4, B,C, Z).

P = det([A[lmL’] ) D[l:b] ) E[l:(c—b)]v Z]) (343)
To prove that this is not the zero polynomial, let
__ qdxd __ qdxd
I = I[l:m/]a I = I[m’+1:m’+b]’
__ ydxd __ qdxd
I?’ - I[m’+b+1:m’+c}’ I4 - I[m’+c+1:m’+m]7
dxd
=100 (344)

and then consider the following evaluation,

A=[I, 1,13, 1) = A' =1, (345)
B = [I5, I, 0% (0270, (346)
C = [I5, I, 04 (2 =etb)], (347)
Z = [Is, I5). (348)

Note that [AaB[l:a]} = [A,C[lza]] = [11712713,[4,15] =
I9%d  Thus,

D = [A, 0] By 1:mtm] (349)
= [IlaI27I37[47dea][1270d><(727b)] (350)
= 15,0720, (351)

which implies that D(y.;) = I>. Similarly,

E= [A7 O]C[a+1:m+m’] (352)
= I, Iz, I, I, O] [I5, 07 (2 =<+ (353)
= [I3,0% (2 =etb)], (354)

which implies that Fjy..—p) = I.
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Therefore P = det([I, Iz, I3, 14, I5]) = det(I¢*?) =
1 # 0. Since P is not the zero polynomial, by Schwartz-
Zippel Lemma, we obtain that rk([A’, D, E]) > m’ +
b+ (c—b) = m +c¢ = min{m' 4+ 2y9,m + m'}
holds asymptotically almost surely. This implies that

tk([v], a2, ui3)) > min{m’ + 2v,,m + m’}. Since
tk(vl) = m/, tk(up) = rk(uz) = 7, from the
result for C1 and (328) and note that ([v}, 2, us3]) C

a.as.

(uy), we conclude that rk([v],ui2,uy3]) = min{m’ +
272, m+m'} = min{m’ 4+ 2v9, m + m/, d}.
Therefore, Ci,i € [6] holds asymptotically almost surely.
We conclude that E,, holds asymptotically almost surely. The
proof is completed by evaluating (15) of [38] with conditions
C1 to C6 to get A} for the symmetric GLCBC with K < 3.

APPENDIX IV
PROOF OF LEMMA 1

It d >y +p let Z € PPN Then P =

det([M’, M, Z]) is a non-zero polynomial in the elements of
M and Z. To see this, let [M, Z] = 1?*¢|M’, which will then
yield that det([M’, M, Z]) # 0 since ([M’, (1| M")]) =
(I1?%4) By Schwartz-Zippel Lemma, if the elements of M and
degree of P

Z are chosen i.i.d uniform, Pr(P #0) > 1 — — >
1 - -4 — 1asn — oo, which implies that the probability
that [M’, M] has full rank p' + p goes to 1 as n — oo.
If d < u' 4 p, denote by M; the first d — p/ columns of
M. Tt suffices to show that tk([M’, M;]) = d. Note that
P = det([M’, M;]) is a non-zero polynomial in the elements
of My, and thus M. To see this, let M; = I?¥¢|M’, which
will then similarly yield that det([M’, M;]) # 0. By Schwartz-
Zippel Lemma, if the elements of M, are chosen i.i.d uniform,

Pr(P;éO)zl—ngriﬁzl—%elasnaoo,

which implies that rk([M’, M;]) = d as desired. O
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