Computers and Mathematics with Applications 146 (2023) 339-359

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Check for

High order structure-preserving arbitrary Lagrangian-Eulerian RC
discontinuous Galerkin methods for the Euler equations under gravitational
fields

Weijie Zhang®', Yulong Xing ", Yinhua Xia **, Yan Xu®"*

2 School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Y Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

ARTICLE INFO ABSTRACT
Keywords: In this work, we present high-order arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) methods for
Euler equations the Euler equations under gravitational fields on the moving mesh. The goal of this paper is to demonstrate that,
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Gravitational field

through careful design of the scheme, the ALE-DG methods can also achieve the structure-preserving properties
of DG methods, such as high order accuracy, well-balanced property, positivity-preserving property, for the
Euler equations with arbitrary moving meshes. We propose two well-balanced and positivity-preserving ALE-DG
schemes which can preserve the explicitly given equilibrium state on arbitrary moving grids, and also carry out
rigorous positivity-preserving analyses for both schemes. Our schemes are established both in one dimension
and in two dimensions on unstructured triangular meshes. The most challenging component in designing such
ALE-DG schemes on the moving mesh is to maintain the equilibrium state and the mass conservation at the same
time, since temporal discretization of the ALE method may destroy the well-balanced property, and inappropriate
adjustment of the numerical flux could lead to the loss of the mass conservation property on the moving meshes.
A novel approximation of the desired equilibrium state based on ALE-DG methods on the moving mesh has
been introduced to overcome such difficulty. Numerical experiments in different circumstances are provided to
illustrate the well-balanced property, positivity-preserving property and high order accuracy. We also compare
the schemes on the moving mesh and on the static mesh to demonstrate the advantage of ALE-DG methods for
discontinuous solutions.

1. Introduction Here, p > 0 denotes the density, m = pu € R is the momentum vector,
u € R is the velocity vector, p > 0 is the pressure, E = pe + %pllull2

In this paper, we consider the compressible Euler equations with is the non-gravitational energy and ¢(x) denotes the time independent
gravitation in d-dimensions, which take the form gravitational potential. The system is closed by an equation of state

(EoS) of the form p = p(p, ), which links the pressure p to the density p

+V-m=0, . . L
b " and the internal energy e. The ideal EoS is given by
m,+V~<m®m+pl>=—pV¢, D
' p=@—1pe, (1.2)
m
E+V- <(E +p) ;) =-m-V¢. where y is the ratio of specific heat.
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The Euler system in (1.1) has wide applications in modeling physical
phenomena such as astrophysical and atmospheric phenomena. They
also admit a general hydrostatic equilibrium state where the flux gra-
dient exactly balances the gravitational source term and the velocity
vector equals zero:

u=0, Vp=-pVo. (1.3)

Two well-known hydrostatic equilibrium states are the isothermal and
the polytropic equilibria. In many practical simulations, the flows under
consideration can be viewed as small perturbations of these equilibrium
states. The well-balanced schemes are introduced to properly capture
this type of flow, which often appears in astrophysical and atmospheric
applications. One major advantage of the well-balanced schemes is
that they can effectively and accurately resolve these small pertur-
bations of equilibrium states on relatively coarse meshes. The well-
balanced methods have been widely studied in the few past decades,
especially for the shallow water equations with non-flat bottom topog-
raphy. Earlier works in this field include [5,26,3,1], and high-order
well-balanced schemes have been designed to preserve still water equi-
libria [40,44,16] and moving water equilibria [39] of the shallow water
equations. We refer to the review papers [43,25] and the references
therein. For the compressible Euler equations under gravitation fields,
the well-balanced methods are more complicated and have attracted
much attention recently. They were first introduced by LeVeque and
Bale in [27]. Later, well-balanced schemes were studied for isothermal
equilibrium states in [42] and polytropic equilibrium states in [21].
After that, there are many well-balanced methods developed within
several different frameworks, which can preserve the zero velocity equi-
librium states, e.g. [29,8,28,9,23,38,22,7,33,37].

Another important difficulty in numerical simulations for the Euler
equations is preserving the positivity of density and pressure. Physi-
cally, the density p and the pressure p should both stay positive. The ap-
pearance of negative density or pressure in the numerical methods may
lead to difficulty in the simulation. There have been extensive studies of
first or second order positivity-preserving schemes up to second order
in the earlier work [13,35]. In recent years, many high-order bound-
preserving schemes have been studied for hyperbolic conservation laws
[18,50,46]. Two popular approaches have been reviewed in the recent
paper [47]. The first one is through the design of a simple scaling lim-
iter for finite volume and discontinuous Galerkin schemes. Using this
approach, high-order positivity-preserving DG schemes were designed
for Euler equations without source term [50,52] and with source terms
[51]. The second approach is to introduce a bound-preserving flux lim-
iter as discussed in [46,45].

The arbitrary Lagrangian-Eulerian (ALE) methods with moving
meshes have been widely used in solid mechanics and for prob-
lems involving moving boundaries. ALE finite element methods for
the incompressible Navier-Stokes equations have been proposed in
[11,20]. Recently, arbitrary Lagrangian-Euler discontinuous Galerkin
(ALE-DG) methods have been designed for solving compressible flows
in [30,34,32]. The theoretical analysis of ALE-DG schemes coupled
with Runge-Kutta time stepping has been introduced in [24] in one
dimension and extended to two dimensions in [14]. By adopting the
time-dependent linear affine mapping, the ALE-DG method for con-
servation laws maintains almost all mathematical properties of DG
methods on static grids, such as conservation, geometric conservation
law (GCL), maximum principle preserving property, and optimal error
estimates.

There are two popular strategies to update the computational mesh
in the ALE methods. The first one is similar to the classical Lagrangian
methods, where the grid velocity is selected as the local fluid velocity
[2,15]. Such an approach can track the moving boundaries or minimize
the numerical dissipation. The second one involves a monitor function
and will concentrate the grids in zones where the solution demonstrates
large gradients [19,31]. We refer to [12] and the references therein for
more details about ALE methods.
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Numerical methods, which can satisfy both the well-balanced prop-
erty and the positivity-preserving property for the Euler equations with
gravitation, have been studied in a few recent works within the frame-
work of finite volume [36] and finite element DG methods [38,49].
The main objective of this paper is to extend these schemes to moving
meshes, and study well-balanced positivity-preserving ALE-DG schemes
to enjoy the benefits of moving mesh methods. This paper concentrates
on the design of numerical methods and aims to show that ALE-DG
methods can achieve nice properties on arbitrarily moving meshes: high
order accuracy, well-balanced and positivity-preserving properties. The
strategy of mesh movements was not considered in this paper. We no-
tice that the well-balanced positivity-preserving DG methods cannot be
generalized to ALE-DG methods in a straightforward way. The main
challenge is that the standard Total Variational Diminishing Runge-
Kutta (TVD-RK) time discretization may destroy the well-balanced prop-
erty on moving mesh. The well-balanced positivity-preserving ALE-DG
methods were studied in [48] for the shallow water equations. To over-
come this challenge, one important technique in this paper is the novel
approximation of the bottom topography or the equilibrium state based
on ALE-DG methods. In [15], an ALE finite volume scheme has been
developed in the cylindrical coordinates, which is well-balanced if the
mesh satisfies some special conditions. To obtain the well-balanced
property on arbitrary moving mesh, one needs to define the approxima-
tion equilibrium state on the moving mesh carefully. Another challenge
is maintaining mass conservation, which becomes a nontrivial thing as
the grid velocity is now incorporated into the fluxes. In addition, im-
proper handling of this term may also destroy the positivity-preserving
property. To overcome these difficulties, we first assume that the de-
sired equilibrium state is explicitly given and then introduce a novel ap-
proximation for that known equilibrium based on the ALE-DG scheme,
which is similar to [48]. We aim to numerically preserve a special
projection of this equilibrium solution on moving meshes, which may
slightly change on different meshes. The objective of the well-balanced
property is to maintain the error between the numerical solution and
this projection to machine error, and demonstrate that our proposed
methods can help capture small perturbations. Two schemes have been
proposed in this paper, based on different well-balanced strategies, and
they have very different proofs of the positivity-preserving property.
The first one is via the hydrostatic reconstruction, which is first intro-
duced in [1] for solving the shallow water equations and then extended
to Euler equations in [29]. The second approach is by reformulating
the source term and utilizing the properties of HLLC flux as studied in
[38]. We will start by describing these algorithms in detail, and then
rigorously prove these schemes’ well-balanced property and positivity-
preserving property. The advantage of the ALE-DG method on moving
meshes will also be demonstrated in the numerical examples.

The rest of the paper is organized as follows. In Section 2, we present
the standard ALE-DG settings for solving Euler equations. In Section 3,
we first introduce the desired equilibrium states and the admissible
states for Euler equations with gravitation. Two well-balanced ALE-
DG schemes for the Euler equations with gravitation, which preserve
both the isothermal and the polytropic equilibrium states, will be pre-
sented. In Section 4, the positivity-preserving property of the proposed
methods will be investigated. In Section 5, we provide extensive one-
and two-dimensional numerical examples to validate the well-balanced
property, high order accuracy, the advantages of ALE-DG methods, and
positivity-preserving property on moving meshes. We give some con-
cluding remarks in Section 6. The detailed proof of the weak positivity
property will be elaborated in Appendix A and Appendix B.

2. The ALE-DG methods
In this section, we briefly discuss some notations and setups involved

in the study of ALE-DG methods, and refer to [14] for more details and
discussions on them.



