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In this work, we present high-order arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) methods for 
the Euler equations under gravitational fields on the moving mesh. The goal of this paper is to demonstrate that, 
through careful design of the scheme, the ALE-DG methods can also achieve the structure-preserving properties 
of DG methods, such as high order accuracy, well-balanced property, positivity-preserving property, for the 
Euler equations with arbitrary moving meshes. We propose two well-balanced and positivity-preserving ALE-DG 
schemes which can preserve the explicitly given equilibrium state on arbitrary moving grids, and also carry out 
rigorous positivity-preserving analyses for both schemes. Our schemes are established both in one dimension 
and in two dimensions on unstructured triangular meshes. The most challenging component in designing such 
ALE-DG schemes on the moving mesh is to maintain the equilibrium state and the mass conservation at the same 
time, since temporal discretization of the ALE method may destroy the well-balanced property, and inappropriate 
adjustment of the numerical flux could lead to the loss of the mass conservation property on the moving meshes. 
A novel approximation of the desired equilibrium state based on ALE-DG methods on the moving mesh has 
been introduced to overcome such difficulty. Numerical experiments in different circumstances are provided to 
illustrate the well-balanced property, positivity-preserving property and high order accuracy. We also compare 
the schemes on the moving mesh and on the static mesh to demonstrate the advantage of ALE-DG methods for 
discontinuous solutions.
1. Introduction

In this paper, we consider the compressible Euler equations with 
gravitation in 𝑑-dimensions, which take the form

𝜌𝑡 +∇ ⋅𝒎 = 0,

𝒎𝑡 +∇ ⋅
(
𝒎⊗𝒎

𝜌
+ 𝑝𝐼

)
= −𝜌∇𝜙,

𝐸𝑡 +∇ ⋅
(
(𝐸 + 𝑝) 𝒎

𝜌

)
= −𝒎 ⋅∇𝜙.

(1.1)
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Here, 𝜌 > 0 denotes the density, 𝒎 = 𝜌 𝒖 ∈ ℝ𝑑 is the momentum vector, 
𝒖 ∈ ℝ𝑑 is the velocity vector, 𝑝 > 0 is the pressure, 𝐸 = 𝜌 𝑒 + 1

2𝜌‖𝒖‖2
is the non-gravitational energy and 𝜙(𝒙) denotes the time independent 
gravitational potential. The system is closed by an equation of state 
(EoS) of the form 𝑝 = 𝑝(𝜌, 𝑒), which links the pressure 𝑝 to the density 𝜌
and the internal energy 𝑒. The ideal EoS is given by

𝑝 = (𝛾 − 1)𝜌𝑒, (1.2)

where 𝛾 is the ratio of specific heat.
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The Euler system in (1.1) has wide applications in modeling physical 
phenomena such as astrophysical and atmospheric phenomena. They 
also admit a general hydrostatic equilibrium state where the flux gra-
dient exactly balances the gravitational source term and the velocity 
vector equals zero:

𝒖 = 0, ∇𝑝 = −𝜌∇𝜙. (1.3)

Two well-known hydrostatic equilibrium states are the isothermal and 
the polytropic equilibria. In many practical simulations, the flows under 
consideration can be viewed as small perturbations of these equilibrium 
states. The well-balanced schemes are introduced to properly capture 
this type of flow, which often appears in astrophysical and atmospheric 
applications. One major advantage of the well-balanced schemes is 
that they can effectively and accurately resolve these small pertur-
bations of equilibrium states on relatively coarse meshes. The well-
balanced methods have been widely studied in the few past decades, 
especially for the shallow water equations with non-flat bottom topog-
raphy. Earlier works in this field include [5,26,3,1], and high-order 
well-balanced schemes have been designed to preserve still water equi-
libria [40,44,16] and moving water equilibria [39] of the shallow water 
equations. We refer to the review papers [43,25] and the references 
therein. For the compressible Euler equations under gravitation fields, 
the well-balanced methods are more complicated and have attracted 
much attention recently. They were first introduced by LeVeque and 
Bale in [27]. Later, well-balanced schemes were studied for isothermal 
equilibrium states in [42] and polytropic equilibrium states in [21]. 
After that, there are many well-balanced methods developed within 
several different frameworks, which can preserve the zero velocity equi-
librium states, e.g. [29,8,28,9,23,38,22,7,33,37].

Another important difficulty in numerical simulations for the Euler 
equations is preserving the positivity of density and pressure. Physi-
cally, the density 𝜌 and the pressure 𝑝 should both stay positive. The ap-
pearance of negative density or pressure in the numerical methods may 
lead to difficulty in the simulation. There have been extensive studies of 
first or second order positivity-preserving schemes up to second order 
in the earlier work [13,35]. In recent years, many high-order bound-
preserving schemes have been studied for hyperbolic conservation laws 
[18,50,46]. Two popular approaches have been reviewed in the recent 
paper [47]. The first one is through the design of a simple scaling lim-
iter for finite volume and discontinuous Galerkin schemes. Using this 
approach, high-order positivity-preserving DG schemes were designed 
for Euler equations without source term [50,52] and with source terms 
[51]. The second approach is to introduce a bound-preserving flux lim-
iter as discussed in [46,45].

The arbitrary Lagrangian-Eulerian (ALE) methods with moving 
meshes have been widely used in solid mechanics and for prob-
lems involving moving boundaries. ALE finite element methods for 
the incompressible Navier-Stokes equations have been proposed in 
[11,20]. Recently, arbitrary Lagrangian-Euler discontinuous Galerkin 
(ALE-DG) methods have been designed for solving compressible flows 
in [30,34,32]. The theoretical analysis of ALE-DG schemes coupled 
with Runge-Kutta time stepping has been introduced in [24] in one 
dimension and extended to two dimensions in [14]. By adopting the 
time-dependent linear affine mapping, the ALE-DG method for con-
servation laws maintains almost all mathematical properties of DG 
methods on static grids, such as conservation, geometric conservation 
law (GCL), maximum principle preserving property, and optimal error 
estimates.

There are two popular strategies to update the computational mesh 
in the ALE methods. The first one is similar to the classical Lagrangian 
methods, where the grid velocity is selected as the local fluid velocity 
[2,15]. Such an approach can track the moving boundaries or minimize 
the numerical dissipation. The second one involves a monitor function 
and will concentrate the grids in zones where the solution demonstrates 
large gradients [19,31]. We refer to [12] and the references therein for 
more details about ALE methods.
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Numerical methods, which can satisfy both the well-balanced prop-
erty and the positivity-preserving property for the Euler equations with 
gravitation, have been studied in a few recent works within the frame-
work of finite volume [36] and finite element DG methods [38,49]. 
The main objective of this paper is to extend these schemes to moving 
meshes, and study well-balanced positivity-preserving ALE-DG schemes 
to enjoy the benefits of moving mesh methods. This paper concentrates 
on the design of numerical methods and aims to show that ALE-DG 
methods can achieve nice properties on arbitrarily moving meshes: high 
order accuracy, well-balanced and positivity-preserving properties. The 
strategy of mesh movements was not considered in this paper. We no-
tice that the well-balanced positivity-preserving DG methods cannot be 
generalized to ALE-DG methods in a straightforward way. The main 
challenge is that the standard Total Variational Diminishing Runge-
Kutta (TVD-RK) time discretization may destroy the well-balanced prop-
erty on moving mesh. The well-balanced positivity-preserving ALE-DG 
methods were studied in [48] for the shallow water equations. To over-
come this challenge, one important technique in this paper is the novel 
approximation of the bottom topography or the equilibrium state based 
on ALE-DG methods. In [15], an ALE finite volume scheme has been 
developed in the cylindrical coordinates, which is well-balanced if the 
mesh satisfies some special conditions. To obtain the well-balanced 
property on arbitrary moving mesh, one needs to define the approxima-
tion equilibrium state on the moving mesh carefully. Another challenge 
is maintaining mass conservation, which becomes a nontrivial thing as 
the grid velocity is now incorporated into the fluxes. In addition, im-
proper handling of this term may also destroy the positivity-preserving 
property. To overcome these difficulties, we first assume that the de-
sired equilibrium state is explicitly given and then introduce a novel ap-
proximation for that known equilibrium based on the ALE-DG scheme, 
which is similar to [48]. We aim to numerically preserve a special 
projection of this equilibrium solution on moving meshes, which may 
slightly change on different meshes. The objective of the well-balanced 
property is to maintain the error between the numerical solution and 
this projection to machine error, and demonstrate that our proposed 
methods can help capture small perturbations. Two schemes have been 
proposed in this paper, based on different well-balanced strategies, and 
they have very different proofs of the positivity-preserving property. 
The first one is via the hydrostatic reconstruction, which is first intro-
duced in [1] for solving the shallow water equations and then extended 
to Euler equations in [29]. The second approach is by reformulating 
the source term and utilizing the properties of HLLC flux as studied in 
[38]. We will start by describing these algorithms in detail, and then 
rigorously prove these schemes’ well-balanced property and positivity-
preserving property. The advantage of the ALE-DG method on moving 
meshes will also be demonstrated in the numerical examples.

The rest of the paper is organized as follows. In Section 2, we present 
the standard ALE-DG settings for solving Euler equations. In Section 3, 
we first introduce the desired equilibrium states and the admissible 
states for Euler equations with gravitation. Two well-balanced ALE-
DG schemes for the Euler equations with gravitation, which preserve 
both the isothermal and the polytropic equilibrium states, will be pre-
sented. In Section 4, the positivity-preserving property of the proposed 
methods will be investigated. In Section 5, we provide extensive one-
and two-dimensional numerical examples to validate the well-balanced 
property, high order accuracy, the advantages of ALE-DG methods, and 
positivity-preserving property on moving meshes. We give some con-
cluding remarks in Section 6. The detailed proof of the weak positivity 
property will be elaborated in Appendix A and Appendix B.

2. The ALE-DG methods

In this section, we briefly discuss some notations and setups involved 
in the study of ALE-DG methods, and refer to [14] for more details and 
discussions on them.
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2.1. Time-dependent cells and grid velocity field

For ALE-DG methods, the computational mesh can be changed over 
each time step. We assume that Ω ∈ ℝ𝑑 is the computational domain 
and  𝑛 is a mesh of the domain Ω at the time step 𝑡𝑛, such that

Ω=
⋃

{𝐾𝑛 | 𝐾𝑛 ∈  𝑛} , (2.1)

where all the elements 𝐾𝑛 are the simplex cells. Suppose that 𝒙𝑛
0 and 

𝒙𝑛+1
0 are the coordinates of the same mesh grid at time 𝑡𝑛 and 𝑡𝑛+1 re-
spectively. We can define the grid velocity on this mesh grid as

𝝎𝑛
0 ∶=

𝒙𝑛+1
0 − 𝒙𝑛

0

𝑡𝑛+1 − 𝑡𝑛
, (2.2)

and connect them with a straight line

𝒙0(𝑡) ∶= 𝒙𝑛
0 +𝝎𝑛

0(𝑡− 𝑡𝑛). (2.3)

For any given fixed time 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], we can evaluate the new coordi-
nate of the mesh grids using this. By maintaining their connectivity, we 
can obtain the moving mesh  (𝑡) and time-dependent computational 
cells 𝐾(𝑡) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]

Ω =
⋃

{𝐾(𝑡) | 𝐾(𝑡) ∈  (𝑡)} , 𝐾(𝑡) ∶= conv
{
𝒙𝐾,1(𝑡),⋯ ,𝒙𝐾,𝑑+1(𝑡)

}
,

(2.4)

where 𝒙𝐾,1(𝑡), ⋯ , 𝒙𝐾,𝑑+1(𝑡) are the vertices of 𝐾(𝑡) and conv(⋅) denotes 
the convex hull of a set. We denote the edges of 𝐾(𝑡) by 𝐹 𝜈

𝐾(𝑡), 𝜈 =
1, ⋯ , 𝑑 + 1, such that

𝜕𝐾(𝑡) ∶=
𝑑+1⋃
𝜈=1

𝐹 𝜈
𝐾(𝑡). (2.5)

The volume of 𝐾(𝑡) is denoted by Δ𝐾(𝑡).

Note that we plan to compute the numerical solution at time 𝑡𝑛+1 on 
a mesh  𝑛+1, by using the numerical solution at time 𝑡𝑛 on a different 
mesh  𝑛. Therefore, the grid velocity was used to derive the numeri-
cal scheme. Next, we are ready to define the grid velocity field 𝝎𝐾 (𝒙, 𝑡)
for time 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. We assume that the grid velocity 𝝎𝐾 (𝒙, 𝑡) is a vec-
tor with 𝑑 components, and its components are denoted by 𝜔[𝑖]

𝐾
(𝒙, 𝑡), 

𝑖 = 1, ⋯ , 𝑑. The main principle for the meshes at different time steps 
is that the topography of the mesh should be unchanged and only the 
position of the grids can be changed. In such a case, we can assume 
the corresponding grids are connected by straight lines and the grid 
velocity for each point in time interval [𝑡𝑛, 𝑡𝑛+1] is constant. We also as-
sume that the grid velocity in each spatial cell is a linear polynomial, so 
that the grid velocity of vertices can determine the grid velocity of any 
point inside the spatial cell. Under this assumption, the following 𝑑 +
2 points are coplanar: (𝒙𝑛

𝐾,1, 𝜔
𝑛,[𝑖]
𝐾,1 ), ⋯ , (𝒙𝑛

𝐾,𝑑+1, 𝜔
𝑛,[𝑖]
𝐾,𝑑+1), (𝒙

𝑛
𝐾
(𝒙), 𝜔𝑛,[𝑖]

𝐾
(𝒙)). 

Therefore, on cell 𝐾 , the linear polynomials 𝜔[𝑖]
𝐾
(𝒙, 𝑡), 𝑖 = 1, ⋯ , 𝑑, can be 

solved by the following equation||||| 𝒙− 𝒙𝐾,1(𝑡) 𝒙𝐾,2(𝑡) − 𝒙𝐾,1(𝑡) ⋯ 𝒙𝐾,𝑑+1(𝑡) − 𝒙𝐾,1(𝑡)
𝜔[𝑖]
𝐾
(𝒙, 𝑡) −𝜔𝑛,[𝑖]

𝐾,1 𝜔𝑛,[𝑖]
𝐾,2 −𝜔𝑛,[𝑖]

𝐾,1 ⋯ 𝜔𝑛,[𝑖]
𝐾,𝑑+1 −𝜔𝑛,[𝑖]

𝐾,1

||||| = 0. (2.6)

Here | ⋅ | denotes the determinant of the (𝑑 + 1) × (𝑑 + 1) matrix, and 
𝒙𝐾,𝑗 (𝑡), 𝑗 = 1, ⋯ , 𝑑 are the vertexes of the cell 𝐾 . 𝝎𝑛

𝐾,𝑗
, 𝑗 = 1, ⋯ , 𝑑 are the 

grid velocities on these vertexes as defined in (2.2), and 𝜔𝑛,[𝑖]
𝐾,𝑗

denotes 
the 𝑖-th component of 𝝎𝑛

𝐾,𝑗
.

2.2. The time-dependent finite element space

We first introduce the time-independent reference cell

𝐾ref ∶=

{
𝝃 = (𝜉1,⋯ , 𝜉𝑑 )𝑇 ∈ℝ𝑑 ||| 𝜉𝑖 ≥ 0, ∀ 𝑖 and

𝑑∑
𝜉𝑖 ≤ 1

}
, (2.7)
𝑖=1
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which, in two dimensions, is a triangular element. The affine linear 
time-dependent mapping between this time-independent reference cell 
and the time-dependent cell in physical space (2.4) is denoted by

𝝌𝐾(𝑡) ∶𝐾ref→𝐾(𝑡), 𝝃 ↦ 𝝌𝐾(𝑡)(𝝃, 𝑡) ∶=𝑨𝐾(𝑡)𝝃 + 𝒙𝐾,1(𝑡), (2.8)

where the matrix 𝑨𝐾(𝑡) is given by

𝑨𝐾(𝑡) ∶=
(
𝒙𝐾,2(𝑡) − 𝒙𝐾,1(𝑡), ⋯ ,𝒙𝐾,𝑑+1(𝑡) − 𝒙𝐾,1(𝑡)

)
. (2.9)

With the affine linear time-dependent mapping, we can define the 
time-dependent finite element space, to which the test function belongs, 
as


𝑘
𝑑 (𝑡) ∶=

{
𝝋 ∈
(
𝐿2(Ω(𝑡))

)𝑑+2 ||| 𝝋◦𝝌𝐾(𝑡) ∈
(
ℙ𝑘(𝐾ref)

)𝑑+2
, ∀𝐾(𝑡) ∈  (𝑡)

}
,

(2.10)

where ℙ𝑘 is the space of polynomials of degree no greater than 𝑘 and 
𝑑 + 2 refers to the number of equations in the Euler system. We estab-
lish the connection between test functions at different times: if two test 
functions, 𝝋(𝒙, 𝑡) at time 𝑡 and 𝝋̃(𝒙, ̃𝑡) at time 𝑡, satisfy that

𝝋(𝝌𝐾(𝑡)(𝝃), 𝑡) = 𝝋̃(𝝌𝐾(𝑡)(𝝃), 𝑡), for all 𝝃 ∈𝐾ref and any cell 𝐾, (2.11)

we call them the corresponding test functions.
We also define the cell boundary values as

𝝋𝑖𝑛𝑡𝐾(𝑡) (𝒙) ∶= lim
𝜖→0+

𝝋
(
𝒙− 𝜖𝒏𝜈

𝐾(𝑡)

)
, 𝝋𝑖𝑛𝑡𝐾(𝑡) (𝒙) ∶= lim

𝜖→0+
𝝋
(
𝒙+ 𝜖𝒏𝜈

𝐾(𝑡)

)
,

(2.12)

where 𝒏𝜈
𝐾(𝑡), 𝜈 = 1, ⋯ , 𝑑 + 1 denote the outer normal vector of 𝐾(𝑡) with 

respect to the simplex face 𝐹 𝜈
𝐾(𝑡).

