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Abstract— Linear computation broadcast (LCBC) refers to a
setting with d dimensional data stored at a central server, where
K users, each with some prior linear side-information, wish
to compute various linear combinations of the data. For each
computation instance, the data is represented as a d-dimensional
vector with elements in a finite field Fpn where pn is a power of
a prime. The computation is to be performed many times, and
the goal is to determine the minimum amount of information
per computation instance that must be broadcast to satisfy all
the users. The reciprocal of the optimal broadcast cost per
computation instance is the capacity of LCBC. The capacity is
known for up to K = 3 users. Since LCBC includes index
coding as a special case, large K settings of LCBC are at least
as hard as the index coding problem. As such the general LCBC
problem is beyond our reach and we do not pursue it. Instead of
the general setting (all cases), by focusing on the generic setting
(almost all cases) this work shows that the generic capacity of
the symmetric LCBC (where every user has m′ dimensions
of side-information and m dimensions of demand) for large
number of users (K ≥ d suffices) is Cg = 1/∆g , where

∆g = min

{

max{0, d − m′}, dm

m+m′

}

, is the broadcast cost

that is both achievable and unbeatable asymptotically almost
surely for large n, among all LCBC instances with the given
parameters p,K, d,m,m′. Relative to baseline schemes of
random coding or separate transmissions, Cg shows an extremal
gain by a factor of K as a function of number of users, and by a
factor of ≈ d/4 as a function of data dimensions, when optimized
over remaining parameters. For arbitrary number of users, the
generic capacity of the symmetric LCBC is characterized within
a factor of 2.

Index Terms— Computation broadcast, generic capacity.

I. INTRODUCTION

R
ECENT observations of ‘megatrends’ in the commu-

nication industry indicate that the number of devices

connected to the internet is expected to cross 500 billion,

approaching 60 times the estimated human population over
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the next decade [1]. With machines set to become the

dominant users of future communication networks, along

with accompanying developments in artificial intelligence

and virtual/augmented/mixed reality applications, a major

paradigm shift is on the horizon where communication

networks increasingly take on a new role, as computation

networks. The changing paradigm brings with it numerous

challenges and opportunities.

One of the distinguishing features of computation net-

works is their algorithmic nature, which creates predictable

dependencies and side-information structures. To what extent

can such structures be exploited for gains in communication

efficiency? Answering this question requires an understanding

of the capacity of computation networks.

The study of the capacity of computation networks has

a rich history in information theory, spanning a variety of

ideas and directions that include zero error capacity and

confusability graphs [2], graph entropy [3], [4], conditional

graph entropy [5], multiterminal source coding [6], encoding

of correlated sources [7], [8], [9], [10], sum-networks [11],

[12], [13], computation over acyclic directed networks [14],

[15], compute-and-forward [16], federated learning [17],

private computation [18], [19], coded computing [20], [21],

[22], [23], and distributed matrix multiplication [24], [25],

[26], [27], to name a few. However, due to the enormous

scope, hardness, and inherent combinatorial complexity of

such problems, a cohesive foundation is yet to emerge.

Following the ground-up approach of classical network

information theory which focuses on elemental scenarios, and

taking cues from systems theory that builds on an elegant

foundation of linear systems, it is conceivable that a cohesive

foundation could emerge from the study of the building blocks

of linear computation networks. Linear computation networks

are characterized by the presence of side-information and

demands that are linear functions of the data. Linear side

information and dependencies are quite valuable as theoretical

abstractions because in principle they allow the study of a

complex linear computation network by breaking it down into

tractable components, while retaining some of the critical

relationships between the components in the form of side-

information. For example, multi-round/multi-hop linear com-

putation networks may be optimized one-round/hop at a time,

by accounting for the information from other rounds/hops as

side-information.

As a fundamental building block, the linear computation

broadcast (LCBC) problem is introduced in [28]. LCBC refers
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Fig. 1. LCBC
(

Fq ,v[K],v
′

[K]

)

with batch-size L. q = pn is a power of a

prime. The coefficient matrices vk ∈ F
d×mk
q , v′

k
∈ F

d×m′

k
q for all k ∈ [K]

specify the desired computations and side-informations, respectively.

to the setting illustrated in Figure 1, where K users, each

with some prior side-information (w′
k = x

T
v
′
k) comprised

of various linear combinations of d-dimensional data (x) over

a finite field (Fq = Fpn ), wish to retrieve other individually

specialized linear combinations (wk = x
T
vk) of the data,

with the help of a central server that has all the data. The

goal is to determine the minimum amount of information

that the central server must broadcast in order to satisfy

all the users’ computational demands. In addition to its

significance as an elemental building block of computational

networks, the LCBC setting is remarkably powerful by itself,

e.g., it includes index coding [29], [30], [31] as a special

case, and generalizes linear coded caching [32], [33], [34] to

allow arbitrary cached information and demands. The one-

to-many topology represented by LCBC arises naturally in

any context where distributed nodes coordinate with each

other [35], [36] with the help of a master node. Such scenarios

may be pervasive in the future as interactive networked VR

environments [37] become commonplace.

The capacity of LCBC is characterized for K = 2 users

in [28]. More recently, in [38] the capacity is fully

characterized for the K = 3 user LCBC. In addition to

such efforts that are aimed at small number of users, it is

also important to develop insights into the fundamental limits

of larger LCBC networks. However, any such attempt runs

into immediate obstacles. In addition to the combinatorial

complexity of large networks, the LCBC — because it includes

index coding as a special case — is at least as hard as the index

coding problem in general. The difficulty of the index coding

problem is well recognized [31], [39], [40], [41], [42]. How to

overcome this obstacle, is the central question that motivates

our work in this paper.

A key idea that makes this work possible is the distinction

between the general LCBC problem — which includes all

instances, and the generic LCBC problem — which includes

almost all instances. We focus on the latter. While the general

LCBC problem is necessarily at least as hard as the general

index coding problem, the generic LCBC problem may still

be tractable. Such observations are common in many fields,

for example computational complexity theory posits that for

many computation problems, the difficult cases are rare and

most (generic) instances are much easier, thereby motivating

the sub-field of generic-case complexity [43], [44]. Drawing

parallels to the degrees of freedom (DoF) studies of wireless

interference networks, there also the general problem remains

open — for arbitrary channel realizations the DoF are not

known for even the 3-user interference channel. However, the

generic problem is settled for the K-user (any K) interference

channel; we know the DoF for almost all realizations [45],

[46], [47]. For general MIMO interference channels, even

maximizing linearly achievable DoF is shown to be NP-

hard [48], yet it is tractable in the generic sense [49], [50].

Similarly, while the index coding problem is hard, index

coding instances represent a negligible fraction of all possible

instances of LCBC. Thus, there remains hope that a foundation

for a cohesive theory of linear computation networks may yet

be built by studying the generic capacity of its building blocks.
With some oversimplification for the sake of intuition,

consider the following toy example. We have a K = 4 user
setting, say over F7, with d = 4 dimensional data represented
by x = (A,B,C,D)T . The users each have 1-dimensional
side-information and demands,

w
′

1 = A + B + C + D, w1 = A + 2B + 3C + 4D, (1)

w
′

2 = A + 3B + 2C + 5D, w2 = 2A + B + 4C + 6D, (2)

w
′

3 = 5A + 4B + C + 3D, w3 = 6A + 3B + 4C + D, (3)

w
′

4 = 4A + B + 5C + 6D, w4 = 5A + 2B + 6C + 3D. (4)

If we had only the first 2 users to consider, the broadcast

cost of 2 would be trivially achieved, e.g., by broadcasting

w1,w2 which satisfies both users. If we had only the first

3 users, the solution is less trivial, but we still find (see

Section IV-C) that broadcasting (S1,S2) = (2A + 6B +
3C, 4A + 4B + C + D) incurs a cost of 2, while satisfying

all 3 users’ demands – it is easy to verify that User 1 recovers

w1 = 2S1−3w′
1, User 2 recovers w2 = 5S2−4w′

2, and User

3 recovers w3 = S1 +S2, all operations in F7, represented as

integers modulo 7. However, as the number of users increases,

the problem becomes much more challenging. It is far from

obvious that a broadcast cost of 2 could still suffice to satisfy

all 4 users listed above, and highly counter-intuitive that the

optimal broadcast cost may still be only 2 for large number of

users, e.g., K = 100 users. This surprising conclusion follows

from the results found in this work, with the important caveat

that the results are shown to be true only asymptotically almost

surely for large n. In other words, for this example, suppose

we have the 4 dimensional data (A,B,C,D) over Fq, q = pn

for any arbitrary prime p, and a large number (say K = 100) of

users, and the coefficients of the users’ 1-dimensional demands

and side-informations are chosen uniformly randomly from

Fpn , each choice representing a particular instance of this

LCBC. Then we prove that as n → ∞, almost all instances

have optimal broadcast cost 2 (in q-ary units). The larger the

number of users K, the larger n may need to be for the

convergence to take effect, but the optimal broadcast cost must

ultimately converge in probability to 2 q-ary symbols.

The main result of this work is the characterization of the

generic capacity, Cg(p, K, d, m, m′) = 1/∆g , where ∆g =

min
{

max{0, d − m′}, dm
m+m′

}

, for a K user LCBC with d

dimensional data over Fpn , in the symmetric setting where

every user has m dimensional demands and m′ dimensional

side-information, for large enough number of users (K ≥ d
suffices) and large n. Informally, ∆g represents a broadcast
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cost that is both achievable, and unbeatable, asymptotically

almost surely for large n, among the class of all LCBC

problems with fixed parameters K, p, d, m, m′. Setting aside

the trivial regimes d ≤ m+m′ where random coding is optimal

(∆g = max{0, d−m′}), and d ≥ K(m+m′) where separate

transmissions for each user are optimal (∆g = Km), in the

remaining non-trivial regime where m+m′ < d < K(m+m′),
we have ∆g = dm/(m + m′). Note that this depends only

on d, m,m′, i.e., the dimensions of the data, demands, and

side-information. In particular, our generic capacity results do

not depend on the characteristic p of the finite field, and in

the non-trivial regime with sufficiently large number of users,

the generic capacity also does not depend on the number of

users K. The converse proofs are information theoretic and

make use of functional submodularity [38], [51], [52]. The

achievability arguments build upon the idea of asymptotic

interference alignment [45], both by adapting it from the

K user wireless interference channel to the K user LCBC

context, and by a non-trivial strengthening of the original

scheme involving an additional symbol-extension overhead

that is needed to harness sufficient diversity in the finite field

setting. The generic capacity characterization reveals that the

capacity can be significantly higher than what is achievable

with the baseline schemes of random coding and/or separate

transmissions. For example, the extremal gain [53] of generic

capacity over baseline schemes, as a function of the number of

users (maximized over the remaining parameters) is K, and

the extremal gain as a function of the data dimension d is

≈ d/4 (Observation 3 in Section IV-D). As an immediate

corollary of the main result, the generic capacity of the

symmetric LCBC is characterized within a factor of 2 for

any number of users K (Observation 1). Notably, an exact

characterization is found (Theorem 3) for any number of users

if the side-information and demands are one-dimensional.

Some extensions to asymmetric settings are obtained as well.

II. NOTATION

A. Miscellaneous

The notation [a : b] represents the set of integers {a, a +
1, . . . , b} if b ≥ a and ∅ otherwise. The compact notation [K]
is equivalent to [1 : K]. For a set of indices S, the notation

AS represents {As, s ∈ S}, e.g., A[K] = {A1, A2 · · · , AK}.

|S| denotes the cardinality of a set S. Fq = Fpn is a finite

field with q = pn a power of a prime. The elements of the

prime field Fp are represented as Z/pZ, i.e., integers modulo

p. The notation F
n1×n2
q represents the set of n1 ×n2 matrices

with elements in Fq. Fq is a sub-field of Fqz , and Fqz is

an extension field of Fq for z > 1. N = {1, 2, · · · } is

the set of natural numbers. The greatest common divisor of

a, b is denoted gcd(a, b). (x)+ ≜ max{0, x}. Pr(E) stands

for the probability of the event E. Given an event En that

depends on an integer parameter n, we say that Event En holds

asymptotically almost surely (a.a.s.) if limn→∞ Pr(En) =
1. Throughout this work when we use a.a.s., the quantity

approaching infinity will be denoted by n. For variables a, b
that depend on an integer n, we use the notation a

a.a.s.

= b to

represent the statement, limn→∞ Pr(a = b) = 1. Similarly,

a
a.a.s.

≥ b represents limn→∞ Pr(a ≥ b) = 1; a
a.a.s.

≤ b represents

limn→∞ Pr(a ≤ b) = 1; a
a.a.s.

< b represents limn→∞ Pr(a <

b) = 1, and a
a.a.s.

> b represents limn→∞ Pr(a > b) = 1.

B. Matrix Operations

By default we will consider matrices in a finite field Fq.

For two matrices M1, M2 with the same number of rows,

[M1, M2] represents a concatenated matrix which can be

partitioned column-wise into M1 and M2. M[i] denotes the i-
th column of M . The notation M[a:b] stands for the sub-matrix

[M[a], M[a+1], . . . ,M[b]] if b ≥ a, and [ ] otherwise. The rank

of M ∈ F
m×n
q is denoted by rk(M), and we say that M has

full rank if and only if rk(M) = min{m, n}. ⟨M⟩q denotes

the Fq-linear vector space spanned by the columns of M . The

subscript q will typically be suppressed as it is clear from the

context. If M has full column rank, then we say that M forms

a basis for ⟨M⟩. The notation M1 ∩ M2 represents a matrix

whose columns form a basis of ⟨M1⟩ ∩ ⟨M2⟩. In addition,

0
a×b represents the a × b zero matrix. I

a×a represents the

a × a identity matrix.

C. Conditional Matrix Notation: (M1|M2)

Say M1 ∈ F
d×µ1
q and M2 ∈ F

d×µ2
q . By Steinitz Exchange

Lemma, there exists a sub-matrix of M1 with full column rank,

denoted by (M1|M2), that is comprised of rk(M1)− rk(M1 ∩
M2) columns of M1 such that [M1 ∩ M2, (M1|M2)] forms a

basis for ⟨M1⟩. We have,

rk(M1|M2) = rk(M1) − rk(M1 ∩ M2)

= rk([M1, M2]) − rk(M2) (5)

where we made the use of the fact that rk([M1, M2]) =
rk(M1) + rk(M2) − rk(M1 ∩ M2).

III. PROBLEM FORMULATION: LINEAR COMPUTATION

BROADCAST

A. LCBC
(
Fq,v[K],v

′
[K]

)

An LCBC problem is specified by its parameters as

LCBC
(
Fq,v[K],v

′
[K]

)
, where Fq is a finite field with q = pn

a power of a prime, and vk ∈ F
d×mk
q , v

′
k ∈ F

d×m′

k
q , for

all k ∈ [K], are matrices with the same number of rows,

d. The value K represents the number of users, d represents

the data dimension, and mk, m′
k quantify the amounts of

desired computations and side-information corresponding to

User k. The context is as follows. A central server stores

multiple instances of d dimensional data over a finite field

Fq. The ℓth instance of the data vector is denoted as x(ℓ) =
[x1(ℓ), . . . , xd(ℓ)]

T ∈ F
d×1
q , and x = [x(1), . . . ,x(L)] ∈

F
d×L
q collects L ∈ N data instances.1 A broadcast link

connects K distributed users to the central server. The

coefficient matrices v
′
k and vk specify the side-information

and desired computations for the kth user. Specifically, for all

k ∈ [K], User k has side information w
′
k = x

T
v
′
k ∈ F

L×m′

k
q ,

1The parameter L is referred to as the batch size and may be chosen freely
by a coding scheme.
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and wishes to compute wk = x
T
vk ∈ F

L×mk
q . For compact

notation in the sequel it is useful to define,

uk ≜ [v′
k,vk]. (6)

A coding scheme for an LCBC problem is denoted by

a tuple (L,Φ,Ψ[K],S), which specifies a batch size L,

an encoding function Φ : F
L×d
q → S that maps the data to the

broadcast information S over some alphabet S, i.e.,

Φ(x) = S (7)

and decoders, Ψk : S ×F
L×m′

k
q → F

L×mk
q , that allow the kth

user to retrieve wk from the broadcast information S and the

side-information w
′
k for all k ∈ [K], i.e.,

wk = Ψk(S,w′
k) = Ψk(Φ(x),w′

k), ∀k ∈ [K]. (8)

A coding scheme that allows successful decoding for all data

realizations, i.e., satisfies (8) for all x ∈ F
d×L
q , is called an

achievable scheme. Let us define A
(

Fq,v[K],v
′
[K]

)

as the set

of all achievable schemes for LCBC
(

Fq,v[K],v
′
[K]

)

.