W. Zhang, Y. Xing, Y. Xia et al.

2.1. Time-dependent cells and grid velocity field

For ALE-DG methods, the computational mesh can be changed over
each time step. We assume that Q € R? is the computational domain
and 7" is a mesh of the domain Q at the time step ", such that

Q:U{K"lK"eT”}, 2.1)

where all the elements K" are the simplex cells. Suppose that x; and
xg“ are the coordinates of the same mesh grid at time " and r"*! re-
spectively. We can define the grid velocity on this mesh grid as

xn+l —x"
n._ 0 0
OAES presampnt (2.2)
and connect them with a straight line
xo(1) 1= xp + @t —1"). (2.3)

For any given fixed time ¢ € [",#"*!], we can evaluate the new coordi-
nate of the mesh grids using this. By maintaining their connectivity, we
can obtain the moving mesh 7 () and time-dependent computational
cells K(¢) for t € [, "]

Q={JIK® | KOeT®m), K@ :=conv{xg ), Xk 441D},
(2.9

where xy (1), ,xg 4,1 (?) are the vertices of K(t) and conv(-) denotes

the convex hull of a set. We denote the edges of K(r) by F,V(m, V=
1,---,d + 1, such that
d+1
(2.5)

oK(®) = Fy
v=1

The volume of K(7) is denoted by Ay,

Note that we plan to compute the numerical solution at time #"*! on
a mesh 7*!, by using the numerical solution at time ¢ on a different
mesh 7". Therefore, the grid velocity was used to derive the numeri-
cal scheme. Next, we are ready to define the grid velocity field o (x,1)
for time ¢ € [#",#"*1]. We assume that the grid velocity o (x,?) is a vec-
tor with d components, and its components are denoted by col,iJ (x,1),
i=1,---,d. The main principle for the meshes at different time steps
is that the topography of the mesh should be unchanged and only the
position of the grids can be changed. In such a case, we can assume
the corresponding grids are connected by straight lines and the grid
velocity for each point in time interval [¢",#"+1] is constant. We also as-
sume that the grid velocity in each spatial cell is a linear polynomial, so
that the grid velocity of vertices can determine the grid velocity of any
point inside the spatial cell. Under this assumption, the following d +
2 points are coplanar: (x';(,1’w’1’<’[,i])""’(x';<,d+1""'11é[,3+1)’(x7<(x)’“’Zm(x))'
Therefore, on cell K, the linear polynomials a)[l? (x,1),i=1,--,d, can be
solved by the following equation

x—xg (1) Xk 2(1) = xg 1 (D) X a1 () = xg 1 (D)
o, 1) — o1 nlil _ il nlil - onlit | = 0. (2.6)
KX K.1 K2 K1 K.d+1 K.1
Here | - | denotes the determinant of the (d + 1) X (d + 1) matrix, and

xg (1), j=1,--,d are the vertexes of the cell K. co?(j, j=1,---,d are the
grid velocities on these vertexes as defined in (2.2), and w;é[;] denotes
the i-th component of w"KA]..

2.2. The time-dependent finite element space

We first introduce the time-independent reference cell

d
Kief 1= {§=(§l’...,§d)TeRd ‘ &2>0,Viand 2:,.51}, 2.7)
i=1
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which, in two dimensions, is a triangular element. The affine linear
time-dependent mapping between this time-independent reference cell
and the time-dependent cell in physical space (2.4) is denoted by

Xk - Kref = K@, & xgp(&.0) 1= Agn€+xk 1 (D), (2.8)
where the matrix Ag(, is given by
Ak 1= (¥x20 = Xk, O, = Xg a1 = x5, 0). (2.9)

With the affine linear time-dependent mapping, we can define the
time-dependent finite element space, to which the test function belongs,
as

Vi :={ o (L2@Qu) "™ | poxk € (P*(Keep)™™, VKO €T},
(2.10)

where P¥ is the space of polynomials of degree no greater than k and
d + 2 refers to the number of equations in the Euler system. We estab-
lish the connection between test functions at different times: if two test
functions, ¢(x,?) at time ¢ and @(x, ) at time 7, satisfy that

(X k(&)1 = P(x k&), 1), for all & € K¢ and any cell K, (2.11)

we call them the corresponding test functions.
We also define the cell boundary values as

v int e i v
—S"K(x))7 ] K(r)(x).—elir(§1+(p<x+enK(t)),

(2.12)

ko (x) 1= lim <x
PrEO(Xx) 1= lim ¢

where nZ o V= 1,---,d + 1 denote the outer normal vector of K(¢) with

respect to the simplex face FIV{( .

2.3. The semi-discrete ALE-DG scheme

The conventional ALE-DG methods will be introduced in this sub-
section. We first write the compact form of equations (1.1) as

U,+V-FU)=SU,Vg), (2.13)

where U = (p,m, E)T, F(U) denotes the flux term and S(U, V¢) is the
source term. The standard ALE-DG scheme for the Euler equations with
gravitation (2.13) is described as follows: find the numerical solution
Ue V’;(r), such that the equations

d

5 | Uedx=Lg(@.U.9.0). (2.14)
K()
holds for any ¢ € V’;(r), with the spatial operator defined as
Ly (@U,p,1 (2.15)
= / G(®,U) : Vodx — / G(m,U””,U”’,n) - @ds
K@) oK (1)
+ / SU,V) - @dx,
K@)
where
« the flux G of the ALE-DG methods is defined as follows
p(u—o)
G@U) =FU)-0@U=|m®@u-w)+pI |, (2.16)
E(u-o)+pu

and the operator ® is the tensor product. Note that the additional
term —® ® U is added due to the moving mesh. More details about
the flux G and the standard ALE-DG methods for conservation laws
can be found in [24];
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« the operator : is defined as follows

A:B:=

ayb (2.17)

1<i<n, 1<j<m

ij>

for any two matrices of the same size A = (a;;) and B = (b;;) € R™";
« n is the outer normal vector of K(r) and G is the monotone numer-
ical flux.

We use the Harten-Lax-van Leer-contact (HLLC) numerical flux [31]
in this paper which is given as follows

G (@, U™)-n, ifS">0,
N i i M
G (0,0, U n) = G, if S™<0<SM, (2.18)
’ ’ ’ G*,ext, if SM < 0 < Sext,
G (@, U") - n, if S <0,
where
(Sint _ Un,im‘) pim
U*,int c= T i i (Sint _ l.)n,im).mint + (p* ._ pim) n , (2.19)
(Smt — Un,mt) Emt _pmtvn,mt +p*SM
(Sext _ Un,exr) pext
U*,ext = o 1_ S (Sext _ Un,ext) mex + (P* _pext) n R (2.20)
(Sexl _ Dn,ext) Eext _ pext prext + p*SM
SMP*,im
GHint - — SM pysint +p*n , (2.21)
SME=int + (SM 4+ @ - n) p*
SMp*,exr
G = SMm*ext 4 p*n , (2:22)
SME*ext 4 (SM + @ - n) p*
p* — pim (Unjnt _ Sint) (Un,int _ SM) +pim‘

- pext (Un,cxl _ Sext) (Un,cxt _ SM) +pcxr’ (223)
Un,int — <uim‘ _ (1)) -n, Un,ext — (uext _ w) -n, (224)
and the signal velocities are defined as
Sint = min (Un,int _ cint’ Unﬂext _ cext) , (225)
Scxr = max (Un,im + Cinl, Un,exl + cext) , (226)
SM B pextun,ext (Sext — Un,ext) _ pimvn,int (Sint — Un,im‘) +pim _pext (2 27)

- pext (Sexr _ Un,ext) _ pinr (Sint _ Un,int) ’ .
. int ext
C’m = ypim ’ ceXt = YI:xt : (228)
V p V P

3. The well-balanced ALE-DG methods

In this section, we develop the well-balanced ALE-DG schemes for
the Euler equations with gravitation (2.13) on moving meshes.

3.1. Hydrostatic equilibrium states

In this paper, we assume that the desired equilibrium state (1.3)
is explicitly given and denote them by U?. Two typical examples of
the equilibrium state (1.3) are the isothermal [42] or polytropic [21]
equilibria outlined below.

Isothermal equilibrium state: For an ideal gas with the isothermal
condition, which means that

p=pRT with T =T, =constant, (3.1)
the equilibrium solution of equations (2.13) is given by

¢ ¢
P=P03Xp<—R—TO>7 u=0, P=P06XP<—R—TO>» (3.2)

with p, = pyRT}, and R being the universal gas constant.
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Polytropic equilibrium state: If the equilibrium state is set as poly-
tropic gas of the form

p=xp0", (3.3)
one can combine it with the equation (2.13) and obtain the form
L
p=<7_1<0—¢>>y’1, u=0, p=ros, 3.4
KoY

where C and « are both constants.
3.2. Well-balanced property on the moving mesh

There have been some attempts at the design well-balanced schemes
under the framework of ALE methods. In [15], the authors assume a
special initial mesh and a Lagrangian moving mesh, which indicates
that the mesh does not move at the equilibrium states since the fluid
velocity equals zero. If one wishes to achieve the well-balanced property
for arbitrarily initial mesh and moving mesh, the situation becomes
more complicated. One major difficulty is on the mass conservation as
unsuitable treatment of the equation of density p may destroy the mass
conservation. This is due to the fact that the flux term in the equation
of density in (2.16) does not equal zero in the case of an equilibrium
state.

In this paper, we would like to address this issue of mass conserva-
tion on moving meshes in the setting of the well-balanced framework,
and assume that the desired equilibrium state U? is explicitly given.
If the initial condition is set as U“, we expect the numerical solution
of the well-balanced scheme exactly equals a suitable approximation
of U, which is independent of the flux and source term of the Euler
equations in (2.13). Let us denote such suitable approximation of U
by U° e V'[j(t). In this case, the well-balanced property is obtained if the
flux term and source term balance each other and this leads to

Un-U¢@r)=0, (3.5)

for any time ¢. The main thing remaining is to define U¢. There are
several different choices for the definitions of U¢. One can use the L2
projection to project the desired equilibrium state U? into the time-
dependent space V’; (1), but with such an approach, it is difficult to main-
tain the positivity of the density and pressure, and the well-balanced
property at the same time.

In this work, we introduce a novel approximation of U?, which is
based on the ALE-DG methods and plays an important role in construct-
ing positivity-preserving schemes. Since U¢ is the desired hydrostatic
equilibrium state, we have

U, =0, (3.6)

at the continuous level. Numerically, we can apply the ALE-DG method
to solve this steady state problem (3.6) on the moving meshes, and ob-
tain a numerical approximation of U? on the moving meshes, denoted
by U*¢:

d U pdx =—

dt
K@)

/(co® U°) : Vedx + / w@e - @ds,
K()

3.7)
0K (1)

where m@e is the numerical flux of ® ® U¢ which depends on the
specific well-balanced methods to be used and will be defined later.
The initial condition of U is set as the L2 projection of U“:

U¢(x,t =0)=PU‘(x,t =0), (3.8)

where P stands for the standard element-wise L? projection. Again, we
emphasize that the objective of the proposed well-balanced will be to
preserve U¢(7) (an approximation of U?()) at all time steps.
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3.3. The semi-discrete well-balanced ALE-DG scheme

In this subsection, two well-balanced schemes will be introduced.
The first one is based on the hydrostatic reconstruction [1] and can be
viewed as an extension of the well-balanced methods studied in [29,49]
to the moving meshes. The second one is based on a special source term
reformulation and the modified HLLC flux as studied in [38]. In the
first approach, the Lax-Friedrichs numerical flux in [49] is replaced by
the HLLC flux in this paper, as better results in the accuracy test on the
moving meshes have been observed numerically.

