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Abstract

The transition from fossil fuels to sustainable fuels offers a unique opportunity to select
new fuel compositions that will not only reduce net carbon dioxide emissions, but also
improve combustor performance and reduce emissions of other pollutants. A particularly
valuable goal is finding fuels that reduce soot emissions. These emissions cause significant
global warming, especially from aviation since soot particles are the nucleation site of
contrails. Furthermore, soot contributes to ambient fine particulates, which are
responsible for millions of deaths worldwide each year. Fortunately, soot formation rates
depend sensitively on the molecular structure of the fuel, so fuel composition provides a
strong lever for reducing emissions. Sooting tendencies measured in laboratory-scale
flames provide a scientific basis for selecting fuels that will maximize this benefit. Recent
work has developed new techniques that expand the range of compounds that can be
tested by reducing the required sample volume and increasing the dynamic range. This
has many benefits, but it is particularly essential for the development of structure-property

relationships using machine learning algorithms: the accuracy and predictive ability of
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these relationships depends strongly on the number of compounds in the training set and
the coverage of structural features. This paper reviews: (1) these new techniques; (2)
trends in sooting tendency versus molecular structure; (3) structure-property relationships
for sooting tendency; and (4) interpretation of the observed trends based on first-principle

chemical kinetic and molecular dynamic simulations.
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Nomenclature

Variables

a, b rescaling constants for TSI

a,b’ rescaling constants for OESI

C number of carbon atoms in a molecule
da particle aerodynamic diameter

H number of hydrogen atoms in a molecule
hflame the height of a flame

Miyel mass fuel flowrate

M: relative molecular mass

N number of nitrogen atoms in a molecule
Noxy number of oxymethylene units in a POME
Nfuel molar fuel flowrate

O number of oxygen atoms in a molecule
P43k vapor pressure at 443 K

Qfuel volumetric fuel flowrate

S moles of oxidizer required to burn one mole of fuel
Tad adiabatic flame temperature

Tflame characteristic temperature of a flame

To initial temperature of the fuel

p mass density

[0} equivalence ratio



Acronyms
AIC
ANN
AQG
BC
CRP
DBE
DSP
FESI
FURTI
GDI
GCM
GPR
GSAT
HC
IDSY
LHV
LIl
MD
ML
MLR
MPI
NAAQS
NSP
OESI
PM. 5
PM,o
PMI
POME
QSPR
SAF
ST
SVM
TSI
UFP

aviation induced cloudiness/cirrus
artificial neural network

air quality guideline of the WHO
black carbon

color ratio pyrometry

double bond equivalent

derived smoke point

fuel equivalent sooting index
fuel uptake rate measurement with threshold imaging
gasoline direct injection

group contribution method

Gaussian process regression

global surface air temperature

hydrocarbon

isolated droplet soot yield

lower heating value

laser induced incandescence

molecular dynamics

machine learning

multivariate linear regression

micropyrolysis index

national ambient air quality standard of the US EPA
normalized smoke point

oxygen extended sooting index

particulates with d, < 2.5 pm

particulates with d, < 10 pm

particulate mass index

poly(oxy)methylene ether

quantitative structure property relationship
sustainable aviation fuels

sooting tendency

support vector machines

threshold sooting index

ultrafine particles; da < 0.1 pm



VSP virtual smoke point

YSI yield sooting index

1. Introduction

This paper reviews recent research related to the sooting tendency (ST) of
hydrocarbons. This topic has seen an explosion of interest in the past decade since it
provides the necessary scientific basis for choosing sustainable fuel compositions that will
reduce soot emissions. The remainder of this section describes this opportunity (Section
1.1), the motivation to pursue it due to the adverse effects of soot emissions on climate
(Section 1.2) and human health (Section 1.3), the chemical kinetic basis that causes ST to
depend strongly on fuel composition (Section 1.4), the relationship of ST to other fuel
properties that affect soot emissions (Section 1.5), and strategies for designing fuels that
simultaneously optimize soot and other fuel properties (Section 1.6). Section 2 reviews
experimental techniques for measuring ST, including both older threshold-based
approaches such as smoke point and newer yield-based approaches such as yield sooting
index (YSI). Section 3 discusses some of the trends in measured STs, including the effects
of unsaturation, heteroatoms, and isomerism. Section 4 describes the use of machine
learning to convert these experimental results into systematic knowledge through
structure-property relationships. Finally, Section 5 reviews numerical simulations of ST,

which provides insight into the kinetic mechanisms of soot formation.

1.1 Sooting tendency research is a key enabler for sustainable fuels

The left side of Fig. 1 shows the main part of the world’s current energy economy:
fossil fuels are extracted from the ground, they are burned to produce energy, and the
products are emitted into the air. This model is completely linear—whenever more energy
is needed, more fossil fuels are harvested, and more CO, is released. It has enabled an
extraordinary increase in human prosperity, life expectancy, and population. However, it
has also led to geopolitical problems due to the uneven distribution of fossil fuels, and to

global warming due to the accumulation of CO, in the atmosphere.
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Figure 1. The current energy economy (left) and a circular energy economy based around
sustainable fuels (right). The left-side emphasizes fossil fuels since they constituted 80% of
the world’s primary energy supply in 2021 [1].

These problems can be ameliorated by the circular energy economy shown on the
right of Fig. 1. In this model, hydrocarbon (HC) fuels would still be burned to produce
energy in many contexts such as heavy-duty road transport, aviation, and shipping (upper
half of the circle). However, the CO, produced from combusting these fuels—or an
equivalent amount of atmospheric CO.—would then be recycled into the next batch of fuels
(lower half of the circle). CO, can be converted into these sustainable fuels with two broad
strategies. The first is to grow plants, algae, or cyanobacteria and then convert their biomass
into biofuels. These organisms use solar energy to take CO, directly from the atmosphere
and fix it into HCs via photosynthesis. The second strategy is to use catalytic reactors to
convert CO, from powerplant exhausts, fermentation, direct air capture, and other sources
into synthetic fuels. These fuels are also called e-fuels or power-to-liquids since the
thermochemical reactors are ideally powered by green electricity from solar and wind.

The circular energy economy raises a key question: what is the best chemical
composition for these sustainable fuels [2, 3]? Since the starting material is CO,, the fuel
composition is not limited to the molecules in fossil fuels but can be anything in organic
chemistry. Answering this question correctly is vital to enabling the circular energy
economy. Sustainable fuels currently cost much more than fossil fuels, which is the primary
factor limiting their deployment. Thevalue proposition of sustainable fuels can be improved
by choosing compositions that are less expensive to produce and that have better properties
so users will pay more for them. Combustion science can contribute to the former by
developing new technologies that allow a wider range of fuels to be used in practice, and to
the latter by identifying desirable fuel properties and the molecules that possess them.
Thus, sustainable fuel composition presents an opportunity for the combustion science
community to move from reactively studying the behavior of sustainable fuels in case they

are ever implemented, to proactively enabling their deployment in the first place.



Sooting tendency (ST) is among the most important fuel property targets for
sustainable fuels. One reason is the mounting evidence that soot emissions are among the
worst aspects of combustion due to their effects on climate change and human health—
these issues are reviewed in Sections 1.2 and 1.3. A second reason is that ST depends strongly
on molecular structure, so fuel composition presents a strong lever to reduce emissions. As
an example, Fig. 2 shows a photograph of pool fires burning ethanol (left) and benzene
(right). The yellow color is blackbody emission from soot particles in the flames. The
ethanol flame is mostly blue, with only a small amount of soot production at its tip. In
contrast, the benzene flame produces so much soot that the camera is saturated over the
entire surface of the flame. Thus, this photograph shows that two fuels can produce very

different amounts of soot even when burning under the same conditions.
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Figure 2. Photograph of pool fires burning ethanol (left) and benzene (right).