The broadcast cost (normalized by L and measured in q-ary

units) for an achievable scheme is defined as ∆ = logq |S|/L.

The optimal broadcast cost ∆∗(
Fq,v[K],v

′
[K]

)
for an LCBC

problem is defined as,

∆∗(
Fq,v[K],v

′
[K]

)
= inf

(L,Φ,Ψ[K],S)∈A
(

Fq,v[K],v
′

[K]

)∆. (9)

The capacity, C∗, of an LCBC problem is the reciprocal of its

optimal broadcast cost,

C∗(
Fq,v[K],v

′
[K]

)
= 1/∆∗(

Fq,v[K],v
′
[K]

)
. (10)

Note that although the side information and demands are

linear functions of the data, the achievable schemes, i.e., the

encoding and decoding operations are not restricted to be

linear.

B. Generic Capacity

Define

Ln

(
p, K, d, m[K], m

′
[K]

)

=







LCBC
(
Fq,v[K],v

′
[K]

)

∣
∣
∣
∣
∣
∣
∣
∣

q = pn

vk ∈ F
d×mk
q

v
′
k ∈ F

d×m′

k
q

∀k ∈ [K]







, (11)

or Ln in short, as the set of all LCBC instances with the

‘dimensional’ parameters p, n, K, m[K], m′
[K]. Let Λn be a

uniformly randomly chosen instance from Ln, and ∆∗(Λn) be

the optimal download cost of Λn. In order to define generic

capacity, let us fix the parameters (p, K, d, m[K], m
′
[K]) and

allow n to approach infinity.

The generic optimal broadcast cost ∆g , if exists, is defined

as the value that ∆∗(Λn) converges to in probability, i.e.,

lim
n→∞

Pr

(∣
∣∆∗(Λn) − ∆g

∣
∣ < ε

)

= 1, ∀ε > 0. (12)

The generic capacity is then defined as the reciprocal, i.e.,

Cg = 1/∆g. (13)

Since ∆g, Cg may not always exist, we further define the

following upper and lower extremal metrics, which always

exist and help in the analysis of generic capacity. We say

that ∆ is achievable asymptotically almost surely (a.a.s) (cf.

Definition 1.1.2(v) [54]) if,

lim
n→∞

Pr

(

∆∗(Λn) ≤ ∆
)

= 1, (14)

which is expressed compactly as ∆∗(Λn)
a.a.s.

≤ ∆. Define the

smallest such ∆ as ∆∗
u

(

p, K, d, m[K], m
′
[K]

)

, or ∆∗
u in short,

i.e.,

∆∗
u ≜ inf

{

∆ : ∆∗(Λn)
a.a.s.

≤ ∆
}

. (15)

Similarly, define ∆∗
l as,

∆∗
l ≜ sup

{

∆ : ∆∗(Λn)
a.a.s.

> ∆
}

. (16)

Thus, ∆∗
u is the infimum of broadcast costs that are achievable

a.a.s. (tightest upper bound), and ∆∗
l is the supremum of

broadcast costs that are not achievable a.a.s. (tightest lower

bound). By definition, ∆∗
u ≥ ∆∗

l . If2 ∆∗
u = ∆∗

l , then they are

equal to the generic optimal broadcast cost ∆g , i.e.,

∆g = ∆∗
u = ∆∗

l (17)

and Cg = 1/∆g exists. If ∆∗
u ̸= ∆∗

l , then ∆g, Cg do not exist.

Remark 1: It is worth noting that the definition of ‘generic

capacity’ connects to the notion of generic subsets in the

literature on generic case complexity [55]. To briefly point out

this connection, following along the lines of Definition 3.1 and

Lemma 3.2 of [55], we may define a generic subset as follows:

Let I be a set of inputs with size3 function σ. Define Ir, the

sphere of radius r, by Ir = {w | w ∈ I, σ(w) = r}, the set of

inputs of size r. A subset R ⊂ I is said to have asymptotic

density α, written ρ′(R) = α, if limr→∞ |R ∩ Ir|/|Ir| = α
where |X| denotes the size of a set X . If R has asymptotic

density 1, it is called generic; and if it has asymptotic density

0, it is negligible. Now, for our problem, the set I = ∪n∈NLn

is the set of all LCBC instances for fixed p, K,m[K], m
′
[K].

The size function σ = n, and the sphere In = Ln. Let

Ru(∆) = {L ∈ I | ∆ ≥ ∆∗(L)} be the subset of LCBC

instances for which the broadcast cost ∆ is achievable. Then

∆∗
u is the infimum of the values of ∆ for which Ru(∆) is

generic. Similarly, ∆∗
l is the supremum of the values of ∆

for which Rl(∆) = {L ∈ I | ∆ < ∆∗(L)} is generic.

In plain words, ∆∗
u is the infimum of broadcast costs that

are generically achievable, while ∆∗
l is the supremum of

broadcast costs that are generically not achievable. When they

match, we have the generic optimal broadcast cost, and as its

reciprocal notion, the generic capacity.

2Note that the definition does not automatically preclude strict inequality,
e.g., as a thought experiment suppose one half of all instances have ∆∗ =
1 and the other half have ∆∗ = 2, then ∆∗

u = 2 and ∆∗

l
= 1.

3A size function for a set I is a map σ : I → N, the nonnegative integers,
such that the preimage of each integer is finite (Definition 2.4 of [55]).
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IV. RESULTS: GENERIC CAPACITY

In this work we mainly focus on the symmetric LCBC,

where we have,

m1 = m2 = . . . = mK = m,

m′
1 = m′

2 = . . . = m′
K = m′. (18)

Note that the generic capacity (if it exists) can only be

a function of (p, K, d, m, m′), since these are the only

parameters left.

A. K = 1, 2, 3 Users

While we are interested primarily in LCBC settings with

large number of users (large K), it is instructive to start with

the generic capacity characterizations for K = 1, 2, 3 users.

Recall that the LCBC problem is already fully solved for K =
2 in [28] and K = 3 in [38]. Therefore, the following theorem

essentially follows from [28] and [38]. The K = 1 case is

trivial and is included for the sake of completeness.

Theorem 1: The generic capacity Cg = 1/∆g for the

symmetric LCBC with K = 1, 2, 3 users is characterized as

follows.

K = 1 user:

∆g =







0, d ≤ m′;

d − m′, m′ ≤ d ≤ m + m′;

m, m + m′ ≤ d.

(19)

K = 2 users:

∆g =







0, d ≤ m′;

d − m′, m′ ≤ d ≤ m + m′;

m, m + m′ ≤ d ≤ m + 2m′;

d − 2m′, m + 2m′ ≤ d ≤ 2(m + m′);

2m, 2(m + m′) ≤ d.

(20)

K = 3 users:

∆g =







0, d ≤ m′;

d − m′, m′ ≤ d ≤ m′ + m;

m, m′ + m ≤ d ≤ m + 1.5m′;

d − 1.5m′, m + 1.5m′ ≤ d ≤ 1.5(m + m′);

1.5m, 1.5(m + m′) ≤ d ≤ 1.5m + 2m′;

d − 2m′, 1.5m + 2m′ ≤ d ≤ 2(m + m′);

2m, 2(m′ + m) ≤ d ≤ 2m + 3m′;

d − 3m′, 2m + 3m′ ≤ d ≤ 3(m + m′);

3m, 3(m + m′) ≤ d.

(21)

The proof of Theorem 1 is relegated to Appendix III. The

task left for the proof is to correctly account for the generic

cases (non-trivial for K = 3), after which the capacity results

from [28] and [38] can be directly applied.

B. Large K

The main result of this work appears in the following

theorem.

Theorem 2: For the symmetric LCBC with the number of

users satisfying

K ≥ d/gcd(d, m + m′), (22)

the generic capacity Cg = 1/∆g is characterized as follows,

∆g =







0, d ≤ m′;

d − m′, m′ ≤ d ≤ m + m′;

dm/(m + m′), m + m′ < d ≤ K(m + m′).

(23)

The proof of converse for Theorem 2 appears in Section VI

while the achievability is proved in Appendix I. The main

technical challenge is to show the achievability of dm/(m +
m′) + ε,∀ε > 0 in the non-trivial regime, m + m′ < d ≤
K(m + m′). Remarkably, in this regime we are able to

show that ∀ε > 0, a broadcast cost of dm/(m + m′) + ε
is achievable a.a.s., regardless of the number of users K,

based on an asymptotic interference alignment (IA) scheme.

Examples to illustrate the asymptotic IA construction are

provided in Section V. The condition (22) on the number

of users in Theorem 2 is needed for our converse bound in

Section VI to match the achievability.

Next, let us briefly address arbitrary number of users

and asymmetric settings through the following corollary of

Theorem 2.

Corollary 1: For the (not necessarily symmetric) LCBC

with arbitrary number of users,

∆∗
l ≥ max

K⊂[K]
min

{

d −
∑

k∈K
m′

k,
∑

k∈K
mk

}

, (24)

∆∗
u ≤ min







mmaxd

mmax + m′
min

, (d − m′
min)+,

∑

k∈[K]

mk






,

(25)

where mmax ≜ maxk∈[K] mk, and m′
min ≜ mink∈[K] m

′
k.

Proof: (24) follows from a simple cooperation bound.

Consider any LCBC instance Λn ∈ Ln. For any subset

K ⊂ [K] let the users in K fully cooperate as one user,

and eliminate all other users [K] \ K, to obtain a single user

LCBC instance Λn,K with optimal broadcast cost ∆∗(Λn,K) ≤
∆∗(Λn). The combined user has demand coefficient matrix

vK ≜
[
vk, k ∈ K

]
with d rows and mK ≜

∑

k∈K mk

columns, and the side-information coefficient matrix v
′
K ≜

[
v
′
k, k ∈ K

]
with d rows and m′

K ≜
∑

k∈K m′
k columns.

From Theorem 1, based on the generic capacity for the single

user case, we immediately obtain (24). For (25) note that

∆∗(Λn) ≤∑k∈[K] mk because serving the users separately is

always an option. ∆∗(Λn) ≤ (d−m′
min)+ also holds because

broadcasting (d − m′
min) generic linear combinations (over a

sufficiently large field extension) of the data allows each user

a total number of generic equations (d − m′
min)+ + m′

k ≥ d,

which suffices for each user to recover all d data dimensions.

Finally, it is always possible to mimic a symmetric setting by

adding superfluous demands and discarding some of the side-

information at each user until every user has m′
min generic

linear combinations of side-information and mmax generic

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 07,2024 at 19:26:12 UTC from IEEE Xplore.  Restrictions apply. 



3698 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

linear combinations of demand. Note that if d ≤ mmax+m′
min

then mmaxd
mmax+m′

min
> (d − m′

min)+, and if d > K(mmax +

m′
min), then mmaxd

mmax+m′

min
>
∑

k∈[K] mk. The only remaining

case is mmax + m′
min < d ≤ K(mmax + m′

min), in which

case the achievability of mmaxd
mmax+m′

min
is shown in the proof of

Theorem 2. □

C. One Dimensional Case: m = m′ = 1

In the special case where the side-information and demands

are one-dimensional, the generic capacity is characterized for

any number of users, as follows.

Theorem 3: For LCBC with m = m′ = 1, the generic

capacity Cg = 1/∆g is characterized as follows.

1) For even d,

∆g =

{

d/2, 2 ≤ d ≤ 2K;

K, d ≥ 2K.
(26)

2) For odd d,

∆g =







0, d = 1;

d/2, 3 ≤ d < 2K − 1;

K − 1, d = 2K − 1;

K, d > 2K − 1.

(27)

The result for even d follows directly from Theorem 2

and Corollary 1. Specifically, note that for even d we have

d/gcd(d, 2) = d/2, and thus (23) finds the generic capacity

for even d when K ≥ d/2. Meanwhile, letting K = [K]
in (24), together with (25) proves the capacity for K ≤ d/2.

For cases with odd d, (24) and (25) provide the capacity

for d = 1 and d > 2K − 1 (equivalently, d ≥ 2K).

For the remaining 2 regimes, (25) shows achievability for

1 ≤ d < 2K−1. (24) provides the converse for d = 2K−1 by

specifying K = [1 : (d−1)/2], since min{d− (d−1)/2, (d−
1)/2} = (d − 1)/2 = K − 1. To complete the proof of

Theorem 3, it remains to show the converse for 3 ≤ d <
2K − 1, and the achievability for d = 2K − 1. These proofs

are provided in Section VII.

D. Observations

1) The following observations follow directly by specializ-

ing Corollary 1 to the symmetric LCBC with arbitrary

number of users K.

d ≤ m′ =⇒ ∆g = 0; (28)

m′ ≤ d ≤ m + m′ =⇒ ∆g = d − m′; (29)

1 <
d

m + m′ ≤ K =⇒ if ∆g exists, then

max

{

d − m′
⌈

d

(m + m′)

⌉

, m

⌊
d

m + m′

⌋}

≤ ∆g ≤ md

(m + m′)
; (30)

K(m + m′) ≤ d =⇒ ∆g = Km. (31)

Regarding (30), where ∆g is not fully established, note

that in this regime, if (m + m′) divides d, then ∆g =
md/(m + m′) is settled. On the other hand, if (m + m′)

does not divide d, and if ∆g exists, then we have its value

within a multiplicative factor of 2 because in this regime,

md/(m + m′)

m⌊d/(m + m′)⌋ =
d/(m + m′)

⌊d/(m + m′)⌋ ≤ 2. (32)

Thus, the generic capacity of the symmetric LCBC is

characterized within a factor of 2 when it exists, for

arbitrary number of users K.

2) Theorem 2 and Corollary 1 lead to sharp generic capacity

results for various asymmetric cases as well. For example,

from Corollary 1 we find that for any number of users,

if m′
k ≤ d ≤ mk + m′

k for all k ∈ [K], then ∆g =
d−mink∈[K] m

′
k. If d ≥∑k∈[K](mk + m′

k) then ∆g =
∑

k∈[K] mk. In Theorem 2 the optimal broadcast cost

∆g = dm/(m + m′) for the non-trivial regime (m +
m′) < d ≤ K(m+m′), remains unchanged if we include

another K ′ users, say Users K + 1, K + 2, · · · , K + K ′,
with asymmetric demands and side-information such that

mk′ ≥ m′ and mk ≤ m for all k′ ∈ [K + 1 : K +
K ′]. The original converse still holds because additional

users cannot help. The original achievability still holds

because the additional users have more side-information

and less demands than original users, so they can pretend

to be like the original users by discarding some of their

side-information and adding superfluous demands. This

creates a symmetric setting with K + K ′ users, but in

this regime ∆g = dm/(m + m′) does not depend on the

number of users.

3) The generic capacity of the symmetric LCBC

Cg(p, K, d, m, m′) can be quite significantly higher

than the best of the rates achievable through the baseline

schemes of random coding (1/(d − m′)) and separate

transmissions (1/(Km)). Gains up to the order of K
and d in the number of users and data dimensions are

observed. To make this precise, consider the extremal

gain [53] of generic capacity over the baseline schemes

as a function of the number of users, K,

ηK ≜ sup
p,d,m,m′

Cg(p, K, d, m, m′)

max
{

1
(d−m′)+ , 1

Km

}

= sup
d,m,m′

m+m′

md

max
{

1
(d−m′)+ , 1

Km

}

= K, (33)

and as a function of the data dimension d,

ηd ≜ sup
p,K,m,m′

Cg(p, K, d, m, m′)

max
{

1
(d−m′)+ , 1

Km

}

= sup
K,m,m′

m+m′

md

max
{

1
(d−m′)+ , 1

Km

}

∈ [d/4, d/4 + 1]. (34)

To see (33) note that it is trivial that ηK ≤ K, whereas

with d = Km + m′ and m = 1, m′ → ∞, we have

ηK ≥ limm′→∞ K(1 + m′)/(K + m′) = K. For (34),

setting m = 1, m′ = ⌊d/2⌋ and K > ⌈d/2⌉, we have
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ηd ≥ (1 + ⌊d/2⌋)(d − ⌊d/2⌋)/d ≥ d/4, whereas we

also have ηd ≤ (1 + m′)(1 − m′/d) ≤ (d + 1)2/(4d) ≤
d/4 + 1. The strong gains are indicative of the crucial

role of interference alignment in the capacity of linear

computation networks, especially when side-information

is abundant.