2.3. The semi-discrete ALE-DG scheme

The conventional ALE-DG methods will be introduced in this sub-
section. We first write the compact form of equations (1.1) as

𝑼 𝑡 +∇ ⋅ 𝑭 (𝑼 ) = 𝑺(𝑼 ,∇𝜙), (2.13)

where 𝑼 = (𝜌, 𝒎, 𝐸)𝑇 , 𝑭 (𝑼 ) denotes the flux term and 𝑺(𝑼 , ∇𝜙) is the 
source term. The standard ALE-DG scheme for the Euler equations with 
gravitation (2.13) is described as follows: find the numerical solution 
𝑼 ∈ 

𝑘
𝑑 (𝑡), such that the equations

d
d𝑡 ∫

𝐾(𝑡)

𝑼 ⋅𝝋d𝒙 =𝐾 (𝝎,𝑼 ,𝝋, 𝑡) , (2.14)

holds for any 𝝋 ∈ 
𝑘
𝑑 (𝑡), with the spatial operator defined as

𝐾 (𝝎,𝑼 ,𝝋, 𝑡) (2.15)

= ∫
𝐾(𝑡)

𝑮 (𝝎,𝑼 ) ∶∇𝝋d𝒙− ∫
𝜕𝐾(𝑡)

𝑮̂
(
𝝎,𝑼 𝑖𝑛𝑡,𝑼 𝑒𝑥𝑡,𝒏

)
⋅𝝋d𝒔

+ ∫
𝐾(𝑡)

𝑺 (𝑼 ,∇𝜙) ⋅𝝋d𝒙,

where

• the flux 𝑮 of the ALE-DG methods is defined as follows

𝑮 (𝝎,𝑼 ) ∶= 𝑭 (𝑼 ) −𝝎⊗𝑼 =
⎛⎜⎜⎝

𝜌 (𝒖−𝝎)
𝒎⊗ (𝒖−𝝎) + 𝑝𝐼

𝐸 (𝒖−𝝎) + 𝑝𝒖

⎞⎟⎟⎠ , (2.16)

and the operator ⊗ is the tensor product. Note that the additional 
term −𝝎⊗𝑼 is added due to the moving mesh. More details about 
the flux 𝑮 and the standard ALE-DG methods for conservation laws 
can be found in [24];
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• the operator ∶ is defined as follows

𝐴 ∶ 𝐵 ∶=
∑

1≤𝑖≤𝑛, 1≤𝑗≤𝑚
𝑎𝑖𝑗𝑏𝑖𝑗 , (2.17)

for any two matrices of the same size 𝐴 = (𝑎𝑖𝑗 ) and 𝐵 = (𝑏𝑖𝑗 ) ∈ℝ𝑛×𝑚;

• 𝒏 is the outer normal vector of 𝐾(𝑡) and 𝑮̂ is the monotone numer-
ical flux.

We use the Harten-Lax-van Leer-contact (HLLC) numerical flux [31]
in this paper which is given as follows

𝑮̂
(
𝝎,𝑼 𝑖𝑛𝑡,𝑼 𝑒𝑥𝑡,𝒏

)
=

⎧⎪⎪⎨⎪⎪⎩

𝑮
(
𝝎,𝑼 𝑖𝑛𝑡

)
⋅ 𝒏, if 𝑆𝑖𝑛𝑡 > 0,

𝑮∗,𝑖𝑛𝑡, if 𝑆𝑖𝑛𝑡 ≤ 0 < 𝑆𝑀,

𝑮∗,𝑒𝑥𝑡, if 𝑆𝑀 ≤ 0 ≤ 𝑆𝑒𝑥𝑡,

𝑮
(
𝝎,𝑼 𝑒𝑥𝑡

)
⋅ 𝒏, if 𝑆𝑒𝑥𝑡 < 0,

(2.18)

where

𝑼∗,𝑖𝑛𝑡 ∶= 1
𝑆𝑖𝑛𝑡 − 𝑆𝑀

⎛⎜⎜⎝
(
𝑆𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡

)
𝜌𝑖𝑛𝑡(

𝑆𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡
)
𝒎𝑖𝑛𝑡 +

(
𝑝∗ − 𝑝𝑖𝑛𝑡

)
𝒏(

𝑆𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡
)
𝐸𝑖𝑛𝑡 − 𝑝𝑖𝑛𝑡𝑣𝑛,𝑖𝑛𝑡 + 𝑝∗𝑆𝑀

⎞⎟⎟⎠ , (2.19)

𝑼∗,𝑒𝑥𝑡 ∶= 1
𝑆𝑒𝑥𝑡 −𝑆𝑀

⎛⎜⎜⎝
(
𝑆𝑒𝑥𝑡 − 𝑣𝑛,𝑒𝑥𝑡

)
𝜌𝑒𝑥𝑡(

𝑆𝑒𝑥𝑡 − 𝑣𝑛,𝑒𝑥𝑡
)
𝒎𝑒𝑥𝑡 +

(
𝑝∗ − 𝑝𝑒𝑥𝑡

)
𝒏(

𝑆𝑒𝑥𝑡 − 𝑣𝑛,𝑒𝑥𝑡
)
𝐸𝑒𝑥𝑡 − 𝑝𝑒𝑥𝑡𝑣𝑛,𝑒𝑥𝑡 + 𝑝∗𝑆𝑀

⎞⎟⎟⎠ , (2.20)

𝑮∗,𝑖𝑛𝑡 ∶=
⎛⎜⎜⎝

𝑆𝑀𝜌∗,𝑖𝑛𝑡

𝑆𝑀𝒎∗,𝑖𝑛𝑡 + 𝑝∗𝒏

𝑆𝑀𝐸∗,𝑖𝑛𝑡 +
(
𝑆𝑀 +𝝎 ⋅ 𝒏

)
𝑝∗

⎞⎟⎟⎠ , (2.21)

𝑮∗,𝑒𝑥𝑡 ∶=
⎛⎜⎜⎝

𝑆𝑀𝜌∗,𝑒𝑥𝑡

𝑆𝑀𝒎∗,𝑒𝑥𝑡 + 𝑝∗𝒏

𝑆𝑀𝐸∗,𝑒𝑥𝑡 +
(
𝑆𝑀 +𝝎 ⋅ 𝒏

)
𝑝∗

⎞⎟⎟⎠ , (2.22)

𝑝∗ = 𝜌𝑖𝑛𝑡
(
𝑣𝑛,𝑖𝑛𝑡 −𝑆𝑖𝑛𝑡

)(
𝑣𝑛,𝑖𝑛𝑡 −𝑆𝑀

)
+ 𝑝𝑖𝑛𝑡

= 𝜌𝑒𝑥𝑡
(
𝑣𝑛,𝑒𝑥𝑡 −𝑆𝑒𝑥𝑡

)(
𝑣𝑛,𝑒𝑥𝑡 − 𝑆𝑀

)
+ 𝑝𝑒𝑥𝑡, (2.23)

𝑣𝑛,𝑖𝑛𝑡 =
(
𝒖𝑖𝑛𝑡 −𝝎

)
⋅ 𝒏, 𝑣𝑛,𝑒𝑥𝑡 =

(
𝒖𝑒𝑥𝑡 −𝝎

)
⋅ 𝒏, (2.24)

and the signal velocities are defined as

𝑆𝑖𝑛𝑡 =min
(
𝑣𝑛,𝑖𝑛𝑡 − 𝑐𝑖𝑛𝑡, 𝑣𝑛,𝑒𝑥𝑡 − 𝑐𝑒𝑥𝑡

)
, (2.25)

𝑆𝑒𝑥𝑡 =max
(
𝑣𝑛,𝑖𝑛𝑡 + 𝑐𝑖𝑛𝑡, 𝑣𝑛,𝑒𝑥𝑡 + 𝑐𝑒𝑥𝑡

)
, (2.26)

𝑆𝑀 =
𝜌𝑒𝑥𝑡𝑣𝑛,𝑒𝑥𝑡

(
𝑆𝑒𝑥𝑡 − 𝑣𝑛,𝑒𝑥𝑡

)
− 𝜌𝑖𝑛𝑡𝑣𝑛,𝑖𝑛𝑡

(
𝑆𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡

)
+ 𝑝𝑖𝑛𝑡 − 𝑝𝑒𝑥𝑡

𝜌𝑒𝑥𝑡 (𝑆𝑒𝑥𝑡 − 𝑣𝑛,𝑒𝑥𝑡) − 𝜌𝑖𝑛𝑡
(
𝑆𝑖𝑛𝑡 − 𝑣𝑛,𝑖𝑛𝑡

) , (2.27)

𝑐𝑖𝑛𝑡 =

√
𝛾𝑝𝑖𝑛𝑡

𝜌𝑖𝑛𝑡
, 𝑐𝑒𝑥𝑡 =

√
𝛾𝑝𝑒𝑥𝑡

𝜌𝑒𝑥𝑡
. (2.28)

3. The well-balanced ALE-DG methods

In this section, we develop the well-balanced ALE-DG schemes for 
the Euler equations with gravitation (2.13) on moving meshes.

3.1. Hydrostatic equilibrium states

In this paper, we assume that the desired equilibrium state (1.3)
is explicitly given and denote them by 𝑼𝑑 . Two typical examples of 
the equilibrium state (1.3) are the isothermal [42] or polytropic [21]
equilibria outlined below.

Isothermal equilibrium state: For an ideal gas with the isothermal 
condition, which means that

𝑝 = 𝜌𝑅𝑇 with 𝑇 = 𝑇0 = constant, (3.1)

the equilibrium solution of equations (2.13) is given by

𝜌 = 𝜌0 exp
(
− 𝜙

𝑅𝑇0

)
, 𝒖 = 0, 𝑝 = 𝑝0 exp

(
− 𝜙

𝑅𝑇0

)
, (3.2)

with 𝑝0 = 𝜌0𝑅𝑇0 and 𝑅 being the universal gas constant.
342
Polytropic equilibrium state: If the equilibrium state is set as poly-
tropic gas of the form

𝑝 = 𝜅0𝜌
𝛾 , (3.3)

one can combine it with the equation (2.13) and obtain the form

𝜌 =
(
𝛾 − 1
𝜅0𝛾

(𝐶 −𝜙)
) 1

𝛾−1
, 𝒖 = 0, 𝑝 = 𝜅0 𝜌

𝛾 , (3.4)

where 𝐶 and 𝜅0 are both constants.

3.2. Well-balanced property on the moving mesh

There have been some attempts at the design well-balanced schemes 
under the framework of ALE methods. In [15], the authors assume a 
special initial mesh and a Lagrangian moving mesh, which indicates 
that the mesh does not move at the equilibrium states since the fluid 
velocity equals zero. If one wishes to achieve the well-balanced property 
for arbitrarily initial mesh and moving mesh, the situation becomes 
more complicated. One major difficulty is on the mass conservation as 
unsuitable treatment of the equation of density 𝜌 may destroy the mass 
conservation. This is due to the fact that the flux term in the equation 
of density in (2.16) does not equal zero in the case of an equilibrium 
state.

In this paper, we would like to address this issue of mass conserva-
tion on moving meshes in the setting of the well-balanced framework, 
and assume that the desired equilibrium state 𝑼𝑑 is explicitly given. 
If the initial condition is set as 𝑼𝑑 , we expect the numerical solution 
of the well-balanced scheme exactly equals a suitable approximation 
of 𝑼𝑑 , which is independent of the flux and source term of the Euler 
equations in (2.13). Let us denote such suitable approximation of 𝑼𝑑

by 𝑼 𝑒 ∈ 
𝑘
𝑑 (𝑡). In this case, the well-balanced property is obtained if the 

flux term and source term balance each other and this leads to

𝑼 (𝑡) −𝑼 𝑒(𝑡) = 0, (3.5)

for any time 𝑡. The main thing remaining is to define 𝑼 𝑒. There are 
several different choices for the definitions of 𝑼 𝑒. One can use the 𝐿2

projection to project the desired equilibrium state 𝑼 𝑑 into the time-
dependent space 𝑘

𝑑 (𝑡), but with such an approach, it is difficult to main-
tain the positivity of the density and pressure, and the well-balanced 
property at the same time.

In this work, we introduce a novel approximation of 𝑼𝑑 , which is 
based on the ALE-DG methods and plays an important role in construct-
ing positivity-preserving schemes. Since 𝑼𝑑 is the desired hydrostatic 
equilibrium state, we have

(𝑼𝑑 )𝑡 = 0, (3.6)

at the continuous level. Numerically, we can apply the ALE-DG method 
to solve this steady state problem (3.6) on the moving meshes, and ob-
tain a numerical approximation of 𝑼𝑑 on the moving meshes, denoted 
by 𝑼 𝑒:

d
d𝑡 ∫

𝐾(𝑡)

𝑼 𝑒 ⋅𝝋d𝒙 = − ∫
𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙+ ∫
𝜕𝐾(𝑡)

𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔, (3.7)

where 𝝎⊗𝑼 𝑒 is the numerical flux of 𝝎 ⊗ 𝑼 𝑒 which depends on the 
specific well-balanced methods to be used and will be defined later. 
The initial condition of 𝑼 𝑒 is set as the 𝐿2 projection of 𝑼𝑑 :

𝑼 𝑒(𝑥, 𝑡 = 0) = 𝑼𝑑 (𝑥, 𝑡 = 0), (3.8)

where  stands for the standard element-wise 𝐿2 projection. Again, we 
emphasize that the objective of the proposed well-balanced will be to 
preserve 𝑼 𝑒(𝑡) (an approximation of 𝑼 𝑑 (𝑡)) at all time steps.
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3.3. The semi-discrete well-balanced ALE-DG scheme

In this subsection, two well-balanced schemes will be introduced. 
The first one is based on the hydrostatic reconstruction [1] and can be 
viewed as an extension of the well-balanced methods studied in [29,49]
to the moving meshes. The second one is based on a special source term 
reformulation and the modified HLLC flux as studied in [38]. In the 
first approach, the Lax-Friedrichs numerical flux in [49] is replaced by 
the HLLC flux in this paper, as better results in the accuracy test on the 
moving meshes have been observed numerically.

3.3.1. Well-balanced scheme based on hydrostatic reconstruction
We start by presenting the first approach to obtaining well-balanced 

methods. We adopt the well-balanced idea in [49] by modifying the 
cell boundary values and applying the hydrostatic reconstruction idea. 
Since the ALE-DG methods are designed based on the moving meshes, 
the main challenge is to introduce the well-balanced numerical flux 
involving the grid velocity 𝝎 and the updated definition of 𝑼 𝑒 based on 
the ALE-DG scheme (3.7).

We begin with the definitions of modified cell boundary values. At 
each time step 𝑡𝑛, let us decompose the numerical solution 𝑼 into two 
parts: one is the equilibrium part 𝑼 𝑒 defined in (3.7) and the other is 
the fluctuation part

𝑼𝑓 ∶=𝑼 −𝑼 𝑒. (3.9)

The modified cell boundary values are given by

𝑼∗,𝑖𝑛𝑡𝐾(𝑡) =𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡) +𝑼𝑓,𝑖𝑛𝑡𝐾(𝑡) , 𝑼∗,𝑒𝑥𝑡𝐾(𝑡) =𝑼 𝑒,𝑒𝑥𝑡𝐾(𝑡) +𝑼𝑓,𝑒𝑥𝑡𝐾(𝑡) ,

𝜌𝑏,𝑖𝑛𝑡𝐾(𝑡) = max
(
0, 𝜌∗,𝑖𝑛𝑡𝐾(𝑡)

)
, 𝜌𝑏,𝑒𝑥𝑡𝐾(𝑡) = max

(
0, 𝜌∗,𝑒𝑥𝑡𝐾(𝑡)

)
,

𝒖𝑏,𝑖𝑛𝑡𝐾(𝑡) = 𝒖𝑖𝑛𝑡𝐾(𝑡) , 𝒖𝑏,𝑒𝑥𝑡𝐾(𝑡) = 𝒖𝑒𝑥𝑡𝐾(𝑡) ,

𝑝𝑏,𝑖𝑛𝑡𝐾(𝑡) = max
(
0, 𝑝∗,𝑖𝑛𝑡𝐾(𝑡)

)
, 𝑝𝑏,𝑒𝑥𝑡𝐾(𝑡) = max

(
0, 𝑝∗,𝑒𝑥𝑡𝐾(𝑡)

)
,

(3.10)

where

𝑼 𝑒 = ̃𝑘+1𝑼𝑑 ∈ 
𝑘+1
𝑑 (𝑡), (3.11)

is the projection of 𝑼𝑑 onto 𝐾(𝑡), and ̃ denotes the continuous finite 
element projection introduced in [6]. The motivation for introducing 
the projection of degree 𝑘 +1 is to provide a more accurate source term 
approximation and to maintain the continuity at the cell boundaries, 
as explained in [49]. We refer [6, Figs. 3.1, 3.3–3.5] for examples of 
2D projection on triangular cell. One nice property of 𝑼 𝑒 is that it is 
continuous at the cell boundaries, i.e.

𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡) =𝑼 𝑒,𝑒𝑥𝑡𝐾(𝑡) . (3.12)

If the purpose is to maintain only the well-balanced property, it is 
unnecessary to introduce such projection ̃ since one can simply set 
𝑼 𝑒 = 𝑼𝑑 . If we want to have the positivity-preserving property at the 
same time, such projection will be used in the source term approxima-
tion (3.13) and plays an important role in the proof of the positivity-
preserving property.

Following the approximation of the source term ∫𝐾(𝑡)𝑺(𝑼 , ∇𝜙) ⋅𝝋d𝒙
in [49], we separate the source term into two terms involving 𝑼 𝑒 and 
𝑼𝑓 respectively, and approximate them by

𝑆ℎ
𝐾(𝑡) = ∫

𝐾(𝑡)

𝑺

(
𝑼𝑓 ,−∇𝑝𝑒

𝜌𝑒

)
⋅𝝋d𝒙− ∫

𝐾(𝑡)

𝑭 (𝑼 𝑒) ∶∇𝝋d𝒙

+ ∫
𝜕𝐾(𝑡)

(
𝑭
(
𝑼 𝑒
)
⋅ 𝒏
)
⋅𝝋𝑖𝑛𝑡𝐾(𝑡) d𝒔. (3.13)

Note that although the form of 𝑆ℎ
𝐾(𝑡) is the same as that in [49], it 

involves different 𝑼 𝑒 and 𝑼 𝑒, now defined over the moving meshes.
The proposed well-balanced ALE-DG scheme based on the hydro-

static reconstruction is given by: find 𝑼 ∈ 
𝑘
𝑑 (𝑡), such that
343
d
d𝑡 ∫

𝐾(𝑡)

𝑼 ⋅𝝋d𝒙 =
ℎ
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) , (3.14)

holds for any 𝝋 ∈ 
𝑘
𝑑 (𝑡), where the spatial operator is given by


ℎ
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) (3.15)

= ∫
𝐾(𝑡)

𝑮 (𝝎,𝑼 ) ∶∇𝝋d𝒙− ∫
𝜕𝐾(𝑡)

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾(𝑡) ,𝑼 𝑏,𝑒𝑥𝑡𝐾(𝑡) ,𝒏

)
⋅𝝋d𝒔+𝑆ℎ

𝐾(𝑡),

with 𝑆ℎ
𝐾(𝑡) defined in (3.13), 𝑮̂ defined in (2.18) and 𝑼 𝑏,𝑖𝑛𝑡𝐾(𝑡) , 𝑼 𝑏,𝑒𝑥𝑡𝐾(𝑡)

defined in (3.10). The last thing is to define the corresponding numeri-
cal flux 𝝎⊗𝑼 𝑒 in (3.7):

𝝎⊗𝑼 𝑒 ∶= (𝝎⊗𝑼 𝑒) ⋅ 𝒏, (3.16)

where 𝑼 𝑒 is defined in (3.11).
Next, we introduce the following lemma, demonstrating the well-

balancedness of the semi-discrete scheme (3.14).

Lemma 3.1. If the numerical solution reaches the equilibrium state, i.e. 
𝑼 = 𝑼 𝑒, the spatial operator in the semi-discrete ALE-DG scheme (3.14)
reduces to


ℎ
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) = ∫

𝜕𝐾(𝑡)

𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔− ∫
𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙,

which leads to the well-balanced property of spatial discretization.

Proof. We first claim that 𝑼 𝑏,𝑖𝑛𝑡𝐾(𝑡) = 𝑼 𝑏,𝑒𝑥𝑡𝐾(𝑡) = 𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡) = 𝑼 𝑒,𝑒𝑥𝑡𝐾(𝑡) in 
(3.10), following the fact that 𝑼𝑓 = 𝑼 −𝑼 𝑒 = 0 and (3.12). The consis-
tency property of the HLLC flux leads to

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾(𝑡) ,𝑼 𝑏,𝑒𝑥𝑡𝐾(𝑡) ,𝒏

)
=𝑮

(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏

=
(
𝑭
(
𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡)

)
−𝝎⊗𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏.

Using the assumption 𝑼 = 𝑼 𝑒 and the definition of source term (3.13), 
we have


ℎ
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) = ∫

𝐾(𝑡)

𝑮 (𝝎,𝑼 𝑒) ∶∇𝝋d𝒙

− ∫
𝜕𝐾(𝑡)

((
𝑭 (𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡) ) −𝝎⊗𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏
)
⋅𝝋d𝒔

− ∫
𝐾(𝑡)

𝑭 (𝑼 𝑒) ∶∇𝝋d𝒙+ ∫
𝜕𝐾(𝑡)

(
𝑭
(
𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏
)
⋅𝝋𝑖𝑛𝑡𝐾(𝑡) d𝒔

= ∫
𝜕𝐾(𝑡)

((
𝝎⊗𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏
)
⋅𝝋d𝒔− ∫

𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙

= ∫
𝜕𝐾(𝑡)

𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔− ∫
𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙,

where the last equality follows from (3.16). This finishes the proof. □

3.3.2. Well-balanced scheme based on a special source term approximation
A different approach to obtaining a well-balanced scheme will be 

discussed in this section. This is inspired by the recent work in [38], 
in which a positivity-preserving well-balanced DG scheme has been 
proposed on the static mesh. Compared with the work in [38], the def-
inition of 𝑼 𝑒 will be different and the numerical flux now involves the 
grid velocity 𝝎, again due to the moving meshes, while the form of the 
source term approximation and the modified cell boundary values are 
the same.

We begin with presenting the modified cell boundary values in [38]:

𝑼 𝑏̃,𝑖𝑛𝑡𝐾(𝑡) = 𝑝𝑐

𝑒,𝑖𝑛𝑡𝐾(𝑡)
𝑼 𝑖𝑛𝑡𝐾(𝑡) , 𝑼 𝑏̃,𝑒𝑥𝑡𝐾(𝑡) = 𝑝𝑐

𝑒,𝑒𝑥𝑡𝐾(𝑡)
𝑼 𝑒𝑥𝑡𝐾(𝑡) , (3.17)
𝑝 𝑝
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where 𝑝𝑐 is defined as the average of cell boundary values

𝑝𝑐 = 𝑝𝑒,𝑖𝑛𝑡𝐾(𝑡) + 𝑝𝑒,𝑒𝑥𝑡𝐾(𝑡)

2
. (3.18)

In [38], a novel source term approximation based on the source term 
reformulation idea in [41] has been introduced in one dimension and 
extended to two dimensions on rectangular meshes. A similar approxi-
mation will be utilized here, and extended to moving meshes, including 
two-dimensional triangular moving meshes. Let us denote the approx-
imation of ∫𝐾(𝑡)𝑺(𝑼 , ∇𝜙) ⋅ 𝝋d𝒙 by 𝑆𝑠

𝐾(𝑡). We use 𝑺
[𝑗] denotes the 𝑗-th 

component of 𝑺 , and similarly for 𝝋. The source term approximations 
are given by

∫
𝐾(𝑡)

𝑺[1](𝑼 ,∇𝜙)𝝋[1]d𝒙 = 0 =∶ ⟨𝑺[1],𝝋[1]⟩,
∫

𝐾(𝑡)

𝑺[2](𝑼 ,∇𝜙) ⋅𝝋[2]d𝒙

≈ ∫
𝐾(𝑡)

𝜌
∇𝑝𝑒

𝜌𝑒
⋅𝝋[2]d𝒙+ 𝜌̄

𝜌̄𝑒 ∫
𝜕𝐾(𝑡)

𝑝𝑒,𝑒𝑥𝑡𝐾(𝑡) − 𝑝𝑒,𝑖𝑛𝑡𝐾(𝑡)

2
𝒏 ⋅𝝋[2]d𝒔

=∶ ⟨𝑺[2],𝝋[2]⟩,
∫

𝐾(𝑡)

𝑺[3](𝑼 ,∇𝜙)𝝋[3]d𝒙

≈ ∫
𝐾(𝑡)

𝒎 ⋅
∇𝑝𝑒

𝜌𝑒
𝝋[3]d𝒙+ 𝒎̄

𝜌̄𝑒
⋅ ∫
𝜕𝐾(𝑡)

𝑝𝑒,𝑒𝑥𝑡𝐾(𝑡) − 𝑝𝑒,𝑖𝑛𝑡𝐾(𝑡)

2
𝒏𝝋[3]d𝒔

=∶ ⟨𝑺[3],𝝋[3]⟩,
𝑆𝑠
𝐾(𝑡) = ⟨𝑺[1],𝝋[1]⟩+ ⟨𝑺[2],𝝋[2]⟩+ ⟨𝑺[3],𝝋[3]⟩. (3.19)

Here 𝑼̄ , 𝑼̄ 𝑒
are the cell average of 𝑼 , 𝑼 𝑒 respectively. More details 

about this approximation can be found in [38]. Note that the formu-
lation in (3.19) is slightly different from that in [38], as an additional 
integration-by-parts procedure is applied here to simplify the notations. 
We note that sufficient integration accuracy in (3.19) for polynomials 
of degree 2𝑘 − 1 on 𝐾(𝑡) and 2𝑘 on 𝜕𝐾(𝑡) is needed to maintain the 
well-balanced property, since we will use integration by parts on the 
polynomial integration in the proof of well-balanced property and this 
only holds with exact integration of these polynomials. The details will 
be shown in Lemma 3.3.

The well-balanced ALE-DG scheme based on a special source term 
approximation is given by: find 𝑼 ∈ 

𝑘
𝑑 (𝑡), such that

d
d𝑡 ∫

𝐾(𝑡)

𝑼 ⋅𝝋d𝒙 =
𝑠
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) , (3.20)

holds for any 𝝋 ∈ 
𝑘
𝑑 (𝑡), where the spatial operator is given by


𝑠
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) (3.21)

= ∫
𝐾(𝑡)

𝑮 (𝝎,𝑼 ) ∶∇𝝋d𝒙− ∫
𝜕𝐾(𝑡)

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾(𝑡) ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾(𝑡) ,𝒏

)
⋅𝝋d𝒔+𝑆𝑠

𝐾(𝑡),

with 𝑆𝑠
𝐾(𝑡) defined in (3.19), 𝑮̂ defined in (2.18) and 𝑼 𝑏̃,𝑖𝑛𝑡, 𝑼 𝑏̃,𝑒𝑥𝑡 defined 

in (3.17). The definition of the corresponding numerical flux 𝝎⊗𝑼 𝑒 in 
the method (3.7) takes the form

𝝎⊗𝑼 𝑒 ∶=
⎧⎪⎨⎪⎩

𝑝𝑐

𝑝
𝑒,𝑖𝑛𝑡𝐾(𝑡)

(𝝎⊗𝑼 𝑒,𝑖𝑛𝑡𝐾(𝑡) ) ⋅ 𝒏, if 𝝎 ⋅ 𝒏 < 0,
𝑝𝑐

𝑝
𝑒,𝑒𝑥𝑡𝐾(𝑡)

(𝝎⊗𝑼 𝑒,𝑒𝑥𝑡𝐾(𝑡) ) ⋅ 𝒏, if 𝝎 ⋅ 𝒏 > 0.
(3.22)

Next, we present the following lemmas on the well-balancedness of 
the semi-discrete scheme (3.20).

Lemma 3.2. For the pair of 
(
𝑼 𝑖𝑛𝑡,𝑼 𝑒𝑥𝑡

)
with 𝒎𝑖𝑛𝑡 = 𝒎𝑒𝑥𝑡 = 0 and 𝑝𝑖𝑛𝑡 =

𝑝𝑒𝑥𝑡 = 𝑝, the HLLC flux (2.18) satisfies
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𝑮̂
(
𝝎,𝑼 𝑖𝑛𝑡,𝑼 𝑒𝑥𝑡,𝒏

)
=

{
𝑮
(
𝝎,𝑼 𝑖𝑛𝑡

)
⋅ 𝒏, if 𝝎 ⋅ 𝒏 < 0,

𝑮
(
𝝎,𝑼 𝑒𝑥𝑡

)
⋅ 𝒏, if 𝝎 ⋅ 𝒏 > 0.

(3.23)

Proof. First, we introduce the notations 𝜔𝑛 = 𝝎 ⋅ 𝒏, 𝑐𝑚 =max
(
𝑐𝑖𝑛𝑡, 𝑐𝑒𝑥𝑡

)
. 

By using the assumption 𝒎𝑖𝑛𝑡 = 𝒎𝑒𝑥𝑡 = 0, the signal velocities in 
(2.25)–(2.27) can be simplified to

𝑆𝑖𝑛𝑡 = −𝑐𝑚 −𝜔𝑛, 𝑆𝑒𝑥𝑡 = 𝑐𝑚 −𝜔𝑛, 𝑆𝑀 = −𝜔𝑛. (3.24)

Note that 𝑆𝑀 = 𝑣𝑛,𝑖𝑛𝑡 = 𝑣𝑛,𝑒𝑥𝑡 = −𝜔𝑛 in (2.24) and (2.27), which leads 
to 𝑝∗ = 𝑝 = 𝑝𝑖𝑛𝑡 = 𝑝𝑒𝑥𝑡 in (2.23). One can then simplify the intermediate 
states in (2.19) and (2.20) as

𝑼∗,𝑖𝑛𝑡 =𝑼 𝑖𝑛𝑡, 𝑼∗,𝑒𝑥𝑡 =𝑼 𝑒𝑥𝑡,

and the corresponding numerical flux in (2.21) and (2.22) as

𝑮∗,𝑖𝑛𝑡 =𝑮
(
𝝎,𝑼 𝑖𝑛𝑡

)
⋅ 𝒏, 𝑮∗,𝑒𝑥𝑡 =𝑮

(
𝝎,𝑼 𝑒𝑥𝑡

)
⋅ 𝒏.

Combining this with the signal velocities, one can conclude (3.23), and 
this finishes the proof. □

Lemma 3.3. If the numerical solution reaches the equilibrium state, i.e. 
𝑼 = 𝑼 𝑒, the spatial operator in the semi-discrete ALE-DG scheme (3.20)
reduces to


𝑠
𝐾 (𝝎,𝑼 ,𝝋, 𝑡) = ∫

𝜕𝐾(𝑡)

𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔− ∫
𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙,

which leads to the well-balanced property of the spatial discretization.

Proof. We first claim that 𝑝𝑏̃,𝑖𝑛𝑡𝐾(𝑡) = 𝑝𝑐 in (3.17), due to the fact that 
𝑼 =𝑼 𝑒 and

𝑝𝑏̃,𝑖𝑛𝑡𝐾(𝑡) = 𝑝𝑐

𝑝𝑒,𝑖𝑛𝑡𝐾(𝑡)
𝑝𝑖𝑛𝑡𝐾(𝑡) = 𝑝𝑐 .

Similarly, we have 𝑝𝑏̃,𝑒𝑥𝑡𝐾(𝑡) = 𝑝𝑐 and 𝑝𝑏̃,𝑖𝑛𝑡𝐾(𝑡) = 𝑝𝑏̃,𝑒𝑥𝑡𝐾(𝑡) . Utilizing the 
property of HLLC flux in Lemma 3.2 yields

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾(𝑡) ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾(𝑡) ,𝒏

)
=
⎧⎪⎨⎪⎩
𝑮
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾(𝑡)

)
⋅ 𝒏, if 𝝎 ⋅ 𝒏 < 0,

𝑮
(
𝝎,𝑼 𝑏̃,𝑒𝑥𝑡𝐾(𝑡)

)
⋅ 𝒏, if 𝝎 ⋅ 𝒏 > 0.