1.2. Effects of soot emissions on climate change

Soot emissions affect climate through three mechanisms [4, 5]:

1. Soot particles are “black”, with emissivities close to one, so they absorb incident sunlight
and heat the atmosphere. This warming mechanism is more direct than the greenhouse
gas effect, where species like CO, do not interact with incident visible light, but absorb
infrared light reradiated from the earth’s surface. Atmospheric particles other than soot
are mostly “white” and scatter or reflect incident sunlight. Overall, the net effect of
aerosols is to cool the climate, but this is the sum of a warming effect due to soot and a
cooling effect due to the other particles. Atmospheric scientists refer to soot as black

carbon (BC) to emphasize the consequences of its unique optical properties.



2. Soot particles decrease the earth’s reflectivity when they deposit on snow and ice. This
change in albedo causes warming since it increases the proportion of incident light that
is absorbed by the earth versus reflected to space.

3. Soot particles emitted from airplanes in the stratosphere create contrails by acting as
nucleation sites for ice crystals. These contrails can then convert into aviation induced
cloudiness/cirrus (AIC), which is relatively long-lived (i.e., longer than 10 minutes) [6,
7]. Water-based clouds at lower tropospheric altitudes tend to have a net cooling effect
due to reflection of incident sunlight, but the ice-dominated stratospheric AIC tend to
have a net warming effect due to the greenhouse mechanism [6].

The Intergovernmental Panel on Climate Change is a United Nations organization
that comprehensively reviews and synthesizes the state-of-the-art in climate science via its
periodic Assessment Reports. The Sixth Assessment Report includes estimates of the effect
of specific climate forcing agents on the global surface air temperature (GSAT) in 2019
relative to 1750 [4, 5]. The values include +1.0 °C for CO,, +0.1 °C for the BC direct effect,
+0.04 °C for the BC albedo effect, and +0.02 °C for the BC contrail effect. Thus, soot
emissions have a total effect of +0.16 °C. This amount is one-tenth of the 1.5°C limit
identified by the Paris Climate Accords, so reductions in ST will add significantly to the
climate benefits of sustainable fuels.

The change in GSAT due to contrails is only a small part of the effect from soot, but it
derives entirely from one sector of human activity—aviation—and it is the largest cause of
climate change from that sector [4]. Voigt et al. demonstrated the role of soot particles and
sustainable fuels on contrail formation through flight experiments where a lead jet used
various fuels, and a chase plane sampled its exhaust [8]. When the lead plane burned
sustainable aviation fuels (SAF) instead of a conventional Jet A-1 fossil fuel, its soot emissions
decreased by about a factor of two, and the ice particle concentrations in its wake decreased
by the same proportion. These results directly show that SAF can reduce the climate impact
of contrails. Subsequent emissions modeling estimates that adoption of 100% SAF on all
flights would reduce the climate impact of contrails by 44%, and that targeted adoption of
50% SAF to the most critical 2% of flights would still reduce it by 10% [9]. The ST research
discussed in this review can be used to optimize the composition of SAF to maximize this
benefit.



1.3. Effects of soot emissions on human health

Ambient particles are classified into categories based on their aerodynamic diameter
da: coarse particulates (da < 10 pum, designated PM,,), fine particulates (da < 2.5 pm, PM, ),
and ultrafine particulates (d. < o.1 pm, UFPs). Strictly speaking, these categories overlap,
i.e. PM,, includes the two smaller categories; however, most particulate standards and
guidelines are written in terms of mass—which scales with d.3—so the particles from the
smaller categories contribute negligibly to the total. In terms of aerosol dynamics, the UFPs
correspond to the nucleation mode of the initial particles formed by condensation
processes, PM. 5 corresponds to the accumulation mode of aggregated nucleation mode
particles, and PM,, corresponds to the coarse mode of particles formed by frictional
processes. Soot particles are formed by a chemical condensation process, so the primary
particles are typically in the UFP range and the aggregates are in the PM., 5 range [10, 11].

In 1993 the Six Cities Study showed that mortality in six U.S. cities correlated strongly
with PM,;, but less so with PM,, and other types of air pollution [12]. Since then,
overwhelming epidemiological evidence has verified that PM, 5 contributes to poor human
health through cardiopulmonary disease and lung cancer [13, 14]. While people tend to
fixate on cancer, heart disease is the leading cause of death worldwide (one out of every three
deaths) [15], so it is the contribution to heart disease that makes PM. 5 exposure a particularly
severe problem. Particles may cause heart disease by (1) triggering oxidative stress in the
lungs and the release of inflammatory compounds into the bloodstream, (2) activating
alveolar sensory receptors and disrupting the autonomic nervous system that regulates heart
function, and (3) crossing directly over the lung epithelial barrier into the bloodstream [16].

Many governments and international agencies have implemented PM,; air quality
standards and guidelines, and these have tended to grow more stringent over time. For
example, in 2021 the World Health Organization (WHO) reduced its PM. 5 air quality
guideline (AQG) from 10 to 5 pg/m3 [17]. Similarly, in February 2024 the U.S. Environmental
Protection Agency (US EPA) reduced its annual PM, 5 national ambient air quality standard
(NAAQS) from 12.0 pg/m3 to 9.0 pg/m3 [18, 19].

Unfortunately, the exposures to fine particulates are enormous. Spatially resolved
PM., 5 concentrations for the entire earth can be derived from satellite aerosol optical depth
measurements. The results show that in 2018 essentially the entire global population was
exposed to concentrations that exceeded the WHO AQG, and more than 90% of people were
exposed to levels above the US EPA NAAQS [20]. Moreover, for most of the population the

levels were increasing over time, by up to 3 pg/m3 per year.



The most comprehensive effort to determine the health consequences of these
exposures, and how they compare to other risk factors, is the 2019 Global Burden of Disease
study (GBD 2019), which was a collaborative effort of over 5,000 researchers [21]. GDB 2019
concluded that PM, 5 was responsible for 4.1 million deaths worldwide in 2019. The number
of deaths had more than doubled from 2.0 million in 1990 due to higher exposures. PM,
was the most significant environmental risk factor, and the sixth largest risk factor overall.
Other studies have produced even larger totals; for example, Burnett et al. concluded that
PM., ;s was responsible for 8.9 million deaths in 2015 [22]. Ambient PM. 5 includes many types
of particles (soot, dust, sulfates, nitrates, etc.) from many sources (engines, furnaces,
cookstoves, wildland fires, etc.). However, estimates of the annual deaths due to just fossil
fuel combustion sources range from 1 to 10 million [23, 24]. Furthermore, estimates of the
annual deaths due to just BC—the particle type definitely attributable to soot emissions—
include 14,000 in the United States in 2010 and 265,000 in China in 2013 [25, 26]. These
numbers are astonishing, and they show that adopting sustainable fuels with lower ST than

existing fuels will have enormous health benefits for humanity.

1.4 The chemical kinetic basis for sooting tendencies

This review defines ST as the quantitative propensity of a fuel to produce soot relative
to other fuels when burned. It is a property of the fuel and not the measurement procedure.
Sections 2.1 and 2.2 show that ST can be measured by a wide range of methods, and section
2.3 shows that these methods give similar results for any given fuel when properly scaled.
This section discusses the kinetic mechanism of ST with the goal of explaining why ST is a
true fuel property, and why it depends so strongly on molecular structure.

As background, Fig. 3 presents a schematic overview of the soot formation process.
As the fuel enters the flame, it encounters heat and small radicals generated at the main
reaction front and it decomposes to a pool of primary hydrocarbon products (top). If the
local C:O ratio is sufficiently low, then these products will be oxidized to CO. and H.O
(bottom left). However, if the local C:O ratio is too high, then these products will react with
one another and produce larger hydrocarbons through a process of hydrocarbon growth
(bottom right). These larger hydrocarbons will include aromatic molecules with more

benzenoid rings than were present in the fuel, and they will eventually grow to soot particles.
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Figure 3. A schematic overview of the soot formation process.