4) In all cases where the question of existence of generic

capacity is settled, the answer is in the affirmative.

However, it remains unknown whether this is always true,

e.g., for all p, d,K, m, m′, must we have ∆∗
u = ∆∗

l ? We

conjecture that this is indeed the case.

5) In all cases where the generic capacity of the LCBC is

known, it does not depend on the characteristic, p, i.e.,

for a fixed K, the generic optimal broadcast cost can be

expressed as ∆g(d, m,m′). The capacity of the general

LCBC should depend on the characteristic, because there

exist examples of network coding problems where such

dependence has been demonstrated, and there exists an

equivalence between network coding and index coding,

which in turn is a special case of the LCBC. However,

it remains unknown whether the generic capacity of

LCBC could depend on the characteristic p.

6) The functional form of ∆g(d, m,m′) is plotted in

Figure 2 for K = 2, K = 3 and for large K. While

∆g(d, m,m′) characterizations are only defined for non-

negative integer values of d, m,m′, the functional form

is shown as a continuous plot for simplicity. There exist

three slightly different forms of the plot for K = 3,

depending on the relationship between m and m′. The

K = 3 plot shown in Figure 2 assumes m < m′. While

the lengths of the steps for K = 3 are determined by the

relative sizes of m, m′, d, the plot always takes the shape

of a staircase function with alternating horizontal (slope

= 0) and slanted (slope = 1) edges. The slope of the outer

envelope is m/(m′ + m).
7) A remarkable scale-invariance property is evident in

∆g(d, m,m′), in the sense that scaling d, m,m′ by the

same constant results in a scaling of ∆g(d, m,m′) by the

same constant as well. Specifically,

∆g(λd, λm, λm′) = λ∆g(d, m,m′). (35)

This is reminiscent of scale-invariance noted in DoF

studies of wireless networks [56].

8) The initial (where d ≤ m + m′) and final stages (d ≥
K(m + m′)) represent somewhat trivial regimes that are

the same for all K. In the remaining non-trivial regime,

while ∆g for K = 2 and K = 3 takes the shape of a

slanted staircase function, for large number of users we

obtain a smooth ramp function instead. A comparison of

K = 2 with K = 3 suggests that the number of steps

in the staircase increases with K, bringing the staircase

closer to its upper linear envelope (md/(m + m′)), until

K exceeds a threshold, beyond which the stairs disappear

and ∆g is equal to that linear envelope.

9) In the non-trivial regime 1 < d/(m + m′) < K for

large K (e.g., K ≥ d) it is remarkable that ∆g does

not depend on K. In other words, once the number of

users exceeds a threshold (e.g., K ≥ d), additional users

do not add to the generic broadcast cost of the LCBC.

The achievable scheme in this parameter regime relies

on linear asymptotic interference alignment (IA) [45]

over a sub-field of Fq, and while ∆g remains unaffected

by additional users, the cost of additional users may be

reflected in the need for larger n values to approach the

same broadcast cost, as the number of users increases.

As usual with asymptotic IA schemes, the achievable

scheme is far from practical, and serves primarily to

establish the fundamental limit of an asymptotic metric,

in this case ∆g . What is possible with practical schemes,

e.g., with limited n and other coding-theoretic complexity

constraints, remains an important open problem.

10) The generic capacity explored in this work is for LCBC

instances over Fpn where we allow large n but p
is arbitrary. This formulation is appealing because the

large n limit allows Fpn to be interpreted as high

dimensional vector subspaces over subfields of Fpn , e.g.,

Fp. This facilitates linear vector coding schemes, allows

dimensional analysis from vector space perspectives, and

leads to new insights from linear interference alignment

schemes, that may be broadly applicable. The alternative,

where p is allowed to be large but n is arbitrary

(especially n = 1) remains unexplored. By analogy

with wireless DoF studies, the latter is somewhat

reminiscent of algebraic interference alignment schemes

based on rational dimensions [46], i.e., non-linear IA

schemes.

11) Linear asymptotic IA has been used previously for

network coding problems, e.g., distributed storage exact

repair [57], and K user multiple unicast [58], under

the assumption of large ‘q’. Note that since q = pn,

a large-q assumption is more general than a large-

n assumption, e.g., large-q also allows n = 1 with

large p. So at first sight it may seem that our IA

schemes that require large-n are weaker than conventional

asymptotic IA schemes that only require large-q. This

interpretation however misses a crucial aspect of our

construction, which is somewhat subtle but technically

quite significant. Conventional (large-q) constructions of

asymptotic IA schemes rely on a diagonal structure

of underlying linear transformations (matrices), based

on symbol extensions (batch processing), and most

importantly require these diagonal matrices to have

sufficient diversity, which is possible with time-varying

coefficients [45]. In fact, such constructions are also

possible for LCBC if we allow time-varying demands

and side-information, e.g., new coefficient matrices are

drawn i.i.d. uniform for each ℓ ∈ [L]. However, for

the LCBC with fixed demands and side-information, i.e.,

fixed coefficient matrices vk,v′
k, symbol extensions only

give rise to diagonal matrices that are scaled versions of

the identity matrix (consider large p and n = 1), i.e., they

lack the diversity that is needed for linear asymptotic IA

schemes. Our construction works with fixed coefficient

matrices, consistent with the original LCBC definition.

In this regard, a key technical contribution of this work

is to show that the large-n assumption allows sufficient
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Fig. 2. Functional form of ∆g . The large K setting listed as K ≥ d for brevity, also allows more general K as in (22).

diversity for linear asymptotic IA. For this we modify

the conventional asymptotic IA construction to include

an additional overhead (see Remark 2 in Section V-A),

and then show that while this overhead has a negligible

impact on ∆g , it gives us sufficient diversity a.a.s.

V. EXAMPLES

In this section let us present two examples to convey the

main ideas of our asymptotic IA constructions, with somewhat

simplified notation. The complete achievability proof for

Theorem 2 appears later, in Appendix I. The first example that

is presented in Section V-A is perhaps the smallest example

where asymptotic alignment is needed. However, the proof

in this limited case hides too many of the details that are

needed in the general case, so we provide a larger example

in the following subsection which may be more useful in

understanding the general proof.

A. Example 1: (p, K, d = 4, m = 1, m′ = 1)

Let L = 1. For q = pn, we will interpret Fq as an n-

dimensional vector space over Fp, and design a linear scheme

over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are

chosen from Fq = Fpn .

2) The data x
T = [x1, x2, x3, x4] ∈ F

1×4
q , is equivalently

represented over Fp as X
T = [XT

1 , XT
2 , XT

3 , XT
4 ]

∈ F
1×4n
p , where Xi ∈ F

n×1
p is the n × 1 vector

representation of xi over Fp.

3) User k has side information x
T
v
′
k ∈ Fq and wishes

to compute x
T
vk ∈ Fq, where the elements of

(v′
k)T = [v′k1, v

′
k2, v

′
k3, v

′
k4], v

T
k = [vk1, vk2, vk3, vk4],

are drawn i.i.d. uniform in Fq. Equivalently, over

Fp, User k has side information X
T
V

′
k ∈ F

1×n
p

and wishes to compute X
T
Vk ∈ F

1×n
p , where

(V′
k)T =

[
(V ′

k1)
T , (V ′

k2)
T , (V ′

k3)
T , (V ′

k4)
T
]

∈ F
n×4n
p ,

(Vk)T =
[
(Vk1)

T , (Vk2)
T , (Vk3)

T , (Vk4)
T
]

∈ F
n×4n
p

and V
′
ki,Vki are the n× n matrix representations in Fp

of v′ki and vki, respectively.

4) Let r be uniformly randomly chosen in Fq, and denote

by R ∈ F
n×n
p the matrix representation of r in Fp.

5) Define the set of variables,

V ≜

{

vki : k ∈ [K], i ∈ [4]
}

∪
{

v′ki : k ∈ [K], i ∈ [4]
}

∪
{

r
}

, (36)

and note that |V| = 8K + 1.

Our goal is to show that ∆∗
u ≤ dm/(m + m′) = 2. For all

k ∈ [K] and for all i ∈ [4], let us define tki ∈ Fq as,

tki ≜ v′ki − vkir, (37)

so that we have






v′k1

v′k2

v′k3

v′k4







=







vk1

vk2

vk3

vk4







r +







tk1

tk2

tk3

tk4







. (38)

Let Tki ∈ F
n×n
p denote the n×n matrix representation of tki

in Fp, so that we have in Fp,







V ′
k1

V ′
k2

V ′
k3

V ′
k4







︸ ︷︷ ︸

V′

k
∈F

4n×n
p

=







Vk1

Vk2

Vk3

Vk4







︸ ︷︷ ︸

Vk∈F
4n×n
p

R +







Tk1

Tk2

Tk3

Tk4







︸ ︷︷ ︸

Tk∈F
4n×n
p

, (39)

and Tk is defined as in (39).

Next let us construct a matrix, H ∈ F
n×η
p , whose column-

span over Fp is almost invariant under linear transformations

Vki and Tki for all k ∈ [K], i ∈ [4], i.e., ⟨VkiH⟩p ≈ ⟨H⟩p and

⟨TkiH⟩p ≈ ⟨H⟩p. In addition, we want η/n ≈ 1/2, so that the

columns of H span approximately half of the n-dimensional

vector space. For this, we invoke the asymptotic IA scheme

of [45].

For a natural number N whose value (as a function of n)

will be specified later, let us start first by constructing the

vector h ∈ F
1×η
q as follows,

h =

[
K∏

k=1

4∏

i=1

vαki

ki tβki

ki , s.t. 0 ≤ αki, βki ≤ N − 1

]

(40)

≜ (h1, h2, . . . , hη), (41)
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and similarly define h ∈ F
1×η
q as follows,

h =

[
K∏

k=1

4∏

i=1

vαki

ki tβki

ki , s.t. 0 ≤ αki, βki ≤ N

]

(42)

≜ (h1, h2, . . . , hη). (43)

Note that we have,

η = N8K , η = (N + 1)8K . (44)

This construction ensures that the elements of vkih and tkih

are contained among the elements of h for all k ∈ [K], i ∈ [4].
Now let H1, H2, . . . ,Hη ∈ F

n×n
p be the matrix representations

in Fp of h1, h2, . . . , hη ∈ Fq, and H1, H2, . . . ,Hη ∈ F
n×n
p

be the matrix representations in Fp of h1, h2, . . . , hη ∈ Fq.

Define,

H =
[
H11, H21, . . . ,Hη1

]
∈ F

n×η
p , (45)

and

H =
[
H11, H21, . . . ,Hη1

]
∈ F

n×η
p , (46)

where 1 denotes the n× 1 vector of 1’s. By construction, the

columns of VkiH and TkiH are subsets of the columns of H,

which implies that ∀k ∈ [K], i ∈ [4],

⟨VkiH⟩p ⊂ ⟨H⟩p, ⟨TkiH⟩p ⊂ ⟨H⟩p. (47)

Consider the matrix [H, RH] ∈ F
n×2η
p , and define the event

En as,

En ≜

(

rk([H, RH]) = 2η
)

. (48)

The next steps, (49)-(64) show that En holds a.a.s., which will

subsequently be essential to guarantee successful decoding by

each user.
[H, RH] ∈ F

n×2η
p has full column rank if and only if for

all c = [c1, . . . , cη]T , c′ = [c′1, . . . , c
′
η]T ∈ F

η×1
p such that

[
c

T , c
′T
]
̸= 0

1×2η,

0
n×1

̸= [H, RH]

[

c

c
′

]

(49)

=
[

H11, H21, . . . , Hη1, RH11, RH21, . . . , RHη1
]

[

c

c
′

]

(50)

=
(

c1H11 + c2H21 + · · · + cηHη1
)

+
(

c
′

1RH11 + c
′

2RH21 + . . . + c
′

ηRHη1
)

(51)

=
(

c1H1 + c2H2 + . . . + cηHη

+ c
′

1RH1 + c
′

2RH2 + . . . + c
′

ηRHη

)

1 (52)

≜ Fc,c′1 (53)

where Fc,c′ is an n × n matrix in Fp, which has a scalar

representation in Fq as,

fc,c′ = c1h1 + c2h2 + . . . + cηhη
︸ ︷︷ ︸

η

+ c′1rh1 + c′2rh2 + . . . + c′ηrhη
︸ ︷︷ ︸

η

∈ Fq. (54)

Note that since Fp is a sub-field of Fq, the scalars ci, c
′
i in

Fp, are also scalars ci, c
′
i in Fq. Thus, Fc,c′1 ∈ F

n×1
p can be

equivalently represented in Fq as the product of fc,c′ with the

scalar representation in Fq, of 1 (the all 1 vector in Fp). Since

the Fq representation of 1 is not 0, we obtain that

Fc,c′1 ̸= 0
n×1 ⇐⇒ fc,c′ ̸= 0. (55)

Therefore, [H, RH] has full column rank if and only if,

P ≜
∏

[cT ,c′T ]∈F
1×2η
p \{0}

fc,c′ ̸= 0. (56)

To distinguish polynomials from polynomial functions, let us

indicate polynomials with square parentheses around them. For

example, [fc,c′ ] ∈ Fp[V] is a polynomial in the indeterminate

variables V , with coefficients in Fp, and fc,c′(V) : F
|V|
q → Fq

is a function that maps the variables V , which take values

in Fq, to a scalar value in Fq. Similarly, [P ] ∈ Fp[V] is a

polynomial, whereas P (V) : F
|V|
q → Fq is a function. The

condition (56), which is equivalent to the event En, says that

a uniformly random evaluation of the function P (V) produces

a non-zero value. We will show that this is true a.a.s. in n.

First let us show that [fc,c′ ] ∈ Fp[V] is a non-zero

polynomial for all
[
c

T , c
′T
]
∈ F

1×2η
p \ 0. We consider two

cases.

1) Case I: At least one of c1, c2, . . . , cη is not zero. Let us

set r = 0, which implies tki = v′ki by (38). Meanwhile,

h1, h2, . . . , hη are different monomials in the elements of

v′ki and vki due to (40). Since different monomials are

linearly independent, we have that [fc,c′ ] = c1h1+c2h2+
. . . + cηhη is a non-zero polynomial.

2) Case II: c1 = c2 = . . . = cη = 0 and thus at least one

of c′1, c
′
2, . . . , c

′
η ̸= 0. For this case, we have [fc,c′ ] =

r(c′1h1 + c′2h2 + . . . + c′ηhη), which is also a non-zero

polynomial since it is a product of r with a non-zero

polynomial.
Thus, [fc,c′ ] ∈ Fp[V] is a non-zero polynomial. It has degree

not more than 12K(N − 1) + 1. Therefore, [P ] ∈ Fp[V] is

a non-zero polynomial with degree not more than (p2η −
1)[12K(N − 1) + 1]. By Schwartz-Zippel Lemma, when all

the variables V are assigned i.i.d. uniformly chosen values in

Fq,

Pr

(

P (V) ̸= 0
)

≥ 1 − (p2η − 1)[12K(N − 1) + 1]

q
(57)

= 1 − (p2η − 1)[12K(N − 1) + 1]

pn
(58)

≥ 1 − 12K
N

pn−2η
(59)

→ 1 (60)

as n → ∞ if limn→∞
N

p(n−2η) = 0.

Now let us specify the value of N as follows,

N =

⌊(
n −√

n

2

)1/(8K)
⌋

, (61)

from which it follows that,

N ≤
(

n −√
n

2

)1/(8K)

(62)
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and

n − 2η = n − 2N8K ≥ √
n. (63)

Therefore,

lim
n→∞

N

pn−2η
≤ lim

n→∞

(
n−√

n
2

)1/(8K)

p
√

n
= 0 (64)

and since N ≥ 0, we have limn→∞
N

pn−2η = 0. Thus, we have

shown that En holds a.a.s., i.e., [H, RH] ∈ F
n×2η
p has full

column rank 2η, a.a.s.