(3.25)

For the source term approximation 𝑆𝑠
𝐾(𝑡), we use the assumption 

𝜌 = 𝜌𝑒, 𝒎 =𝒎𝑒 = 0 and the definition (3.19) to conclude that

⟨𝑺[1],𝝋[1]⟩ = ⟨𝑺[3],𝝋[3]⟩ = 0,

𝑆𝑠
𝐾(𝑡) = ⟨𝑺[2],𝝋[2]⟩ = ∫

𝐾(𝑡)

∇𝑝𝑒 ⋅𝝋[2]d𝒙+ ∫
𝜕𝐾(𝑡)

𝑝𝑒,𝑒𝑥𝑡𝐾(𝑡) − 𝑝𝑒,𝑖𝑛𝑡𝐾(𝑡)

2
𝒏 ⋅𝝋[2]d𝒔

= − ∫
𝐾(𝑡)

𝑝𝑒 𝐼 ∶∇𝝋[2]d𝒙+ ∫
𝜕𝐾(𝑡)

𝑝𝑐𝒏 ⋅𝝋[2]d𝒔, (3.26)

where the last equality follows from integration by part (which holds 
with sufficient integration accuracy) and the definition of 𝑝𝑒 in (3.18). 
Based on the assumptions 𝑼 =𝑼 𝑒, 𝒎 = 0, we have

𝑮 (𝝎,𝑼 ) =
⎛⎜⎜⎝
0
𝑝𝐼

0

⎞⎟⎟⎠−𝝎⊗𝑼 ,

and can conclude that


𝑠
𝐾 (𝝎,𝑼 ,𝝋, 𝑡)

= ∫
𝐾(𝑡)

𝑮 (𝝎,𝑼 ) ∶∇𝝋d𝒙− ∫
𝜕𝐾(𝑡)

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾(𝑡) ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾(𝑡) ,𝒏

)
⋅𝝋d𝒔+𝑆𝑠

𝐾(𝑡)

= ∫ 𝑮 (𝝎,𝑼 ) ∶∇𝝋d𝒙− ∫ 𝑝𝑐𝒏 ⋅𝝋[2] −𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔

𝐾(𝑡) 𝜕𝐾(𝑡)
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+
⎛⎜⎜⎝ ∫
𝜕𝐾(𝑡)

𝑝𝑐𝒏 ⋅𝝋[2]d𝒔− ∫
𝐾(𝑡)

𝑝𝑒 𝐼 ∶∇𝝋[2]d𝒙
⎞⎟⎟⎠

= ∫
𝜕𝐾(𝑡)

𝝎⊗𝑼 𝑒 ⋅𝝋d𝒔− ∫
𝐾(𝑡)

(𝝎⊗𝑼 𝑒) ∶∇𝝋d𝒙,

where the second equality follows from the combination of (3.22), 
(3.25), (3.26), the definition of 𝑼 𝑏̃ in (3.17) and the assumptions 
𝑼 =𝑼 𝑒, 𝒎 = 0. □

3.4. Time discretization and well-balanced property

We use the standard TVD-RK time discretization with slight modifi-
cations introduced in [14] in the multi-dimensional case in this paper. 
For the ALE-DG methods, the TVD-RK time discretization may destroy 
the well-balanced property because the spatial discretization ℎ∕𝑠

𝐾
ap-

plied to the equilibrium states do not equal 0, as indicated in Lemma 3.1
and Lemma 3.3. Therefore, we would apply the same time discretiza-
tion for the approximation 𝑼 𝑒 to ensure 𝑼 =𝑼 𝑒 at each time step.

We start with presenting the standard s-stage TVD-RK time dis-
cretization: for 𝑖 = 1, ⋯ , 𝑠,

∫
𝐾𝑛,𝑖

𝑼 𝑛,𝑖 ⋅𝝋𝑛,𝑖d𝒙

=
𝑖−1∑
𝑗=0

⎛⎜⎜⎝𝛼𝑖𝑗 ∫𝐾𝑛,𝑗

𝑼 𝑛,𝑗 ⋅𝝋𝑛,𝑗d𝒙+ 𝛽𝑖𝑗Δ𝑡𝐾𝑛,𝑗

(
𝝎𝑛,𝑗 ,𝑼 𝑛,𝑗 ,𝝋𝑛,𝑗 , 𝑡𝑛,𝑗

)⎞⎟⎟⎠ ,
where 𝑡𝑛,0 = 𝑡𝑛, 𝑡𝑛,𝑠 = 𝑡𝑛+1 and 𝝋𝑛,𝑖, for 𝑖 = 1, ⋯ , 𝑠 are the correspond-
ing test functions at time 𝑡𝑛,𝑖 as defined in (2.11). The constants {𝛼𝑖𝑗}
and {𝛽𝑖𝑗} refer to the coefficients of the TVD-RK methods, which can 
be found in [17]. For example, the Euler forward time discretization 
corresponds to the case 𝑠 = 1, 𝛼10 = 1, 𝛽10 = 1, i.e.,

∫
𝐾𝑛+1

𝑼 𝑛+1 ⋅𝝋𝑛+1d𝒙 = ∫
𝐾𝑛

𝑼 𝑛 ⋅𝝋𝑛d𝒙+Δ𝑡𝐾𝑛 (𝝎𝑛,𝑼 𝑛,𝝋𝑛, 𝑡𝑛) .

Next, we introduce the approximation of the cell volume Δ𝐾𝑛,𝑖 , denoted 
by 𝐽𝐾𝑛,𝑖 , for 𝑖 = 1, ⋯ , 𝑠, which is defined by employing the TVD-RK 
methods:

𝐽𝐾𝑛,𝑖 =
𝑖−1∑
𝑗=0

(
𝛼𝑖𝑗 + 𝛽𝑖𝑗Δ𝑡∇𝒙𝑛,𝑗 ⋅𝝎

𝑛,𝑗
)
𝐽𝐾𝑛,𝑗 , (3.27)

where 𝐽𝐾𝑛,0 = Δ𝐾𝑛 .

The modified 𝑠-stage TVD-RK time discretization [14] to be used in 
this paper takes the form

𝐽𝐾𝑛,𝑖

Δ𝐾𝑛,𝑖 ∫
𝐾𝑛,𝑖

𝑼 𝑛,𝑖 ⋅𝝋𝑛,𝑖d𝒙

=
𝑖−1∑
𝑗=0

𝐽𝐾𝑛,𝑗

Δ𝐾𝑛,𝑗

⎛⎜⎜⎝𝛼𝑖𝑗 ∫𝐾𝑛,𝑗

𝑼 𝑛,𝑗 ⋅𝝋𝑛,𝑗d𝒙+ 𝛽𝑖𝑗Δ𝑡𝐾𝑛,𝑗

(
𝝎𝑛,𝑗 ,𝑼 𝑛,𝑗 ,𝝋𝑛,𝑗 , 𝑡𝑛,𝑗

)⎞⎟⎟⎠ ,
(3.28)

for 𝑖 = 1, ⋯ , 𝑠, with the main difference being the additional coefficients 
𝐽𝐾𝑛,𝑖

Δ𝐾𝑛,𝑖
. 𝐾𝑛,𝑗 in (3.28) can be replaced by ℎ

𝐾𝑛,𝑗 in (3.14) or 𝑠
𝐾𝑛,𝑗 in 

(3.20), leading to two fully-discrete well-balanced ALE-DG schemes.
The GCL is an important property to keep high order accuracy and 

well-balanced property for the grid deformation method. We introduce 
the GCL briefly and refer to [24] for details. If a method satisfies the 
GCL, it can preserve the constant states. Both proposed schemes satisfy 
the GCL property, and we provide brief proof for the 2D case. First, if 
a constant state satisfies our model (1.1), the gravitational potential 𝜙
should also be a constant. In this case, we set the equilibrium state 𝑼𝑑

as the same constant state. We have the reference equilibrium states 
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𝑼 𝑒 =𝑼 𝑒 =𝑼𝑑 =𝑼 , all being constants, and 𝝎⊗𝑼 𝑒 = 𝝎⊗𝑼 on the cell 
boundary. Following Lemmas 3.1 and 3.3, (3.28) reduces to

𝐽𝐾𝑛,𝑖

Δ𝐾𝑛,𝑖 ∫
𝐾𝑛,𝑖

𝑼 𝑛,𝑖 ⋅𝝋𝑛,𝑖d𝒙

=
𝑖−1∑
𝑗=0

𝐽𝐾𝑛,𝑗

Δ𝐾𝑛,𝑗

⎛⎜⎜⎝𝛼𝑖𝑗 ∫𝐾𝑛,𝑗

𝑼 𝑛,𝑗 ⋅𝝋𝑛,𝑗d𝒙+ 𝛽𝑖𝑗Δ𝑡
⎛⎜⎜⎝∫𝐾𝑛,𝑗

(
∇ ⋅
(
𝝎𝑛,𝑗 ⊗𝑼 𝑛,𝑗

))
⋅𝝋𝑛,𝑗d𝒙

⎞⎟⎟⎠
⎞⎟⎟⎠

=
𝑖−1∑
𝑗=0

𝐽𝐾𝑛,𝑗

Δ𝐾𝑛,𝑗

⎛⎜⎜⎝𝛼𝑖𝑗 ∫𝐾𝑛,𝑗

𝑼 𝑛,𝑗 ⋅𝝋𝑛,𝑗d𝒙+ 𝛽𝑖𝑗Δ𝑡
⎛⎜⎜⎝∫𝐾𝑛,𝑗

(
∇ ⋅𝝎𝑛,𝑗

)
𝑼 𝑛,𝑗 ⋅𝝋𝑛,𝑗d𝒙

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

where the first equality follows from the results above and the integral 
by part, and the second equality holds as 𝑼 is a constant state. By setting 
the test function 𝝋 = 1 and using equation (3.27), we can easily prove 
𝑼 𝑛,𝑗 = 𝑼 𝑛 for all 𝑗, i.e., 𝑼 𝑛+1 is still a constant state. From this, we 
can also observe why we need to slightly modify the Runge-Kutta time 
discretization with the term (3.27). We refer to [14] for more discussion 
on this term.

We will prove that the fully discrete well-balanced ALE-DG scheme 
(3.28), when coupled with the modified TVD-RK methods, preserves the 
equilibrium state at a discrete level. For ease of presentation, we will 
demonstrate the well-balanced property of the fully discrete ALE-DG 
scheme with the modified Euler forward time discretization:(
1 +Δ𝑡∇𝒙𝑛 ⋅𝝎

𝑛
)
Δ𝐾𝑛

Δ𝐾𝑛+1 ∫
𝐾𝑛+1

𝑼 𝑛+1 ⋅𝝋𝑛+1d𝒙

= ∫
𝐾𝑛

𝑼 𝑛 ⋅𝝋𝑛d𝒙+Δ𝑡𝐾𝑛 (𝝎𝑛,𝑼 𝑛,𝝋𝑛, 𝑡𝑛) ,
(3.29)

where 𝝋𝑛+1 and 𝝋𝑛 are the corresponding test functions (2.11) at time 
𝑡𝑛+1 and 𝑡𝑛 respectively. The same proof can be easily extended to gen-
eral TVD-RK methods.

Proposition 3.4. The fully discrete schemes described in (3.29), with 𝐾𝑛,𝑗

replaced by ℎ
𝐾𝑛,𝑗 in (3.14) or 𝑠

𝐾𝑛,𝑗 in (3.20), maintain the equilibrium 
state exactly, which means that 𝑼 𝑛 =𝑼 𝑒,𝑛 for all time level 𝑡𝑛.

Proof. We will use induction to prove the result of 𝑼 𝑛 =𝑼 𝑒,𝑛, ∀𝑛 ∈ℕ.
Basic Step: Suppose that the exact solution 𝑼 𝑒𝑥 equals the desired 

hydrostatic equilibrium state 𝑼𝑑 . Since the initial condition 𝑼 0 and 
𝑼 𝑒,0 are both the 𝐿2 projection of 𝑼𝑑 , we have 𝑼 0 =𝑼 𝑒,0.

Inductive Step: Now we assume that 𝑼𝑘 =𝑼 𝑒,𝑘 holds for some 𝑘 ∈ ℕ. 
From this assumption we want to deduce that 𝑼𝑘+1 =𝑼 𝑒,𝑘+1.

Considering the well-balanced properties of the semi-discrete meth-
ods in Lemma 3.1 and Lemma 3.3. By comparing the results with the 
ALE-DG scheme for 𝑼 𝑒 in (3.7) (again discretized in time via the same 
modified TVD-RK methods), we have

∫
𝐾𝑘+1

(𝑼𝑘+1 −𝑼 𝑒,𝑘+1) ⋅𝝋𝑘+1d𝒙 = 0, (3.30)

which leads to 𝑼𝑘+1 = 𝑼 𝑒,𝑘+1. This finishes the proof of the well-
balanced property for the fully discrete methods. □

4. The positivity-preserving well-balanced ALE-DG methods

In this section, we show that the cell average of the numerical solu-
tion of the fully-discrete ALE-DG schemes satisfies the weak positivity 
property under a suitable choice of time step. The limiter introduced in 
[52] is then applied to enforce the positivity-preserving property of the 
proposed methods.
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4.1. Quadrature rules

We start with introducing the following two sets of quadrature rules 
to be used in the proofs.
Gauss quadrature rule: In the numerical implementation, the standard 
Gauss quadrature rule is used for all the integrals appearing in both 
one-dimensional and two-dimensional fully discrete ALE-DG methods. 
We denote the two-dimensional Gauss quadrature nodes and weights 
on the cell 𝐾(𝑡) by 

{
𝒙̂
𝜇
𝐾(𝑡), 𝜔̂

𝜇
𝐾(𝑡)

}
1≤𝜇≤𝐿, which implies that the average 

of the polynomial 𝑼𝐾(𝑡) can be written as

𝑼̄𝐾(𝑡) =
𝐿∑

𝜇=1
𝜔̂𝜇
𝐾(𝑡)𝑼𝐾(𝑡)

(
𝒙̂
𝜇
𝐾(𝑡)

)
. (4.1)

We also denote the one-dimensional Gauss quadrature nodes and 

weights on the cell edge 𝐹 𝜈
𝐾(𝑡) of the cell 𝐾(𝑡) by 

{
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

, 𝜛̃𝜇

𝐹 𝜈
𝐾(𝑡)

}
1≤𝜇≤𝑁

, 

which implies that

∫
𝐹𝜈
𝐾(𝑡)

𝑮 (𝝎,𝑼 ) 𝑑𝑠 ≈ |||𝐹 𝜈
𝐾(𝑡)
||| 𝑁∑
𝜇=1

𝜛̃𝜇

𝐹𝜈
𝐾(𝑡)

𝑮

(
𝝎

(
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

)
,𝑼

(
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

))
, (4.2)

where |||𝐹 𝜈
𝐾(𝑡)
||| denotes the area of the cell face 𝐹 𝜈

𝐾(𝑡). We note that all 
these quadrature rules should be exact for integrals of polynomials of 
degrees up to 𝑘, since integration by parts on the polynomial integration 
will be used in the proof of well-balanced property, and this only holds 
with exact integration of these polynomials.
Special quadrature rule: The special quadrature rule is introduced in 
[52, Fig. 3.2] to deal with the unstructured mesh. Such a quadrature 
rule is introduced in this paper only for the purpose of proving the 
weak positivity property and will not be used in the implementation. 
The most important property of the special quadrature rule is that

• The quadrature rule has positive weights and is exact for integrals 
of polynomials of degree up to 𝑘 on the cell 𝐾(𝑡);

• The set of the quadrature points must include all the quadrature 
points 𝒙̃𝜇

𝐹𝜈
𝐾(𝑡)

, 𝜇 = 1, ⋯ , 𝑁 on the edges 𝐹 𝜈
𝐾(𝑡) ∈ 𝜕𝐾, 𝜈 = 1,⋯ , 𝑑 + 1.

We can write the average of 𝑼 over the element 𝐾(𝑡) as

𝑼̄𝐾(𝑡) =
𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜔̃𝜇

𝐹 𝜈
𝐾(𝑡)

𝑼 𝑖𝑛𝑡𝐾(𝑡)

(
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

)
+

𝐿̃∑
𝜇=1

𝜔̃𝜇
𝐾(𝑡)𝑼𝐾(𝑡)

(
𝒙̃
𝜇
𝐾(𝑡)

)
, (4.3)

where 
{
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

}
are quadrature points on the boundary of 𝐾(𝑡) and {

𝒙̃
𝜇
𝐾(𝑡)

}
are quadrature points inside 𝐾 , and 

{
𝜔̃𝜇

𝐹 𝜈
𝐾(𝑡)

}
and 

{
𝜔̃𝜇
𝐾(𝑡)

}
are 

the corresponding quadrature weights.
For simplicity, we define the following quadrature nodes set in the 

cell 𝐾(𝑡)

𝕊𝐾(𝑡) =
{
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

, 𝜇 = 1,⋯ ,𝑁, 𝜈 = 1,⋯ , 𝑑 + 1
}⋃{

𝒙̃
𝜇
𝐾(𝑡), 𝜇 = 1,⋯ , 𝐿̃

}
⋃{

𝒙̂
𝜇
𝐾(𝑡), 𝜇 = 1,⋯ ,𝐿

}
, (4.4)

and quadrature nodes set on the boundary of 𝐾(𝑡)

ℚ𝐾(𝑡) =
{
𝒙̃
𝜇

𝐹𝜈
𝐾(𝑡)

, 𝜇 = 1,⋯ ,𝑁, 𝜈 = 1,⋯ , 𝑑 + 1
}

. (4.5)

4.2. Properties of the admissible states

The density 𝜌 and the pressure 𝑝 should stay positive. Numerically, 
the appearance of negative density or pressure may lead to the break-
down of the simulation, and we hope the numerical solution 𝑼 can 
belong to the following set of physically admissible states
346
 ∶=
{

𝑼 = (𝜌,𝒎,𝐸)𝑇 ||| 𝜌 > 0, (𝑼 ) ∶=𝐸 = ‖𝒎‖2
2𝜌

> 0
}

, (4.6)

where (𝑼 ) > 0 is equivalent to the pressure 𝑝 > 0. To prove the weak 
positivity property satisfied by the cell average of the proposed well-
balanced ALE methods, we will introduce some properties of the ad-
missible set . One can easily verify that the admissible state set  is 
convex.