ST is determined by the composition of the primary hydrocarbon products and how
quickly they can grow to larger aromatics [27]. To illustrate this concept, Fig. 4 shows the
soot formation process for ethanol and benzene, the two fuels that were compared in Fig. 2.
Ethanol decomposes to small HCs (methyl radical, ethylene, etc.) and small oxygenated HCs
(formaldehyde, acetaldehyde, etc.) (left side) [28]. Benzene decomposes primarily to phenyl
radical since benzenoid rings are stable under pyrolytic conditions (right side) [29]. Thus,
two possible factors can explain why the ethanol pool fire produces so much less soot than
the benzene pool fire in Fig. 2. First, the primary products from ethanol must undergo the
process of forming one-ring aromatic species, whereas the primary products from benzene
already include one-ring species and skip this slow step. Second, the oxygenated products
of ethanol may already be on an inescapable path to CO., especially since they include strong
C=0 double bonds, and so their carbon is not available to grow to aromatics. Crucially, both
factors are very general and would apply to any fuel-rich combustion environment, which

explains why ST is a property of the fuel and not the combustion system.
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Figure 4. A schematic overview of the soot formation process for the two fuels that were

compared in Fig. 2: ethanol (left) and benzene (right).
1.5. Predictive emission indices

Soot formation is a complex process whose rates depend on many factors including
temperature, residence time, pressure, etc. [30, 31], but this review focuses on the effects of
fuel composition. The overview of soot formation presented in Fig. 3 suggests that there are
two primary mechanisms by which the fuel composition can affect the amount of soot
formed in a particular combustion device. The first is the rate at which the fuels
decomposition products grow to large aromatic molecules, i.e., the effect quantified by ST.
The second is the level of fuel-to-air mixing, which affects the C:O ratio and therefore the
relative importance of hydrocarbon growth to soot (right side of the figure) versus oxidation
to CO, and H.O (left side). The level of mixing is primarily determined by the device
technology, but it can also be affected by fuel properties.

Predictive emission indices are formulas that combine the direct effect of ST and the
indirect effect of other fuel properties on mixing to predict the overall fuel-dependence of
emissions from a specific combustion technology. The best-known example is particulate
mass index (PMI), which was developed by Aikawa and co-workers in 2010 to predict soot

emissions from gasoline direct-injection (GDI) engines [32]. PMI is defined by:
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DBE, + 1
PMI = Zw * ——— (1)

Pj 443k

where the sum is over all the components j in the fuel, w; is the mass fraction of component j,
DBE; is the double bond equivalent of component j, and Pj 44k is the vapor pressure of
component j at 443 K. DBE is a measure of the number of rings and higher order bonds in

a molecule; for the general hydrocarbon CcHHOoNN it is given by:

2+2—-H+N

B=S @

The numerator of Eq. 1 accounts for the direct effect of fuel composition on soot
formation. It uses DBE as a crude estimate of ST. This was necessary in 2010 when PMI was
created: DBE can be immediately calculated for any molecule, while STs had only been
measured for a limited range of molecules at that time. However, Section 3.1 shows that
while ST roughly correlates with DBE, a wide range of ST exists for any given DBE.
Fortunately, since 2010 ST has been measured for many more molecules (see Section 2), and
this has enabled detailed quantitative structure-property relationships (QSPRs) that are
much more precise than ST ~ DBE and just as easy to calculate (see Section 4).

The denominator of Eq. 1 accounts for the indirect effect of the fuel on soot
formation via the impact of its properties on mixing. In a GDI engine, the fuel is injected
directly into the cylinder during the intake stroke and forms a liquid layer on the cylinder
walls and piston surface. During the compression stroke the fuel will evaporate and begin
to mix with the air. If the fuel is more volatile (i.e., has a larger value of P;4435k), then it will
evaporate more quickly and mix more thoroughly with the air by the end of the compression
stroke. This mechanism is specific to GDI engines, and it does not occur in other devices
such as diesel engines and gas turbines—thus, PMI is not applicable to these other devices.

In general, ST is a fundamental property that can be measured once for each fuel and
then compiled into databases that can be applied to any combustion device. In contrast,
predictive emission indices like PMI need to be developed separately for each combustion
technology, but then they can use ST as input to produce more refined emissions

predictions.
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1.6 Rational design of sustainable fuels with improved properties

STs have been used for many purposes: (1) formulating surrogate mixtures that mimic

the behavior of real fuels, (2) testing the ability of chemical kinetic mechanisms to predict

soot formation, and (3) designing fuels with improved properties. Table 1 lists some

noteworthy examples of these uses.

Table 1
Noteworthy publications that use ST. SP, TSI, and YSI are measures of ST defined in Sections
2.1and 2.2.

Publication Description

Aksit and Moss, 2005 [33]
Mensch et al., 2010 [34]

Huo et al., 2019 [35]

Hug et al., 2019 [36]

Kwon et al., 2020 [37]

Bartholet et al., 2021 [38]

Cai et al., 2022 [39]

Kuzhagaliyeva et al., 2022 [40]

Lietal., 2022 [41]

Fleitmann et al., 2023 [42]

SP was a property target for a jet fuel surrogate
TSI was a property target for a jet fuel surrogate

YSI was a property target for selecting alkanes for

improved diesel fuels

YSI was a property target for selecting ethers for

improved diesel fuels
20 YSIs were simulated to test kinetic mechanisms

YSI was a target for selecting

property
polyoxymethylene ethers for improved diesel fuels

YSI was a property target for selecting molecules for

improved diesel fuels

YSI was a property target for selecting mixtures for

improved spark-ignition fuels

YSI was a property target for selecting molecules for

improved internal combustion engine fuels

YSI was a property target for selecting molecules for

improved spark-ignition fuels

Given the purposes of this review, fuel design is of particular interest. The challenge

is that the performance of a fuel is affected by many properties: ST, heat of combustion,

ignition quality, melting point, boiling point, flash point, corrosivity, water solubility,
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biodegradability, toxicity, and many others. No fuel will have ideal values of all these
properties, so designing optimal fuels requires trade-offs.

Polyoxymethylene ethers (POMEs) provide a good example of these trade-offs. The
structure of a POME consists of an initial end-group R, an ether O, noxy oxymethylene units
(-CH»-O-), and a final end-group R’ (see Fig. 5A). POMEs with R = R’ = methyl have been
widely discussed as alternative diesel fuels [43, 44]. They have very low STs due to the
absence of C-C bonds [45, 46, 47], and engine studies show that they have very low soot
emissions [48, 49, 50]. However, they also have high water solubilities and low heats of
combustion. Water-soluble fuels are a concern because they can dissolve into water layers
that are often present in the fuel infrastructure, and they can contaminate groundwater
when spilled. These properties can be improved by replacing the methyl end-groups with
larger end-groups, but at the cost of increasing ST (see Fig 5B). Bartholet et al. optimized
this trade-off by (1) defining a fuel design space containing 67 candidate POMEs with
different combinations of R, R}, and noyy, (2) setting required values for eight properties, (3)
predicting these properties for every candidate with QSPRs, and (4) identifying the
candidates that met all the property requirements [38]. The best candidate was
dibutoxymethane (R = R’ = n-butyl, noy =1; see Fig 5C). This compound has a ST that is
higher than the methyl-terminated POMEs, but still much lower than conventional diesel
fuel, and its water solubility is about 1,000 times lower than the methyl-terminated POMEs.
The superior performance of this butyl-terminated POME was confirmed by subsequent

testing [51].
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Figure 5. A) Generic POME structure. B) The trade-offs in fuel properties depending on the
size of the end groups. C) The optimum POME structure identified by Bartholet et al. [38].