3.3.1. Well-balanced scheme based on hydrostatic reconstruction

We start by presenting the first approach to obtaining well-balanced
methods. We adopt the well-balanced idea in [49] by modifying the
cell boundary values and applying the hydrostatic reconstruction idea.
Since the ALE-DG methods are designed based on the moving meshes,
the main challenge is to introduce the well-balanced numerical flux
involving the grid velocity @ and the updated definition of U¢ based on
the ALE-DG scheme (3.7).

We begin with the definitions of modified cell boundary values. At
each time step 1", let us decompose the numerical solution U into two
parts: one is the equilibrium part U¢ defined in (3.7) and the other is
the fluctuation part

U’ =v-vu- (3.9
The modified cell boundary values are given by

U*,imk(,) — Ue',im,((,) + UfJ"’K(t), U*,ext,((,) — U&G)"K(r) + Uf’”t"(’),

pb,im,q,) — max (0, p*,imK(,)) , pb,ex1K<,) — max (O,p*,ext,((,)) .

ubimtK o = yinKa) ubeXk@ = yo¥K@

pb,im,((,) = max (O,p*‘i"t"(’)) , pb,extK(,) = max (0’ p*,eer(,)) ,

(3.10)

where

U =Pt e Vi o, (3.11)

is the projection of UY onto K(1), and P denotes the continuous finite
element projection introduced in [6]. The motivation for introducing
the projection of degree k + 1 is to provide a more accurate source term
approximation and to maintain the continuity at the cell boundaries,
as explained in [49]. We refer [6, Figs. 3.1, 3.3-3.5] for examples of
2D projection on triangular cell. One nice property of U°® is that it is
continuous at the cell boundaries, i.e.

Ué,im‘,((,) — Ué,exth .

(3.12)

If the purpose is to maintain only the well-balanced property, it is
unnecessary to introduce such projection P since one can simply set
U? = U“. If we want to have the positivity-preserving property at the
same time, such projection will be used in the source term approxima-
tion (3.13) and plays an important role in the proof of the positivity-
preserving property.

Following the approximation of the source term /| K@) SWU,Vp)- pdx
in [49], we separate the source term into two terms involving U¢ and
U/ respectively, and approximate them by

sto= [ s(v5. - . pax— FU) : Vod
K(l)_ N pe @pdax . @piax
K(1) K@)
+ [ (F(U% -n)-g@"xods. (3.13)
JdK (1)

Note that although the form of Sﬁ(r) is the same as that in [49], it
involves different U¢ and U?, now defined over the moving meshes.

The proposed well-balanced ALE-DG scheme based on the hydro-
static reconstruction is given by: find U € v’;(t), such that
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% U gpdx =L} (0,U, 9,1, (3.14)
K@)
holds for any ¢ € Vf;(t), where the spatial operator is given by
L' (0,U,9,1 (3.15)
= / G(®,U) : Vepdx — / G (a), Uik, Ub~€X’K<z>,n) - pds + Sz'iw

K() 9K (1)

with S}, defined in (3.13), G defined in (2.18) and Uk, U *¥'k®
defined in (3.10). The last thing is to define the corresponding numeri-
cal flux ® ® U° in (3.7):

0QU :=(@QU%-n, (3.16)

where U? is defined in (3.11).
Next, we introduce the following lemma, demonstrating the well-
balancedness of the semi-discrete scheme (3.14).

Lemma 3.1. If the numerical solution reaches the equilibrium state, i.e.
U = U?®, the spatial operator in the semi-discrete ALE-DG scheme (3.14)
reduces to

Ll (0,U,9,1)= / w@“-rpds—/(w@Uﬂ):V@x,
JK (1) K()

which leads to the well-balanced property of spatial discretization.

Proof. We first claim that U"k0 = Ub¥k0 = U%"k0 = U&¥K0 in
(3.10), following the fact that U/ =U - U*¢ =0 and (3.12). The consis-
tency property of the HLLC flux leads to

G ((1), ubintka , Ubextka , n) =G (w’ Ub,intK<,)) -n

(F (Ué,im,((,)) —® ® UEvimK(r)) .n.

Using the assumption U = U° and the definition of source term (3.13),
we have

Ly (0’7U,¢,t)=/G(w,U“) : Vedx

K(t)

((F(Ué,int,(m) —o® UE,inIK(,)) . n) . (pdS

oK ()
- / F (U : Vedx + / (F(UE*""'K(O) -n) - @"KOds
K(1) [240!

= (0 @ U*™k®)) - n) - pds — /(w® U°) : Vedx

K (1) K@
= / a)TX)\Ue - @pds — /(co® U®) : Vedx,
IK (1) K@)

where the last equality follows from (3.16). This finishes the proof. []

3.3.2. Well-balanced scheme based on a special source term approximation

A different approach to obtaining a well-balanced scheme will be
discussed in this section. This is inspired by the recent work in [38],
in which a positivity-preserving well-balanced DG scheme has been
proposed on the static mesh. Compared with the work in [38], the def-
inition of U° will be different and the numerical flux now involves the
grid velocity o, again due to the moving meshes, while the form of the
source term approximation and the modified cell boundary values are
the same.

We begin with presenting the modified cell boundary values in [38]:
pL‘

e.ext
)4 K(1)

pC
pe,int,((,)

biint int b.ext 1
UMKk o = U'ko,  U»K0 = Uk, (3.17)
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where p° is defined as the average of cell boundary values

pe,intK(,) +pe,ext1<(,)

2
In [38], a novel source term approximation based on the source term
reformulation idea in [41] has been introduced in one dimension and
extended to two dimensions on rectangular meshes. A similar approxi-
mation will be utilized here, and extended to moving meshes, including
two-dimensional triangular moving meshes. Let us denote the approx-
imation of [y, S(U,V¢) - gdx by St We use SUl denotes the j-th
component of S, and similarly for ¢. The source term approximations
are given by

ra (3.18)

W, ve)plldx =0=: (S, !},
140

/ S, V) - pPdx

K(1)
Vpe = CexXtg () _ e,imK(,)
z/ﬂ P oPlax+ 2 / pizp n- lds
P P
K(t) 9K (1)
=: (5P, 91),
JERCAT
K@)
_ e,ext e,int
o [ m Y Bl [ PETEO = PPTRO ) g
p° e 2
K@ IK (1)
=: (8P By,
= (SUL @llly + (ST 12y 4 (SBI, oB3y. (3.19)

K(t)

Here U, U° are the cell average of U, U° respectively. More details
about this approximation can be found in [38]. Note that the formu-
lation in (3.19) is slightly different from that in [38], as an additional
integration-by-parts procedure is applied here to simplify the notations.
We note that sufficient integration accuracy in (3.19) for polynomials
of degree 2k — 1 on K(¢) and 2k on 0K(¢) is needed to maintain the
well-balanced property, since we will use integration by parts on the
polynomial integration in the proof of well-balanced property and this
only holds with exact integration of these polynomials. The details will
be shown in Lemma 3.3.

The well-balanced ALE-DG scheme based on a special source term
approximation is given by: find U € V’;(t), such that

d

dr
K@)

U @pdx= E (0,U,@,1), (3.20)

holds for any ¢ € VZ (1), where the spatial operator is given by

Ly (@,U,9,1) (3.21)

G (a), Ubinke  ybetko, n) @ds + .53

=/G(w,U) : Vedx — / K@)’

K(n) K (1)
with S;q N defined in (3.19), G defined in (2.18) and U’~""”’, UPe¥! defined

in (3.17). The definition of the corresponding numerical flux w@e in
the method (3.7) takes the form

((0® Uemt,(m) n,
(©® Ue extK(,)) n,

ifo-n<0,

o

oQU° =

e th(,)

(3.22)
ifo-n>0.

pE eMK(,)
Next, we present the following lemmas on the well-balancedness of
the semi-discrete scheme (3.20).
Lemma 3.2. For the pair of (U™, U%") with m™ = m®' =0 and p"™ =
p®! = p, the HLLC flux (2.18) satisfies
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G(a),U"”)~n, ifw-n<O0,

(3.23)
G(co,Ue’“) ‘n, ifo-n>0.

G (0), Uim, Uext’n) — {

Proof. First, we introduce the notations " =@ - n, c,, = max (¢, c®).
By using the assumption m™ = m®*" = 0, the signal velocities in
(2.25)—(2.27) can be simplified to

Sinr — SM =—w".

ext __ n
S =c, —a",

(3.24)

Note that SM =yt = pex = _@" in (2.24) and (2.27), which leads
to p* = p=p™™ = p°' in (2.23). One can then simplify the intermediate
states in (2.19) and (2.20) as

n
—c, —@",

U* Lint Umt U* ,ext Uext

and the corresponding numerical flux in (2.21) and (2.22) as

G*A,im =G (CO Uint) .n G*,ext =G ((0 Uexr) .n.

Combining this with the signal velocities, one can conclude (3.23), and
this finishes the proof. []

Lemma 3.3. If the numerical solution reaches the equilibrium state, i.e.
U = U¢, the spatial operator in the semi-discrete ALE-DG scheme (3.20)
reduces to

£}'<(m,U,(p,t): / w@e~¢ds— / (0Q®U®) : Vedx,
0K (1) K

which leads to the well-balanced property of the spatial discretization.

Proof. We first claim that p’-”""”“ﬂ = p¢ in (3.17), due to the fact that
U =U° and

pC
pe,[nt,((,)

E,inZK(r) — intg () =pc.

p

Similarly, we have pP*k® = p¢ and pP"ko = phex’kw . Utilizing the
property of HLLC flux in Lemma 3.2 yields

G (a), UE‘i”’K(I)) -n, ifo-n<0,

G (0), UZ),inTK(,) , Ul_),extK(,) , n) — -
G (a), Ub*ex’”')) -n, ifo-n>0.