Now let Z = (In×n|[H, RH]) ∈ F
n×(n−2η)
p , so that

[H, RH,Z] ∈ F
n×n
p has full rank n. Let the server broadcast

S = (S0,S1,S2, · · · ,SK) ∈ F
1×(4η+K(n−2η))
p , such that,

S0 = X
T







H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H







∈ F
1×4η
p (65)

and for all k ∈ [K],

Sk = X
T
VkZ ∈ F

1×(n−2η)
p . (66)

Remark 2: From (63) we note that n ≥ 2η +
√

n. The
√

n
term represents an overhead that is not present in conventional

asymptotic IA constructions. The overhead is evident in

the separate transmissions, of the projections of the desired

information along the columns of Z, for each of the K
users, as in S1,S2, · · · ,SK . Digging deeper, this overhead

is essential for our scheme to ensure that En holds a.a.s.

Note that it is because of this
√

n overhead that we have

limn→∞
N

p(n−2η) = 0 in (60),(64), because in the fraction
N

pn−2η , the numerator is sub-linear in n (roughy n1/8K), while

the denominator is super-polynomial in n, roughly (p
√

n).

Fortunately, the extra broadcast cost of K
√

n due to this

overhead, is negligible compared to n for large n, so it does

not affect the asymptotic achievability.

The decoding process works as follows. User k is able to

compute X
T
V

′
kH directly from its side information X

T
V

′
k.

The user is able to compute X
T
VkH and X

T
TkH from S0,

since,

⟨VkH⟩p =

〈







Vk1H

Vk2H

Vk3H

Vk4H







〉

p

⊂
〈







H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H







〉

p

(67)

and

⟨TkH⟩p =

〈







Tk1H

Tk2H

Tk3H

Tk4H







〉

p

⊂
〈







H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H







〉

p

(68)

due to (47). Thus, User k is able to compute

X
T
VkRH = X

T
V

′
kH − X

T
TkH (69)

according to (39). Together with Sk, User k thus obtains,

[XT
VkH, X

T
VkRH, Sk] = X

T
Vk[H, RH,Z] (70)

and since [H, RH,Z] ∈ F
n×n
p is invertible (has full rank)

a.a.s., User k is able to retrieve its desired computation,

X
T
Vk ∈ F

1×n
p a.a.s.

For q = pn, the cost of broadcasting each p-ary symbol is

1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
4η + K(n − 2η)

n
. (71)

The next few steps (72)-(77) show that limn→∞ ∆n = 2.

By (61), we have that,

η = N8K ≤ n −√
n

2
≤ (N + 1)8K = η (72)

which implies that

lim
n→∞

η

n
= lim

n→∞
N8K

n
≤ lim

n→∞
n −√

n

2n
=

1

2
. (73)

On the other hand,

lim
n→∞

η

n
= lim

n→∞
(N + 1)8K/((1 + 1/N)8K)

n

≥ lim
N→∞

1

(1 + 1/N)8K
lim

n→∞
n −√

n

2n

= 1 × 1

2
=

1

2
. (74)

Thus, we have that

lim
n→∞

η

n
=

1

2
, (75)

which also implies that

lim
n→∞

η

n
= lim

n→∞
η

n
× lim

N→∞
(1 + 1/N)8K =

1

2
× 1 =

1

2
.

(76)

Combining (71) with (75) and (76) we have

lim
n→∞

∆n = 4 × 1

2
+ 0 = 2 (77)

since K is independent of n. Thus, for any ε > 0, ∃n0 >
0 such that ∆n ≤ 2+ε for all n ≥ n0. Recall that the broadcast

cost ∆n is achievable if En holds, i.e., ∆∗(Λn) ≤ ∆n ≤ 2+ϵ
if n ≥ n0 and En holds. Now let us show that 2 + ϵ is

achievable a.a.s., by evaluating the limit in (14) as follows,

lim
n→∞

Pr

(

∆∗(Λn) ≤ 2 + ϵ
)

≥ lim
n→∞

Pr

(
(

∆∗(Λn) ≤ 2 + ϵ
)

∧ En

)

(78)

= lim
n→∞

Pr(En)Pr

(

∆∗(Λn) ≤ 2 + ϵ
∣
∣
∣ En

)

(79)

= 1 (80)

which implies that limn→∞ Pr

(

∆∗(Λn) ≤ 2 + ϵ
)

= 1. Since

this is true for all ε > 0, according to (15) we have ∆∗
u ≤

inf{2 + ϵ | ϵ > 0} = 2. □
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B. Example 2: (p, K, d = 4, m = 2, m′ = 1)

Let L = 1. For q = pn, we will interpret Fq as an n-

dimensional vector space over Fp, and design a linear scheme

over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are

chosen from Fq = Fpn .

2) The data x
T = [x1, x2, x3, x4] ∈ F

1×4
q , is equivalently

represented over Fp as X
T = [XT

1 , XT
2 , XT

3 , XT
4 ]

∈ F
1×4n
p , where Xi ∈ F

n×1
p is the n × 1 vector

representation of xi over Fp.

3) User k has side information x
T
v
′
k ∈ Fq and

wishes to compute x
T
vk = x

T
[
v

1
k,v2

k

]
∈ F

1×2
q ,

where the elements of (v′
k)T = [v′k1, v

′
k2, v

′
k3, v

′
k4],

(vµ
k )T = [vµ

k1, v
µ
k2, v

µ
k3, v

µ
k4], µ ∈ [2] are drawn i.i.d.

uniform in Fq. Equivalently, over Fp, User k has side

information X
T
V

′
k and wishes to compute X

T
Vk,

where (V′
k)T =

[
(V ′

k1)
T , (V ′

k2)
T , (V ′

k3)
T , (V ′

k4)
T
]

∈
F

n×4n
p , Vk = [V1

k,V2
k] and (Vµ

k )T =
[
(V µ

k1)
T , (V µ

k2)
T , (V µ

k3)
T , (V µ

k4)
T
]

∈ F
n×4n
p .

V ′
ki, V

µ
ki, µ ∈ [2] are the n × n matrix representations in

Fp of v′ki and vµ
ki, respectively.

4) Let r, θ1, θ2 be uniformly randomly chosen in Fq. Denote

by R the matrix representations of r, θ1, θ2 in Fp,

respectively.

5) Define the set of variables,

V ≜

{

vj
ki : k ∈ [K], i ∈ [4], j ∈ [2]

}

∪
{

v′ki : k ∈ [K], i ∈ [4]
}

∪
{

r, θ1, θ2

}

, (81)

and note that |V| = 12K + 3.
Our goal is to show that ∆∗

u ≤ dm/(m + m′) = 8
3 . For all

k ∈ [K], i ∈ [4], µ ∈ [2], let us define tµki such that






v′k1

v′k2

v′k3

v′k4







=







vµ
k1

vµ
k2

vµ
k3

vµ
k4







r +







tµk1

tµk2

tµk3

tµk4







. (82)

Let Tµ
ki ∈ F

n×n
p denote the n×n matrix representations of

tµki in Fp, so that we have in Fp,






V ′
k1

V ′
k2

V ′
k3

V ′
k4







︸ ︷︷ ︸

V′

k
∈F

4n×n
p

=







V µ
k1

V µ
k2

V µ
k3

V µ
k4







︸ ︷︷ ︸

V
µ

k
∈F

4n×n
p

R +







Tµ
k1

Tµ
k2

Tµ
k3

Tµ
k4







︸ ︷︷ ︸

T
µ

k
∈F

4n×n
p

(83)

for all k ∈ [K], µ ∈ [2], and T
µ
k , µ ∈ [2] are defined as in (83).

Since m = 2 > 1 in this example, unlike what we did

in the previous m = 1 example, this time we will need

to create two H matrices, namely, H1 and H2, such that

H1 is almost invariant under linear transformations V j
ki and

T 1
ki,∀k ∈ [K], i ∈ [4], j ∈ [2], i.e., ⟨V j

kiH1⟩p ≈ ⟨H1⟩p
and ⟨T 1

kiH1⟩p ≈ ⟨H1⟩p. H2 is almost invariant under linear

transformations V j
ki and T 2

ki,∀k ∈ [K], i ∈ [4], j ∈ [2],
i.e., ⟨V j

kiH2⟩p ≈ ⟨H⟩p and ⟨T 2
kiH2⟩p ≈ ⟨H2⟩p. In addition,

we want η/n ≈ 1/3 so that the columns of Hµ, µ ∈ [2] span

approximately one third of the n-dimensional vector space.

Moreover, H1 and H2 are required to be linearly independent

a.a.s. For these, we invoke the asymptotic IA scheme of [45],

and design hµ,hµ, µ ∈ [2] in the following way,

h
1×η
µ =

[

θµ

K∏

k=1

(
( 4∏

i=1

2∏

j=1

(vj
ki)

αj

ki

)( 4∏

i=1

(tµki)
βµ

ki

)
)

,

s.t. 0 ≤ αj
ki, β

µ
ki ≤ N − 1

]

(84)

≜ (h1
µ, h2

µ, . . . , hη
µ), ∀µ ∈ [2], (85)

h
1×η

µ =

[

θµ

K∏

k=1

(
( 4∏

i=1

2∏

j=1

(vj
ki)

αj

ki

)( 4∏

i=1

(tµki)
βµ

ki

)
)

,

s.t. 0 ≤ αj
ki, β

µ
ki ≤ N

]

(86)

≜ (h
1

µ, h
2

µ, . . . , h
η

µ), ∀µ ∈ [2]. (87)

Note that we have,

η = N12K , η = (N + 1)
12K

. (88)

This construction ensures that for µ ∈ [2], the elements of

vj
kihµ and tµkihµ are contained among the elements of hµ

for all i ∈ [4], j ∈ [2]. Now let H1, H2, . . . ,Hη ∈ F
n×n
p be

the matrix representations in Fp of h1, h2, . . . , hη ∈ Fq, and

H1, H2, . . . ,Hη ∈ F
n×n
p be the matrix representations in Fp

of h1, h2, . . . , hη ∈ Fq. Define,

Hµ =
[
H1

µ1, H2
µ1, . . . ,Hη

µ1
]

∈ F
n×η
p , µ ∈ [2] (89)

and

Hµ =
[
H

1

µ1, H
2

µ1, . . . ,H
η

µ1
]

∈ F
n×η
p , µ ∈ [2], (90)

where 1 denotes the n× 1 vector of 1’s. By construction, the

columns of V j
kiHµ and Tµ

kiHµ are subsets of the columns of

Hµ, which implies that ∀µ ∈ [2], k ∈ [K], i ∈ [4], j ∈ [2],

⟨V j
kiHµ⟩p ⊂ ⟨Hµ⟩p, ⟨Tµ

kiHµ⟩p ⊂ ⟨Hµ⟩p. (91)

Consider the m = 2 matrices, [H1,H2, RH1] ∈ F
n×3η
p and

[H1,H2, RH2] ∈ F
n×3η
p , and define the event En as,

En ≜ (rk([H1,H2, RH1]) = 3η)

∧ (rk([H1,H2, RH2]) = 3η) . (92)

The next steps (93)-(108), show that En holds a.a.s., which

will subsequently be essential to guarantee successfully

decoding by each user. In fact, due to symmetry, it suffices

to prove that rk([H1,H2, RH1])
a.a.s.

= 3η.

[H1,H2, RH1] ∈ F
n×3η
p has full column rank if and only

if for all c1 = [c1
1, c

2
1, . . . , c

η
1 ]T , c2 = [c1

2, c
2
2, . . . , c

η
2 ]T , c′ =

[c′1, c′2, . . . , c′η]T ∈ F
η×1
p such that c

T = [cT
1 , cT

2 , c′T ] ̸=
0

1×3η,

0
n×1 ̸= [H1,H2, RH1]c (93)

= H1c1 + H2c2 + RH1c
′ (94)

=

η
∑

j=1

cj
1H

j
11 +

η
∑

j=1

cj
2H

j
21 +

η
∑

j=1

c′jRHj
11 (95)

=





η
∑

j=1

cj
1H

j
1 +

η
∑

j=1

cj
2H

j
2 +

η
∑

j=1

c′jRHj
1



1 (96)

≜ Fc1 (97)
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where Fc is an n × n matrix in Fp, which has a scalar

representation in Fq as,

fc =

η
∑

j=1

cj
1h

j
1 +

η
∑

j=1

cj
2h

j
2 +

η
∑

j=1

c′jrhj
1 ∈ Fq. (98)

Note that since Fp is a sub-field of Fq, the scalars cj
1, c

j
2, c

′j

in Fp are also scalars cj
1, c

j
2, c

′j in Fq.

Thus, Fc ∈ F
n×1
p can be equivalently represented in Fq as

the product of fc with the scalar representation in Fq, of 1

(the all 1 vector in Fp). Since the Fq representation of 1 is

not 0, we obtain that

Fc1 ̸= 0
n×1 ⇐⇒ fc ̸= 0. (99)

Therefore, [H1,H2, RH1] ∈ F
n×3η
p has full column rank if

and only if,

P ≜
∏

c∈F
3η×1
p \{0}

fc ̸= 0. (100)

The condition of (100), which is equivalent to the event En,

says that a uniformly random evaluation of the function P (V)
produces a non-zero value. We will show that this is true a.a.s.

in n.

1) Case I: c1 or c2 is not the zero vector. Let us set

r = 0, which implies fc =
∑η

j=1 cj
1h

j
1 +

∑η
j=1 cj

2h
j
2,

and that tµki = v′ki,∀µ ∈ [2], i ∈ [4] by (82). Meanwhile,

h1
1, h

2
1, . . . , h

η
1 are different monomials in the elements

of vj
ki, v′ki and θ1. Similarly, h1

2, h
2
2, . . . , h

η
2 are different

monomials in the elements of vj
ki, v′ki and θ2 due

to (84). Moreover, since any hj
1 has the factor θ1 but

does not have the factor θ2, and any hj
2 has the factor

θ2 but does not have the factor θ1, it follows that

h1
1, h

2
1, . . . , h

η
1 , h1

2, h
2
2, . . . , h

η
2 are different monomials.

Since different monomials are linearly independent,

we have that [fc] is a non-zero polynomial.

2) Case II: c1 = c2 = 0 and thus c
′ ̸= 0. For this case,

we have [fc] = r(c′1h1
1 + c′2h2

1 + . . . + c′ηhη
1), which is

also a non-zero polynomial since it is a product of r with

a non-zero polynomial (since h1
1, h

2
1, . . . , h

η
1 are linearly

independent).

Thus, [fc] is a non-zero polynomial. Since hj
i has degree not

more than 16(N − 1)K + 1, [fc] has degree not more than

16NK + 2. Therefore, [P ] ∈ Fp[V] is a non-zero polynomial

with degree not more than (p3η−1)(16NK+2). By Schwartz-

Zippel Lemma, when all the variables V are assigned i.i.d.

uniformly chosen values in Fq,

Pr
(
P ̸= 0

)
≥ 1 − (p3η − 1)[16(N − 1)K + 2]

q
(101)

= 1 − (p3η − 1)[16(N − 1)K + 2]

pn
(102)

≥ 1 − 16K
N

pn−3η
(103)

→ 1 (104)

as n → ∞ if limn→∞
N

pn−3η = 0.

Now let us specify the value of N as follows,

N =

⌊(
n −√

n

3

)1/(12K)
⌋

, (105)

from which it follows that,

N ≤
(

n −√
n

3

)1/(12K)

(106)

and

n − 3η = n − 3N12K ≥ √
n. (107)

Therefore,

lim
n→∞

N

pn−3η
≤ lim

n→∞

(
n−√

n
3

)1/(12K)

p
√

n
= 0, (108)

and since N ≥ 0, we have limn→∞
N

pn−3η = 0. Thus,

rk([H1,H2, RH1])
a.a.s.

= 3η, and due to symmetry it can

be proved that rk([H1,H2, RH2])
a.a.s.