This example shows that fuel design studies require QSPRs that can accurately
predict fuel properties for a wide range of candidate molecules—almost all the 67 POME
candidates had never been synthesized, let alone tested for fuel properties. The accuracy of
QSPRs depends critically on the size and comprehensiveness of the database used for
training, so large databases with wide coverage of structural features are also essential.
Section 2 reviews methods for measuring ST, with emphasis on newer yield-based methods
that enable datasets that are large enough to accurately train QSPRs. Section 3 shows that
measured STs cannot be predicted precisely with simple parameters such as C:H ratio or
DBE. Section 4 discusses QSPRs that provide much better predictions of ST. Finally, Section
5 discusses computational simulations that can explain measured STs with chemical kinetic

mechanisms and molecular dynamics.

2 Experimental measurements of sooting tendency

This section discusses the experimental methods that are used to measure ST. The
emphasis is on methods that have been applied to large sets of compounds (>10) and
therefore provide detailed structure-property information. Sooting propensity has also

been studied in standard kinetic systems such as flow reactors (e.g., [52]) and shock tubes
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(e.g. [53]), but the focus in those studies is on the effects of temperature and other kinetic
parameters, so they are outside the scope of this review.

The ST methods divide into two categories: threshold-based methods (Section 2.1)
and yield-based methods (Section 2.2). The threshold methods do not require a soot
measurement and can use simple, commercially available equipment. The yield methods
require a custom setup but can be applied to a wider range of compounds and enable larger

datasets.
2.1 Threshold-based sooting tendencies

The first ST technique to be widely adopted was smoke point (SP). It was developed
around 1930 [54] and has been codified into the ASTM D1322 standard test method [55]. The
ASTM specification for Jet A/A-1 aviation fuel, D7566 [56], requires SP >25 mm (or
SP > 18 mm if the volume percent of naphthalenes is less than 3%). Given this requirement,
fuels are routinely tested for SP in the aviation industry and the apparatus for performing it
is ubiquitous.

The SP procedure is to generate a coflow flame, increase the fuel flowrate until soot
just breaks through the tip of the flame, and then measure the flame height at this threshold.
“Smoke point” refers both to the flame being at this condition and to the measured height.
The underlying idea is that if the fuel has a greater ST, then it will form more soot for a given
fuel flowrate, and the flame will be shorter when the amount of soot formed exceeds the
amount that can be oxidized. Thus, SP is inversely proportional to ST, which explains why
ASTM D7566 requires a minimum (not maximum) value for SP. The ASTM D1322 apparatus
generates the flame with a wick burner and varies the fuel flowrate by changing the amount
of wick that projects from a metal tube.

Although SP is primarily used for certifying aviation fuels, it has also been an
important tool for fundamental combustion research. Table 2 lists some noteworthy studies
related to SP and to other methods that depend on identifying a threshold.

Table 2
Noteworthy publications related to threshold-based ST methods. Qe and Myel are the

volumetric and mass fuel flowrates; ¢ is fuel-air equivalence ratio.

Publication Description

Hunt, 1953 [57] SP was measured for HCs, sulfur-containing HCs, and
nitrogenated HCs
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Schalla and McDonald, 1953 [58]

Blazowski, 1980 [59]

Glassman and Yaccarino, 1981
[27]

Calcote and Manos, 1983 [60]

Senkan et al., 1983 [61]

Takahashi and Glassman, 1984
[62]

Gill and Olson, 1984 [63]

Gomez et al., 1984 [64]

Olson et al., 1985 [65]
Giilder et al., 1989 [66]

Giilder et al., 1990 [67]

Ladommatos et al., 1996 [68]
Yan et al., 2005 [69]

Yang et al., 2007 [70]

Berry Yelverton and Roberts,

2008 [71]

Pepiot-Desjardins et al., 2008

[72]

Qfuel at the SP was measured for HCs

@ at the onset of soot formation was measured for HCs

in a jet-stirred reactor

Qruel at the SP was measured for HCs with the flame

temperature controlled via N, dilution

Threshold sooting index (TSI) was proposed and used
to combine literature data from premixed and

nonpremixed flames

¢ at the onset of soot formation was measured for

chlorinated HCs in a flat flame burner

¢ at the onset of soot formation was measured for HCs
in a Bunsen burner with the temperature controlled

via inert dilution

TSI was measured for binary and ternary HC mixtures

and shown to fit a linear mixing rule

Mmrel at the SP was measured for HCs with the

temperature controlled via inert dilution
SP was measured for HCs
SP was measured for binary and ternary HC mixtures

SP was measured for HCs, binary and ternary HC

mixtures, and transportation fuels
SP was measured for HCs
SP was measured for binary HC mixtures

SP was measured for jet fuels and their TSIs were

shown to correlate with soot formation in a gas turbine

SP was measured for methane and ethylene at

pressures up to 8 atm

SP was measured for oxygenated HCs mixed witha HC

base fuel
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Allan et al., 2009 [73]

Barrientos and Boehman, 2010

[74]

Mensch et al., 2010 [34]
Dotson et al., 2011 [75]

Li and Sunderland, 2012 [76]

Barrientos et al., 2013 [77]

Li and Sunderland, 2013 [78]

Llamas et al., 2013 [79]

Watson et al., 2013 [80]

Wang and Chung, 2014 [81]

Graziano et al., 2018 [82]

Tan et al., 2018 [45]

Rubio-Gomez et al., 2019 [83]

Cho et al., 2020 [84]

Corral-Gomez et al., 2020 [85]

SP was measured for HCs, oxygenated HCs, and waxes

in candles

SP was measured for multi-ring aromatics and their

saturated analogues mixed with a HC base fuel
SP was measured for jet fuel surrogate HCs
SP was measured for HCs in microgravity

Literature SPs were combined into a database of

normalized smoke points (NSPs)

Oxygen extended sooting index (OESI) was proposed
and applied to SPs measured for oxygenated HCs

Linear mixing rules were developed for literature SPs

of HC mixtures

SP was measured for biokerosenes mixed with

conventional kerosene

Fuel uptake rate measurement with threshold imaging
(FURTTI) was proposed and used to measure objective
STs for HCs and HC mixtures

Oxygen and fuel mole fractions at the onset of soot

formation were measured in  counterflow

nonpremixed flames

SP was measured for HCs and HC mixtures using
FURTI

SP was measured for POMEs mixed with diesel fuel

An automated SP procedure was proposed and applied
to HCs

Virtual smoke point (VSP) was proposed and used to
measure SPs that exceeded the upper limit of the

apparatus

An automated SP procedure was proposed and applied
to HCs
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Donoso et al., 2021 [86] SP was measured for terpenes and hydrogenated

terpene mixtures

Li et al., 2022 [87] Oxygen mole fraction at the onset of soot formation
was measured for oxygenated HCs mixed with

ethylene in counterflow nonpremixed flames

Muelas et al., 2023 [88] An automated SP procedure was proposed and applied
to HCs

These publications can be grouped into several categories. First, several studies
report SPs for large sets of compounds [34, 57, 58, 64, 65, 68]. Li and Sunderland have
compiled these results into a database of normalized smoke points (NSPs) that includes 112
HCs [76]. Asdiscussed in Section 2.2, larger databases are available for yield-based STs.