(3.25)

For the source term approximation S% ., we use the assumption

K(1)’

p=p°, m=m°=0 and the definition (3.19) to conclude that
(S, U1y = (S 31y = 0,
pe,extK(t) _ peﬂintK(t)
K(,) = (S ) / VPG . ¢[2]dx + / 72 n- ¢[2]ds
K@) K (1)
=-— / p° 1 Vollldx + / °n - @%lds, (3.26)
K(t) [240)]

where the last equality follows from integration by part (which holds
with sufficient integration accuracy) and the definition of p¢ in (3.18).
Based on the assumptions U = U*¢, m =0, we have

0

G, U)=|pI
0

-oQ®U,

and can conclude that

[Z}'( (0,U,,1)

— / G(@,U): Vodx — / G ((1), UE,ian(/)7 Uﬁ,extk<z), n) @ds + SK(Y)
K(t) oK (1)

= / G(w,U): Vedx — / p°n - @ —w@“qzds
K@) IK (1)
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+ /p"n-(p[z]ds—/pel 1 VolHldx
oK (1) K(1)
B / m@”(pds— /(w@Ue) : Vedx,
IK (1) K@)

where the second equality follows _frorn the combination of (3.22),
(3.25), (3.26), the definition of U® in (3.17) and the assumptions
U=U°m=0. J

3.4. Time discretization and well-balanced property

We use the standard TVD-RK time discretization with slight modifi-
cations introduced in [14] in the multi-dimensional case in this paper.
For the ALE-DG methods, the TVD-RK time discretization may destroy
the well-balanced property because the spatial discretization £’1'</ * ap-
plied to the equilibrium states do not equal 0, as indicated in Lemma 3.1
and Lemma 3.3. Therefore, we would apply the same time discretiza-
tion for the approximation U*¢ to ensure U = U* at each time step.

We start with presenting the standard s-stage TVD-RK time dis-
cretization: for i=1,---,s,

/ Un,i . (pn,idx

Kmi

i-1
= Z a;; / U™ . (p"’jdx +ﬁ,-jAt£Kn,j (m"'j,U"'j,q)"’j,t"*j) )
Jj=0 K

where 0 =", 5 = "*1 and @™, for i = 1,---,s are the correspond-
ing test functions at time " as defined in (2.11). The constants {«; i
and {f;;} refer to the coefficients of the TVD-RK methods, which can
be found in [17]. For example, the Euler forward time discretization
corresponds to the case s =1,a;p=1,5,p =1, i.e.,

/ Ut ~(p"+1dx=/U"~q)"dx+At£Kn (@",U", ", 1").

Kn+l K"

Next, we introduce the approximation of the cell volume A ., denoted
by Jgni, for i =1,--,s, which is defined by employing the TVD-RK
methods:

i-1

Jgni = Z (o + By ALV s - 0™ ) Tgens
j=0

(3.27)

where Jyno = Agn.
The modified s-stage TVD-RK time discretization [14] to be used in
this paper takes the form

JK"’i / Un,i . (pn,idx
Agni
Kni
i-1
Jgn, : . . . -
= AK j_ ; / v -(p”'fdx+ﬂ,-jAt£K,../ (m"’j,U"’j,(p””,t"’f) S
=0 Kni

Kni
(3.28)

fori=1,--,s, with the main difference being the additional coefficients

Z’[‘(’;', Lyn; in (3.28) can be replaced by £’1'<n-/ in (3.14) or £;<n.j in
(3.20), leading to two fully-discrete well-balanced ALE-DG schemes.
The GCL is an important property to keep high order accuracy and
well-balanced property for the grid deformation method. We introduce
the GCL briefly and refer to [24] for details. If a method satisfies the
GCL, it can preserve the constant states. Both proposed schemes satisfy
the GCL property, and we provide brief proof for the 2D case. First, if
a constant state satisfies our model (1.1), the gravitational potential ¢
should also be a constant. In this case, we set the equilibrium state U
as the same constant state. We have the reference equilibrium states
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U¢=U’=U"=U, all being constants, and ®QU®=o®U on the cell
boundary. Following Lemmas 3.1 and 3.3, (3.28) reduces to

JKn,i / U"’i . (p""idx
Agni
Kni
i-1
_ AK J @i / U™ - @™ dx + B A / (V . (a)"’/ ® Um/)) @™dx
j=0 KnJ Kni n.j
i-1
Jgn, i j i i /
_ A1< J. @ / U™ - @"dx + f At / (V-0™) U™ - g™dx||,
=0 BKmi .

KnJ nj

where the first equality follows from the results above and the integral
by part, and the second equality holds as U is a constant state. By setting
the test function ¢ = 1 and using equation (3.27), we can easily prove
U™ =U" for all j, i.e., U™ is still a constant state. From this, we
can also observe why we need to slightly modify the Runge-Kutta time
discretization with the term (3.27). We refer to [14] for more discussion
on this term.

We will prove that the fully discrete well-balanced ALE-DG scheme
(3.28), when coupled with the modified TVD-RK methods, preserves the
equilibrium state at a discrete level. For ease of presentation, we will
demonstrate the well-balanced property of the fully discrete ALE-DG
scheme with the modified Euler forward time discretization:

(1+ A1V, - 0") Aga U - o dx

AKn+l

Kt (3.29)

U"- @"dx + AtL g (0", U", @",1"),
Kn
where ¢"t! and ¢" are the corresponding test functions (2.11) at time
t*1 and t" respectively. The same proof can be easily extended to gen-
eral TVD-RK methods.

Proposition 3.4. The fully discrete schemes described in (3.29), with L gn,;
replaced by £ in (3.14) or £;<n in (3.20), maintain the equilibrium

Kni
state exactly, which means that U" = U®" for all time level 1".

J

Proof. We will use induction to prove the result of U" = U*", Vn € N.

Basic Step: Suppose that the exact solution U,, equals the desired
hydrostatic equilibrium state U¢. Since the initial condition U° and
U0 are both the L2 projection of U?, we have U° = U0,

Inductive Step: Now we assume that U* = U®* holds for some k € N.
From this assumption we want to deduce that U**! = ge*+!,

Considering the well-balanced properties of the semi-discrete meth-
ods in Lemma 3.1 and Lemma 3.3. By comparing the results with the
ALE-DG scheme for U¢ in (3.7) (again discretized in time via the same
modified TVD-RK methods), we have

(UM — gy . g+l g =0,

Kk+1

(3.30)

which leads to U**! = U®**!, This finishes the proof of the well-
balanced property for the fully discrete methods. []

4. The positivity-preserving well-balanced ALE-DG methods

In this section, we show that the cell average of the numerical solu-
tion of the fully-discrete ALE-DG schemes satisfies the weak positivity
property under a suitable choice of time step. The limiter introduced in
[52] is then applied to enforce the positivity-preserving property of the
proposed methods.



W. Zhang, Y. Xing, Y. Xia et al.
4.1. Quadrature rules

We start with introducing the following two sets of quadrature rules
to be used in the proofs.
Gauss quadrature rule: In the numerical implementation, the standard
Gauss quadrature rule is used for all the integrals appearing in both
one-dimensional and two-dimensional fully discrete ALE-DG methods.
We denote the two-dimensional Gauss quadrature nodes and weights

ol Al
on the cell K(¢) by {xk(”’w’((’)}lsusﬁ

of the polynomial U g, can be written as

Uk = Z K(t) K(t)( K(!))

which implies that the average

=~

(4.1)

We also denote the one-dimensional Gauss quadrature nodes and

weights on the cell edge F ¥ of the cell K(¢) by { R } s
® P Tko J 1<pen

H

Jo(s,)) s
where |F;(w‘ denotes the area of the cell face F Iv((t) We note that all
these quadrature rules should be exact for integrals of polynomials of
degrees up to k, since integration by parts on the polynomial integration
will be used in the proof of well-balanced property, and this only holds
with exact integration of these polynomials.

Special quadrature rule: The special quadrature rule is introduced in
[52, Fig. 3.2] to deal with the unstructured mesh. Such a quadrature
rule is introduced in this paper only for the purpose of proving the
weak positivity property and will not be used in the implementation.
The most important property of the special quadrature rule is that

which implies that

N
/G((n U)ds~‘ K(t)|z=: o ( (i’;v

K(1)
v
FK (1)

» The quadrature rule has positive weights and is exact for integrals
of polynomials of degree up to k on the cell K(7);
+ The set of the quadrature points must include all the quadrature

~;¢ _ =1.---
points % F ),,u—l -, N on the edges K(t)eaK,v—l, ,d+1.
We can write the average of U over the element K(¢) as
d+l N L
U = @, UKo <~” ) (%) (4.3)
K@) VZ} ”Z Fro Fyo g Uka K(1)

where {J‘c‘;v

} are quadrature points on the boundary of K(¢) and
K

} and { K(t)} are
the corresponding quadrature weights.
For simplicity, we define the following quadrature nodes set in the
cell K(7)

v
FK o)

{” % (,)} are quadrature points inside K, and {

§K<x)={ X su=1, Nv=1, -,d+1}U{ ey h=1" L}
K
ol _
U{ %y n=1 1, (4.4)
and quadrature nodes set on the boundary of K(r)
QK(!):{il;:v ,M=1,~'~,N,v:1,~~,d+l}. (4.5)
K(1)

4.2. Properties of the admissible states

The density p and the pressure p should stay positive. Numerically,
the appearance of negative density or pressure may lead to the break-
down of the simulation, and we hope the numerical solution U can
belong to the following set of physically admissible states
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IImII >0}
20

where £(U) > 0 is equivalent to the pressure p > 0. To prove the weak
positivity property satisfied by the cell average of the proposed well-
balanced ALE methods, we will introduce some properties of the ad-
missible set G. One can easily verify that the admissible state set G is
convex.

g;:{U:(p,m,E)T p>0,EU):=E (4.6)

Lemma 4.1 ([38, Lemma 2.3]). For any 4; >0, 4y >0, Ul, U’ e G, we
have

LU+ ,U%ec. 4.7)

The following lemma, similar to those lemmas in [51], is introduced
for the numerical flux. The main difference to those in [51] is that the

numerical flux of the ALE-DG methods involves the grid velocity .