= 3η. Thus, we have

shown that En holds a.a.s. Now for µ ∈ [2], let (Zµ =

I
n×n|[H1,H2, RHµ]) ∈ F

n×(n−3η)
p , so that

[
H1,H2, RHµ,Zµ

]
(109)

has full column rank n. Let the server broadcast S =
(
S0,S

1
[K],S

2
[K]

)
∈ F

1×(8η+2K(n−3η))
p , where

S0 = X
T







H1 H2 0 0 0 0 0 0

0 0 H1 H2 0 0 0 0

0 0 0 0 H1 H2 0 0

0 0 0 0 0 0 H1 H2







∈ F
1×8η
p (110)

and for k ∈ [K], µ ∈ [2],

S
µ
k = X

T
V

µ
kZµ. (111)

The decoding process works as follows. User k is able to

compute

X
T
V

′
kHµ, µ ∈ [2] (112)

directly from its side information X
T
V

′
k. Meanwhile, it is

able to compute

X
T
V

j
kHµ, j ∈ [2], µ ∈ [2] (113)

and

X
T
T

µ
kHµ, µ ∈ [2] (114)

from S0, since for j ∈ [2], µ ∈ [2],

〈

V
j
kHµ

〉

p
=

〈







V j
k1Hµ

V j
k2Hµ

V j
k3Hµ

V j
k4Hµ







〉

p

⊂
〈







Hµ 0 0 0

0 Hµ 0 0

0 0 Hµ 0

0 0 0 Hµ







〉

p

, (115)
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and for µ ∈ [2],

〈







Tµ
k1Hµ

Tµ
k2Hµ

Tµ
k3Hµ

Tµ
k4Hµ







〉

p

⊂
〈







Hµ 0 0 0

0 Hµ 0 0

0 0 Hµ 0

0 0 0 Hµ







〉

p

(116)

due to (91). Thus, User k is able to compute

X
T
V

µ
kRHµ = X

T
V

′
kHµ − X

T
T

µ
kHµ, µ ∈ [2] (117)

according to (83). Together with S
µ
k , User k thus obtains,

[
X

T
V

j
kHµ,XT

V
µ
kRHµ,Sµ

k

]
, j ∈ [2], µ ∈ [2] (118)

which are

X
T
V

1
k

[
H1,H2, RH1,Z1

]
, X

T
V

2
k

[
H1,H2, RH2,Z2

]

(119)

and since
[
H1,H2, RH1,Z1

]
∈ F

n×n
p and

[
H1,H2, RH2,Z2

]
∈ F

n×n
p are invertible (have full

rank) a.a.s., User k is able to retrieve its desired computation,

X
T
Vk =

[
X

T
V

1
k,XT

V
2
k

]
∈ F

1×2n
p a.a.s.

For q = pn, the cost of broadcasting each p-ary symbol is

1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
8η + 2K

(
n − 3η

)

n
. (120)

The next few steps (121)-(128) show that limn→∞ ∆n = 8
3 .

By (105), we have that

η = N12K ≤ n −√
n

3
≤ (N + 1)12K = η (121)

which implies that

lim
n→∞

η

n
= lim

n→∞
N12K

n
≤ lim

n→∞
n −√

n

n
× 1

3
=

1

3
. (122)

On the other hand,

lim
n→∞

η

n
= lim

n→∞
(N + 1)12K/(1 + 1/N)12K

n
(123)

≥ lim
N→∞

1

(1 + 1/N)12K
lim

n→∞
n −√

n

n
× 1

3
(124)

=
1

3
. (125)

Thus, we have that

lim
n→∞

η

n
=

1

3
(126)

which also implies that

lim
n→∞

η

n
= lim

n→∞
η

n
× lim

N→∞
(1 + 1/N)12K =

1

3
. (127)

Combining (120) with (126) and (127) we have

lim
n→∞

∆n = 8 × 1

3
+ 0 =

8

3
(128)

since K is independent of n. Thus, for any ε > 0, ∃n0 >
0 such that ∆n ≤ 8

3 + ε for all n ≥ n0. Recall that the

broadcast cost ∆n is achievable if En holds, i.e., ∆∗(Λn) ≤
∆n ≤ 8

3 + ϵ if n ≥ n0 and En holds. Now let us show that

8
3 + ϵ is achievable a.a.s., by evaluating the limit in (14) as

follows,

lim
n→∞

Pr

(

∆∗(Λn) ≤ 8

3
+ ϵ
)

≥ lim
n→∞

Pr

(
(

∆∗(Λn) ≤ 8

3
+ ϵ
)

∧ En

)

(129)

= lim
n→∞

Pr(En)Pr

(

∆∗(Λn) ≤ 8

3
+ ϵ

∣
∣
∣ En

)

(130)

= 1 (131)

which implies that limn→∞ Pr

(

∆∗(Λn) ≤ 8
3 + ϵ

)

= 1. Since

this is true for all ε > 0, according to (15) we have ∆∗
u ≤

inf{ 8
3 + ϵ | ϵ > 0} = 8

3 . □

VI. PROOF OF CONVERSE: THEOREM 2

Recall that uk ≜ [v′
k,vk],∀k ∈ [K], and the data x ∈ F

d×L
q

for a scheme with batch size equal to L. Since a scheme must

work for all data realizations, it must work if x is uniformly

distributed. The decoding constraint (8) implies

H(S,xT
v
′
k) = H(S,xT

uk), ∀k ∈ [K]. (132)

The converse for d ≥ K(m + m′) is obtained trivially by

allowing all K users to cooperate fully, see proof of (24) in

Corollary 1. The converse for d ≤ m + m′ is obtained as

∆∗(Λn) ≥ H(S)/L (133)

≥ H(S | xT
v
′
1)/L (134)

= H(S,xT
u1 | xT

v
′
1)/L (135)

≥ H(xT
u1 | x

T
v
′
1)/L (136)

≥
(
H(xT

u1) − H(xT
v
′
1)
)
/L (137)

= rk(u1) − rk(v′
1)

a.a.s.

= (d − m′)+ (138)

Step (133) is due to Shannon’s source coding theorem.

Steps (134), (136) and (137) follow from basic information

inequalities. Step (135) is because User 1 must decode

x
T
u1 from S and x

T
v
′
1. Step (138) applies the useful

connection between entropy and ranks, that H(xT
u) =

L · rk(u) for a uniformly distributed x and a deterministic

matrix u. This leaves us with the only non-trivial regime,

(m + m′) < d < K(m + m′), for which we will show that

∆∗(Λn)
a.a.s.

≥ dm/(m + m′) in the remainder of this section.

Let us provide an intuitive outline before launching into

the technical details. Recall that Theorem 2 considers K ≥
d/ gcd(d, m+m′). If m+m′ divides d, it immediately follows

that K ≥ d/ gcd(d, m+m′) = d/(m+m′) =⇒ d ≥ K(m+
m′). Therefore, the non-trivial cases must be that m + m′

does not divide d. What we want for the converse argument,

intuitively, is to still have the first d/(m+m′) users cooperate

fully. This is not directly possible because d/(m+m′) is not a

natural number, but let us set that concern aside for a moment.

The d/(m+m′) users together already have side information

that is equivalent to m′d/(m + m′) dimensional projection of

the data, which together with the broadcast symbol S allows

them to recover (m + m′)d/(m + m′) = d dimensions of the

data. If so, then we would have that H(S)/L ≥ d−m′d(m+
m′) = dm/(m+m′) as the desired converse bound. Now, how
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do we overcome the obstacle that we cannot have a fractional

number of users? Intuitively, this is achieved by invoking

functional submodularity (Lemma 1 of [38], [51], [52]). The

idea is that functional submodularity helps to identify and

introduce additional entropic terms of certain (linear) functions

of the side information and demands. These functions are

essentially the projection of the data into finer subspaces. If we

regard the entropies of the subsets of the side information and

demands as a set of regular building blocks, the additional

entropies introduced by functional submodularity are similar

to finer fragments. By rearranging and combining these regular

building blocks and fragments in a more efficient way, we are

able to derive a better converse bound. To make the details

concrete, the readers may refer to the following proof sketch

for the example with m + m′ = 6, d = 10 and K =
d/ gcd(d, m + m′) = 5. For this example, we want to show

that ∆∗(Λn)
a.a.s.

≥ md/(m + m′) = 5m/3.

In the following, steps labeled (∗) uses functional

submodularity (Lemma 1 of [38], [51], [52]). We proceed as

follows.

H(S,xT
v
′
1) + H(S,xT

v
′
2)

︸ ︷︷ ︸

T12

(132)
= H(S,xT

u1) + H(S,xT
u2) (139)

(∗)
≥ H(S,xT [u1,u2]) + H(S,xT (u1 ∩ u2)) (140)

≥ H(xT [u1,u2]) + H(S,xT (u1 ∩ u2)) (141)
a.a.s.

= 10L + H(S,xT (u1 ∩ u2)) (142)

The last step is because as n → ∞ the rank of [u1,u2] is

equal to 10 a.a.s. (The proof is omitted here but can be found

in the proof for the general case). Then,

T12 + H(S,xT
v
′
3)

︸ ︷︷ ︸

T123

(132)
= T12 + H(S,xT

u3) (143)

(∗)
≥ 10L + H(S,xT [u1 ∩ u2,u3]) + H(S) (144)

It follows that,

T123 + H(S,xT
v
′
4)

︸ ︷︷ ︸

T1234

(132)
= T123 + H(S,xT

u4) (145)

(∗)
≥ 10L + H(S) + H(S,xT [u1 ∩ u2,u3,u4])

+ H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (146)

≥ 10L + H(S) + H(xT [u1 ∩ u2,u3,u4])

+ H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (147)
a.a.s.

= 20L + H(S) + H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (148)

The last step is because as n → ∞ the rank of [u1∩u2,u3,u4]
is equal to 10 a.a.s. Then,

T1234 + H(S,xT
v
′
5)

︸ ︷︷ ︸

T12345

(132)
= T1234 + H(S,xT

u5) (149)

≥ 20L + H(S) + H(S,xT [(u1 ∩ u2,u3) ∩ u4])

+ H(S,xT
u5) (150)

(∗)
≥ 20L + 2H(S) + H(S,xT [(u1 ∩ u2,u3) ∩ u4,u5])

(151)

≥ 20L + 2H(S) + H(xT [(u1 ∩ u2,u3) ∩ u4,u5]) (152)
a.a.s.

= 30L + 2H(S) (153)

The last step is because as n → ∞ the rank of [(u1∩u2,u3)∩
u4,u5] is equal to 10 a.a.s.

On the other hand,

T12345 = H(S,xT
v
′
1) + H(S,xT

v
′
2) + · · · + H(S,xT

v
′
5)

(154)

≤ H(S) + H(xT
v
′
1) + H(S) + H(xT

v
′
2) + · · ·

+ H(S) + H(xT
v
′
5) (155)

≤ 5H(S) + 5m′L (156)

We thus obtain

5H(S) + 5m′L
a.a.s.

≥ 30L + 2H(S)

=⇒ ∆∗(Λn) ≥ H(S)/L
a.a.s.

≥ (30 − 5m′)/3 = 5m/3 (157)

as desired.

The general proof starts as follows. Let us start with a useful

lemma, whose proof is relegated to Appendix IV.

Lemma 1: Consider any M ′ ∈ F
d×µ′

pn , (µ′ ≤ d) that has

full column rank µ′. Let M ∈ F
d×µ
pn . If the elements of

M are chosen i.i.d uniform in Fpn , then [M ′, M ] has rank

min{d, µ′ + µ} a.a.s.

Define m, and the constants K0, K1, · · · , Km as follows,

m ≜
m + m′

gcd(d, m + m′)
, (158)

Ki ≜

⌈
id

m + m′

⌉

, ∀i ∈ [0 : m], (159)

so that,

1) K0 = 0, Km =

⌈
md

m + m′

⌉

=
d

gcd(d, m + m′)
, (160)

2) (Ki − 1)(m + m′) < id ≤ Ki(m + m′),∀i ∈ [m], (161)

3) Ki − Ki−1 > 0, ∀i ∈ [m]. (162)

Define the matrices Υ0, · · · ,Υm, Π1, · · · ,Πm, and

Γ1, · · · ,Γm, as follows,

Υ0 ≜ [ ] (163)

Γ1 ≜ [Υ0,uK0+1,uK0+2, . . . ,uK1−1],

Υ1 ≜ Γ1 ∩ uK1
, Π1 ≜ [Γ1,uK1

], (164)

Γ2 ≜ [Υ1,uK1+1,uK1+2, . . . ,uK2−1],

Υ2 ≜ Γ2 ∩ uK2 , Π2 ≜ [Γ2,uK2 ] (165)

...

Γi+1 ≜ [Υi,uKi+1,uKi+2, . . . ,uKi+1−1],

Υi+1 ≜ Γi+1 ∩ uKi+1 , Πi+1 ≜ [Γi+1,uKi+1 ] (166)

...
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Γm ≜ [Υm−1,uKm−1+1,uKm−1+2, . . . ,uKm−1],

Υm ≜ Γm ∩ uKm
, Πm ≜ [Γm,uKm

] (167)

so that for all i ∈ [m],

Γi ∈ F
d×(rk(Υi−1)+(Ki−Ki−1−1)(m+m′))
q , (168)

Πi ∈ F
d×(rk(Υi−1)+(Ki−Ki−1)(m+m′))
q . (169)

Define the event En as follows,

En ≜

(

rk(v′
k) = m′, ∀k ∈ [K]

)

∧
(

rk(Πi) = d, ∀i ∈ [m]
)

. (170)

The next steps (171)-(179) show that En holds a.a.s.

From Lemma 1 (let M ′ = [ ], M = v
′
k), we have rk(v′

k)
a.a.s.

=
m′, since m′ ≤ m + m′ ≤ d. Similarly by Lemma 1, (letting

M ′ = [ ] and M = Γ1, M = uK1 , M = Π1, respectively),

we have

rk(Γ1)
a.a.s.

= (K1 − 1)(m + m′), (171)

rk(uK1)
a.a.s.

= m + m′, (172)

rk(Π1)
a.a.s.

= d, (173)

where (171) and (173) are due to (161), and (172) follows from

m+m′ ≤ d. Then since rk(Υ1) = rk(Γ1)+rk(uK1)−rk(Π1),
we have that

rk(Υ1)
a.a.s.

= K1(m + m′) − d. (174)

Next, to set up an inductive argument, suppose for some i,
1 ≤ i < m,

rk(Υi)
a.a.s.

= Ki(m + m′) − id. (175)

Conditioned on
(

rk(Υi) = Ki(m + m′) − id
)

, from

Lemma 1 and (161),(168),(169) we have

rk(Γi+1)
a.a.s.

= (Ki+1 − 1)(m + m′) − id, (176)

rk(Πi+1)
a.a.s.

= d, (177)

rk(uKi+1
)

a.a.s.

= m + m′, (178)

rk(Υi+1)
a.a.s.

= Ki+1(m + m′) − (i + 1)d. (179)

where in order to obtain (179), we used the property

rk(Υi+1) = rk(Γi+1) + rk(uKi+1
) − rk(Πi+1), along with

(176), (177) and (178). By induction, we obtain rk(Πi)
a.a.s.

=
d, ∀i ∈ [m], which implies that En holds a.a.s.

Figure 3 may be useful in understanding the construction

above and the proof.
For the next stage of the proof, we consider any

given LCBC
(
Fpn ,v[K],v

′
[K]

)
where En holds. Note that

v[K],v
′
[K] are now arbitrary constant matrices that satisfy

En. Our goal now is to bound the optimal broadcast cost
∆∗(

Fq,v[K],v
′
[K]

)
. Let x be uniformly distributed to facilitate

entropic accounting. Recall that there is no loss of generality
in this assumption, because x is independent of En and any
achievable scheme must work for all data realizations, so it
must also work for all data distributions. Thus, we have,

2mH(S) + KmLm
′

(180)

(a)
= 2mH(S) +

Km
∑

k=1

H(xT
v
′

k) (181)

Fig. 3. Illustration of the converse proof for m + m′ = 6, d = 10. Each
dot represents one dimension. The number of dots represents the dimension
for the corresponding space a.a.s. ⟨uk⟩, k ∈ [5] has dimension 6 a.a.s. ⟨Υ1⟩
is the intersection of ⟨u1⟩ and ⟨u2⟩, which has dimension 2 a.a.s. ⟨Υ2⟩ is
the intersection of ⟨[Υ1,u3]⟩ and ⟨u4⟩, which has dimension 4 a.a.s. ⟨Π1⟩
is the union of ⟨u1⟩ and ⟨u2⟩, which has dimension 10 a.a.s. ⟨Π2⟩ is the
union of ⟨[Υ1,u3]⟩ and ⟨u4⟩, which has dimension 10 a.a.s. ⟨Π3⟩ is the
union of ⟨Υ2⟩ and ⟨u5⟩, which has dimension 10 a.a.s.

=

m−1
∑

i=0

[(

H(S) + H(xT
v
′

Ki+1) + H(xT
v
′

Ki+2) + . . .