Second, several procedures have been proposed for normalizing SPs. The purposes
are to (1) invert SP so that larger values correspond to sootier fuels, (2) factor out
experimental differences such as varying wick diameters, and (3) clarify the intensive basis
of SP. Regarding the latter, the most fundamental basis would be (soot/mole)—the amount
of soot formed per mole of fuel burned—but SP is not directly related to this ratio since the
proportionality constant between the flame height hfiame and the molar fuel flowrate rfel

depends on the fuel. Roper has shown that they are related by [89]:

h - 7;quel * (TO/Tflame)O'67 (3)
flame ™ " po * In(1 + 1/5)

where Ty is the initial temperature of the fuel, Thame is a characteristic temperature for the
flame, D, is a characteristic diffusivity for the oxidizer into the fuel at T,, and S is the moles
of oxidizer required to stoichiometrically burn one mole of fuel. For the general

hydrocarbon CcHyOoNy burning in air (O, + 3.77N,):
s=477+cc+2_2 4
= 4, * -
(C+7-2) 4)

For a pure hydrocarbon if C = 3, then S = 14.3 and In(1+1/S) = 1/S to within 3.5%. Thus, if T,

Tfame, and D, are assumed to be constant, then:

hﬂame ~§x* nfuel (5)
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If we assume that the SP occurs when the amount of soot formed in the flame reaches a fuel-
independent critical value, then (soot/mole) ~1/nfelsp Where ngelsp is the molar fuel
flowrate at the SP. Combining this with Eq. (5) yields:

( soot) _ i )

mole SP

Based on this type of argument, Calcote and Manos proposed normalizing SP into a
threshold sooting index (TSI) defined by [60]:

M,
TSI = a(p) +b (7)

where M is the relative molecular mass (i.e., molecular weight) of the fuel, and a and b are
constants chosen so that the TSI(1-methylnaphthalene) = 100 and TSI(n-hexane) = 2. They
recognized that S would be the more appropriate normalizing factor but argued that M; ~ S
with sufficient accuracy given the uncertainties in SP. They included the rescaling with the
constants a and b so that data from a wide range of experimental configurations could be
directly compared. This data included both SPs measured in nonpremixed flames and fuel-
air equivalence ratios ¢ for the onset of soot formation in premixed flames.

Subsequently, Barrientos et al. noted that M; ~ S fails for oxygenated fuels due to the
-O/2 term in Eq. (4), and they proposed an oxygen extended sooting index (OESI) defined

by [77]:
li S li
OESI =a (ﬁ) + b (8)

A third category in Table 2 are studies that extend SP to new configurations.
Glassman and Yaccarino tested gaseous fuels diluted by N, and showed that SPs can be
strongly affected by a fuel’s adiabatic flame temperature T.q [27]. For example, pure
acetylene had a smaller SP than pure C3 and C4 alkenes, but the order reversed when the
acetylene was diluted enough to equalize the temperature in all the flames. Allan et al.
measured SPs of solid hydrocarbons by (1) forming them into candles, (2) drilling holes
through the centerline, and (3) inserting wicks whose position relative to the candle could

be varied [73]. Wang and Chung have defined a series of threshold STs for counterflow
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flames [81]. Perhaps most exotically, Dotson et al. used the International Space Station to
measure SPs in microgravity [75].

A fourth category are studies that seek to improve the SP method. The standard
method requires the experimenter to subjectively determine when the flame is at the SP.
Watson et al. proposed an alternative procedure, fuel uptake rate measurement with
threshold imaging (FURTI), where hfiame is measured as a function of the fuel mass flowrate
miel and then SP is objectively determined as the hflame where 0(hflame)/9(Mfuer) is a maximum
[80]. Their results showed that FURTI significantly reduced the uncertainty of the measured
SPs, and Graziano et al. independently verified this conclusion [82].

Another issue with SP is that it has a narrow dynamic range: if the fuel has a high ST,
then the SP will be too short to determine accurately (e.g., only 3.5 mm for naphthalene
[76]), and if the fuel has a low ST, then the SP will exceed the limit of the instrument. Haas
and co-workers have addressed the latter problem with a virtual smoke point (VSP)
procedure where (1) the low ST target compound is mixed at varying ratios with a high ST
compound, (2) SPs are measured for the mixtures, and (3) the results are extrapolated to the

case of the pure target compound [84].
2.2 Yield-based sooting tendencies

Direct soot measurements were impossible when ST first became important at the
beginning of jet aviation in the 1930s. However, many techniques have been developed since
then that enable in-situ quantification of soot concentrations. These techniques cover a
wide range of complexity:

1. In laser-induced incandescence (LII) a laser pulse heats soot particles in the flame to a
much higher temperature than the surrounding gases, and then a detector records the
intense blackbody emission from this heating [90, 91, 92]. Even at modest laser fluences,
the particles can be heated to the various carbon sublimation temperatures in the 4000
to 4500 K range, so the signals are strong and easily discriminated from the background
flame emission. LII can determine both the mass concentration of soot from the
magnitude of the signal and the particle size from the cooling rate after the laser pulse
ends. It offers the usual benefits of laser diagnostics including the ability to perform
spatially resolved point or 2D imaging measurements.

2. Inlaser extinction (LE) a laser beam propagates through the flame, the transmitted signal

is measured, and then the soot concentration is determined from the amount of
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absorption [93, 94]. LE requires much less expensive lasers than LII, and it is often used
to calibrate LII data since its data is much simpler to interpret.

3. In color ratio pyrometry (CRP) a color camera photographs the soot emission in several
wavelength regions, the soot temperature is calculated from the ratios of the color
channels with Planck’s Law, and the soot concentration is determined from an absolute
light calibration with a thermocouple [95, 96]. The only equipment required is a
consumer grade digital camera. The line-of-sight data must be converted to spatially
resolved data with an Abel inversion, but techniques have been developed for this
transformation that suit CRP [97, 98].

As early as the 1980s researchers noted that the TSI of a fuel correlated with the
maximum soot concentration in its SP flame [e.g., 65]. Since 2000, several methods have

been formulated that determine the ST for a fuel from the amount of soot it forms in a

particular system. Table 3 lists noteworthy publications related to these methods.

Table 3
Noteworthy publications related to yield-based ST methods.

Publication Description

McEnally and Pfefferle, 2007 [99] Yield sooting index (YSI) was proposed and measured
for HCs

Crossley et al., 2008 [100] Micropyrolysis index (MPI) was proposed and

measured for HCs

McEnally and Pfefferle, 2009 YSIwas measured for large aromatics

[101]
McEnally and Pfefferle, 2011 [102] YSI was measured for HCs and oxygenated HCs

Kashif et al., 2014 [103] YSI was measured for n-heptane/toluene and

isooctane/toluene mixtures

Kashif et al., 2015 [104] YSI was measured for n-heptane/toluene and

isooctane/toluene mixtures
Das et al., 2015 [105] YSI was measured for unsaturated esters

Lemaire et al., 2015 [106] Fuel equivalent sooting index (FESI) was measured for
oxygenated HCs sprayed into a turbulent diesel

surrogate flame
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Abboud et al., 2017 [107]

Das et al., 2017 [108]

Abboud et al, 2018 [109]

Das et al., 2018 [110]

Staples et al., 2018 [111]
Staples et al., 2019 [112]
Ford Ryan et al., 2020 [113]
McEnally et al., 2019 [114]

Montgomery et al., 2019 [115]

Carlson et al., 2020 [116]

Arellano-Trevifio et al., 2021 [51]

Cosimbescu et al., 2021 [117]
Hug et al., 2021 [118]

Gu et al., 2021 [119]

Montgomery et al., 2021 [120]

Yang and Giilder, 2021 [121]

Yang and Giilder, 2021 [122]

Dagle et al., 2022 [123]

YSI was measured for methyl decanoate mixed with a

diesel surrogate

YSI was measured for jet and diesel fuels and their

surrogates

YSI was measured for esters mixed with a diesel

surrogate

A unified YSI scale was created to replace the

incompatible scales in [99], [101], and [102]

YSI was measured for dioxolanes

YSI was measured for camphorane

YSI was measured for cycloalkanes

YSI was measured for gasolines and their surrogates

YSI was shown to be insensitive to partial premixing

and temperature variation in the base flame
YSI was measured for alkyl ethers

YSI was measured for butyl-exchanged POME

mixtures
YSI was measured for bicyclic and multicyclic HCs
YSI was measured for a wet waste-derived SAF