Lemma 4.2. For U € G, we have

U-nG@U)-neg (4.8)
if n> 0 and satisfies

ayn <1, (4.9)
where

p
> Amll=1.
pV2e
Proof. It is easy to check the first component of the vector is positive,

following the same proof in [51]. Next, we verify that the pressure of
the vector is positive. Simple algebra leads to

EWU -nG(w,U)-n)

1||m 1((u= @) nym+pn)|*
p—npu—®)-n

1 (1= n(u=w)-n)ym—npn|’

2 (I-nu-w)-n)p

=FE-n(Eu—-®)-n+pu-n)—

=(1-nu-w®)-n)E—npu-n—
=(l-nu-w)-n)E—npu-n

1A —n@=-)-n)pull’* +0p)* =21 (1 —n(u—w) -n)ppu-n
2 (I-nu-w)-n)p

o o 1 2 _L
=(1-qu-w) n)(E 2pllull) (0 -nu—-o) mp

n*p?
2(1-n(u—-w)-n)p

U 1 :
- 1 _ ) 2,2
_2(1—n(u—a>)-n)p(2<'1 - n) 7 p>'

Now it is easy to verify that, under the condition (4.9), we have

=(I-n(u—-w)-n)pe—

(u—w)-n

l-nu-—w)-n>1- >0, (4.10)

L0
and
1 ? 2
2 <— —(u—m)~n> pre—p*22(ap—(w—-w)-n) pe—p*=0. (4.11)
n
Therefore, we can conclude that U — G (w,U)-n€ (. []
The following two lemmas are introduced for the HLLC numerical
flux. Our proofs are similar to that of [38, Lemmas 2.7, 2.8] and the

main difference is that unstructured meshed are considered here and
the numerical flux involves the grid velocity.

Lemma 4.3. For U™, U € G, the intermediate states defined in (2.19)
and (2.20) satisfy
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Uint,* e, Ut e G. (412)

The proof is the same as the one on static mesh in [4] by replacing
u-n with (u — @) - n. Also, the result in [31] shows the same claim for the
ALE schemes. Therefore we omit the proof of this lemma in this paper.

Lemma 4.4. For U', U? € G and ||n|| = 1, we have

U'-nG(0,U',U%n)eq, (4.13)
if n > 0 and satisfies
apn < %, (4.14)
where
ay:= max |u—-w)-n|l++yp/p.

Ue(u',u?)

Proof. The proof on static meshes with @ =0 can be found in [38,
Lemma 2.8], and similar proof is also shown in [10] with the La-
grangian scheme. Let S = S™(U',U?), as defined in (2.25), and it
satisfies that 2#|S| < 1 following the assumption. According to the def-
inition of the HLLC flux, we derive that

20 -0 (G (0.UU%n) -G (0,U") n)
0

=% Qnmin(S,0)+ HU' + R(x/t, U, UYdx |,

21 min(.S,0)

where R(x/t,U",U?) denotes the approximate HLLC solution to the Rie-
mann problem between the state U! and U2, i.e.,

U', ifx<sin
, =< s,
) ) Ul'*, if Sim < f SSM,
R(x/t, U U = U2 i M < % < g (4.15)
U2 if i sen
, T2 S

We have R(x/1,U',U?) € G due to Lemma 4.3, and the convexity of ¢
leads to

20 -1 (6(0.U",0%n) -G (0.U") n) €. (4.16)
Moreover, using Lemma 4.2 and the condition (4.14), we have
lu' 46 (0.U') neq. 4.17)

2
Combining the results in (4.16) and (4.17), we have

U'-nG(0,U',U%n)eq,

following the convexity of G. []

The following two lemmas are introduced to address the impact of
the well-balanced modifications of the numerical flux terms and source
term approximation, respectively.

Lemma 4.5 ([49, Lemma 4.3]). For U, U* € G with u = u*, we have

U-qU"€eg (4.18)
if n> 0 and satisfies
an<l (4.19)
where
o =max<ﬂ_,P_>.

p P
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Lemma 4.6 ([38, Lemma 2.4]). For >0, n€R, U €, and a € R, if
llall o
7| Ve S A, then

AU — 50, pa,m - a)' €¢. (4.20)

4.3. The positivity-preserving property

In this section, we will prove that both of the proposed well-
balanced schemes satisfy a weak positivity property. A simple scaling
limiter can be applied to enforce the positivity-preserving property.

4.3.1. The weak positivity property
We list the weak positivity property of two proposed schemes below
and refer to Appendix A and B for the detailed proofs, respectively.

Theorem 4.7 (Hydrostatic reconstruction). For the semi-discrete scheme
(3.14) and time discretization (3.28), if U'I’<(x) € G holds for any x € SZ,
we have

vtleg (4.21)
under the CFL-type condition
apAr< 1 (4.22)
with
ay=ap +ag,
2@, |Fy,| b

&F:&IamaxL, a = max |(u1;((x)—w)-n|+ ypK(x),

vE @, Mg xeQyn ph(x)

n
Pl o) ph(x)

[1VpS"(x)/ 0% ()|
B X ———,
Pr(x) pl(x)

>’ A /Ze"K(x)

- n+1 . .
where U; denotes the average of numerical solution U'l‘:'.

Qg = ma

Q) = max
x€Qgn XESkn

Theorem 4.8 (Special source term). For the semi-discrete scheme (3.20)
and time discretization (3.28), if U’ (x) € G holds for any x € S, we have

ulec (4.23)
under the CFL-type condition

agAr <1 (4.24)
with

Ay =arp+ag,
7
26", |FL,| )
= max —,
x€Qgn p°(x)

N

ap =ad nvle/llx

s
1

"
@', Agn
Fy,—K

b ~ 1, <2
a= max |[(U,(x)—w)-n|+ Ag=0act+a
max |y ()=o) nl s=ak+ak,

I\l Ly _ W fygalp1"mds |
s XESgn el ’ S N Y ’
ey (%) kn %y /28
where [p]e,l(" — (pc,elen _pe,im‘Kn )/2
&, |Fyl

Remark 4.9. We note that the term 7 = max K2

—&~— in the param-
Vb (r)‘;v Agn p

n

K
eters @p and @, is based on the shape of the triangle cells and the
quadrature rule. A further discussion on the size of this term can be
found in [49, Remark 4.1]. For example, T = AL in one dimension and
Kn
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19.3

V/Agn

mial degree k =2.

T~

for a 30-60-90 triangle in two dimensions with the polyno-

4.3.2. The positivity-preserving limiter

Based on the weak positivity properties introduced in Section 4.3.1,
a positivity-preserving limiter is presented in [52] on the static mesh.
The same limiter approach can be extended to the ALE-DG methods.
Under the assumption that U k() € G such limiter can be implemented
in two steps.

The first step is to ensure the positivity of density via

N R T
Uk = (PK(:)(x)s My (%), EK(,)(x)) ) (4.25)
N 1 _ _
Pray = Oy (P = k) + PRy (4.26)
p —€
60}, =min{ 1, Ll : (4.27)
Pk — Milyes, . Pk (X)
The resulting density jg,(x) is positive for all x € Sg).
The second step is to ensure the positivity of pressure via
. 2 _ _
Uko= 9;3,) (Uk® =Ugqy) + Uk (4.28)
&0 —€
0%, =min { 1 — (. ko) =¢_ } ‘ (4.29)
E(Ukq) - Mminyes, € (Ukey ™)

One can show that U g, € G, and then treat it as the updated numerical
solution to continue the simulation. We apply the limiter at each Runge-
Kutta stage in our simulation and still denote the obtained numerical
solution by U g, for simplicity. We note that this positivity-preserving
limiter is very important to the robustness of the numerical simulations.
Without such a limiter, the weak positivity property cannot hold for all
time steps, and in some numerical examples listed below, it will break
down quickly.

Remark 4.10. We note that this positivity-preserving limiter won’t de-
stroy the well-balanced property. In our method, we apply the limiter
® to U and U°® at each Runge-Kutta stage. For the equilibrium state,
which involves low density or low pressure, we still have U = U¢ and
U/ =0. Moreover, we still have U¢ being continuous at the cell bound-
ary, because the limiter © is not applied to U®. In this situation, the
proof of Proposition 3.4 holds, and the well-balanced property can be
maintained.

5. Numerical examples

This section provides numerical results for the proposed two well-
balanced schemes. We denote the scheme based on hydrostatic recon-
struction (3.14) by WB(H) and the scheme based on a special source
term approximation (3.20) by WB(S). In all numerical tests, moving
meshes are given arbitrarily, without any special rules. Unless otherwise
stated, the following settings for the moving meshes and polynomial de-
grees are used. In 1D examples, we use the uniform initial mesh coupled

7
—— SIn
10(x, — x;)?

with moving grids:
) <xj+% ©) - x,)
X (xj+%(0) - x,> )

where T is the stop time and x;, x, are the endpoints of the compu-
tational domain. In 2D examples, we use the uniform criss-triangular
initial mesh coupled with moving grids:

2t

xj+%(t):xj+%(0)+ ?

(5.1)

27x;(0 27y; (0
x,(z)=x,(0)+o.o3sin< 7 )>sin< i )>sin(%),
X=X Yr=Y T 5.2)
o 2xx,000\ | [2xy;(0N | s4x ’
yj(t)=yj(0)+0.0251n<rjxl>mn(ﬁ)sm(T),
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Table 5.1
Example 5.1, L' errors and orders of accuracy for the scheme WB(H) and k =
1,2,3.

k=1 p pu E

N L' error order L' error order L' error order
50 1.45E-05 - 2.46E-06 - 1.03E-05 -
100 4.17E-06 1.80 6.11E-07 2.01 2.57E-06 2.00
200 1.10E-06 1.93 1.52E-07 2.00 6.43E-07 2.00
400 2.80E-07 1.97 3.81E-08 2.00 1.61E-07 2.00
k=2 p pu E

N L' error order L' error order L' error order
10 6.55E-06 - 1.60E-06 - 5.72E-06 -

20 9.60E-07 2.77 1.98E-07 3.02 7.16E-07 3.00
40 1.14E-07 3.08 2.47E-08 3.01 9.00E-08 2.99
80 1.09E-08 3.38 3.08E-09 3.00 1.13E-08 3.00
k=3 P pu E

N L' error order L' error order L' error order
5 2.88E-07 - 6.95E-07 - 7.96E-07 -

10 1.62E-08 4.15 4.37E-08 3.99 6.97E-08 3.51
20 1.89E-09 3.11 2.26E-09 4.27 3.47E-09 4.33
40 1.20E-10 3.97 1.38E-10 4.04 2.41E-10 3.85

where x,,x;,y,,y; are the vertexes of the rectangle computational do-
main. These grids are not following the fluid velocity, but move around
their initial position with a relatively small amplitude to avoid the grid
lines crossing. P> piecewise polynomials are used in most numerical
examples. In Examples 5.3, 5.4 and 5.5, we show that our ALE-DG meth-
ods can reduce numerical dissipation if the grid velocity is chosen to be
close to the fluid velocity.