Lemma 4.1 ([38, Lemma 2.3]). For any 𝜆1 > 0, 𝜆0 ≥ 0, 𝑼 1, 𝑼 0 ∈ , we 
have

𝜆1𝑼
1 + 𝜆0𝑼

0 ∈ . (4.7)

The following lemma, similar to those lemmas in [51], is introduced 
for the numerical flux. The main difference to those in [51] is that the 
numerical flux of the ALE-DG methods involves the grid velocity 𝝎.

Lemma 4.2. For 𝑼 ∈ , we have
𝑼 − 𝜂𝑮 (𝝎,𝑼 ) ⋅ 𝒏 ∈  (4.8)

if 𝜂 > 0 and satisfies

𝛼0 𝜂 ≤ 1, (4.9)

where

𝛼0 ∶= |(𝒖−𝝎) ⋅ 𝒏|+ 𝑝

𝜌
√
2𝑒

, ‖𝒏‖ = 1.

Proof. It is easy to check the first component of the vector is positive, 
following the same proof in [51]. Next, we verify that the pressure of 
the vector is positive. Simple algebra leads to

 (𝑼 − 𝜂𝑮 (𝝎,𝑼 ) ⋅ 𝒏)

=𝐸 − 𝜂 (𝐸 (𝒖−𝝎) ⋅ 𝒏+ 𝑝𝒖 ⋅ 𝒏) − 1
2
‖𝒎− 𝜂 (((𝒖−𝝎) ⋅ 𝒏)𝒎+ 𝑝𝒏)‖2

𝜌− 𝜂𝜌 (𝒖−𝝎) ⋅ 𝒏

= (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝐸 − 𝜂𝑝𝒖 ⋅ 𝒏− 1
2
‖(1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝒎− 𝜂𝑝𝒏‖2

(1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌
= (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝐸 − 𝜂𝑝𝒖 ⋅ 𝒏

− 1
2
‖(1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌𝒖‖2 + (𝜂𝑝)2 − 2𝜂 (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌𝑝𝒖 ⋅ 𝒏

(1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌

= (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)
(
𝐸 − 1

2
𝜌‖𝒖‖2)− 𝜂2𝑝2

2 (1 − 𝜂(𝒖−𝝎) ⋅ 𝒏)𝜌

= (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌𝑒− 𝜂2𝑝2

2 (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌

= 𝜂2

2 (1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏)𝜌

(
2
(
1
𝜂
− (𝒖−𝝎) ⋅ 𝒏

)2
𝜌2𝑒− 𝑝2

)
.

Now it is easy to verify that, under the condition (4.9), we have

1 − 𝜂 (𝒖−𝝎) ⋅ 𝒏 ≥ 1 − (𝒖−𝝎) ⋅ 𝒏
𝛼0

> 0, (4.10)

and

2
(
1
𝜂
− (𝒖−𝝎) ⋅ 𝒏

)2
𝜌2𝑒− 𝑝2 ≥ 2

(
𝛼0 − (𝒖−𝝎) ⋅ 𝒏

)2
𝜌2𝑒− 𝑝2 = 0. (4.11)

Therefore, we can conclude that 𝑼 − 𝜂𝑮 (𝝎,𝑼 ) ⋅ 𝒏 ∈ . □

The following two lemmas are introduced for the HLLC numerical 
flux. Our proofs are similar to that of [38, Lemmas 2.7, 2.8] and the 
main difference is that unstructured meshed are considered here and 
the numerical flux involves the grid velocity.

Lemma 4.3. For 𝑼 𝑖𝑛𝑡, 𝑼 𝑒𝑥𝑡 ∈ , the intermediate states defined in (2.19)
and (2.20) satisfy
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𝑼 𝑖𝑛𝑡,∗ ∈ , 𝑼 𝑒𝑥𝑡,∗ ∈ . (4.12)

The proof is the same as the one on static mesh in [4] by replacing 
𝒖 ⋅𝒏 with (𝒖−𝝎) ⋅𝒏. Also, the result in [31] shows the same claim for the 
ALE schemes. Therefore we omit the proof of this lemma in this paper.

Lemma 4.4. For 𝑼 1, 𝑼 2 ∈  and ‖𝒏‖ = 1, we have

𝑼 1 − 𝜂 𝑮̂
(
𝝎,𝑼 1,𝑼 2,𝒏

)
∈ , (4.13)

if 𝜂 > 0 and satisfies

𝛼0 𝜂 ≤ 1
2
, (4.14)

where

𝛼0 ∶= max
𝑼∈{𝑼1 ,𝑼2}

|(𝒖−𝝎) ⋅ 𝒏|+√𝛾𝑝∕𝜌.

Proof. The proof on static meshes with 𝝎 = 0 can be found in [38, 
Lemma 2.8], and similar proof is also shown in [10] with the La-
grangian scheme. Let 𝑆 = 𝑆𝑖𝑛𝑡(𝑼 1, 𝑼 2), as defined in (2.25), and it 
satisfies that 2 𝜂 |𝑆| < 1 following the assumption. According to the def-
inition of the HLLC flux, we derive that

1
2
𝑼 1 − 𝜂

(
𝑮̂
(
𝝎,𝑼 1,𝑼 2,𝒏

)
−𝑮
(
𝝎,𝑼 1) ⋅ 𝒏)

= 1
2

⎛⎜⎜⎝(2𝜂min (𝑆,0) + 1)𝑼 1 +

0

∫
2𝜂min(𝑆,0)

(𝑥∕𝑡,𝑼 1,𝑼 2)d𝒙
⎞⎟⎟⎠ ,

where (𝑥∕𝑡, 𝑼 1, 𝑼 2) denotes the approximate HLLC solution to the Rie-
mann problem between the state 𝑼 1 and 𝑼 2, i.e.,

(𝑥∕𝑡,𝑼 1,𝑼 2) =

⎧⎪⎪⎨⎪⎪⎩

𝑼 1, if 𝑥

𝑡
≤ 𝑆𝑖𝑛𝑡,

𝑼 1,∗, if 𝑆𝑖𝑛𝑡 ≤ 𝑥

𝑡
≤ 𝑆𝑀,

𝑼 2,∗, if 𝑆𝑀 ≤ 𝑥

𝑡
≤ 𝑆𝑒𝑥𝑡,

𝑼 2, if 𝑥

𝑡
≥ 𝑆𝑒𝑥𝑡.

(4.15)

We have (𝑥∕𝑡, 𝑼 1, 𝑼 2) ∈  due to Lemma 4.3, and the convexity of 
leads to

1
2
𝑼 1 − 𝜂

(
𝑮̂
(
𝝎,𝑼 1,𝑼 2,𝒏

)
−𝑮
(
𝝎,𝑼 1) ⋅ 𝒏) ∈ . (4.16)

Moreover, using Lemma 4.2 and the condition (4.14), we have

1
2
𝑼 1 − 𝜂𝑮

(
𝝎,𝑼 1) ⋅ 𝒏 ∈ . (4.17)

Combining the results in (4.16) and (4.17), we have

𝑼 1 − 𝜂 𝑮̂
(
𝝎,𝑼 1,𝑼 2,𝒏

)
∈ ,

following the convexity of . □

The following two lemmas are introduced to address the impact of 
the well-balanced modifications of the numerical flux terms and source 
term approximation, respectively.

Lemma 4.5 ([49, Lemma 4.3]). For 𝑼 , 𝑼∗ ∈  with 𝒖 = 𝒖∗, we have

𝑼 − 𝜂𝑼∗ ∈  (4.18)

if 𝜂 > 0 and satisfies

𝛼1 𝜂 ≤ 1 (4.19)

where

𝛼1 = max
(
𝜌∗

,
𝑝∗
)
.

𝜌 𝑝
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Lemma 4.6 ([38, Lemma 2.4]). For 𝜆 > 0, 𝜂 ∈ ℝ, 𝑼 ∈ , and 𝒂 ∈ ℝ𝑑 , if |𝜂| ||𝒂||√
2𝑒

≤ 𝜆, then

𝜆𝑼 − 𝜂(0, 𝜌𝒂,𝒎 ⋅ 𝒂)𝑇 ∈ . (4.20)

4.3. The positivity-preserving property

In this section, we will prove that both of the proposed well-
balanced schemes satisfy a weak positivity property. A simple scaling 
limiter can be applied to enforce the positivity-preserving property.

4.3.1. The weak positivity property
We list the weak positivity property of two proposed schemes below 

and refer to Appendix A and B for the detailed proofs, respectively.

Theorem 4.7 (Hydrostatic reconstruction). For the semi-discrete scheme 
(3.14) and time discretization (3.28), if 𝑼 𝑛

𝐾 (𝑥) ∈  holds for any 𝑥 ∈ 𝕊𝑛
𝐾
, 

we have

𝑼̄
𝑛+1
𝐾 ∈  (4.21)

under the CFL-type condition

𝛼̂0Δ𝑡 ≤ 1 (4.22)

with

𝛼̂0 = 𝛼̂𝐹 + 𝛼̂𝑆 ,

𝛼̂𝐹 = 𝛼̂1𝛼max
𝜈,𝜇

2𝜛̃𝜇

𝐹𝜈
𝐾𝑛
|𝐹 𝜈

𝐾𝑛 |
𝜔̃𝜇

𝐹 𝜈
𝐾𝑛

Δ𝐾𝑛

, 𝛼 = max
𝒙∈ℚ𝐾𝑛

|(𝒖𝑏𝐾 (𝒙) −𝝎) ⋅ 𝒏|+
√√√√𝛾

𝑝𝑏
𝐾
(𝒙)

𝜌𝑏
𝐾
(𝒙)

,

𝛼̂1 = max
𝒙∈ℚ𝐾𝑛

(
𝜌𝑏
𝐾
(𝒙)

𝜌𝑛
𝐾
(𝒙)

,
𝑝𝑏
𝐾
(𝒙)

𝑝𝑛
𝐾
(𝒙)

)
, 𝛼̂𝑆 = max

𝒙∈𝕊𝐾𝑛

||∇𝑝𝑒,𝑛
𝐾
(𝒙)∕𝜌𝑒,𝑛

𝐾
(𝒙)||√

2𝑒𝑛
𝐾
(𝒙)

,

where 𝑼̄ 𝑛+1
𝐾 denotes the average of numerical solution 𝑼 𝑛+1

𝐾
.

Theorem 4.8 (Special source term). For the semi-discrete scheme (3.20)
and time discretization (3.28), if 𝑼 𝑛

𝐾 (𝑥) ∈  holds for any 𝑥 ∈ 𝕊𝑛
𝐾
, we have

𝑼̄
𝑛+1
𝐾 ∈  (4.23)

under the CFL-type condition

𝛼̃0Δ𝑡 ≤ 1 (4.24)

with

𝛼̃0 = 𝛼̃𝐹 + 𝛼̃𝑆 ,

𝛼̃𝐹 = 𝛼𝛼̃1 max
𝜈,𝜇

2𝜛̃𝜇

𝐹𝜈
𝐾

|𝐹 𝜈
𝐾𝑛 |

𝜔̃𝜇

𝐹 𝜈
𝐾𝑛

Δ𝐾𝑛

, 𝛼̃1 = max
𝒙∈ℚ𝐾𝑛

𝑝𝑐(𝒙)
𝑝𝑒(𝒙)

,

𝛼 = max
𝒙∈ℚ𝐾𝑛

|(𝒖𝑏̃𝐾 (𝒙) −𝝎) ⋅ 𝒏|+
√√√√√𝛾

𝑝𝑏̃
𝐾
(𝒙)

𝜌𝑏̃
𝐾
(𝒙)

, 𝛼̃𝑆 = 𝛼̃1𝑆 + 𝛼̃2𝑆 ,

𝛼̃1𝑆 = max
𝒙∈𝕊𝐾𝑛

||∇𝑝𝑒,𝑛
𝐾
(𝒙)∕𝜌𝑒,𝑛

𝐾
(𝒙)||√

2𝑒𝑛
𝐾
(𝒙)

, 𝛼̃2𝑆 =
|| ∫𝜕𝐾𝑛 [𝑝]𝑒,𝐾

𝑛
𝒏d𝒔||

Δ𝐾𝑛 𝜌̄𝑒
√

2𝑒𝑛
𝐾

,

where [𝑝]𝑒,𝐾𝑛 = (𝑝𝑒,𝑒𝑥𝑡𝐾𝑛 − 𝑝𝑒,𝑖𝑛𝑡𝐾𝑛 )∕2.

Remark 4.9. We note that the term 𝑇 =max𝜈,𝜇
𝜛̃

𝜇

𝐹𝜈
𝐾𝑛
|𝐹𝜈

𝐾𝑛 |
𝜔̃
𝜇

𝐹𝜈
𝐾𝑛

Δ𝐾𝑛
in the param-

eters 𝛼̂𝐹 and 𝛼̃𝐹 is based on the shape of the triangle cells and the 
quadrature rule. A further discussion on the size of this term can be 
found in [49, Remark 4.1]. For example, 𝑇 = 6 in one dimension and 
Δ𝐾𝑛
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𝑇 ≈ 19.3√
Δ𝐾𝑛

for a 30-60-90 triangle in two dimensions with the polyno-
mial degree 𝑘 = 2.

4.3.2. The positivity-preserving limiter
Based on the weak positivity properties introduced in Section 4.3.1, 

a positivity-preserving limiter is presented in [52] on the static mesh. 
The same limiter approach can be extended to the ALE-DG methods. 
Under the assumption that 𝑼̄𝐾(𝑡) ∈ , such limiter can be implemented 
in two steps.

The first step is to ensure the positivity of density via

𝑼̂𝐾(𝑡)(𝒙) =
(
𝜌̂𝐾(𝑡)(𝒙),𝒎𝐾(𝑡)(𝒙),𝐸𝐾(𝑡)(𝒙)

)𝑇
, (4.25)

𝜌̂𝐾(𝑡) = 𝜃(1)
𝐾(𝑡)
(
𝜌𝐾(𝑡) − 𝜌̄𝐾(𝑡)

)
+ 𝜌̄𝐾(𝑡), (4.26)

𝜃(1)
𝐾(𝑡) = min

{
1,

𝜌̄𝐾(𝑡) − 𝜖

𝜌̄𝐾(𝑡) − min𝒙∈𝕊𝐾(𝑡)
𝜌𝐾(𝑡) (𝒙)

}
. (4.27)

The resulting density 𝜌̂𝐾(𝑡)(𝒙) is positive for all 𝒙 ∈ 𝕊𝐾(𝑡).

The second step is to ensure the positivity of pressure via

𝑼̃𝐾(𝑡) = 𝜃(2)
𝐾(𝑡)
(
𝑼̂𝐾(𝑡)(𝒙) − 𝑼̄𝐾(𝑡)

)
+ 𝑼̄𝐾(𝑡), (4.28)

𝜃(2)
𝐾(𝑡) = min

{
1,

 (𝑼̄𝐾(𝑡)
)
− 𝜖

 (𝑼̄𝐾(𝑡)
)
−min𝒙∈𝕊𝐾(𝑡)

 (𝑼̂𝐾(𝑡) (𝒙)
)} . (4.29)

One can show that 𝑼̃𝐾(𝑡) ∈ , and then treat it as the updated numerical 
solution to continue the simulation. We apply the limiter at each Runge-
Kutta stage in our simulation and still denote the obtained numerical 
solution by 𝑼𝐾(𝑡) for simplicity. We note that this positivity-preserving 
limiter is very important to the robustness of the numerical simulations. 
Without such a limiter, the weak positivity property cannot hold for all 
time steps, and in some numerical examples listed below, it will break 
down quickly.

Remark 4.10. We note that this positivity-preserving limiter won’t de-
stroy the well-balanced property. In our method, we apply the limiter 
Θ to 𝑼 and 𝑼 𝑒 at each Runge-Kutta stage. For the equilibrium state, 
which involves low density or low pressure, we still have 𝑼 = 𝑼 𝑒 and 
𝑼𝑓 = 0. Moreover, we still have 𝑼 𝑒 being continuous at the cell bound-
ary, because the limiter Θ is not applied to 𝑼 𝑒. In this situation, the 
proof of Proposition 3.4 holds, and the well-balanced property can be 
maintained.