Soot yield was measured for toluene and n-heptane

doped into CH, flame at pressures up to 8 atm
YSI was measured for amines

Soot yield was measured for benzene, cyclohexane,
and n-hexane doped into a CH, flame at pressures up

to 10 bar

Soot yield was measured for ethylbenzene, p-xylene,
o-xylene, and n-octane doped into a CH, flame at

pressures up to 10 bar

YSI was measured for an iso-olefin gasoline
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Lucas et al., 2022 [46] YSI was measured for POMEs

Zhu et al., 2022 [124] YSI was measured for HCs, surrogate mixtures, and

transportation fuels

Gleason and Gomez, 2023 [125]  Absolute soot production rates were measured for HCs

in counterflow flames

Jalain et al., 2023 [126] YSI was measured for alcohols in an ethylene base
flame

Monroe et al., 2023 [127] YSI was measured for alkoxyalkanoates

Singh and Tsolas, 2023 [128] YSI was measured for isopropanol-butanol-ethanol

mixed with a diesel surrogate

Zhu et al., 2023 [129] YSI was measured for terpenes and hydrogenated
terpenes
Muelas et al., 2023 [88] IDSY (isolated droplet soot yield) was proposed and

measured for HCs

Arellano-Trevifio etal., 2024 [130] YSI was measured for POMEs with branched end-

groups

Jung et al., 2024 [131] YSI was measured for benzene substituted with

hydroxy, formyl and methoxy groups

Xiang et al., 2024 [132] YSI was measured for lactones

The most widely adopted yield-based ST is yield sooting index (YSI). We proposed
this method in 2007 [99] and have employed it extensively since. Several other research
groups have published YSI measurements [e.g., 124, 103, 128]. Several studies have
formulated sustainable fuels with YSI as one of the fuel property targets (see Section 1.6) and
many structure-property relationships have been developed to predict YSI (see Section 4).

The YSI procedure is to dope a small concentration of the test compound into the fuel
of a methane/air coflow flame and measure the maximum soot concentration fin the doped
flame. The underlying idea is that if the test fuel has a larger ST, it will produce more soot,
and a larger fwill be measured. fhas been measured with LII [99, 124], LE [103], CRP [108],
and flame emission [114]. The base flame is a CH,/air flame since it produces a low

background f; but also has a more representative chemical environment than an H, flame.
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YSIs measured in CH,/air flames agree well with SP and other STs measured in pure-fueled
flames (see Section 2.3), which shows that the YSI results are not sensitive to the background
fuel.

In analogy to TSI—and to other fuel properties such as octane and cetane rating—

YSI is rescaled relative to two endpoint species. The rescaling equation is:

fTF _fL

YSItgp = (YSIy — YSIy) *
F = (YSly L) =1,

+ YSI, 9

Where the subscripts TF, U, and L denote the test fuel, the upper endpoint species, and the
lower endpoint species. YSIy and YSIy, are constants that define the scale; normally U is
toluene, YSIu = 170.9, L is n-heptane, and YSIL. = 36.0 [10]. Equation 9 shows that YSI
depends on the ratio of f between flames, not its absolute value in a single flame; therefore,
many sources of uncertainty cancel out, including the absolute calibration and the effect of
soot optical properties on the diagnostic.

YSI offers several benefits:

1. It eliminates the subjectivity associated with SP: the experimentalist calculates the
flowrates necessary to achieve the specified dopant concentration, generates the flame,
and then triggers the soot diagnostic. The results for the objective versions of SP show
that the uncertainties are significantly reduced when the subjectivity is eliminated [8o,
82] (see Section 2.1).

2. Since the test compound is added to the flame at low concentrations—typically
1000 pmol/mol (1000 ppm)—the required sample volume is very small. Each
measurement takes less than 50 pL of sample, which is 200 times less than the 10 mL
required by ASTM D1322 for SP [55] This difference has enabled YSI to be measured for
many hydrocarbons that are not commercially available and had to be custom-
synthesized (e.g., [111] and many others). The SP method requires 10 mL because the wick
must be fully saturated with the test fuel to obtain an accurate measurement; we are not
aware of any studies that have attempted to reduce this requirement.

3. Ithasalarge dynamic range, both because it is an objective measurement that uses precise
diagnostics and because the dopant concentration can be increased or decreased to suit
test compounds with small or large ST. Measured values of YSI range from o.5 for
2,4,6,8-tetraoxanonane [46], a POME, to 1250 for pyrene [110], a four-ring polycyclic

aromatic hydrocarbon.
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4. Since the test compound is doped into the base flame at a small concentration, the ST of
every compound is measured at the same flame temperature and fuel concentration. As
noted in Section 2.1, Glassman and Yaccarino studied fuels diluted with N, and concluded
that the fuel’s Taq could significantly impact its SP [27]. Later Axelbaum et al. showed
that while N, dilution could normalize the flame temperature, the differences in fuel
concentration for fuels with different Taq also affected their SP [133]. The YSI approach
removes the effect of Tag without introducing changes in fuel concentration.

5. In principle the measurements can be performed at high pressure. Although no high-
pressure YSIs have been reported, Giilder and co-workers have shown that soot yields can
be measured in fuel-doped CH,/air flames at pressures up to 10 atm [119, 121, 122].

6. The results can be compared to simulations with detailed mechanisms (see Section 5).
Simulating a YSI requires computing a single flame, not a series of flames as would be
required with SP to locate the threshold. The pre-vaporized coflow YSI flames have much
simpler boundary conditions than wick burner flames and can be simulated with high
accuracy (e.g., [134]). Most importantly, the base flame can be solved with methane
kinetic mechanisms, which are relatively small, then the YSI flames can be solved from
the base flame using perturbation methods [135].

7. Simulations can also be used to determine the effects of flame parameters and other fuel
properties that are difficult to vary experimentally. For example, the YSIs of alkanes and
aromatics have been simulated at different pressures [136]. The results indicate that while
the absolute soot concentration f depends strongly on pressure, this dependence largely
factors out when f'is converted to YSI with Eq. 9.

8. It has a straightforward intensive basis: since the test fuel is added to the flame at a fixed
mole fraction, YSI scales directly with (soot/mole). Other intensive ratios can be obtained

from simple manipulations:

<SOOt) YSI 10

mole (10)
soot YSI

( ) ~ 11)
mass M.,

( soot ) YSI*p
liquid volume M,

(12)
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( soot ) YSI 13
energy LHV (13)

where p is mass density and LHV is the lower heating value (in units of J/mol). (In some
previous studies we have measured (soot/mass) directly and called it “YSI” [e.g., 108], but we
recognize that practice is confusing, and we are deprecating it.)

The net result of these benefits is that YSIs have been measured for a large total
number of hydrocarbons from many chemical families. For example, we have posted a
canonical database that contains fully vetted and published YSIs for 447 compounds to the
Harvard Dataverse online depository [137]. We have unpublished YSIs for an additional 216
compounds; the combined database of 663 compounds is included in the Supplemental
Information (SI) to this review. This database includes values for 257 regular HCs, which is
more than twice the number of values in the NSP database [76].