For all the positivity-preserving tests in this section, the time step Atz
depends both on the constraints in Theorems 4.7, 4.8 and the stability
constraints of Runge-Kutta methods. The time step size at each time
step is plotted for the positivity-preserving tests in Examples 5.3 and
5.9, and we can observe the time step size won’t become extremely
small when the density or pressure is close to 0.

5.1. Numerical examples in one dimension
Example 5.1. Accuracy test in 1D.

To demonstrate that the proposed two schemes are high order
schemes, we consider a special steady state introduced in [21], which
is given by

p(x,t)=exp(—x), u(x,t)=0, p(x,1t)=(1+x)exp(—x),

with gravitational field ¢(x) = %x2 on the computational domain [0, 1].
We apply the exact solutions at the domain boundaries to calculate the
numerical flux. For the desired equilibrium state U? in this example,
we set a simple isothermal equilibrium state as

P (x,t) = eXp(—%xz), W n=0, pln= CXP(—%XZ).

We set the stop time 7 =0.1, and the L' errors and orders are shown
in Table 5.1 for scheme WB(H) and Table 5.2 for scheme WB(S). It can
be observed that our schemes obtain the optimal order of accuracy.
Note that although the exact solution is a steady state, we can still get
an error table without round-off errors since we choose a different U
from the exact solution.

Example 5.2. Well-balanced test of the polytropic equilibrium in 1D.

This example is used to verify that our schemes maintain the poly-
tropic equilibrium and can capture small perturbations for 1D Euler
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Fig. 5.1. Example 5.2: Small amplitude waves A = 107% with 100 cells at T = 1.5 for scheme WB(H) and WB(S) compared with a reference solution of 2000 cells.

Left: pressure perturbation; Right: velocity.

Table 5.2
Example 5.1, L' errors and orders of accuracy for the scheme WB(S) and k =
1,2,3.

k=1 p pu E

N L' error order L' error order L' error order
25 1.21E-05 - 4.20E-06 - 1.02E-05 -

50 3.42E-06 1.82 1.05E-06 2.01 2.55E-06 2.00

100 8.95E-07 1.93 2.61E-07 2.00 6.39E-07 2.00

200 2.28E-07 1.97 6.52E-08 2.00 1.60E-07 2.00

k=2 p pu E

N L' error order L' error order L' error order
10 5.34E-06 - 1.74E-06 - 6.07E-06 -

20 8.08E-07 2.72 2.19E-07 2.99 7.49E-07 3.02

40 9.36E-08 3.11 2.74E-08 3.00 9.37E-08 3.00

80 9.11E-09 3.36 3.43E-09 3.00 1.18E-08 2.99

k=3 p pu E

N L' error order L' error order L' error order
5 3.04E-07 - 6.43E-07 - 8.05E-07 -

10 1.86E-08 4.03 4.01E-08 4.00 7.78E-08 3.37

20 2.17E-09 3.10 2.10E-09 4.26 3.87E-09 4.33

40 1.46E-10 3.89 1.28E-10 4.04 2.76E-10 3.81

equations. We consider the simple set of a polytropic hydrostatic at-
mosphere under a constant gravitational field in [21]. The desired
polytropic equilibrium U? is given by

-1

gx)Y+l . wlx)=0, pl(x)=xy(p? (), (5.3)

-1 4
p!)= ()" ~ Ko

with gravitational field ¢(x) = gx on a computational domain [0,2]. The
constants in this example are given by g=1, y = %, po=1,ky=1.

1. Well-balanced property
We set the initial condition as U® = P2U? and the stop time as
T =2. We apply the exact solutions at the domain boundaries to
calculate the numerical flux. With the mesh size N =100, the L!
errors for different precision are shown in Table 5.3. It can be ob-
served that both schemes can maintain the polytropic equilibrium
state with round-off error, which confirms that our schemes can
keep the equilibrium states exactly at a discrete level.

. Small perturbation test
Next, we impose a periodic velocity perturbation at the bottom of
the atmosphere

u(0,1) = Asin(4xt),
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to the polytropic equilibrium U?, i.e. the left boundary condition
is given as
u(0,t) = Asin(4xt),

p(0,1) = p*(0), p(0,1)=p*(0), 5.4

and U(0,t) can be calculated correspondingly. We use the in-
flow/outflow boundary condition that the left limit of the left
boundary is calculated by using (5.4). This example can test the ca-
pability of our scheme in capturing the propagation of the small
perturbation. We consider the case with a small amplitude A =
1076, The stop time is set as T = 1.5 and N = 100 cells are employed.
The numerical results are shown in Fig. 5.1. We can observe that
both schemes can capture the generated wave well.

Example 5.3. Rarefaction test with low density and low pressure.

We consider a rarefaction wave test introduced in [38] to show that
our scheme can keep the density and pressure positive. We also generate
a special mesh movement to show the advantages of ALE-DG methods.
The initial condition is a Riemann problem given by

p=1, u=-1, p=02, ifx<0,
(5.5)
p=1, u=1, p=02, ifx>0,

with outflow boundary conditions on the computational domain [—1, 1].
The gravitation field takes the form ¢ = x?/2. We employ N = 100 cells
and the final stop time as T = 0.6. In this example, the initial mesh is
simply 800 uniform cells and the final mesh is set as:

—1+%x0.3, for 0 < j <40,
—0.7+ % x0.5, for 41 <j <300,
X, 1(06)=1-02+ % x 0.4, for 301 <j <500, (5.6)
2 .
02+ 53 %05, for 501 <j <760,
0.7+ 52 %03, for 761 < j <800,
which leads to the grid velocity set as
X, 1(0.6)=x, 1 (0)
w, 1= — 2 "z | forte[0,0.6],0<j<800. (5.7)
2

0.6

The same U? as in Example 5.1 is considered. In Fig. 5.3, we show the
results for both schemes compared with a reference solution of 6400
cells and the static mesh solution of 800 cells. From Fig. 5.3, it can
be observed that the low pressure and the low density are both main-
tained positively for the proposed schemes. It also shows that the results
of ALE-DG schemes are better than the static mesh results, which is
consistent with the impression that ALE-DG methods can reduce nu-
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Example 5.2, L' errors of different precision for the polytropic equilibrium U¢ using two

schemes WB(H) and WB(S).

.. WB(H) WB(S)
Precision
P pu E P pu E
double 7.33E-15 1.89E-15 3.45E-15 6.69E-15 2.03E-15 3.66E-15
quadruple 5.85E-33 1.39E-33 2.64E-33 4.99E-33 1.54E-33 3.00E-33

Table 5.4
Example 5.3, the minimum of den-
sity and pressure for two schemes.

Scheme Density Pressure
WB(H) 9.30E-03 2.54E-04
WB(S) 8.30E-03 2.38E-04
-4
21 & 10
T
2.05 b
2
o 2r 1
N
[
Q
o)
2]
() . 4
= 1.95
19r 4
1.85 : : : : :
0 0.1 0.2 0.3 0.4 0.5 0.6
time t (s)

Fig. 5.2. Example 5.3, time step size v.s. time for the scheme WB(S), we can
see the time step size is relatively stable during the simulation.

merical dissipation. We also show the minimum density and pressure
in Table 5.4 to illustrate that both schemes preserve density and pres-
sure positively. In Fig. 5.2, we plot the time history of the actual time
step size, which is calculated according to Theorem 4.8 for the scheme
WB(S). It can be observed that the time step size is relatively stable
when the density or the pressure is close to 0.

Example 5.4. Shock tube test.

This example is the standard Sod test, coupled with the gravitational
field. By following the setup in [42], the computational domain is [0, 1],
and the initial condition takes the form

p=1, u=0, p=1, if x <0.5,

p=0.125,

(5.8)

u=0, p=0.1, if x >0.5.

The gravitational field is set as ¢(x) = x and y = 1.4. The initial mesh
contains the 100 uniform cells, and at the final time 7' =0.2, it becomes
the following mesh

£x02, for 0<j <5,
02+L2 %03, for6<j<35,
%, 1(02)=205+ 55 X025, for36< <65, (5.9)
075+ 1522 0.1, for 66 <j <95,
0.85+ 22 x0.15, for 96 < j <100,

which leads to the grid velocity set as
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xj+%(0.2) —xj+l(0)

® 1= . forte[0,0.2],0<j<100. (5.10)
2

0.2

We use the reflective boundary condition. In Fig. 5.4, we show the re-
sults for both schemes WB(H) and WB(S) with 100 cells, compared with
a reference solution of 2000 cells and a static mesh solution of 100 cells.
We can see that both proposed schemes capture the shocks well and
have less numerical dissipation for x € [0.8,0.85].

Example 5.5. Leblanc problem in a linear gravitational field.

In this example, we consider a Leblanc problem in linear gravi-
tational field ¢(x) = x, which is used in [38] to test the positivity-
preserving property of schemes. The initial condition of this problem

is given by
p=2, u=0, p=10°, if x <5,

(5.11)
p=0.001,

u=0 p=1, if x> 5.

The computational domain is [0, 10] with reflection boundary condi-
tions. For the grid velocity, we set the initial mesh as the 200 uniform
cells and the final mesh as

£ x7, for 0 < j <130,
_ )5, j-130 ,
x/_+%(0.25) =47+ = x2, for 131 <j <190,

9+ =%, for 191 < j <200,

(5.12)

which leads to the grid velocity set as

X1 (0.00004) — xj+% 0)

= fi . 4], 0 < j <200.
0.00004 , fort€[0,0.00004], 0 <j <200

COH%(I) =
(5.13)

In Fig. 5.5, we show the results for both schemes at time 7" = 0.00004
on the above moving mesh, compared with the reference solution of
N = 6400 cells and static mesh solution of N =200 cells. Our schemes
maintain the density and pressure positive and capture the discontinu-
ities better than the static mesh solution.