5. Numerical examples

This section provides numerical results for the proposed two well-
balanced schemes. We denote the scheme based on hydrostatic recon-
struction (3.14) by WB(H) and the scheme based on a special source 
term approximation (3.20) by WB(S). In all numerical tests, moving 
meshes are given arbitrarily, without any special rules. Unless otherwise 
stated, the following settings for the moving meshes and polynomial de-
grees are used. In 1D examples, we use the uniform initial mesh coupled 
with moving grids:

𝑥
𝑗+ 1

2
(𝑡) = 𝑥

𝑗+ 1
2
(0) + 1

10(𝑥𝑟 − 𝑥𝑙)2
sin
(2𝜋𝑡

𝑇

)(
𝑥
𝑗+ 1

2
(0) − 𝑥𝑟

)
×
(
𝑥
𝑗+ 1

2
(0) − 𝑥𝑙

)
, (5.1)

where 𝑇 is the stop time and 𝑥𝑙 , 𝑥𝑟 are the endpoints of the compu-
tational domain. In 2D examples, we use the uniform criss-triangular 
initial mesh coupled with moving grids:

𝑥𝑗 (𝑡) = 𝑥𝑗 (0) + 0.03 sin
( 2𝜋𝑥𝑗 (0)

𝑥𝑟 − 𝑥𝑙

)
sin
( 2𝜋𝑦𝑗 (0)

𝑦𝑟 − 𝑦𝑙

)
sin
( 2𝜋𝑡

𝑇

)
,

𝑦𝑗 (𝑡) = 𝑦𝑗 (0) + 0.02 sin
( 2𝜋𝑥𝑗 (0)

)
sin
( 2𝜋𝑦𝑗 (0)

)
sin
( 4𝜋𝑡)

,

(5.2)
𝑥𝑟 − 𝑥𝑙 𝑦𝑟 − 𝑦𝑙 𝑇
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Table 5.1

Example 5.1, 𝐿1 errors and orders of accuracy for the scheme WB(H) and 𝑘 =
1, 2, 3.
𝑘 = 1 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

50 1.45E-05 – 2.46E-06 – 1.03E-05 –

100 4.17E-06 1.80 6.11E-07 2.01 2.57E-06 2.00

200 1.10E-06 1.93 1.52E-07 2.00 6.43E-07 2.00

400 2.80E-07 1.97 3.81E-08 2.00 1.61E-07 2.00

𝑘 = 2 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

10 6.55E-06 – 1.60E-06 – 5.72E-06 –

20 9.60E-07 2.77 1.98E-07 3.02 7.16E-07 3.00

40 1.14E-07 3.08 2.47E-08 3.01 9.00E-08 2.99

80 1.09E-08 3.38 3.08E-09 3.00 1.13E-08 3.00

𝑘 = 3 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

5 2.88E-07 – 6.95E-07 – 7.96E-07 –

10 1.62E-08 4.15 4.37E-08 3.99 6.97E-08 3.51

20 1.89E-09 3.11 2.26E-09 4.27 3.47E-09 4.33

40 1.20E-10 3.97 1.38E-10 4.04 2.41E-10 3.85

where 𝑥𝑟, 𝑥𝑙, 𝑦𝑟, 𝑦𝑙 are the vertexes of the rectangle computational do-
main. These grids are not following the fluid velocity, but move around 
their initial position with a relatively small amplitude to avoid the grid 
lines crossing. ℙ2 piecewise polynomials are used in most numerical 
examples. In Examples 5.3, 5.4 and 5.5, we show that our ALE-DG meth-
ods can reduce numerical dissipation if the grid velocity is chosen to be 
close to the fluid velocity.

For all the positivity-preserving tests in this section, the time step Δ𝑡

depends both on the constraints in Theorems 4.7, 4.8 and the stability 
constraints of Runge-Kutta methods. The time step size at each time 
step is plotted for the positivity-preserving tests in Examples 5.3 and 
5.9, and we can observe the time step size won’t become extremely 
small when the density or pressure is close to 0.

5.1. Numerical examples in one dimension

Example 5.1. Accuracy test in 1D.

To demonstrate that the proposed two schemes are high order 
schemes, we consider a special steady state introduced in [21], which 
is given by

𝜌(𝑥, 𝑡) = exp(−𝑥), 𝑢(𝑥, 𝑡) = 0, 𝑝(𝑥, 𝑡) = (1 + 𝑥) exp(−𝑥),

with gravitational field 𝜙(𝑥) = 1
2𝑥

2 on the computational domain [0, 1]. 
We apply the exact solutions at the domain boundaries to calculate the 
numerical flux. For the desired equilibrium state 𝑼𝑑 in this example, 
we set a simple isothermal equilibrium state as

𝜌𝑑 (𝑥, 𝑡) = exp(−1
2
𝑥2), 𝑢𝑑 (𝑥, 𝑡) = 0, 𝑝𝑑 (𝑥, 𝑡) = exp(−1

2
𝑥2).

We set the stop time 𝑇 = 0.1, and the 𝐿1 errors and orders are shown 
in Table 5.1 for scheme WB(H) and Table 5.2 for scheme WB(S). It can 
be observed that our schemes obtain the optimal order of accuracy. 
Note that although the exact solution is a steady state, we can still get 
an error table without round-off errors since we choose a different 𝑼 𝑑

from the exact solution.

Example 5.2. Well-balanced test of the polytropic equilibrium in 1D.

This example is used to verify that our schemes maintain the poly-
tropic equilibrium and can capture small perturbations for 1D Euler 
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Fig. 5.1. Example 5.2: Small amplitude waves 𝐴 = 10−6 with 100 cells at 𝑇 = 1.5 for scheme WB(H) and WB(S) compared with a reference solution of 2000 cells. 
Left: pressure perturbation; Right: velocity.
Table 5.2

Example 5.1, 𝐿1 errors and orders of accuracy for the scheme WB(S) and 𝑘 =
1, 2, 3.
𝑘 = 1 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

25 1.21E-05 – 4.20E-06 – 1.02E-05 –

50 3.42E-06 1.82 1.05E-06 2.01 2.55E-06 2.00

100 8.95E-07 1.93 2.61E-07 2.00 6.39E-07 2.00

200 2.28E-07 1.97 6.52E-08 2.00 1.60E-07 2.00

𝑘 = 2 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

10 5.34E-06 – 1.74E-06 – 6.07E-06 –

20 8.08E-07 2.72 2.19E-07 2.99 7.49E-07 3.02

40 9.36E-08 3.11 2.74E-08 3.00 9.37E-08 3.00

80 9.11E-09 3.36 3.43E-09 3.00 1.18E-08 2.99

𝑘 = 3 𝜌 𝜌𝑢 𝐸

N 𝐿1 error order 𝐿1 error order 𝐿1 error order

5 3.04E-07 – 6.43E-07 – 8.05E-07 –

10 1.86E-08 4.03 4.01E-08 4.00 7.78E-08 3.37

20 2.17E-09 3.10 2.10E-09 4.26 3.87E-09 4.33

40 1.46E-10 3.89 1.28E-10 4.04 2.76E-10 3.81

equations. We consider the simple set of a polytropic hydrostatic at-
mosphere under a constant gravitational field in [21]. The desired 
polytropic equilibrium 𝑼𝑑 is given by

𝜌𝑑 (𝑥) = (𝜌𝛾−10 − 𝜅0
𝛾 − 1
𝛾

𝑔𝑥)
1

𝛾−1 , 𝑢𝑑 (𝑥) = 0, 𝑝𝑑 (𝑥) = 𝜅0(𝜌𝑑 (𝑥))𝛾 , (5.3)

with gravitational field 𝜙(𝑥) = 𝑔𝑥 on a computational domain [0, 2]. The 
constants in this example are given by 𝑔 = 1, 𝛾 = 5

3 , 𝜌0 = 1, 𝜅0 = 1.

1. Well-balanced property
We set the initial condition as 𝑼 0 = ℙ2𝑼𝑑 and the stop time as 
𝑇 = 2. We apply the exact solutions at the domain boundaries to 
calculate the numerical flux. With the mesh size 𝑁 = 100, the 𝐿1

errors for different precision are shown in Table 5.3. It can be ob-
served that both schemes can maintain the polytropic equilibrium 
state with round-off error, which confirms that our schemes can 
keep the equilibrium states exactly at a discrete level.

2. Small perturbation test
Next, we impose a periodic velocity perturbation at the bottom of 
the atmosphere

𝑢(0, 𝑡) =𝐴 sin(4𝜋𝑡),
349
to the polytropic equilibrium 𝑼𝑑 , i.e. the left boundary condition 
is given as

𝜌(0, 𝑡) = 𝜌𝑑 (0), 𝑢(0, 𝑡) =𝐴 sin(4𝜋𝑡), 𝑝(0, 𝑡) = 𝑝𝑑 (0), (5.4)

and 𝑼 (0, 𝑡) can be calculated correspondingly. We use the in-
flow/outflow boundary condition that the left limit of the left 
boundary is calculated by using (5.4). This example can test the ca-
pability of our scheme in capturing the propagation of the small 
perturbation. We consider the case with a small amplitude 𝐴 =
10−6. The stop time is set as 𝑇 = 1.5 and 𝑁 = 100 cells are employed. 
The numerical results are shown in Fig. 5.1. We can observe that 
both schemes can capture the generated wave well.

Example 5.3. Rarefaction test with low density and low pressure.

We consider a rarefaction wave test introduced in [38] to show that 
our scheme can keep the density and pressure positive. We also generate 
a special mesh movement to show the advantages of ALE-DG methods. 
The initial condition is a Riemann problem given by

𝜌 = 7, 𝑢 = −1, 𝑝 = 0.2, if 𝑥 ≤ 0,

𝜌 = 7, 𝑢 = 1, 𝑝 = 0.2, if 𝑥 ≥ 0,
(5.5)

with outflow boundary conditions on the computational domain [−1, 1]. 
The gravitation field takes the form 𝜙 = 𝑥2∕2. We employ 𝑁 = 100 cells 
and the final stop time as 𝑇 = 0.6. In this example, the initial mesh is 
simply 800 uniform cells and the final mesh is set as:

𝑥
𝑗+ 1

2
(0.6) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 + 𝑗

40 × 0.3, for 0 ≤ 𝑗 ≤ 40,
−0.7 + 𝑗−40

260 × 0.5, for 41 ≤ 𝑗 ≤ 300,
−0.2 + 𝑗−300

200 × 0.4, for 301 ≤ 𝑗 ≤ 500,
0.2 + 𝑗−500

260 × 0.5, for 501 ≤ 𝑗 ≤ 760,
0.7 + 𝑗−760

40 × 0.3, for 761 ≤ 𝑗 ≤ 800,

(5.6)

which leads to the grid velocity set as

𝜔
𝑗+ 1

2
(𝑡) =

𝑥
𝑗+ 1

2
(0.6) − 𝑥

𝑗+ 1
2
(0)

0.6
, for 𝑡 ∈ [0,0.6], 0 ≤ 𝑗 ≤ 800. (5.7)

The same 𝑼𝑑 as in Example 5.1 is considered. In Fig. 5.3, we show the 
results for both schemes compared with a reference solution of 6400 
cells and the static mesh solution of 800 cells. From Fig. 5.3, it can 
be observed that the low pressure and the low density are both main-
tained positively for the proposed schemes. It also shows that the results 
of ALE-DG schemes are better than the static mesh results, which is 
consistent with the impression that ALE-DG methods can reduce nu-
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Table 5.3

Example 5.2, 𝐿1 errors of different precision for the polytropic equilibrium 𝑼 𝑑 using two 
schemes WB(H) and WB(S).

Precision
WB(H) WB(S)

𝜌 𝜌𝑢 𝐸 𝜌 𝜌𝑢 𝐸

double 7.33E-15 1.89E-15 3.45E-15 6.69E-15 2.03E-15 3.66E-15

quadruple 5.85E-33 1.39E-33 2.64E-33 4.99E-33 1.54E-33 3.00E-33
Table 5.4

Example 5.3, the minimum of den-
sity and pressure for two schemes.
Scheme Density Pressure

WB(H) 9.30E-03 2.54E-04

WB(S) 8.30E-03 2.38E-04

Fig. 5.2. Example 5.3, time step size v.s. time for the scheme WB(S), we can 
see the time step size is relatively stable during the simulation.

merical dissipation. We also show the minimum density and pressure 
in Table 5.4 to illustrate that both schemes preserve density and pres-
sure positively. In Fig. 5.2, we plot the time history of the actual time 
step size, which is calculated according to Theorem 4.8 for the scheme 
WB(S). It can be observed that the time step size is relatively stable 
when the density or the pressure is close to 0.

Example 5.4. Shock tube test.

This example is the standard Sod test, coupled with the gravitational 
field. By following the setup in [42], the computational domain is [0, 1], 
and the initial condition takes the form

𝜌 = 1, 𝑢 = 0, 𝑝 = 1, if 𝑥 ≤ 0.5,

𝜌 = 0.125, 𝑢 = 0, 𝑝 = 0.1, if 𝑥 ≥ 0.5.
(5.8)

The gravitational field is set as 𝜙(𝑥) = 𝑥 and 𝛾 = 1.4. The initial mesh 
contains the 100 uniform cells, and at the final time 𝑇 = 0.2, it becomes 
the following mesh

𝑥
𝑗+ 1

2
(0.2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑗

5 × 0.2, for 0 ≤ 𝑗 ≤ 5,
0.2 + 𝑗−5

30 × 0.3, for 6 ≤ 𝑗 ≤ 35,
0.5 + 𝑗−45

30 × 0.25, for 36 ≤ 𝑗 ≤ 65,
0.75 + 𝑗−55

30 × 0.1, for 66 ≤ 𝑗 ≤ 95,
0.85 + 𝑗−95

5 × 0.15, for 96 ≤ 𝑗 ≤ 100,

(5.9)

which leads to the grid velocity set as
350
𝜔
𝑗+ 1

2
(𝑡) =

𝑥
𝑗+ 1

2
(0.2) − 𝑥

𝑗+ 1
2
(0)

0.2
, for 𝑡 ∈ [0,0.2], 0 ≤ 𝑗 ≤ 100. (5.10)

We use the reflective boundary condition. In Fig. 5.4, we show the re-
sults for both schemes WB(H) and WB(S) with 100 cells, compared with 
a reference solution of 2000 cells and a static mesh solution of 100 cells. 
We can see that both proposed schemes capture the shocks well and 
have less numerical dissipation for 𝑥 ∈ [0.8, 0.85].

Example 5.5. Leblanc problem in a linear gravitational field.

In this example, we consider a Leblanc problem in linear gravi-
tational field 𝜙(𝑥) = 𝑥, which is used in [38] to test the positivity-
preserving property of schemes. The initial condition of this problem 
is given by

𝜌 = 2, 𝑢 = 0, 𝑝 = 109, if 𝑥 ≤ 5,

𝜌 = 0.001, 𝑢 = 0, 𝑝 = 1, if 𝑥 ≥ 5.
(5.11)

The computational domain is [0, 10] with reflection boundary condi-
tions. For the grid velocity, we set the initial mesh as the 200 uniform 
cells and the final mesh as

𝑥
𝑗+ 1

2
(0.25) =

⎧⎪⎨⎪⎩
𝑗

130 × 7, for 0 ≤ 𝑗 ≤ 130,
7 + 𝑗−130

60 × 2, for 131 ≤ 𝑗 ≤ 190,
9 + 𝑗−190

10 , for 191 ≤ 𝑗 ≤ 200,
(5.12)

which leads to the grid velocity set as

𝜔
𝑗+ 1

2
(𝑡) =

𝑥
𝑗+ 1

2
(0.00004) − 𝑥

𝑗+ 1
2
(0)

0.00004
, for 𝑡 ∈ [0,0.00004], 0 ≤ 𝑗 ≤ 200.

(5.13)

In Fig. 5.5, we show the results for both schemes at time 𝑇 = 0.00004
on the above moving mesh, compared with the reference solution of 
𝑁 = 6400 cells and static mesh solution of 𝑁 = 200 cells. Our schemes 
maintain the density and pressure positive and capture the discontinu-
ities better than the static mesh solution.

5.2. Numerical examples in two dimensions

Example 5.6. Accuracy test in 2D.

In this example, the high order accuracy of the proposed methods 
will be tested in two dimensions on moving triangular meshes. We con-
sider the exact solution in [38], which is given by

𝜌(𝑥, 𝑦, 𝑡) = 1 + 0.2 sin(𝜋(𝑥+ 𝑦− 2𝑡)),

𝒖(𝑥, 𝑦, 𝑡) = 1,

𝑝(𝑥, 𝑦, 𝑡) = 4.5 + 2𝑡− 𝑥− 𝑦+ 0.2cos(𝜋(𝑥+ 𝑦− 2𝑡))∕𝜋,

with gravitational field 𝜙(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝛾 = 5
3 on a square domain 

[0, 1] ×[0, 1]. We apply the exact solutions at the boundaries. The desired 
equilibrium state 𝑼𝑑 is set as an isothermal equilibrium state:

𝜌𝑑 (𝑥, 𝑦) = 0.1exp(−0.1(𝑥+ 𝑦)), 𝒖𝑑 = 0, 𝑝𝑑 (𝑥, 𝑦) = exp(−0.1(𝑥+ 𝑦)).