As discussed in Section 1.6, a major purpose of STs is to train QSPRs that can guide
the development of sustainable fuels. The accuracy of the QSPRs depends strongly on the
total number of data points in the training set and how widely it covers structural features.
Thus, YSI databases are ideal for training QSPRs, and they have been widely used for this

purpose (see Section 4).
2.3 Comparison of sooting tendencies

Sections 2.1 and 2.2 have shown that ST has been measured in a wide range of
experimental systems. In general, the results agree across these systems, which supports the
hypothesis that ST is a fundamental property of a fuel, and not of the measurement system
(see Section 1.4). For example, Calcote and Manos stated that with normalization to TSI “all
of the data in the literature on premixed and diffusion flames, taken by many techniques,
can be successfully correlated with respect to molecular structure” [60]. Mensch et al.
observed strong linear correlations between their measured TSIs and literature YSIs—in
fact, these correlations were stronger than most of the correlations with literature TSIs [34].
Crossley et al. found that their MPIs—which were measured for pre-vaporized fuels in an
1120 K non-flame pyrolytic reactor—correlated with literature TSIs measured in flames [100].
Similarly, Muelas et al. observed a good correlation between their TSIs measured in coflow
flames and their IDSYs measured for droplets in a 1700 K inert environment [88].

Recently, Zhu et al. quantitatively compared SP and YSI using many more data

points than in previous comparisons [129]. From Egs. 6 and 10, YSI/S ~ 1/SP. Figure 6
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shows YSI/S plotted against 1/SP for 80 HCs and 7 HC mixtures from many chemical
families. The plot uses a log-log scale since the STs vary over a range of about 100. The
data correlates reasonably well with the linear least-squares fit, which is shown by the
dashed line. The largest scatter occurs for the aromatics, but in this case the SPs are all less

than 10 mm and the challenges of measuring SP in such short flames are well-known [80].
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Figure 6. Comparison of YSIs and SPs. YSIs are from the database in the SI. SPs are from
[55], [76], and [86].

The linear fit allows YSIs to be converted to derived smoke points (DSPs):

304 YSI

Sop = 5~ 0427 (14)

Melder et al. used Eq. 14 to demonstrate that the ST of complex fuels can be accurately
predicted from the fuel’s detailed composition [138]. They (1) characterized the molecular
composition of 20 gasolines with a novel 2D gas chromatography technique; (2) calculated
the YSI of these compositions using measured YSIs which were available for 95% of the
components, extrapolated YSIs for the other 5% of components, and a linear mixing rule; (3)
converted the YSIs to DSPs; and (4) showed that the DSPs agreed well with SPs measured
directly for the fuels.
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3 Effects of molecular parameters on sooting tendency

The goal of this section is to interrogate the large YSI database that is included in the
SI to determine how ST depends on molecular details such as unsaturation, heteroatoms,

and isomerism.
3.1 Effects of unsaturation

Combustion research has long since established that unsaturated hydrocarbons tend
to soot more than their saturated analogues, and unsaturation is often used as a crude
indicator of ST (e.g., in PMI, which is discussed in Section 1.5). Unsaturation can occur
because of rings or because of double and triple C-C bonds. Figure 7 plots the measured
YSIs as a function of C:H ratio, with separate data series for pure HCs (C and H only) and for
HCs with heteroatoms (either O or N). The YSIs are plotted on a log scale since they vary
over almost 10%. In general, YSI increases as C:H increases, especially for C:H below 0.8.
However, for any given C:H the YSIs vary by around a factor of four. For example, the YSIs
for C:H=o0.s5 range from 39 (cyclopentane) to 158
(1,2-dimethyl-4-(4-methylpentyl)cyclohexane), for C:H = 0.6 from 46 (cyclohexene) to 304
(n-dodecylbenzene), and for C:H = 1 from 100 (benzene) to 984 (2,2’-dimethylbiphenyl). A
similar conclusion holds for YSI/C; its values range from 6.9 to 11.3 for C:H = 0.5, from 7.6 to

16.9 for C:H = 0.6, and 16.7 to 70.3 for C:H = 1.0.

nnnnnn

o Pure Hydrocarbons
© Hydrocarbons with Heteroatoms

oooooo

-
ol
e00 eaemen mmm
L™
@
o °oab
= as

Measured YSI [log scale]
o
o oo
0 B
° o o g, &
owTnETS
°® 09°
.
Y
° &
-
e
o "
8%
o
-

0.80
C:H

Figure 7. Measured YSIs as a function of the C:H ratio. YSIs are from the database in the SI.
A better indicator of unsaturation is DBE (defined in Eq. 2): alkanes and other fully

saturated HCs have varying C:H but they all have DBE = o. Figure 8 plots the measured YSIs

as a function of DBE. As with C:H, YSI tends to increase as DBE increases, but for any given
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DBE the YSIs vary by around a factor of four. For example, the YSIs for DBE = o range from
25 (n-pentane) to 133 (7-butyl-6-pentyltridecane), for DBE = 1 from 39 (cyclopentane) to 158
(1,2-dimethyl-4-(4-methylpentyl)cyclohexane), and for DBE = 2 from 46 (cyclohexene) to
161 (1-tert-butyl-cyclohexene). Again, the same conclusion holds for YSI/C; its values range
from 4.9 to 8.3 for DBE = o, from 6.9 to 11.3 for DBE =1, and from 7.6 to 16.1 for DBE = 2.
These results illustrate the need for QSPRs to predict sooting tendency.

oooooo

Measured YSI [log scale]

Figure 8. Measured YSIs as a function of DBE. DBE is defined in Eq. 2. YSIs are from the
database in the SI. The data points for Hydrocarbons with Heteroatoms have been offset by
+0.1 DBE for clarity.

3.2 Effects of heteroatoms

Conventional fossil fuels are comprised almost exclusively of regular HCs (C and H
only). However, sustainable fuels may include large amounts of oxygenated HCs since the
raw material—biomass or CO,—contains O. Fuel specifications often limit the O content,
but relaxing these requirements may be a valuable way to improve the economics of
sustainable fuels by reducing the amount of fuel processing.

Oxygenated HCs are also of interest because they frequently have lower ST than pure
HCs. For example, Pepiot-Desjardins et al. observed that ST was reduced when oxygenated
HCs were added to n-heptane/toluene or diesel mixtures [72]. By fitting the measured
results to a QSPR, they were able to show that while some of the reduction came from
diluting the high ST molecules in the base fuel, a large part of it came from a chemical effect
due to the oxygenated moieties. The methyl-terminated POMEs discussed in Section 1.6 are
an example of oxygenated HCs that have ST = 0 [45, 46]. Another interesting case is the
addition of hydroxy (-OH) groups to benzene [131, 139]: one group reduces the YSI from 100
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(benzene) to 81 (phenol), two groups can reduce it to 34 (1,3-dihydroxybenzene), and three
groups can reduce it to 10 (1,3,5-trihydroxybenzene)—a tenfold decrease.

However, the chemical effect of O is complex, and it can increase ST in some cases.
A good example is esters [110]. Methyl pentanoate (CsH,.O.) has a lower YSI than n-hexane
(Ce¢H.,), 22 vs. 30, but its isomer butyl acetate has a higher YSI than n-hexane, 36 vs. 30. A
likely reason is that butyl acetate has four Cs next to the ether O, so it can undergo a six-

centered H transfer [102]:

7N\

0] 0] OH
)ko/\/\ — )J\O/\T/\—» /&o N

This reaction promotes soot formation since the first product (acetic acid) uses the O atoms
inefficiently, and the second product is a large unsaturated species (1-butene). Methyl
pentanoate cannot undergo this reaction since it only has one C next to the ether O.

To provide a global view of the effects of O, Figs. 7 and 8 above use different data
series for pure HCs and HCs containing O or, in a few cases, N. On average, the YSIs for HCs
with heteroatoms are smaller than those for pure HCs, but the two categories overlap
significantly. For example, for DBE = o, the YSIs of the pure HCs range from 25 to 133, while
the YSIs of the heteroatom HCs range from o.5 (2,4,6,8-tetraoxononane) to 73 (4-
hexoxyheptane); for DBE = 1, the pure HCs range from 39 to 158, while the heteroatom HCs
range from 1 (isopropyl nitrate) to 107 (isopentyl 2,2-bis(isopentyloxy)acetate); and for
DBE = 2, the pure HCs range from 46 to 161, while the heteroatom HCs range from 1
(acetonitrile) to 137 (methyl oleate).