5.2. Numerical examples in two dimensions
Example 5.6. Accuracy test in 2D.

In this example, the high order accuracy of the proposed methods
will be tested in two dimensions on moving triangular meshes. We con-
sider the exact solution in [38], which is given by
p(x,y,1) =1+ 02sin(z(x + y — 21)),
u(x,y,n=1,

p(x,y,1)=45+2t—x—y+02cos(x(x+y—21)/x,

with gravitational field ¢(x,y)=x+y and y = g on a square domain
[0,1]% [0, 1]. We apply the exact solutions at the boundaries. The desired
equilibrium state U? is set as an isothermal equilibrium state:

u? =0, p(x,y) =exp(=0.1(x + y)).

(5.14)

4 (x,y) = 0.1exp(=0.1(x + y)),
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Fig. 5.3. Example 5.3, the top three pictures are density, momentum and pressure at ¢ = 0.6 with 800 cells for schemes WB(H) (red), WB(S) (blue), static mesh
(green) and reference solution (black). The bottom two pictures are zoom in of density and pressure for x € [-0, 15,0.15].

Table 5.5

Example 5.6, L' errors and orders of accuracy for the scheme WB(H).
k=1 P pu pU E
N L' error order L' error order L' error order L' error order
200 1.50E-03 - 1.49E-03 - 1.51E-03 - 1.01E-05 -
800 3.76E-04 1.99 3.76E-04 1.99 3.76E-04 2.00 2.52E-06 2.00
3200 9.21E-05 2.03 9.22E-05 2.03 9.21E-05 2.03 6.29E-07 2.00
12800 2.22E-05 2.02 2.27E-05 2.02 2.26E-05 2.02 1.57E-07 2.00
k=2 p pu pU E
N L' error order L' error order L' error order L' error order
200 4.59E-05 - 4.62E-05 - 4.59E-05 - 4.61E-05 -
800 6.08E-06 2.92 6.09E-06 2.93 6.09E-06 2.92 6.07E-06 2.93
3200 7.59E-07 3.00 7.62E-07 3.00 7.63E-07 3.00 7.66E-07 2.99
12800 9.52E-08 2.99 9.61E-08 2.99 9.61E-08 2.99 9.75E-08 2.97

We set the stop time T'= 0.1 and apply the exact solutions at the domain
boundaries to calculate the numerical flux. The L! errors and orders for
both schemes are shown in Table 5.5 and Table 5.6. We can see that
both schemes have the desired high order of accuracy.

Example 5.7. Well-balanced test of the polytropic equilibrium in 2D.

In this example, we consider a simple polytropic equilibrium state
in two dimensions:

=" =0,y =pP,
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with gravitational field ¢(r) = —% where y =2, r=1/x2+y? and

a=v2z.

We follow the setup in [49] and the computational domain is set as
a disc of radius 0.5. The j-th mesh grid at different time levels ¢ is set
as follows:

x;(1) =x;(0) + 0.03sin(27r; (O))sin(%),

¥;(0) = ,(0) +0.02sin(27r; (O))sin(%).

In this example, we test our schemes for maintaining such an equi-
librium state and capturing the small perturbation to an equilibrium
state.
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1. Well-balanced property

We set the initial condition to be the same as the above polytropic
equilibrium state. We use 1222 triangles as the initial mesh. The
stop time is set as T'= 1 and we apply the exact solutions at the do-
main boundaries to calculate the numerical flux. The L! errors for
different precision are shown in Table 5.7. We can see our schemes
can maintain the polytropic equilibrium.
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Fig. 5.4. Example 5.4 The numerical results for schemes WB(H) (red) and WB(S) (blue) compared with reference solution (black) and static mesh solution (green).
From top to bottom are density, velocity, energy, and pressure. Left are the solutions on the whole computational domain and right are the zoom in for x € [0.8,0.85].

Small perturbation test

Now we consider the case with a small perturbation to the poly-
tropic equilibrium and show the ability to capture the small per-
turbations of two schemes. The small perturbation is added to the
pressure such that

p(r,0) = pd(r)2 +A exp(—lOOrz),

p(r,0)=p%(r), u(r,0)=0,
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Fig. 5.5. Example 5.5 The numerical results for schemes WB(H) (red) and WB(S) (blue) compared with reference solution (black) and static mesh solution (green).
From top to bottom are density, momentum, and pressure. Left are the solutions on the whole computational domain, and right are the zoom-in for x € [7,9].

Table 5.6

Example 5.6, L' errors and orders of accuracy for the scheme WB(S).
k=1 P pu pU E
N L' error order L' error order L' error order L' error order
200 1.44E-03 - 1.46E-03 - 1.46E-03 - 1.01E-05 -
800 3.61E-04 2.00 3.64E-04 2.00 3.64E-04 2.00 2.51E-06 2.00
3200 9.00E-05 2.00 9.08E-05 2.00 9.08E-05 2.00 6.29E-07 2.00
12800 2.25E-05 2.00 2.27E-05 2.00 2.27E-05 2.00 1.57E-07 2.00
k=2 p pu pU E
N L' error order L' error order L' error order L' error order
200 4.64E-05 - 4.65E-05 - 4.65E-05 - 4.65E-05 -
800 6.06E-06 2.94 6.08E-06 2.94 6.08E-06 2.94 6.08E-06 2.94
3200 7.67E-07 2.98 7.70E-07 2.98 7.70E-07 2.98 7.76E-07 2.97
12800 9.59E-08 3.00 9.66E-08 3.00 9.66E-08 3.00 9.82E-08 2.98

with A = 107%. The stop time is set as T = 0.2. The initial mesh is Example 5.8. Well-balanced test of the isothermal equilibrium in 2D.
set as a triangular mesh with 4826 triangles. The outflow bound-
ary condition is applied. The numerical results of both proposed

methods are provided in Fig. 5.6, from which we observe that both

In this example, we consider the isothermal equilibrium state in two
dimensions:

d P08 d J Po&
schemes capture the small perturbation correctly. P (x,y) = pgexp(— ™ (x+y), u'=0, p°(x,y)=py CXP(—E(X + ),
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Fig. 5.6. Example 5.7, contours of numerical results of WB(H) scheme and WB(S) scheme with 4826 triangles at r = 0.2. Top: WB(H) scheme; Bottom: WB(S) scheme.
Left: velocity (v/u? + v2); Right: pressure perturbation.

Table 5.7 Table 5.8
Example 5.7, L' errors for different precision with 1222 triangles mesh for the Example 5.8, L! errors for different precision with 3200 triangles mesh for the
polytropic equilibrium. isothermal equilibrium.
1 1
Scheme Precision L error Scheme Precision L error
P pu pU E P pu pU E
WB(H) double 1.68E-13 4.02E-14 3.50E-14 4.60E-12 WB(H) double 2.85E-15 6.70E-16 6.31E-16 2.57E-15
quadruple 1.32E-31 3.44E-32 3.25E-32 3.63E-30 quadruple 1.85E-33 4.60E-34 4.20E-34 1.82E-33
WB(S) double 2.96E-14 2.81E-15 2.77E-15 3.93E-15 WB(S) double 3.59E-15 1.21E-15 1.12E-15 4.06E-15
quadruple 2.52E-32 1.97E-33 1.92E-33 6.58E-33 quadruple 2.47E-33 5.87E-34 5.38E-34 2.17E-33

with e = 1073. The stop time is set as T = 0.15 and the initial mesh
with the gravitational field ¢(x, y) = x+y and constants p, =1.21, p; =1, is set as a uniform 12800 triangles mesh. The outflow boundary
y = 1.4. The computational domain is set as [0, 1]>. condition is applied. Fig. 5.7 shows that our numerical solutions of
two schemes capture the perturbation correctly.
1. Well-balanced property
We set the initial condition to be the same as the desired equilib-  Example 5.9. Rarefaction test with low density and low pressure in 2D.
rium U?. The initial mesh contains the uniform 3200 triangles, and
the stop time is set as 7 = 0.1. We apply the exact solutions at the
domain boundaries to calculate the numerical flux. The L! errors
for different precisions are shown in Table 5.8. We can observe that
all the errors are at the level of round-off error.
2. Small perturbation test
Next, we adg a small perturbation to U“ to the initial equilib- p(x,y) = exp(=2.5¢(x,y)),  p(x,¥) = 0.4exp(=2.5¢(x, ),
rium state U“, and test the capability of our schemes in capturing
the propagation of the small perturbation. A small perturbation is u(x, y) = {(_250)T7 x<0.5,
added to the pressure such that 2,07, x>05,

In this example, we want to demonstrate that the proposed schemes
can correctly deal with cases involving low density and low pressure.
We consider the rarefaction test in [36] with the initial condition given
by

p(x,7,0) = p?(x, y), with the gravitational field ¢(x,y) = %((x —0.5)2 + (y— 0.5)?) and trans-
u(x,,0)=0, missive boundary conditions. We set the computational domain [0, 1]?

Po 4 5 5 with uniform 12800 triangles initial mesh and the stop time as T =0.1.
p(x,,0)= P_op (%, y) + eexp(=121((x = 0.3)" + (y = 0.3)%)), Fig. 5.9 shows the numerical solutions of density, pressure, and mo-
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0.8

Fig. 5.7. Example 5.8, perturbation on the isothermal hydrostatic solution with ¢ =0.001 at time 7 = 0.15 with 12800 triangles. Left: the density perturbation with
20 uniformly spaced contour lines from —0.001 to 0.0002; Right: the pressure perturbation with 20 uniformly spaced contour lines from —0.0003 to 0.0003. Top: the

results of the scheme WB(H); Bottom: the results of the scheme WB(S).
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Fig. 5.8. Example 5.9, time step size v.s. time for the scheme WB(S), we can
see the time step size is relatively stable during the simulation.

mentum in x-direction m,. We can see that the proposed schemes keep
the low density and low pressure positive in Table 5.9, which lists the
minimum density and pressure of both schemes. In Fig. 5.8, we plot the
time history of the actual time step size, which is calculated accord-
ing to Theorem 4.8 for the scheme WB(S). It shows that the time step
size doesn’t become extremely small when the density or the pressure
is close to 0.
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Table 5.9
Example 5.9, the minimum density
and pressure for two schemes.

scheme density pressure
WB(H) 1.26E-02 3.68E-03
WB(S) 6.41E-03 3.03E-03

6. Conclusion

In this paper, we developed the well-balanced ALE-DG methods for
moving meshes for the Euler equations with gravitation. By giving the
desired equilibrium states, we proposed two different well-balanced
methods based on the hydrostatic reconstruction and a special source
term approximation, respectively. Both schemes are based on the tech-
niques of DG methods on static meshes, and the extension to moving
meshes is carefully investigated in this paper. The resulting methods
have a weak positivity property and a simple limiter can be applied to
enforce the positivity-preserving property. One- and two-dimensional
numerical examples have been provided to show the well-balanced
property, high-order accuracy, the advantage of ALE-DG methods, and
positivity-preserving property.