(5.14)
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Fig. 5.3. Example 5.3, the top three pictures are density, momentum and pressure at 𝑡 = 0.6 with 800 cells for schemes WB(H) (red), WB(S) (blue), static mesh 
(green) and reference solution (black). The bottom two pictures are zoom in of density and pressure for 𝑥 ∈ [−0, 15, 0.15].

Table 5.5

Example 5.6, 𝐿1 errors and orders of accuracy for the scheme WB(H).
𝑘 = 1 𝜌 𝜌𝑢 𝜌𝑣 𝐸

𝑁 𝐿1 error order 𝐿1 error order 𝐿1 error order 𝐿1 error order

200 1.50E-03 – 1.49E-03 – 1.51E-03 – 1.01E-05 –

800 3.76E-04 1.99 3.76E-04 1.99 3.76E-04 2.00 2.52E-06 2.00

3200 9.21E-05 2.03 9.22E-05 2.03 9.21E-05 2.03 6.29E-07 2.00

12800 2.22E-05 2.02 2.27E-05 2.02 2.26E-05 2.02 1.57E-07 2.00

𝑘 = 2 𝜌 𝜌𝑢 𝜌𝑣 𝐸

𝑁 𝐿1 error order 𝐿1 error order 𝐿1 error order 𝐿1 error order

200 4.59E-05 – 4.62E-05 – 4.59E-05 – 4.61E-05 –

800 6.08E-06 2.92 6.09E-06 2.93 6.09E-06 2.92 6.07E-06 2.93

3200 7.59E-07 3.00 7.62E-07 3.00 7.63E-07 3.00 7.66E-07 2.99

12800 9.52E-08 2.99 9.61E-08 2.99 9.61E-08 2.99 9.75E-08 2.97
We set the stop time 𝑇 = 0.1 and apply the exact solutions at the domain 
boundaries to calculate the numerical flux. The 𝐿1 errors and orders for 
both schemes are shown in Table 5.5 and Table 5.6. We can see that 
both schemes have the desired high order of accuracy.

Example 5.7. Well-balanced test of the polytropic equilibrium in 2D.

In this example, we consider a simple polytropic equilibrium state 
in two dimensions:

𝜌𝑑 (𝑟) = sin(𝛼𝑟)
𝛼𝑟

, 𝒖𝑑 (𝑟) = 0, 𝑝𝑑 (𝑟) = 𝜌𝑑 (𝑟)2,
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with gravitational field 𝜙(𝑟) = −2sin(𝛼𝑟)
𝛼𝑟

where 𝛾 = 2, 𝑟 =
√
𝑥2 + 𝑦2 and 

𝛼 =
√
2𝜋.

We follow the setup in [49] and the computational domain is set as 
a disc of radius 0.5. The 𝑗-th mesh grid at different time levels 𝑡 is set 
as follows:

𝑥𝑗 (𝑡) = 𝑥𝑗 (0) + 0.03 sin(2𝜋𝑟𝑗 (0))𝑠𝑖𝑛(
2𝜋𝑡
𝑇

),

𝑦𝑗 (𝑡) = 𝑦𝑗 (0) + 0.02 sin(2𝜋𝑟𝑗 (0))𝑠𝑖𝑛(
4𝜋𝑡
𝑇

).

In this example, we test our schemes for maintaining such an equi-
librium state and capturing the small perturbation to an equilibrium 
state.
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Fig. 5.4. Example 5.4 The numerical results for schemes WB(H) (red) and WB(S) (blue) compared with reference solution (black) and static mesh solution (green). 
From top to bottom are density, velocity, energy, and pressure. Left are the solutions on the whole computational domain and right are the zoom in for 𝑥 ∈ [0.8, 0.85].
1. Well-balanced property
We set the initial condition to be the same as the above polytropic 
equilibrium state. We use 1222 triangles as the initial mesh. The 
stop time is set as 𝑇 = 1 and we apply the exact solutions at the do-
main boundaries to calculate the numerical flux. The 𝐿1 errors for 
different precision are shown in Table 5.7. We can see our schemes 
can maintain the polytropic equilibrium.
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2. Small perturbation test
Now we consider the case with a small perturbation to the poly-
tropic equilibrium and show the ability to capture the small per-
turbations of two schemes. The small perturbation is added to the 
pressure such that

𝜌(𝑟,0) = 𝜌𝑑 (𝑟), 𝒖(𝑟,0) = 0, 𝑝(𝑟,0) = 𝜌𝑑 (𝑟)2 +𝐴 exp(−100𝑟2),
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Fig. 5.5. Example 5.5 The numerical results for schemes WB(H) (red) and WB(S) (blue) compared with reference solution (black) and static mesh solution (green). 
From top to bottom are density, momentum, and pressure. Left are the solutions on the whole computational domain, and right are the zoom-in for 𝑥 ∈ [7, 9].

Table 5.6

Example 5.6, 𝐿1 errors and orders of accuracy for the scheme WB(S).
𝑘 = 1 𝜌 𝜌𝑢 𝜌𝑣 𝐸

𝑁 𝐿1 error order 𝐿1 error order 𝐿1 error order 𝐿1 error order

200 1.44E-03 – 1.46E-03 – 1.46E-03 – 1.01E-05 –

800 3.61E-04 2.00 3.64E-04 2.00 3.64E-04 2.00 2.51E-06 2.00

3200 9.00E-05 2.00 9.08E-05 2.00 9.08E-05 2.00 6.29E-07 2.00

12800 2.25E-05 2.00 2.27E-05 2.00 2.27E-05 2.00 1.57E-07 2.00

𝑘 = 2 𝜌 𝜌𝑢 𝜌𝑣 𝐸

𝑁 𝐿1 error order 𝐿1 error order 𝐿1 error order 𝐿1 error order

200 4.64E-05 – 4.65E-05 – 4.65E-05 – 4.65E-05 –

800 6.06E-06 2.94 6.08E-06 2.94 6.08E-06 2.94 6.08E-06 2.94

3200 7.67E-07 2.98 7.70E-07 2.98 7.70E-07 2.98 7.76E-07 2.97

12800 9.59E-08 3.00 9.66E-08 3.00 9.66E-08 3.00 9.82E-08 2.98
with 𝐴 = 10−6. The stop time is set as 𝑇 = 0.2. The initial mesh is 
set as a triangular mesh with 4826 triangles. The outflow bound-
ary condition is applied. The numerical results of both proposed 
methods are provided in Fig. 5.6, from which we observe that both 
schemes capture the small perturbation correctly.
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Example 5.8. Well-balanced test of the isothermal equilibrium in 2D.

In this example, we consider the isothermal equilibrium state in two 
dimensions:

𝜌𝑑 (𝑥, 𝑦) = 𝜌0 exp(−
𝜌0𝑔 (𝑥+ 𝑦)), 𝒖𝑑 = 0, 𝑝𝑑 (𝑥, 𝑦) = 𝑝0 exp(−

𝜌0𝑔 (𝑥+ 𝑦)),

𝑝0 𝑝0
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Fig. 5.6. Example 5.7, contours of numerical results of WB(H) scheme and WB(S) scheme with 4826 triangles at 𝑡 = 0.2. Top: WB(H) scheme; Bottom: WB(S) scheme. 
Left: velocity (

√
𝑢2 + 𝑣2); Right: pressure perturbation.
Table 5.7

Example 5.7, 𝐿1 errors for different precision with 1222 triangles mesh for the 
polytropic equilibrium.

Scheme Precision
𝐿1 error

𝜌 𝜌𝑢 𝜌𝑣 𝐸

WB(H)
double 1.68E-13 4.02E-14 3.50E-14 4.60E-12

quadruple 1.32E-31 3.44E-32 3.25E-32 3.63E-30

WB(S)
double 2.96E-14 2.81E-15 2.77E-15 3.93E-15

quadruple 2.52E-32 1.97E-33 1.92E-33 6.58E-33

with the gravitational field 𝜙(𝑥, 𝑦) = 𝑥 +𝑦 and constants 𝜌0 = 1.21, 𝑝0 = 1, 
𝛾 = 1.4. The computational domain is set as [0, 1]2.

1. Well-balanced property
We set the initial condition to be the same as the desired equilib-
rium 𝑼𝑑 . The initial mesh contains the uniform 3200 triangles, and 
the stop time is set as 𝑇 = 0.1. We apply the exact solutions at the 
domain boundaries to calculate the numerical flux. The 𝐿1 errors 
for different precisions are shown in Table 5.8. We can observe that 
all the errors are at the level of round-off error.

2. Small perturbation test
Next, we add a small perturbation to 𝑼𝑑 to the initial equilib-
rium state 𝑼𝑑 , and test the capability of our schemes in capturing 
the propagation of the small perturbation. A small perturbation is 
added to the pressure such that

𝜌(𝑥, 𝑦,0) = 𝜌𝑑 (𝑥, 𝑦),

𝒖(𝑥, 𝑦,0) = 0,

𝑝(𝑥, 𝑦,0) =
𝑝0 𝜌𝑑 (𝑥, 𝑦) + 𝜖 exp(−121((𝑥− 0.3)2 + (𝑦− 0.3)2)),

𝜌0
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Table 5.8

Example 5.8, 𝐿1 errors for different precision with 3200 triangles mesh for the 
isothermal equilibrium.

Scheme Precision
𝐿1 error

𝜌 𝜌𝑢 𝜌𝑣 𝐸

WB(H)
double 2.85E-15 6.70E-16 6.31E-16 2.57E-15

quadruple 1.85E-33 4.60E-34 4.20E-34 1.82E-33

WB(S)
double 3.59E-15 1.21E-15 1.12E-15 4.06E-15

quadruple 2.47E-33 5.87E-34 5.38E-34 2.17E-33

with 𝜖 = 10−3. The stop time is set as 𝑇 = 0.15 and the initial mesh 
is set as a uniform 12800 triangles mesh. The outflow boundary 
condition is applied. Fig. 5.7 shows that our numerical solutions of 
two schemes capture the perturbation correctly.

Example 5.9. Rarefaction test with low density and low pressure in 2D.

In this example, we want to demonstrate that the proposed schemes 
can correctly deal with cases involving low density and low pressure. 
We consider the rarefaction test in [36] with the initial condition given 
by

𝜌(𝑥, 𝑦) = exp(−2.5𝜙(𝑥, 𝑦)), 𝑝(𝑥, 𝑦) = 0.4exp(−2.5𝜙(𝑥, 𝑦)),

𝒖(𝑥, 𝑦) =

{
(−2,0)𝑇 , 𝑥 < 0.5,
(2,0)𝑇 , 𝑥 > 0.5,

with the gravitational field 𝜙(𝑥, 𝑦) = 1
2 ((𝑥 − 0.5)2 + (𝑦 − 0.5)2) and trans-

missive boundary conditions. We set the computational domain [0, 1]2
with uniform 12800 triangles initial mesh and the stop time as 𝑇 = 0.1. 
Fig. 5.9 shows the numerical solutions of density, pressure, and mo-
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Fig. 5.7. Example 5.8, perturbation on the isothermal hydrostatic solution with 𝜖 = 0.001 at time 𝑡 = 0.15 with 12800 triangles. Left: the density perturbation with 
20 uniformly spaced contour lines from −0.001 to 0.0002; Right: the pressure perturbation with 20 uniformly spaced contour lines from −0.0003 to 0.0003. Top: the 
results of the scheme WB(H); Bottom: the results of the scheme WB(S).
Fig. 5.8. Example 5.9, time step size v.s. time for the scheme WB(S), we can 
see the time step size is relatively stable during the simulation.

mentum in 𝑥-direction 𝑚1. We can see that the proposed schemes keep 
the low density and low pressure positive in Table 5.9, which lists the 
minimum density and pressure of both schemes. In Fig. 5.8, we plot the 
time history of the actual time step size, which is calculated accord-
ing to Theorem 4.8 for the scheme WB(S). It shows that the time step 
size doesn’t become extremely small when the density or the pressure 
is close to 0.
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Table 5.9

Example 5.9, the minimum density 
and pressure for two schemes.
scheme density pressure

WB(H) 1.26E-02 3.68E-03

WB(S) 6.41E-03 3.03E-03

6. Conclusion

In this paper, we developed the well-balanced ALE-DG methods for 
moving meshes for the Euler equations with gravitation. By giving the 
desired equilibrium states, we proposed two different well-balanced 
methods based on the hydrostatic reconstruction and a special source 
term approximation, respectively. Both schemes are based on the tech-
niques of DG methods on static meshes, and the extension to moving 
meshes is carefully investigated in this paper. The resulting methods 
have a weak positivity property and a simple limiter can be applied to 
enforce the positivity-preserving property. One- and two-dimensional 
numerical examples have been provided to show the well-balanced 
property, high-order accuracy, the advantage of ALE-DG methods, and 
positivity-preserving property.

Data availability

Data will be made available on request.
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Fig. 5.9. Example 5.9, numerical solutions of density 𝜌 (left), velocity 𝑢 (mid) and pressure 𝑝 (right) at 𝑡 = 0.1 with 12800 triangles by using positivity-preserving 
well-balanced ALE-DG scheme. Top: the results of the scheme WB(H); Bottom: the results of the scheme WB(S).
Appendix A. Proof for Theorem 4.7

Since the TVD-RK methods are the convex combination of the Eu-
ler forward methods, we only need to show that this theorem holds for 
semi-discrete scheme (3.14) coupled with Euler forward time discretiza-
tion, which takes the form
(1 + Δ𝑡∇𝒙𝑛 ⋅𝝎

𝑛)Δ𝐾𝑛

Δ𝐾𝑛+1 ∫
𝐾𝑛+1

𝑼 𝑛+1
𝐾

⋅𝝋𝑛+1d𝒙

= ∫
𝐾𝑛

𝑼 𝑛
𝐾 ⋅𝝋𝑛d𝒙+Δ𝑡ℎ

𝐾 (𝝎
𝑛,𝑼 𝑛,𝝋𝑛, 𝑡𝑛). (A.1)

By taking the test function to be 1, we can write the equation satis-
fied by 𝑼̄ 𝑛+1

𝐾 according to (3.14) and decompose it into two parts

(1 + Δ𝑡∇𝒙𝑛 ⋅𝝎
𝑛)𝑼̄ 𝑛+1

𝐾

= 𝑼̄
𝑛
𝐾 + 𝜆

(
− ∫
𝜕𝐾𝑛

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
d𝒔

+ ∫
𝐾𝑛

𝑺(𝑼𝑓 ,−∇𝑝𝑒

𝜌𝑒
)d𝒙+ ∫

𝜕𝐾𝑛

𝑭 (𝑼 𝑒,𝑖𝑛𝑡𝐾𝑛 ) ⋅ 𝒏d𝒔
)

=𝑾 1 +𝑾 2,

with

𝑾 1 = 𝜁𝑼̄
𝑛
𝐾 − 𝜆 ∫

𝜕𝐾𝑛

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
d𝒔, (A.2)

𝑾 2 = 𝜗𝑼̄
𝑛
𝐾 + 𝜆

⎛⎜⎜⎝∫𝐾𝑛

𝑺(𝑼𝑓 ,−∇𝑝𝑒

𝜌𝑒
)d𝒙+ ∫

𝜕𝐾𝑛

𝑭 (𝑼 𝑒,𝑖𝑛𝑡𝐾𝑛 ) ⋅ 𝒏d𝒔
⎞⎟⎟⎠ , (A.3)

where

𝜁 =
𝛼̂𝐹 , 𝜗 =

𝛼̂𝑆 , satisfying 𝜁 + 𝜗 = 1, (A.4)

𝛼̂0 𝛼̂0
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and 𝜆 = Δ𝑡

Δ𝐾𝑛
. Using Lemma 4.1, we only need to prove 𝑾 1, 𝑾 2 ∈ . 

Since only the cell 𝐾𝑛 is used in the following proof, we denote it by 𝐾
for simplicity.

• The proof of 𝑾 1 ∈ 
We use the quadrature rules introduced in Section 4.1 to rewrite the 
term 𝑾 1:

𝑾 1 = 𝜁
⎛⎜⎜⎝
𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜔̃𝜇

𝐹 𝜈
𝐾

𝑼 𝑛,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
+

𝐿̃∑
𝜇=1

𝜔̃𝜇
𝐾
𝑼 𝑛

𝐾

(
𝒙̃
𝜇
𝐾

)⎞⎟⎟⎠
− 𝜆

𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜛̃𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
||| 𝑮̂ (𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
(A.5)

= 𝜁

𝐿̃∑
𝜇=1

𝜔̃𝜇
𝐾
𝑼 𝑛

𝐾

(
𝒙̃
𝜇
𝐾

)

+
𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

(
𝑼 𝑛,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
− 1

𝛼̂1
𝑼 𝑏,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

))

+
𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

𝛼̂1

(
𝑼 𝑏,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)

−
𝛼̂1𝜆𝜛̃

𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏,𝑒𝑥𝑡𝐾𝑛 ,𝒏

))
,

where |𝐹 𝜈
𝐾
| denotes the area of edge 𝐹 𝜈

𝐾
. We have decomposed 𝑾 1 into 

three parts. In order to show that 𝑾 1 ∈ , one can utilize the convexity 
of  and show that all three parts belong to the admissible set  via the 
following three claims.
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1. 𝑼 𝑛
𝐾

(
𝒙̃
𝜇
𝐾

)
∈ .