+ H(xT
v
′

Ki+1−1)
)

+
(

H(S) + H(xT
v
′

Ki+1
)
)]

≥

m−1
∑

i=0

(

H(S,x
T [v′

Ki+1,v
′

Ki+2, . . . ,v
′

Ki+1−1])

+ H(S,x
T
v
′

Ki+1
)
)

(182)

(b)
=

m−1
∑

i=0

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(183)

= H(S,x
T [u1,u2, . . . ,uK1−1]) + H(S,x

T
uK1)

+

m−1
∑

i=1

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(184)

= H(S,x
T Γ1) + H(S,x

T
uK1)

+

m−1
∑

i=1

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(185)

(c)

≥ H(xT Π1) + H(S,x
T Υ1)

+

m−1
∑

i=1

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(186)

= H(xT Π1) + H(S,x
T Υ1)

+ H(S,x
T [uK1+1,uK1+2, . . . ,uK2−1]) + H(S,x

T
uK2)

+

m−1
∑

i=2

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(187)

(c)

≥
(

H(xT Π1) + H(S)
)

+ H(S,x
T Γ2) + H(S,x

T
uK2)

+

m−1
∑

i=2

(

H(S,x
T [uKi+1,uKi+2, . . . ,uKi+1−1])

+ H(S,x
T
uKi+1)

)

(188)
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...

≥
(

H(xT Π1) + H(S)
)

+ . . . +
(

H(xT Πm−1) + H(S)
)

+ H(S,x
T Γm) + H(S,x

T
uKm

) (189)

(c)

≥
(

H(xT Π1) + H(S)
)

+ . . . +
(

H(xT Πm) + H(S)
)

(190)

(a)

≥ m
(

Ld + H(S)
)

(191)

=⇒ mH(S) + KmLm
′ ≥ mLd (192)

Steps labeled (a) hold because En holds. Steps labeled (b)
follow from the decodability constraint, i.e., H(S,xT

uk) =
H(S,xT

v
′
k). Steps labeled (c) use functional submodularity

(Lemma 1 of [38], [51], [52]).

Note that (160) implies that

Km

m
=

d

m + m′ . (193)

Thus, we obtain that

∆ ≥ H(S)

L
≥ d − Km

m
m′ = d − d

m + m′m
′ =

md

m + m′ .

(194)

This in turn implies that for any ε > 0,

lim
n→∞

Pr

(

∆∗(Λn) >
md

m + m′ − ϵ

)

(195)

≥ lim
n→∞

Pr

([

∆∗(Λn) >
md

m + m′ − ϵ

]

∧ En

)

(196)

= lim
n→∞

Pr(En)Pr

(

∆∗(Λn) >
md

m + m′ − ϵ
∣
∣
∣ En

)

(197)

= 1. (198)

Thus ∆∗(Λn)
a.a.s.

> md/(m + m′) − ε. Since this is true for all

ε > 0, according to (16) we have ∆∗
l ≥ md/(m + m′). □

VII. PROOF OF THEOREM 3

In this section, let us show the converse for odd d with

3 ≤ d < 2K − 1, and the achievability for d = 2K − 1.

A. Converse for Odd d With 3 ≤ d < 2K − 1

The condition for this regime is equivalent to 2 ≤ d+1
2 < K.

Since the generic capacity for this regime is only a function

of d, and assuming a smaller K will not hurt the converse,

it suffices to show the converse for K = d+1
2 + 1, that is,

∆∗
l ≥ d/2. We start with the following lemma.

Lemma 2: For LCBC(Fq,v[K],v
′
[K]), the broadcast cost ∆

satisfies,

∆ ≥ 1

2

(

rk(v′
1 ∩ [u1 ∩ uK1

,u1 ∩ uK2
]) + rk([u1,uK1

])

+ rk([u1,uK2
]) − 2rk(v′

1) − rk(v′
K1

) − rk(v′
K2

)

)

,

(199)

where K1 and K2 are subsets of [K].

Proof: For simplicity, we will make use of the converse

in [59]. Denote the original LCBC as Λ and its optimal

download cost as ∆∗(Λ). Now, consider another LCBC setting

L′ with 3 users, where User 1 has side information x
T
v
′
1

and desires x
T
v1; User 2 has side information x

T
v
′
K1

and

desires x
T
vK1

; User 3 has side information x
T
v
′
K2

and desires

x
T
vK2 . Denote by ∆∗(Λ′) the optimal download cost of Λ′.

We have ∆∗(Λ) ≥ ∆∗(Λ′) since for any scheme that works

for Λ, we can construct another scheme that works for Λ′ with

a same download cost by letting the users in K1 cooperate,

and the users in K2 cooperate. Note that K1 and K2 can have

a non-empty intersection. Also note that although the capacity

result in [59] is only for mk = m′
k = 1,∀k ∈ [3], the converse

holds for any LCBC with 3 users. Now let us make use of the

converse in [59]. Since ∆∗(Λ) ≥ ∆∗(Λ′), by (7) of [59], and

by rearranging the terms, we have the desired bound.

Next we show the converse for the generic capacity, i.e.,

∆∗
l ≥ d/2 for K = d+1

2 +1. Note that d+1
2 +1 = 3+ d−3

2 . Let

K0 = [K− d−3
2 +1 : K], K1 = {2}∪K0 and K2 = {3}∪K0.

Note that K0 = ∅ if d = 3. Since the converse bound in

Lemma 2 is composed of ranks of certain matrices, we then

finds these ranks in the a.a.s. sense.

First, since 2(1 + |K1|) = 2(1 + |K2|) = d + 1 > d,

by Lemma 1,

rk([u1,uK1
])

a.a.s.

= d, rk([u1,uK2
])

a.a.s.

= d, (200)

and

rk(v′
1)

a.a.s.

= 1, rk(v′
K1

)
a.a.s.

=
d − 1

2
, rk(v′

K2
)

a.a.s.

=
d − 1

2
. (201)

This leaves us the only non-trivial term, rk(v′
1∩[u1∩uK1 ,u1∩

uK2 ]). To avoid complex notations, within this section let

A = u1 ∈ F
d×2
q , (202)

B = uK1
= [uK0

,u2] ∈ F
d×(d−1)
q , (203)

C = uK2 = [uK0 ,u3] ∈ F
d×(d−1)
q . (204)

Then let

D = [A,0d×(d−2)]
(
[A, B[1:d−2]]

)∗
B[d−1] ∈ F

d×1
q , (205)

E = [A,0d×(d−2)]
(
[A, C[1:d−2]]

)∗
C[d−1] ∈ F

d×1
q , (206)

where M∗ denotes the adjugate matrix of a square matrix

M such that MM∗ = det(M)I. By construction, we have

⟨D⟩ ⊂ ⟨A⟩ and ⟨E⟩ ⊂ ⟨A⟩. Then note that

D + [0d×2, B[1:d−2]]
(
[A, B[1:d−2]]

)∗
B[d−1]

= det([A, B[1:d−2]])B[d−1]. (207)

We obtain that ⟨D⟩ ⊂ ⟨B⟩. Similarly, we have ⟨E⟩ ⊂ ⟨C⟩.
Therefore, ⟨D⟩ ⊂ ⟨A ∩ B⟩ and ⟨E⟩ ⊂ ⟨A ∩ C⟩. Next, let

Z ∈ F
d×(d−2)
q . We claim that

P = det([D,E, Z]) (208)

is a non-zero polynomial in the elements of u[K], Z. To see

this, specify

u1 = I
d×d
[1:2], uK0

= I[3:d−1], (209)

u2 = [Id×d
[d] , Id×d

[1] ], (210)
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u3 = [Id×d
[d] , Id×d

[2] ], (211)

Z = I
d×d
[3:d]. (212)

We then have

[A, B[1:d−2]] = [A, C[1:d−2]] = I
d×d, (213)

and it follows that

D = I[1], E = I[2] =⇒ det([D,E, Z]) = det(Id×d) = 1.

(214)

Therefore, P is a non-zero polynomial, with degree not more

than 2(d + 1) + (d − 2). By Schwartz-Zippel Lemma, the

probability of P evaluating to a non-zero value is not less

than

1 − 2(d + 1) + (d − 2)

pn
(215)

which approaches 1 as n → ∞. Thus,

rk([D,E])
a.a.s.

≥ 2 =⇒ rk([u1 ∩ uK1
,u1 ∩ uK2

])
a.a.s.

≥ 2. (216)

Since ⟨[u1∩uK1 ,u1∩uK2 ]⟩ ⊂ ⟨u1⟩, and rk(u1) ≤ 2, we have

that

⟨[u1 ∩ uK1 ,u1 ∩ uK2 ]⟩
a.a.s.

= ⟨u1⟩. (217)

Since ⟨v′
1⟩ ⊂ ⟨u1⟩, we obtain that

rk(v′
1 ∩ [u1 ∩ uK1

,u1 ∩ uK2
])

a.a.s.

= rk(v′
1)

a.a.s.

= 1. (218)

Now let us consider (199) in the a.a.s. sense. We have

∆n

a.a.s.

≥ 1 + 2d − 2 − (d − 1)

2
=

d

2
, (219)

or, equivalently,

∆∗
l ≥ d

2
, (220)

which proves the desired converse. □

B. Achievability for Odd d With d = 2K − 1

Consider the following K matrices

Mk = [v′
[K],v[K]\{k}] ∈ F

d×d
q , k ∈ [K]. (221)

By Lemma 1, we have,

rk(Mk)
a.a.s.

= d, ∀k ∈ [K]. (222)

For any LCBC instance that satisfies rk(Mk) = d, ∀k ∈ [K],
we are able to find non-zero Fq elements α1, α2, . . . , αK−1

and Fq elements α′
1, α

′
2, . . . , α

′
K such that

vK =
K−1∑

k=1

αkvk +
K∑

k=1

α′
kv

′
k. (223)

To see this, first note that since rk(MK) = d, vK can be

represented by a linear combination of the 2K − 1 vectors

v1,v2, . . . ,vK−1,v
′
1,v

′
2, . . . ,v

′
K . Now let us show that the

coefficients α1, α2, . . . , αK−1 are non-zero. We prove by

contradiction. Suppose αi = 0. We then have

∑

k∈[1:K−1]\{i}
αkvk +

K∑

k=1

α′
kv

′
k − vK = 0, (224)

which implies that Mi does not have full column rank d. This

contradiction proves that αk ̸= 0,∀k ∈ [1 : K − 1]. Let the

batch size L = 1. The server broadcasts S = S[K−1], where

Sk = x
T (αkvk + α′

kv
′
k) ∈ Fq, k ∈ [K − 1]. (225)

User k, k ∈ [K−1] can get its desired computation by x
T
vk =

(1/αk)(Sk−α′
kx

T
v
′
k). User K can get its desired computation

by x
T
vK =

∑K−1
k=1 Sk+α′

Kx
T
v
′
K . The broadcast cost is then

∆ = K − 1. By (222), we conclude that

∆∗
u ≤ K − 1. (226)

which is the desired upper bound. □

VIII. CONCLUSION

The take home message of this work is optimistic. While

a general capacity characterization of the LCBC for large

number of users remains out of reach because it includes

recognized hard problems such as index coding, a generic

capacity characterization is shown to be tractable. As such, the

LCBC setting that generalizes index coding, combined with

the generic capacity formulation that focuses on almost all

instances of the LCBC, presents a promising path forward for

future progress. This is analogous to DoF studies of wireless

networks where much progress has come about by focusing on

generic settings (‘almost all’ channel realizations rather than

‘all’ channel realizations) while the DoF of arbitrary instances

still remain largely open.

The latter limitation is worth emphasizing. While a generic

capacity characterization reveals the capacity of most LCBC

settings, it is notable that the LCBC settings that have received

the most attention thus far, say index coding and coded caching

for example, have specialized demand and side-information

structures that are not generic. Thus, open questions in

index coding and caching remain open and as important as

ever for future work. The study of generic capacity is not

intended to supersede the studies of caching, index coding

or other specialized applications, but to complement those

efforts with an understanding of what is missed in the study

of specializations — the generic case. Understanding the

capacity limits for structureless, i.e., generic side-information

and demands is especially important because the scope of

possible linear computation scenarios that may arise in future

applications is far too broad to be understood through studies

of specialized structures alone. For example, arbitrary linear

filters may be applied by different users on large datasets

held by a central server, with side-information arising from

previously retrieved outputs of other filtering operations on

the same datasets. Depending on the application, there may

be little or no freedom to optimize the structure of the

demand and side-information. Also, a theory cannot be

built out of special cases while ignoring the generic case.

So if a cohesive information theoretical understanding of

communication networks used for computation tasks is to ever

emerge, the generic case has to be at its foundation.

Promising directions for future work include the exploration

of generic capacity for asymmetric settings, analysis of the

LCBC download cost vs complexity tradeoff, and generic
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capacity in the large q sense (especially for n = 1). Extensions

of finite field results to degrees of freedom (DoF) results over

real/complex numbers, and studies of the tradeoffs between

precision and communication cost in the GDoF sense (as

in [60]) are promising as well. Last but not the least, while

the capacity results in this work establish the information

theoretic fundamental limits, asymptotic IA schemes are far

from practical. Therefore, the extent to which the fundamental

limit can be approached with practical coding schemes, is a

most interesting open question where future coding-theoretic

analysis can shed light.

APPENDIX I

THEOREM 2: PROOF OF ACHIEVABILITY

Let us recall the compact notation uk ≜ [v′
k,vk],∀k ∈ [K].

For d ≥ K(m + m′), the broadcast cost Km is trivially

achievable, simply by broadcasting each user’s demand

separately, i.e., S = x
T [v1, . . . ,vK ]. The achievability for

the remaining regimes is shown next.

A. Achievability for d ≤ m + m′

Define the event

En ≜

(

rk(v′
k) = min{m′, d}

)

∧
(

rk(uk) = d
)

. (227)

In Lemma 1, letting M ′ = [ ], M = v
′
k and M = uk,

respectively, we obtain that En holds a.a.s. The following

argument is true if En holds.

1) If d ≤ m′, each of the K users is able to compute x,

since rk(v′
k) = d. This implies that ∆∗ = 0.

2) Using field extensions (cf. Appendix II of [38]), let

us consider the equivalent LCBC with field size qz =
pnz . If m′ < d ≤ m + m′, for each k ∈ [K], let

u
c ∈ F

d×(d−m′)
qz . We claim that Pk = det([uk,uc]) is

a non-zero polynomial in the elements of uk,uc. To see

this, for each k, we can choose u
c = (Id×d|uk) ∈

F
d×(d−m′)
qz such that [uk,uc] spans ⟨Id×d⟩. It follows that

P =
∏

k Pk is a non-zero polynomial in the elements

of u[K],u
c. By Schwartz-Zippel Lemma, if the elements

of u
c are chosen uniformly in Fqz , the probability of

P evaluating to zero is not more than
degree of P

qz ≤
K(d−m′)

qz . Thus, by choosing z > logq(K(d − m′)),
we ensure that there exists such u

c that satisfies

det([uk,uc]) ̸= 0 for all k ∈ [K]. Broadcasting S =
x

T
u

c, we have ∆ = d − m′, and each User k is able to

compute x with S and its side information x
T
v
′
k.

Thus we have the desired achievability, ∆∗(Λn)
a.a.s.

≤
max{0, d − m′}.

B. Achievability for (m + m′) < d < K(m + m′)

Let L = 1. For q = pn, we will interpret Fq as an n-

dimensional vector space over Fp, and design a linear scheme

over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are

chosen from Fq = Fpn .

2) The data x
T = [x1, x2, . . . , xd] ∈ F

1×d
q , is equivalently

represented over Fp as X
T = [XT

1 , XT
2 , . . . , XT

d ]
∈ F

1×dn
p , where Xi ∈ F

n×1
p is the n × 1 vector

representation of xi over Fp.

3) User k has side information x
T
v
′
k ∈ F

1×m′

q and wishes

to compute x
T
vk ∈ F

1×m
q , where

vk =
[
v

1
k v

2
k . . . v

m
k

]
(228)

=








v1
k1 v2

k1 . . . vm
k1

v1
k2 v2

k2 . . . vm
k2

...
...

. . .
...

v1
kd v2

kd . . . vm
kd








∈ F
d×m
q (229)

and

v
′
k =

[

v
′1
k v

′2
k . . . v

′m′

k

]
(230)

=








v′1k1 v′2k1 . . . v′m
′

k1

v′1k2 v′2k2 . . . v′m
′

k2
...

...
. . .

...

v′1kd v′2kd . . . v′m
′

kd








∈ F
d×m′

q (231)

4) Let r1, r2, . . . , rm′ , θ1, θ2, . . . , θm be chosen i.i.d uni-

formly in Fq.