Data availability

Data will be made available on request.
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Fig. 5.9. Example 5.9, numerical solutions of density p (left), velocity u (mid) and pressure p (right) at + = 0.1 with 12800 triangles by using positivity-preserving
well-balanced ALE-DG scheme. Top: the results of the scheme WB(H); Bottom: the results of the scheme WB(S).

Appendix A. Proof for Theorem 4.7

Since the TVD-RK methods are the convex combination of the Eu-
ler forward methods, we only need to show that this theorem holds for
semi-discrete scheme (3.14) coupled with Euler forward time discretiza-
tion, which takes the form
(14 AtV - 0" Agn

n+l n+1
AKn+1 UK ¢ dx

Kntl

= / U - ¢"dx + AtLY (@", U", ", 1"). (A.1)
K)’l

By taking the test function to be 1, we can write the equation satis-
fied by U'I‘:l according to (3.14) and decompose it into two parts

A+ AV - 0" T

=Uy+ /1( - / G (o, UP"x" , UP'x" n)ds
oK"

e
+ / MUK ,—Vp—I:)dx+ / F(UE’i"’K")'nds)

K" K"
=W, +W,,
with
W, =¢U0 -4 / G (@, UbMkn gbe¥'kn n) ds, (A2)
oKn
T Vpé po
W,=9U, +1 /S(Uf,——e)dx+ /F(Ue’"”K")-nds s (A.3)
n p aKﬂ
where

& @
¢=-L 19=A_S,
&

satisfying { +9=1, (A.4)

and 1= AA—’n. Using Lemma 4.1, we only need to prove W, W, €G.
Since only the cell K" is used in the following proof, we denote it by K
for simplicity.

* The proof of W, €G

We use the quadrature rules introduced in Section 4.1 to rewrite the
term W ;:

d+1 N L
w=¢| Z‘b;x uni <i;1<) + ) o Uy (%)

v=I p=1 pu=1
d+1 N
=2 Y @, |F|G (0, Ut gtk n) (A.5)
v=lpu=1 K
L
_ ~U T (oM
=¢ Z @ U (%)
pu=l1
d+1 N |
4 {CT)” Un,inIK xH _ TUb,inIK xH
d+l N Cd)’;v A
+ Z _ K Ub,th (i;v>
v=1 p=1 1 K
@Ay, |Fy| ‘
_ ~llj G (G), Ub,thn , Ub,extKn , n) ,
caly,
K

where | Fy| denotes the area of edge Fy. We have decomposed W into
three parts. In order to show that W, € G, one can utilize the convexity
of G and show that all three parts belong to the admissible set G via the
following three claims.
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1. Uy (%) ec.
This is the assumption of the theorem.

njintg [ =4 _ Lgpbintg [ =
2. U (xF;(> ﬁuU (xF;(>eQ.
Since 1/a, satisfies the constraint in Lemma 4.5, this claim follows
from the conclusion of Lemma 4.5.
o aw", |F,V<
3. yhintk (3 ) - fx G ((D ybintkn _grbextgn n) ec
. Fy o, ) ) ) .

Using the definitions of &), @, and ¢, we first simplify the coeffi-

cient as
A ~H 2 ~H v ~H v
a A F‘ . w ., |F ., w ., |F
1% Fy K_& At G Fy K| &, FY 1<<1

- =ay T w %Al — =2’

o Agn @ @ ap @, Agn ~ 2a

FY, FY FY
(A.6)

and then apply Lemma 4.4 to prove the above claim.

Now combining that the parameters ¢, A and the quadrature weights
Y v
@ Fy @ Fy @ and the area of edge |Fy| are all greater than 0, we can

use Lemma 4.1 to prove that W, € C.
+ The proof of W, € G (Same as the proof in [49, Proposition 4.5])

Notice that m®"x =0 and

0
F (Ué,inrk) = (J/ _ I)Eé,imK I
0

which suggests that every component of F (U%"'k) is a polynomial in
oK. Therefore it can be exactly integrated by the Gauss quadrature rule
and one can use the integration by parts and the Gauss quadrature rule
to rewrite W, as

&

ki >dx+/V‘F(U5)dx
p°
K

W,=9U% +4 /S<Uf,—
K

L
XACEY
u=1
()

i (%) )))

Since G is convex and all the quadrature weights are positive, it is suffi-
cient to prove, for y=1,---,L,

+Az<v-F(U§< (x’;())+s<U{<' (x%).

Wy = U (%)

Vi (%

)
p;@;>>>eg

The first component of W reduces to 9o} (i;) which is automatically
positive. In order to show that £ (W) > 0, we have

) .-

+At<v-F(U§< (&%) +S<U{< (&

- 2
o V¢
vyt Imy + At (Vp;( + p’;( :;K > ‘
J
&(W*) = 9E" + Atm’, - —K —
( 2) K K /Ji( 219[";(
g
B 2
~ n ”_K é
0E" + Al . LPK Hgm" A VP
= m’ - . S L
K K /’2 2,9an

=
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Vpl m’ ZTKVPi
= 9(pe)l + Atml - =5 — Ar—K . vpE — AP TE
Pk Pk 290
¥
”Vp‘; /0" ’
K’ PK
=9(pe)t |1 - AP —— ,
(pe) 200
¥

where p¢ + p/ = p" is used in the second equality, and m’ = m" is used
to derive the last equality. Following the definition of 9 in (A.4) and &,
&g in (4.22), we have

~ 2
e (4 € (4
AR ”Vpk/p,< _ oA H Py /%
292" -0 282" ’
€k X5k

hence it follows that & (Wg) >0,ie., W,e€C.
Appendix B. Proof for Theorem 4.8

Similar to the hydrostatic reconstruction case, we only need to prove
this theorem for semi-discrete scheme (3.20) coupled with Euler for-
ward time discretization taking the form of (A.1).

By taking the test function to be 1, we can write the equation satis-
fied by U ';:1 according to (3.20) and decompose it into two parts

i+l

(1+ A1V, - 0T

=0y +4|- / G (@, ubimer yhese, n) ds+ 5%,

dK"
=W, +W,,
with
W, =CU -2 / G (@,ubme ybetr ) ds, (B.1)
K"
W,=98T% + AS%,. (B.2)

where S;Q,, denotes the source term approximation S%., in (3.19) with
the test function ¢ = 1, and
a a
c==L, 9=2,
L)

= (B.3)
0

satisfying { + 9 =1,

and 1= AA—'n. Using Lemma 4.1, we only need to prove W, W, €G.
Since only the cell K" is used in the following proof, we denote it by K
for simplicity.

» The proof of W, €G
The approach is similar to (A.5) and we write the specific form of
W by using the quadrature rules:

u=1
d+1 N 1 .

+ 2 Cd)};—v yrintk x/;:v _ ~_(]b,ml,( i};:v
v=I p=1 K K a K
d+1 N é’cb‘;_v .

+ 2 - K Ub,mrK <5Cl;:v>
v=1 u=1 1 K

iy
ay A, [Fy . - .
_ ~E G ((0, Ub,thn , Ub,extKn , n) .
4o

We have decomposed W, into three parts. In order to show that
W, € G, one can utilize the convexity of ¢ and show that all three
parts belong to the admissible set G via the following three claims.
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1. Uy (%) ec.
This is the assumption of the theorem.

2. Un,imK j# _ LUI;J’”K ~}4 eq.
FY @
Since
- C
Uik = —_ g™k and @, > for x € Qg, (B.4)
pbth pb biint g
C . .
we have 1 — - —£— >0, which proves the claim.
@) pbth
y:
b,int wH a mFV| | b,int gn b.extgn
3. UMMk (X7, ) — G|, U”MK" UMK n)eq.
Fy Ca)
K

Similar simplification in (A.6) can be carried out by using the
definitions of &, @ and ¢:

@ rw, |FY Fy, FY
% [Tk _ 4, Ar &y FIV( —a @ CF K - 1
o - —H TR0 T =5
CwFIV( AKn arp @ arp wF,“(”AK” 2a
(B.5)

Therefore, we use Lemma 4.4 to prove the above claim.
Now combining that the parameters ¢, A and the quadrature
weights @ Fy ﬁ;;(, cb} and the area of edge |Fy| are all greater
than 0, we can use Lemma 4.1 to prove that W, € C.
+ The proof of W, € G (Similar to the proof in [38, Theorems 3.3
and 4.3])

We apply integration by parts in (3.19) to simplify the integration:

0 0
Vp© p
sp=| Se-pdx |+ LL,K[p]EKnds =Wi+W3.
Jg—m- Y2 dx = Lxlp1*¥nds

With these notations, W, can be rewritten as follows
Wy =9,U+ W)+ 9,0 + W

L Vpe (QM)
=Zc?)”<19 UL )+ AS | U3l - —E—K >
pu=1

i
% (&)
i 0
+ 9,0 + i p [oxlp1“¥ nds
m- [, [pl*Knds
) .
where 9, = ‘;—S, 9,=-%,and 9=19, +9,. We first claim that
Vol (&)
UL +Aas UL (). -—EK e (B.6)
e (oM
P

which follows from Lemma 4.6 and the fact that the coefficient 9,
satisfies

1

N 2
ag >AtI|Vp;(x,()/pf}((xk)l|.

Similarly, we conclude that

9

0
7 [y [p1*X nds
m- [, [pl“Knds

which again follows from Lemma 4.6 and the fact that the coeffi-
cient 9, satisfies

9T + 4

ne

€gq, (B.7)

a

Yo

Ml fyx 1% nds||
2¢

9,==>

=|

K

Therefore, we can apply Lemma 4.1 to conclude that W, € G.
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