This is the assumption of the theorem.

2. 𝑼 𝑛,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
− 1

𝛼̂1
𝑼 𝑏,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
∈ .

Since 1∕𝛼̂1 satisfies the constraint in Lemma 4.5, this claim follows 
from the conclusion of Lemma 4.5.

3. 𝑼 𝑏,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
−

𝛼̂1𝜆𝜛̃
𝜇

𝐹𝜈
𝐾

|||𝐹𝜈
𝐾
|||

𝜁𝜔̃
𝜇

𝐹𝜈
𝐾

𝑮̂
(
𝝎,𝑼 𝑏,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
∈ .

Using the definitions of 𝛼̂0, 𝛼̂𝐹 and 𝜁 , we first simplify the coeffi-
cient as

𝛼̂1𝜆𝜛̃
𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

= 𝛼̂1
Δ𝑡

Δ𝐾𝑛

𝛼̂0
𝛼̂𝐹

𝜛̃𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜔̃𝜇

𝐹 𝜈
𝐾

= 𝛼̂0Δ𝑡
𝛼̂1
𝛼̂𝐹

𝜛̃𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜔̃𝜇

𝐹 𝜈
𝐾

Δ𝐾𝑛

≤ 1
2𝛼

,

(A.6)

and then apply Lemma 4.4 to prove the above claim.

Now combining that the parameters 𝜁 , 𝜆 and the quadrature weights 
𝜔̃𝜇

𝐹 𝜈
𝐾

, 𝜛̃𝜇

𝐹𝜈
𝐾

, 𝜔̃𝜇
𝐾
and the area of edge |𝐹 𝜈

𝐾
| are all greater than 0, we can 

use Lemma 4.1 to prove that 𝑾 1 ∈ .
• The proof of 𝑾 2 ∈  (Same as the proof in [49, Proposition 4.5])

Notice that 𝒎𝑒,𝑖𝑛𝑡𝐾 ≡ 0 and

𝑭
(
𝑼 𝑒,𝑖𝑛𝑡𝐾

)
=
⎛⎜⎜⎝

0
(𝛾 − 1)𝐸𝑒,𝑖𝑛𝑡𝐾 𝐼

0

⎞⎟⎟⎠ ,
which suggests that every component of 𝑭

(
𝑼 𝑒,𝑖𝑛𝑡𝐾

)
is a polynomial in 

𝜕𝐾 . Therefore it can be exactly integrated by the Gauss quadrature rule 
and one can use the integration by parts and the Gauss quadrature rule 
to rewrite 𝑾 2 as

𝑾 2 = 𝜗𝑼̄
𝑛
𝐾 + 𝜆

⎛⎜⎜⎝∫𝐾 𝑺

(
𝑼𝑓 ,−∇𝑝𝑒

𝜌𝑒

)
d𝒙+ ∫

𝐾

∇ ⋅ 𝑭
(
𝑼 𝑒
)
d𝒙
⎞⎟⎟⎠

=
𝐿∑

𝜇=1
𝜔̂𝜇
𝐾

(
𝜗𝑼 𝑛

𝐾

(
𝒙̂
𝜇
𝐾

)

+Δ𝑡

(
∇ ⋅ 𝑭

(
𝑼 𝑒

𝐾

(
𝒙̂
𝜇
𝐾

))
+𝑺

(
𝑼

𝑓
𝐾

(
𝒙̂
𝜇
𝐾

)
,−

∇𝑝𝑒
𝐾

(
𝒙̂
𝜇
𝐾

)
𝜌𝑒
𝐾

(
𝒙̂
𝜇
𝐾

) ))).
Since  is convex and all the quadrature weights are positive, it is suffi-
cient to prove, for 𝜇 = 1, ⋯ , 𝐿,

𝑾
𝜇
2 = 𝜗𝑼 𝑛

𝐾

(
𝒙̂
𝜇
𝐾

)
+Δ𝑡

(
∇ ⋅ 𝑭

(
𝑼 𝑒

𝐾

(
𝒙̂
𝜇
𝐾

))
+𝑺

(
𝑼

𝑓
𝐾

(
𝒙̂
𝜇
𝐾

)
,−

∇𝑝𝑒
𝐾

(
𝒙̂
𝜇
𝐾

)
𝜌𝑒
𝐾

(
𝒙̂
𝜇
𝐾

) )) ∈ .

The first component of 𝑾 𝜇
2 reduces to 𝜗𝜌

𝑛
𝐾

(
𝒙̂
𝜇
𝐾

)
which is automatically 

positive. In order to show that  (𝑾 𝜇
2
)
> 0, we have

 (𝑾 𝜇
2
)
= 𝜗𝐸𝑛

𝐾 +Δ𝑡𝒎𝑓
𝐾
⋅
∇𝑝𝑒

𝐾

𝜌𝑒
𝐾

−

‖‖‖‖‖𝜗𝒎𝑛
𝐾
+Δ𝑡

(
∇𝑝𝑒

𝐾
+ 𝜌𝑓

𝐾

∇𝑝𝑒
𝐾

𝜌𝑒𝑗

)‖‖‖‖‖
2

2𝜗𝜌𝑛
𝐾

|||||||||||𝒙̂𝜇
𝐾

= 𝜗𝐸𝑛
𝐾 +Δ𝑡𝒎𝑓

𝐾
⋅
∇𝑝𝑒

𝐾

𝜌𝑒
𝐾

−

‖‖‖‖𝜗𝒎𝑛
𝐾
+Δ𝑡

𝜌𝑛
𝐾

𝜌𝑒
𝐾

∇𝑝𝑒
𝐾

‖‖‖‖2
2𝜗𝜌𝑛

𝐾

|||||||||𝒙̂𝜇

wh

to d
𝛼̂𝑆

Δ𝑡2

hen

Ap

this

wa

fied

(1 +

=

=

wit

𝑾 1

𝑾 2

wh

the

𝜁 =

and

Sin

for

•

𝐾
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= 𝜗 (𝜌𝑒)𝑛𝐾 +Δ𝑡𝒎𝑓
𝐾
⋅
∇𝑝𝑒

𝐾

𝜌𝑒
𝐾

−Δ𝑡
𝒎𝑛

𝐾

𝜌𝑒
𝐾

⋅∇𝑝𝑒𝐾 −Δ𝑡2

‖‖‖‖ 𝜌𝑛
𝐾

𝜌𝑒
𝐾

∇𝑝𝑒
𝐾

‖‖‖‖2
2𝜗𝜌𝑛

𝐾

|||||||||𝒙̂𝜇
𝐾

= 𝜗 (𝜌𝑒)𝑛𝐾

⎛⎜⎜⎜⎝1 −Δ𝑡2
‖‖‖∇𝑝𝑒

𝐾
∕𝜌𝑒

𝐾
‖‖‖2

2𝜗2𝑒𝑛
𝐾

⎞⎟⎟⎟⎠
||||||||𝒙̂𝜇

𝐾

,

ere 𝜌𝑒 + 𝜌𝑓 = 𝜌𝑛 is used in the second equality, and 𝒎𝑓 =𝒎𝑛 is used 
erive the last equality. Following the definition of 𝜗 in (A.4) and 𝛼̂0, 
in (4.22), we have

‖‖‖∇𝑝𝑒
𝐾
∕𝜌𝑒

𝐾
‖‖‖2

2𝜗2𝑒𝑛
𝐾

= (𝛼̂0Δ𝑡)2
‖‖‖∇𝑝𝑒

𝐾
∕𝜌𝑒

𝐾
‖‖‖2

2𝛼̂2
𝑆
𝑒𝑛
𝐾

≤ 1,

ce it follows that  (𝑾 𝜇
2
) ≥ 0, i.e., 𝑾 2 ∈ .

pendix B. Proof for Theorem 4.8

Similar to the hydrostatic reconstruction case, we only need to prove 
 theorem for semi-discrete scheme (3.20) coupled with Euler for-
rd time discretization taking the form of (A.1).
By taking the test function to be 1, we can write the equation satis-
 by 𝑼̄ 𝑛+1

𝐾 according to (3.20) and decompose it into two parts

Δ𝑡∇𝒙𝑛 ⋅𝝎
𝑛)𝑼̄ 𝑛+1

𝐾

𝑼̄
𝑛
𝐾 + 𝜆

⎛⎜⎜⎝− ∫
𝜕𝐾𝑛

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
d𝒔+𝑺𝑠

𝐾𝑛

⎞⎟⎟⎠
𝑾 1 +𝑾 2,

h

= 𝜁𝑼̄
𝑛
𝐾 − 𝜆 ∫

𝜕𝐾𝑛

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
d𝒔, (B.1)

= 𝜗𝑼̄
𝑛
𝐾 + 𝜆𝑆∗

𝐾𝑛 , (B.2)

ere 𝑆∗
𝐾𝑛 denotes the source term approximation 𝑺𝑠

𝐾𝑛 in (3.19) with 
 test function 𝝋 = 1, and
𝛼̃𝐹
𝛼̃0

, 𝜗 =
𝛼̃𝑆
𝛼̃0

, satisfying 𝜁 + 𝜗 = 1, (B.3)

 𝜆 = Δ𝑡

Δ𝐾𝑛
. Using Lemma 4.1, we only need to prove 𝑾 1, 𝑾 2 ∈ . 

ce only the cell 𝐾𝑛 is used in the following proof, we denote it by 𝐾
 simplicity.

The proof of 𝑾 1 ∈ 
The approach is similar to (A.5) and we write the specific form of 
𝑾 1 by using the quadrature rules:

𝑾 1 =𝜁
𝐿̃∑

𝜇=1
𝜔̃𝜇
𝐾
𝑼 𝑛

𝐾

(
𝒙̃
𝜇
𝐾

)
+

𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

(
𝑼 𝑛,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
− 1

𝛼̃1
𝑼 𝑏̃,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

))

+
𝑑+1∑
𝜈=1

𝑁∑
𝜇=1

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

𝛼̃1

(
𝑼 𝑏̃,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)

−
𝛼̃1𝜆𝜛̃

𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾𝑛 ,𝒏

))
.

We have decomposed 𝑾 1 into three parts. In order to show that 
𝑾 1 ∈ , one can utilize the convexity of  and show that all three 
parts belong to the admissible set  via the following three claims.
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1. 𝑼 𝑛
𝐾

(
𝒙̃
𝜇
𝐾

)
∈ .

This is the assumption of the theorem.

2. 𝑼 𝑛,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
− 1

𝛼̃1
𝑼 𝑏̃,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
∈ .

Since

𝑼 𝑏̃,𝑖𝑛𝑡𝐾 = 𝑝𝑐

𝑝𝑏̃,𝑖𝑛𝑡𝐾
𝑼 𝑛,𝑖𝑛𝑡𝐾 , and 𝛼̃1 ≥ 𝑝𝑐

𝑝𝑏̃,𝑖𝑛𝑡𝐾
for 𝒙 ∈ℚ𝐾, (B.4)

we have 1 − 1
𝛼̃1

𝑝𝑐

𝑝𝑏̃,𝑖𝑛𝑡𝐾
≥ 0, which proves the claim.

3. 𝑼 𝑏̃,𝑖𝑛𝑡𝐾

(
𝒙̃
𝜇

𝐹𝜈
𝐾

)
−

𝛼̃1𝜆𝜛̃
𝜇

𝐹𝜈
𝐾

|||𝐹𝜈
𝐾
|||

𝜁𝜔̃
𝜇

𝐹𝜈
𝐾

𝑮̂
(
𝝎,𝑼 𝑏̃,𝑖𝑛𝑡𝐾𝑛 ,𝑼 𝑏̃,𝑒𝑥𝑡𝐾𝑛 ,𝒏

)
∈ .

Similar simplification in (A.6) can be carried out by using the 
definitions of 𝛼̃0, 𝛼̃𝐹 and 𝜁 :

𝛼̃1𝜆𝜛̃
𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜁𝜔̃𝜇

𝐹𝜈
𝐾

= 𝛼̃1
Δ𝑡

Δ𝐾𝑛

𝛼̃0
𝛼̃𝐹

𝜛̃𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜔̃𝜇

𝐹 𝜈
𝐾

= 𝛼̃0Δ𝑡
𝛼̃1
𝛼̃𝐹

𝜛̃𝜇

𝐹𝜈
𝐾

|||𝐹 𝜈
𝐾
|||

𝜔̃𝜇

𝐹 𝜈
𝐾

𝜇Δ𝐾𝑛

≤ 1
2𝛼

.

(B.5)

Therefore, we use Lemma 4.4 to prove the above claim.
Now combining that the parameters 𝜁 , 𝜆 and the quadrature 
weights 𝜔̃𝜇

𝐹 𝜈
𝐾

, 𝜛̃𝜇

𝐹𝜈
𝐾

, 𝜔̃𝜇
𝐾
and the area of edge |𝐹 𝜈

𝐾
| are all greater 

than 0, we can use Lemma 4.1 to prove that 𝑾 1 ∈ .
• The proof of 𝑾 2 ∈  (Similar to the proof in [38, Theorems 3.3 
and 4.3])
We apply integration by parts in (3.19) to simplify the integration:

𝑆∗
𝐾 =
⎛⎜⎜⎜⎝

0
∫𝐾 −𝜌∇𝑝𝑒

𝜌𝑒
d𝒙

∫𝐾 −𝒎 ⋅ ∇𝑝𝑒

𝜌𝑒
d𝒙

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

0
𝜌̄

𝜌𝑒
∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔

𝒎̄

𝜌̄𝑒
⋅ ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔

⎞⎟⎟⎟⎠ =𝑾 1
2 +𝑾 2

2.

With these notations, 𝑾 2 can be rewritten as follows

𝑾 2 =𝜗1𝑼̄ + 𝜆𝑾 1
2 + 𝜗2𝑼̄ + 𝜆𝑾 2

2

=
𝐿∑

𝜇=1
𝜔̂𝜇

(
𝜗1𝑼

𝑛
𝐾 (𝒙̂

𝜇
𝐾
) + Δ𝑡𝑺

(
𝑼 𝑛

𝐾 (𝒙̂
𝜇
𝐾
),−

∇𝑝𝑒
𝐾
(𝒙̂𝜇

𝐾
)

𝜌𝑒
𝐾
(𝒙̂𝜇

𝐾
)

))

+ 𝜗2𝑼̄
𝑛
𝐾 + 𝜆

𝜌̄𝑒

⎛⎜⎜⎝
0

𝜌̄ ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔
𝒎̄ ⋅ ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔

⎞⎟⎟⎠
where 𝜗1 =

𝛼̃1
𝑆

𝛼̃0
, 𝜗2 =

𝛼̃2
𝑆

𝛼̃0
, and 𝜗 = 𝜗1 + 𝜗2. We first claim that

𝜗1𝑼
𝑛
𝐾 (𝒙̂

𝜇
𝐾
) + Δ𝑡𝑺

(
𝑼 𝑛

𝐾 (𝒙̂
𝜇
𝐾
),−

∇𝑝𝑒
𝐾
(𝒙̂𝜇

𝐾
)

𝜌𝑒
𝐾
(𝒙̂𝜇

𝐾
)

)
∈ , (B.6)

which follows from Lemma 4.6 and the fact that the coefficient 𝜗1
satisfies

𝜗1 =
𝛼̃1
𝑆

𝛼̃0
≥Δ𝑡

||∇𝑝𝑒
𝐾
(𝒙̂𝜇

𝐾
)∕𝜌𝑒

𝐾
(𝒙̂𝜇

𝐾
)||√

2𝑒𝑛
𝐾
(𝒙̂𝜇

𝐾
)

.

Similarly, we conclude that

𝜗2𝑼̄
𝑛
𝐾 + 𝜆

𝜌̄𝑒

⎛⎜⎜⎝
0

𝜌̄ ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔
𝒎̄ ⋅ ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔

⎞⎟⎟⎠ ∈ , (B.7)

which again follows from Lemma 4.6 and the fact that the coeffi-
cient 𝜗2 satisfies

𝜗2 =
𝛼̃2
𝑆

𝛼̃0
≥ 𝜆|| ∫𝜕𝐾 [𝑝]𝑒,𝐾𝒏d𝒔||

𝜌̄𝑒
√

2𝑒𝑛
𝐾

.

Therefore, we can apply Lemma 4.1 to conclude that 𝑾 2 ∈ .
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