5) Define the set of variables,

V ≜

{

vj
ki : k ∈ [K], i ∈ [d], j ∈ [m]

}

∪
{

v′j
′

ki : k ∈ [K], i ∈ [d], j′ ∈ [m′]
}

∪
{

r1, r2, . . . , rm′ , θ1, θ2, . . . , θm

}

, (232)

and note that |V| = (m + m′)(dK + 1).
6) We will also introduce the corresponding n × n matrix

representations in Fp for several Fq variables (some of

the Fq variables will be introduced later). The following

table specifies them.

Our goal is to show that ∆∗
u ≤ dm/(m + m′). Note that if

d = 0 or m = 0, ∆ = 0 is trivially achieved for all cases.

If m′ = 0, then ∆ ≤ d is trivially achieved for all cases by

broadcasting S = X. Thus, in the following we consider the
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cases when d > 0, m > 0, m′ > 0. First, for k ∈ [K], µ ∈
[m], j′ ∈ [m′], let us define









v′j
′

k1

v′j
′

k2
...

v′j
′

kd









=








vµ
k1

vµ
k2
...

vµ
kd








rj′ +









tµj′

k1

tµj′

k2
...

tµj′

kd









. (233)

We have








V ′j′

k1

V ′j′

k2
...

V ′j′

kd









︸ ︷︷ ︸

V
′j′

k
∈F

dn×n
p

=








V µ
k1

V µ
k2
...

V µ
kd








︸ ︷︷ ︸

V
µ

k
∈F

dn×n
p

Rj′ +









Tµj′

k1

Tµj′

k2
...

Tµj′

kd









︸ ︷︷ ︸

T
µj′

k
∈F

dn×n
p

(234)

by (233), and T
µ,j′

k , µ ∈ [m], j′ ∈ [m′] are defined as in (234).

Next, construct hµ ∈ F
η×1
q ,hµ ∈ F

η×1
q , µ ∈ [m] as,

h
1×η
µ =

[

θµ

K∏

k=1

(
( d∏

i=1

m∏

j=1

(vj
ki)

αj

ki

)( d∏

i=1

m′

∏

j′=1

(tµj′

ki )βµj′

ki

)
)

,

s.t. 0 ≤ αj
ki, β

µj′

ki ≤ N − 1

]

(235)

≜ (h1
µ, h2

µ, . . . , hη
µ), ∀µ ∈ [m]. (236)

h
1×η

µ =

[

θµ

K∏

k=1

(
( d∏

i=1

m∏

j=1

(vj
ki)

αj

ki

)( d∏

i=1

m′

∏

j′=1

(tµj′

ki )βµj′

ki

)
)

,

s.t. 0 ≤ αj
ki, β

µj′

ki ≤ N

]

(237)

≜ (h
1

µ, h
2

µ, . . . , h
η

µ), ∀µ ∈ [m]. (238)

Note that we have,

η = NKd(m+m′), η = (N + 1)Kd(m+m′). (239)

This construction ensures that for µ ∈ [m], the elements of

vj
kihµ and tµ,j′

ki hµ are contained among the elements of hµ

for all i ∈ [d], j ∈ [m], j′ ∈ [m′]. Define,

Hµ =
[
H1

µ1, H2
µ1, . . . ,Hη

µ1
]

∈ F
n×η
p , µ ∈ [m]

(240)

and

Hµ =
[
H

1

µ1, H
2

µ1, . . . ,H
η

µ1
]

∈ F
n×η
p , µ ∈ [m],

(241)

where 1 denotes the n× 1 vector of 1’s. By construction, the

columns of V j
kiH and Tµ

kiH are subsets of the columns of Hµ,

which implies that ∀µ ∈ [m], k ∈ [K], i ∈ [d], j ∈ [m], j′ ∈
[m′],

⟨V j
kiHµ⟩p ⊂ ⟨Hµ⟩p, ⟨Tµ

kiHµ⟩p ⊂ ⟨Hµ⟩p. (242)

Consider the m matrices,
[

H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

]

∈ F
n×(m+m′)η
p

(243)

[

H1,H2, . . . ,Hm, R1H2, R2H2, . . . , Rm′H2

]

∈ F
n×(m+m′)η
p

(244)

...
[

H1,H2, . . . ,Hm, R1Hm, R2Hm, . . . , Rm′Hm

]

∈ F
n×(m+m′)η
p .

(245)

Define event En as,

En =
m
∧

µ=1

(

rk
(

[H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ

])

= (m + m
′)η

)

. (246)

The following lemma establishes a sufficient condition when

En holds a.a.s., which will subsequently be essential to

guarantee successfully decoding by each user.

Lemma 3: If limn→∞
N

p[n−(m+m′)η] = 0, then En holds

a.a.s.

Proof: See Appendix II.

Let us specify the value of N as follows,

N =

⌊(
n −√

n

m + m′

) 1
Kd(m+m′)

⌋

, (247)

from which it follows that

N ≤
(

n −√
n

m + m′

) 1
Kd(m+m′)

(248)

and

n − (m + m′)η ≥ √
n. (249)

Therefore,

lim
n→∞

N

pn−(m+m′)η
≤ lim

n→∞

(
n−√

n
m+m′

) 1
Kd(m+m′)

p
√

n

= lim
n→∞

O(nα)

p
√

n
= 0 (250)

where α is independent of n. Since N ≥ 0, we have

limn→∞
N

pn−(m+m′)η
= 0. Applying Lemma 3, we have

that En holds a.a.s. Now for µ ∈ [1 : m], let Zµ =

(In×n|[H1, . . . ,Hµ, R1H, . . . , Rm′H]) ∈ F
n×(n−(m+m′)η)
p ,

so that
[
H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ,Zµ

]
(251)

has full rank n. For compact notation, let

H ≜ [H1,H2, . . . ,Hm]n×mη. (252)

Let the server broadcast S =
(
S0,S

1
[K], . . . ,S

m
[K]

)
∈

F
1×[mdη+Km(n−(m+m′)η)]
p , where

S0 = X
T








H 0 . . . 0

0 H . . . 0

...
...

. . .
...

0 0 . . . H








∈ F
nd×mdη
p (253)

and for k ∈ [K], µ ∈ [m],

S
µ
k = X

T
V

µ
kZµ. (254)
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The decoding process works as follows. User k is able to

compute

X
T
V

′j′

k Hµ, j′ ∈ [m′], µ ∈ [m] (255)

directly from its side information. Meanwhile, it is able to

compute

X
T
V

j
kHµ, j ∈ [m], µ ∈ [m] (256)

and

X
T
T

µj′

k Hµ, j′ ∈ [m′], µ ∈ [m] (257)

from S0, since for j ∈ [m], µ ∈ [m],

〈

V
j

kHµ

〉

p
=

〈











V
j

k1Hµ

V
j

k2Hµ

...

V
j

kdHµ











〉

p

⊂

〈











Hµ 0 0 0

0 Hµ 0 0

...
...

. . .
...

0 0 0 Hµ











〉

p

,

(258)

and for j′ ∈ [m′], µ ∈ [m],

〈









Tµj′

k1 Hµ

Tµj′

k2 Hµ

...

Tµj′

kd Hµ









〉

p

⊂
〈








Hµ 0 0 0

0 Hµ 0 0

...
...

. . .
...

0 0 0 Hµ








〉

p

(259)

due to (242). Thus, User k is then able to compute

X
T
V

µ
kRj′Hµ = X

T
V

′j′

k Hµ − X
T
T

µj′

k Hµ (260)

for all j′ ∈ [m′], µ ∈ [m] according to (234). Together with

S
µ
k , User k is able to compute

X
T
V

j
kHµ, X

T
V

µ
kRj′Hµ and S

µ
k , (261)

for all j ∈ [m], j′ ∈ [m′], µ ∈ [m], which are

X
T
V

1
k

[

H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1,Z1

]

, (262)

X
T
V

2
k

[

H1,H2, . . . ,Hm, R1H2, R2H2, . . . , Rm′H2,Z2

]

, (263)

...

X
T
V

m
k

[

H1,H2, . . . ,Hm, R1Hm, R2Hm, . . . , Rm′Hm,Zm

]

.

(264)

Since
[
H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ,Zµ

]
is

invertible (has full rank) a.a.s. for µ ∈ [m], User k
is able to compute its desired computation, X

T
Vk =

X
T
[
V

1
k,V2

k, . . . ,Vm
k

]
a.a.s.

For q = pn, the cost of broadcasting each p-ary symbol is

1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
mdη + Km

(
n − (m + m′)η

)

n
. (265)

By (247), we have that

η = NKd(m+m′) ≤ n −√
n

m + m′ ≤ (N + 1)Kd(m+m′) = η

(266)

which implies that

lim
n→∞

η

n
= lim

n→∞
NKd(m+m′)

n

≤ lim
n→∞

n −√
n

n
× 1

m + m′

=
1

m + m′ . (267)

On the other hand,

lim
n→∞

η

n
= lim

n→∞
(N + 1)Kd(m+m′)/(1 + 1/N)Kd(m+m′)

n
(268)

≥ lim
N→∞

1

(1 + 1/N)Kd(m+m′)
× lim

n→∞
n −√

n

n

× 1

m + m′ (269)

=
1

m + m′ . (270)

Thus, we have that

lim
n→∞

η

n
=

1

m + m′ (271)

which also implies that

lim
n→∞

η

n
= lim

n→∞
η

n
× lim

N→∞
(1 + 1/N)Kd(m+m′) =

1

m + m′ .

(272)

Combining (265) with (271) and (272) we have

lim
n→∞

∆n = md × 1

m + m′ + 0 =
md

m + m′ (273)

since K, m,m′, d are independent of n. Thus, for any ε > 0,

∃n0 > 0 such that ∆n ≤ md
m+m′ + ε for all n ≥ n0. Recall

that the broadcast cost ∆n is achievable if En holds, i.e.,

∆∗(Λn) ≤ ∆n ≤ md
m+m′ + ϵ if n ≥ n0 and En holds. Now

let us show that md
m+m′ + ϵ is achievable a.a.s., by evaluating

the limit in (14) as follows,

lim
n→∞

Pr

(

∆∗(Λn) ≤ md

m + m′ + ϵ
)

≥ lim
n→∞

Pr

(
(

∆∗(Λn) ≤ md

m + m′ + ϵ
)

∧ En

)

(274)

= lim
n→∞

Pr(En)Pr

(

∆∗(Λn) ≤ md

m + m′ + ϵ
∣
∣
∣ En

)

(275)

= 1 (276)

which implies that limn→∞ Pr

(

∆∗(Λn) ≤ md
m+m′ + ϵ

)

= 1.

Since this is true for all ε > 0, according to (15) we have

∆∗
u ≤ inf{ md

m+m′ + ϵ | ϵ > 0} = md
m+m′ . □

APPENDIX II

PROOF OF LEMMA 3

By Lemma 1.1.3(v) [54], it suffices to prove that ∀µ ∈ [m],

rk
([

H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ

])

a.a.s.

= (m + m′)η. (277)

Due to symmetry, without loss of generality, we will show the

proof for µ = 1, which is

rk
([

H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

])

a.a.s.

= (m + m′)η. (278)
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Note that
[
H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

]
has

full column rank (m + m′)η if and only if for all

ci = [c1
i , c

2
i , . . . , c

η
i ]T ∈ F

η×1
p , i ∈ [m], and c

′
i =

[c′1i , c′2i , . . . , c′ηi ]T ∈ F
η×1
p , i ∈ [m′] such that c

T =
[
c

T
1 , cT

2 , . . . , cT
m, c′T1 , c′T2 , . . . , c′Tm′

]
̸= 0

1×(m+m′)η,

0
n×1 ̸= [H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1]c

(279)

= H1c1 + H2c2 + . . . + Hmcm

+ R1H1c
′
1 + R2H1c

′
2 + . . . + Rm′H1c

′
m′ (280)

=

η
∑

j=1

cj
1H

j
11 + . . . +

η
∑

j=1

cj
mHj

m1

+

η
∑

j=1

c′jR1H
j
11 + . . . +

η
∑

j=1

c′jRm′Hj
11 (281)

=

(
η
∑

j=1

cj
1H

j
1 + . . . +

η
∑

j=1

cj
mHj

m

+

η
∑

j=1

c′jR1H
j
1 + . . . +

η
∑

j=1

c′jRm′Hj
1

)

1 (282)

≜ Fc1 (283)

where Fc is an n × n matrix in Fp, which has a scalar

representation in Fq as,

fc =

η
∑

j=1

cj
1h

j
1 + . . . +

η
∑

j=1

cj
mhj

m

+

η
∑

j=1

c′j1 r1h
j
1 + . . . +

η
∑

j=1

c′jm′rm′hj
1 ∈ Fq. (284)

Note that since Fp is a sub-field of Fq, the elements of c

in Fp are also in Fq. Thus, Fc ∈ F
n×1
p can be equivalently

represented in Fq as the product of fc with the scalar

representation in Fq, of 1 (the all 1 vector in Fp). Since the

Fq representation of 1 is not 0, we obtain that

Fc1 ̸= 0
n×1 ⇐⇒ fc ̸= 0. (285)

Therefore, [H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1] ∈
F

n×(m+m′)η
p has full column rank if and only if,

P ≜
∏

c∈F
(m+m′)η×1
p \{0}

fc ̸= 0. (286)

The condition of (286), which is equivalent to the event En,

says that a uniformly random evaluation of the function P (V)
produces a non-zero value. We will show that this is true a.a.s.

in n.

1) Case I: At least one of {c1, c2, . . . , cm} is not 0
η×1,

then set r1 = r2 = . . . = rm′ = 0, which implies

fc =
∑η

j=1 cj
1h

j
1 + . . . +

∑η
j=1 cj

mhj
m, and that tµ,j′

ki =

v′j
′

ki ,∀µ ∈ [m], i ∈ [d], j′ ∈ [m′] by (233). Meanwhile,

h1
µ, h2

µ, . . . , hη
µ are different monomials in the elements

of vj
ki, v′j

′

ki and θµ. Moreover, since any hj
µ has the factor

θµ but does not have the factor θµ′ if µ′ ̸= µ, it follows

that h1
1, h

2
1, . . . , h

η
1 , h1

2, h
2
2, . . . , h

η
2 , . . . , h1

m, h2
m, . . . , hη

m

(mη in total) are different monomials. Since different

monomials are linearly independent, we have that [fc]
is a non-zero polynomial.

2) Case II: c1 = c2 = . . . = cm = 0 and thus at least

one of {c′1, c′2, . . . , c′m′} is not 0
n×1. For this case,

we have fc =
∑η

j=1 c′j1 r1h
j
1 + . . . +

∑η
j=1 c′jm′rm′hj

1.

From the discussion in the previous case, we know

that h1
1, h

2
1, . . . , h

η
1 are non-zero polynomials, and

none of them has a factor in {r1, r2, . . . , rm′}
(because otherwise letting r1 = r2 = . . . =
rm′ = 0 would evaluate that polynomial to

0, which is a contradiction). Thus, we obtain

that r1h
1
1, r1h

2
1, . . . , r1h

η
1 , r2h

1
1, r2h

2
1, . . . , r2h

η
1 ,

. . . , rm′h1
1, rm′h2

1, . . . , rm′hη
1 are linearly independent.

It then follows that [fc] is a non-zero polynomial.
Thus, [fc] is a non-zero polynomial. Since hj

i has degree not

more than (N −1)Kd(2m′+m)+1, [fc] has degree not more

than (N − 1)Kd(2m′ + m) + 2. Therefore, [P ] ∈ Fp[V] is a

non-zero polynomial with degree not more than (p(m+m′)η −
1)[(N − 1)Kd(2m′ + m) + 2]. By Schwartz-Zippel Lemma,

when all the variables V are assigned i.i.d. uniformly chosen

values in Fq,

Pr
(
P ̸= 0

)

≥ 1 − (p(m+m′)η − 1)[(N − 1)Kd(2m′ + m) + 2]

q
(287)

= 1 − (p(m+m′)η − 1)[(N − 1)Kd(2m′ + m) + 2]

pn
(288)

≥ 1 − Kd(2m′ + m)
N

pn−(m+m′)η
(289)

→ 1 (290)

as n → ∞ if limn→∞
N

pn−(m+m′)η
= 0.

APPENDIX III

PROOF OF THEOREM 1

For compact notation, let us define,

γ1 ≜
(
min{3(m + m′) − d, m + m′, d}

)+
(291)

γ2 ≜
(
min{2(m + m′) − d, m + m′, d}

)+
(292)

γ3 ≜
(
min{3(m + m′) − 2d, m + m′, d}

)+
(293)

and define En ≜ C1 ∧ C2 ∧ · · · ∧ C6 as the event that the

following conditions hold. We will show that En holds a.a.s.

The values of ∆g for K = 1, 2, 3 then follow by evaluating

the capacity expression from [38] by applying conditions C1

to C6 for the symmetric LCBC with K ≤ 3.

C1 rk(v′
k) = min{m′, d}, ∀k ∈ [1 : K];

C2 rk(uk) = min{m + m′, d}, ∀k ∈ [1 : K];
C3 rk([v′

i,uij ]) = min{m′ + γ2, m + m′, d}, ∀i ̸=
j, i, j ∈ [1 : K], K ≥ 2;

C4 rk([v′
k,u123]) = min{m′ +γ3, m+m′, d}, ∀k ∈ [1 :

3], K = 3;
C5 rk([v′

i,uij ,uik]) = min{m′ + 2γ2, m + m′, d}, for

distinct i, j, k ∈ [1 : 3], K = 3;
C6 rk([v′

i,ui(j,k)]) = min{m′ + γ1, m + m′, d}, for

distinct i, j, k ∈ [1 : 3], K = 3,
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where

uij ≜ ui ∩ uj , ∀i, j ∈ [1 : K], i ̸= j, (294)

u123 ≜ u1 ∩ u2 ∩ u3, if K = 3. (295)

By Lemma 1.1.3(v) [54], we then show that En holds a.a.s.

by showing that each of the conditions C1 to C6 holds a.a.s.

A. Conditions C1, C2, C3 and C6

In Lemma 1, let M ′ = [ ], M = v
′
k,uk, respectively.

We obtain that Conditions C1 and C2 hold a.a.s. Then let

M = [uj ,v
′
i], M = [ui,uj ], respectively. We obtain that

rk([uj ,v
′
i])

a.a.s.

= min{m + 2m′, d}, (296)

rk([ui,uj ])
a.a.s.

= min{2(m + m′), d}. (297)

Since

rk([ui,uj ]) − rk([uj ,v
′
i])

= rk(ui) + rk(uj) − rk(uij)

− [rk(uj) + rk(v′
i) − rk(uj ∩ v

′
i)] (298)

= rk(ui) + rk(uj) − rk(uij)

− [rk(uj) + rk(v′
i) − rk(uj ∩ ui ∩ v

′
i)] (299)

= rk(ui) − [rk(uij) + rk(v′
i) − rk(uij ∩ v

′
i)] (300)

= rk(ui) − rk([v′
i,uij ]), (301)

it follows that

rk([v′

i,uij ])
a.a.s.
= min{m + m

′
, d} − min{2(m + m

′), d} + min{m + 2m
′
, d}

(302)

= min{m′ + γ2, m + m
′
, d} (303)

which proves the result for C3. Next, let M = [uj ,uk,v′
i],

M = [ui,uj ,uk], respectively. We obtain that

rk([uj ,uk,v′
i])

a.a.s.

= min{2m + 3m′, d}, (304)

rk([ui,uj ,uk])
a.a.s.

= min{3(m + m′), d}. (305)

Since

rk([ui,uj ,uk]) − rk([uj ,uk,v′
i])

= rk([uj ,uk]) + rk(ui) − rk(ui(j,k))

− [rk([uj ,uk]) + rk(v′
i) − rk([uj ,uk] ∩ v

′
i)] (306)

= rk([uj ,uk]) + rk(ui) − rk(ui(j,k))−
[rk([uj ,uk]) + rk(v′

i) − rk([uj ,uk] ∩ ui ∩ v
′
i)] (307)

= rk(ui) − [rk(ui(j,k)) + rk(v′
i) − rk(ui(j,k) ∩ v

′
i)] (308)

= rk(ui) − rk([v′
i,ui(j,k)]), (309)

it follows that

rk([v′
i,ui(j,k)])

a.a.s.

= min{m + m′, d} − min{3(m + m′), d}
+ min{2m + 3m′, d} (310)

= min{m′ + γ1, m + m′, d} (311)

which proves the result for C6.

B. Condition C4

To see that C4 holds a.a.s., we need the following lemma.

Lemma 4: Let A ∈ F
d×µ′

pn , B, C ∈ F
d×µ
pn , such that µ′ ≤ µ.

Denote

M =

[
A B 0

A 0 C

]

. (312)

If the elements of A, B,C are chosen i.i.d uniform, then M
has full rank min{2d, µ′ + 2µ} a.a.s.

Proof: Consider the following cases.

1) If 2d ≥ µ′ + 2µ, which implies µ′ ≤ µ ≤ d and

thus µ′ + µ ≤ 2d. Let P1 = det([M,Z]), where Z ∈
F

2d×(2d−(µ′+2µ))
q , be a polynomial in the elements of

A, B, C, Z. To verify that it is not the zero polynomial,

consider the following realizations of A, B, C,Z for

which P1 ̸= 0. Let A = I
d×d
[1:µ′], B = C = I

d×d
[µ′+1:µ].

Let va ∈ F
µ′×1
q , vb, vc ∈ F

µ×1
q . Then M [va, vb, vc]

T =
0 =⇒ ([A, B][va, vb]

T = 0) ∧ ([A, C][va, vc]
T =

0) =⇒ va = vb = vc = 0. Therefore, M
has independent columns. Let Z = (Id×d|M) ∈
F

2d×[2d−(µ′+2µ)]
q , so that [M,Z] has full rank, which

yields a non-zero evaluation for P1. Now, since P1 is not

the zero-polynomial, if the elements of A, B, C,Z are

chosen i.i.d uniform, then by Schwartz-Zippel Lemma,

we obtain that as n → ∞, the evaluation of P1 is almost

surely non-zero, which implies that rk(M)
a.a.s.

= µ′ + 2µ.

2) If 2µ ≤ 2d < µ′ + 2µ, then we have 2µ − d >
d − µ′ ≥ d − µ ≥ 0. Let P2 = det([MT , ZT ]T ),

where Z ∈ F
(µ′+2µ−2d)×(µ′+2µ)
q . Let I1 = I

d×d
[1:2µ−d],

I2 = I
d×d
[2µ−d+1:µ], I3 = I

d×d
[µ+1:d], B = [I1, I2], C =

[I1, I3], A0 = [I2, I3]. Then we have ⟨A0∩B∩C⟩ = {0},

which implies that the following matrix has full rank.

M2d×2d
0 =

[
A0 B 0

A0 0 C

]

. (313)

To see this, let va ∈ F
(2d−2µ)×1
q , vb, vc ∈ F

µ×1
q . Then

M0v = M0[va, vb, vc]
T = 0 =⇒ A0va = −Bvb =

−Cvc ∈ ⟨A0 ∩ B ∩ C⟩. Since A0, B,C have only

trivial intersection, the only solution for v is 0. Letting

A = [0d×(µ′+2µ−2d), A0], we obtain that M has 2d
linearly independent rows. Let ZT = (Id×d|MT ) ∈
F

(µ′+2µ−2d)×(µ′+2µ)
q , which is constituted by (µ′ +2µ−

2d) rows of I
(µ′+2µ)×(µ′+2µ), so that

[
MT , ZT

]T
has

full rank. Therefore, P2 is not the zero polynomial.

By Schwartz-Zippel Lemma, we obtain that for i.i.d.

uniform A, B, C, Z, as n → ∞, P2 will evaluate to a non-

zero value almost surely, which implies that rk(M)
a.a.s.

= 2d.

3) If d < µ, then by Lemma 1, we have that rk(B) =
rk(C) = d =⇒ rk(M) ≥ 2d holds asymptotically

almost surely. Since M has 2d rows, we conclude that

rk(M)
a.a.s.

= 2d.

In Lemma 4 let

M =

[
u1 u2 0

u1 0 u3

]

. (314)
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We obtain that rk(M)
a.a.s.

= min{3(m+m′), 2d}. It then follows

from [61] that,

rk(u123) = rk(u1 ∩ u2 ∩ u3) (315)

= rk(u1) + rk(u2) + rk(u3) − rk(M) (316)
a.a.s.

= 3min{(m + m′), d} − min{3(m + m′), 2d} (317)

= γ3, (318)

Then applying Lemma 4 to

M =

[
v
′
1 u2 0

v
′
1 0 u3

]

, (319)

we obtain that rk(M ′)
a.a.s.

= min{2m + 3m′, 2d}. By [61],

rk(v′
1 ∩ u123) = rk(v′

1 ∩ u2 ∩ u3) (320)

= rk(v′
1) + rk(u2) + rk(u3) − rk(M ′) (321)

Therefore,

rk([v′
1,u123]) (322)

= rk(v′
1) + rk(u123) − rk(v′

1 ∩ u123) (323)

= rk(u123) − rk(u2) − rk(u3) + rk(M ′) (324)
a.a.s.

= γ3 − 2 min{m + m′, d} + min{2m + 3m′, 2d} (325)

= min{m′ + γ3, m + m′, d} (326)

C. Condition C5

Finally let us prove for C5. In Lemma 1, let M = [ui,uj ].
We have

rk([ui,uj ])
a.a.s.

= min{2(m + m′), d}, (327)

By the result for C2 and (327), we have that for distinct i, j ∈
[1 : 3],

rk(uij) = rk(ui) + rk(uj) − rk([ui,uj ]) (328)
a.a.s.

= 2min{m + m′, d} − min{2(m + m′), d} (329)

=
(
min{2(m + m′) − d, m + m′, d}

)+
(330)

= γ2 (331)

To prove that C5 holds asymptotically almost surely, due to

symmetry, it suffices to prove for i = 1, j = 2, k = 3. Let us

consider the following cases.

If γ2 = 0, then we almost surely have rk([v′
1,u12,u13]) =

rk(v′
1) = min{m′, d} = min{m′+2γ2, m+m′, d}, as desired.

Otherwise, let us consider two sub-cases.

1) γ2 = min{m + m′, d} > 0. By C2,

rk([v′
1,u12,u13]) ≤ rk(u1)

a.a.s.

= min{m + m′, d} (332)

On the other hand, by C3,

rk([v′
1,u12,u13]) ≥ rk([v′

1,u12])
a.a.s.

= min{m + γ2, m + m′, d} (333)

= min{m + m′, d} (334)

This implies that

rk([v′
1,u12,u13])

a.a.s.

= min{m + m′, d}
= min{m′ + 2γ2, m + m′, d} (335)

as desired.

2) γ2 = 2(m + m′) − d > 0. This implies that m + m′ ≤
d < 2(m+m′). Denote A = u1, B = u2, C = u3. Then

v
′
1 = A[1:m′]. Denote a = d − (m + m′), and let

D = [A,0d×a][A, B[1:a]]
∗B[a+1:m+m′], (336)

E = [A,0d×a][A, C[1:a]]
∗C[a+1:m+m′]. (337)

Recall that M∗ denotes the adjoint matrix of the square

matrix M . We claim that ⟨D⟩ ⊂ ⟨u12⟩ and ⟨E⟩ ⊂ ⟨u13⟩.
It is obvious that ⟨D⟩ ⊂ ⟨u1⟩ and ⟨E⟩ ⊂ ⟨u1⟩. To see

that ⟨D⟩ ⊂ ⟨u2⟩ and ⟨E⟩ ⊂ ⟨u3⟩, note that

D + [0d×(m+m′), B[1:a]][A, B[1:a]]
∗B[a+1:m+m′] (338)

= [A, B[1:a]][A, B[1:a]]
∗B[a+1:m+m′] (339)

= det([A, B[1:a]])B[a+1:m+m′], (340)

where we used the fact that for any square matrix M , the

product of M and its adjoint M∗ is equal to the product

of the determinant of M and the identity matrix. Thus,

every column of D is a linear combination of the columns

of B = u2, which implies that ⟨D⟩ ⊂ ⟨u2⟩. Similarly,

E + [0d×(m+m′), C[1:a]][A, C[1:a]]
∗C[a+1:m+m′] (341)

= det([A, C[1:a]])C[a+1:m+m′], (342)

which implies that ⟨E⟩ ⊂ ⟨u3⟩.
Let us now show that rk([A[1:m′], D, E]) ≥ min{m′ +
2γ2, m+m′} holds asymptotically almost surely. Denote

b = min{m, γ2} and c = min{m, 2γ2}. Let Z ∈
F

d×(d−m′−c)
q . The following determinant is a polynomial

in the elements of (A, B,C, Z).

P = det([A[1:m′], D[1:b], E[1:(c−b)], Z]). (343)

To prove that this is not the zero polynomial, let

I1 = I
d×d
[1:m′], I2 = I

d×d
[m′+1:m′+b],

I3 = I
d×d
[m′+b+1:m′+c], I4 = I

d×d
[m′+c+1:m′+m],

I5 = I
d×d
[m+m′+1:d], (344)

and then consider the following evaluation,

A = [I1, I2, I3, I4] =⇒ A′ = I1, (345)

B = [I5, I2,0
d×(γ2−b)], (346)

C = [I5, I3,0
d×(γ2−c+b)], (347)

Z = [I4, I5]. (348)

Note that [A, B[1:a]] = [A, C[1:a]] = [I1, I2, I3, I4, I5] =
I
d×d. Thus,

D = [A,0]B[a+1:m+m′] (349)

= [I1, I2, I3, I4,0
d×a][I2,0

d×(γ2−b)] (350)

= [I2,0
d×(γ2−b)], (351)

which implies that D[1:b] = I2. Similarly,

E = [A,0]C[a+1:m+m′] (352)

= [I1, I2, I3, I4,0][I3,0
d×(γ2−c+b)] (353)

= [I3,0
d×(γ2−c+b)], (354)

which implies that E[1:(c−b)] = I3.
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Therefore P = det([I1, I2, I3, I4, I5]) = det(Id×d) =
1 ̸= 0. Since P is not the zero polynomial, by Schwartz-

Zippel Lemma, we obtain that rk([A′, D, E]) ≥ m′ +
b + (c − b) = m′ + c = min{m′ + 2γ2, m + m′}
holds asymptotically almost surely. This implies that

rk([v′
1,u12,u13])

a.a.s.

≥ min{m′ + 2γ2, m + m′}. Since

rk(v′
1)

a.a.s.

= m′, rk(u12) = rk(u13)
a.a.s.

= γ2, from the

result for C1 and (328) and note that ⟨[v′
1,u12,u13]⟩ ⊂

⟨u1⟩, we conclude that rk([v′
1,u12,u13])

a.a.s.

= min{m′ +
2γ2, m + m′} = min{m′ + 2γ2, m + m′, d}.

Therefore, Ci, i ∈ [6] holds asymptotically almost surely.

We conclude that En holds asymptotically almost surely. The

proof is completed by evaluating (15) of [38] with conditions

C1 to C6 to get ∆∗
g for the symmetric GLCBC with K ≤ 3.

APPENDIX IV

PROOF OF LEMMA 1

If d ≥ µ′ + µ, let Z ∈ F
d×(d−µ′−µ)
pn . Then P =

det([M ′, M, Z]) is a non-zero polynomial in the elements of

M and Z. To see this, let [M,Z] = I
d×d|M ′, which will then

yield that det([M ′, M, Z]) ̸= 0 since ⟨[M ′, (Id×d|M ′)]⟩ =
⟨Id×d⟩. By Schwartz-Zippel Lemma, if the elements of M and

Z are chosen i.i.d uniform, Pr(P ̸= 0) ≥ 1 − degree of P
pn ≥

1 − d
pn → 1 as n → ∞, which implies that the probability

that [M ′, M ] has full rank µ′ + µ goes to 1 as n → ∞.

If d < µ′ + µ, denote by M1 the first d − µ′ columns of

M . It suffices to show that rk([M ′, M1])
a.a.s.

= d. Note that

P = det([M ′, M1]) is a non-zero polynomial in the elements

of M1, and thus M . To see this, let M1 = I
d×d|M ′, which

will then similarly yield that det([M ′, M1]) ̸= 0. By Schwartz-

Zippel Lemma, if the elements of M1 are chosen i.i.d uniform,

Pr(P ̸= 0) ≥ 1 − degree of P
pn ≥ 1 − d

pn → 1 as n → ∞,

which implies that rk([M ′, M1])
a.a.s.

= d as desired. □
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