3.3 Effects of isomers

Isomers are a rich area for tuning fuel properties and for learning about combustion
chemistry [28, 140, 141]. They contain the same set of atoms but connected in different ways,
which often causes very specific changes in their properties and reactions. In this section we
discuss various levels of isomerism and their observed effect on ST.

Chiral isomers have a “handedness” that cannot be interconverted by rotation or
translation. Also called enantiomers, they are among the subtlest form of isomers that can
be stably separated at room temperature. HCs will display chirality if one of their carbon

atoms is attached to four distinct ligands. A classic example is 2-butanol, where the #2 C is
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attached to -H, -OH, -CHj3;, and -C,Hs; Table 4 shows the two enantiomers. Chirality can
strongly affect biological processes since enzymes often contain a three-dimensional “lock”
that can only accept a specific enantiomer as the “key”. However, it is unlikely to affect the
high-temperature abstraction and dissociation reactions involved in soot formation. The
YSI method allows this hypothesis to be directly tested since it needs only a small sample
volume. Table 4 shows two cases of YSIs measured for purified enantiomers. The results
show that, as expected, chirality has a negligible impact on ST.

Geometric isomerism occurs when the orientation of ligands is restricted by a
structural feature that does not allow rotation such as a double C-C bond or a fused bicycle.
For example, in any 1,2-substituted ethylene there is a cis isomer with the two substituents
on the same side of the plane containing the m-bond, and a trans isomer with them on
opposite sides of the plane. Table 4 shows one case of SPs and two cases of YSIs measured
for purified cis and trans isomers. The results show that geometric isomerism, like chirality,
does not affect ST. These conclusions greatly simplify the formulation of structure-property

relationships for ST.

Table 4

Measured STs of optical isomer pairs.

C,H.,O Enantiomers [110]

OH OH
A A
[-2-butanol (S)-2-butanol
YSI = 25.2 YSI =25.3

CioH.4,O Enantiomers [129]

o bol

I-carvone (S)-carvone
YSI = 127.7 YSI =126.4
CsH,, Geometric Isomers [110]
e Y e
N
trans-2-hexene
YSI = 45.8

cis-2-hexene

YSI = 44.7

CioHis Geometric Isomers [74]
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SPs measured for 5 wt% added to a 65 volume% n-heptane/35 volume% toluene mixture

H H

A A
cis-decalin trans-decalin
SP = 21.3 mm SP =21.3 mm

Ci,H.. Geometric Isomers [110]
o5 g
g oh

cis-1,2-diphenylethylene trans-1,2-diphenylethylene
YSI = 602.0 YSI = 602.0

Structural isomers are sets of molecules that have the same atomic formula, but the
atoms are connected in different patterns. The earliest SP measurements showed that these
isomers can have large differences in ST, especially for branching in alkanes [57, 58]. More

recent measurements have identified many additional cases. Table 5 lists several examples.

Table 5

Structural isomers with large differences in their measured ST.

C,H,, Isomers [110]

ol of r

2-methyl-1-cyclohexene 3-methyl-1-cyclohexene 4-methyl-1-cyclohexene
YSI = 62 YSI = 85 YSI = 61

C,H.6 Isomers [76, 110]

2-methyl-hexane

n-heptane NSP = 119 2,3-dimethyl- 2,2,3-
NSP =139 YSI = 42 pentane trimethylbutane
YSI =36 NSP =107 YSI =55
YSI = 49

CioHyy Isomers [110]
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L L

1,2-diethylbenene
YSI =376

1,3-diethylbenzene
YSI = 321

O

1,4-diethylbenzene
YSI = 271

CioHi6 Isomers [129]

Jodl e Y TEF

myrcene
YSI =104

B-ocimene
YSI = 214

o-pinene
YSI = 207

CsHsgO, Isomers [132]

0._0

J

delta-valerolactone
YSI = 21

O_o

r

gamma-valerolactone

YSI =35

CeH.0, Isomers [110]

@)

o

ethyl isobutyrate

AOA(

isobutyl acetate

YSI = 26 YSI =35
CsHsO, Isomers [131]

OH HO OH OH
(L. |* AT
catechol resorcinol hydroquinone
YSI = 57 YSI=34 YSI =38

CsH,sN Isomers [120]

s LI

N-ethyl-n-butylamine

dilsopropylamme
YSI =22

YSI =32

HoN &)<

3,3-dimethylbutylamine
YSI =41
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4 Structure-property relationships for sooting tendency

QSPRs and machine learning (ML) techniques have been used extensively in
chemistry [142], and they are increasing being used for combustion science [143]. This
section reviews their application to predicting ST. As noted above in Section 1.6, QSPRs
that can accurately predict soot for a wide range of compounds is essential for fuel design
studies.

Historically, one of the most effective ways to tie the effects of different chemical
moieties to chemical behavior has been utilizing group contribution methods (GCMs).
Here, the effects of distinct functional groups and chemical structures on the properties of
interest are parametrized independently; then, the value of the property for the compound
of interest can be calculated by summing contributions from the compound backbone and
the individual functional group constituents [144]. By applying ensemble statistical
techniques, substituent effects can be scaled across different chemical families [145],
offering a computationally cheap method to predict properties of interest rapidly.
However, the generalizability of such linearly additive methods is often lacking, requiring
increasingly unwieldy parametric forms to describe diverse groups of compounds across
chemical space, if possible.

Modern machine learning technologies present an attractive alternative: methods
like multivariate linear regression (MLR), support vector machines (SVM), Gaussian
process regression (GPR), and decision tree methods can achieve high accuracies when
predicting chemical properties. Further, recent advances in neural networks have
leveraged the abilities of these models to describe highly nonlinear phenomena, achieving
accuracies rivaling experimental uncertainty when modeling chemical systems. However,
this comes at the tradeoff of dataset size; many of these models require at least hundreds
of high-fidelity training data points to produce accurate and generalizable results.

The first step in building a machine learning model to predict chemical properties
is to assemble a dataset and determine how to describe the chemical information best
numerically to feed it as inputs to the model. Due to the complex nature of the soot
formation process, computational techniques to quantitatively simulate soot formation
with detailed kinetic mechanisms are either too demanding, inaccurate, or unfeasible.
Consequently, experimental datasets remain the gold standard for sooting tendency
predictions. However, the unique difficulties of standardizing experimental procedures
across different experimental setups used in measuring sooting behavior often limit the

size of available experimental datasets. Figure 9 shows that the experimental datasets used
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for ST predictions have increased in size over the last 36 years, but remain the order of the
hundreds
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Figure 9. Reported dataset sizes and input features of works between 1987 and 2023 aiming
to predict the sooting tendency of pure compounds and/or mixtures. For representation
purposes, models shown as Group Contribution correspond to non-Neural Network models

with most descriptors corresponding to functional group/atom/bond counts.

Once a suitable database of prediction target measurements has been established,
the next step is to determine a suitable molecular representation. A commonly used
technique relies on generating molecular descriptors, a series of calculated properties that
describe molecular structure. These descriptors are widely classified into oD, 1D, 2D, 3D,
and 4D descriptors based on the geometric properties they exploit; common examples of
such descriptors can be found in Table 6. The higher the descriptor dimension, the more

computationally costly it is to calculate.
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Table 6

Descriptor classification based on dimensionality.

Descriptor Description Example

Type

oD Aggregate properties; no structural Relative molecular mass; H
information bond count

1D Based on the presence/absence/count = Molecular fingerprints
of substructures, such as functional (Extended connectivity
groups fingerprint, Morgan fingerprint,

etc.)
2D Molecular connectivity based adjacency matrix, Coulomb

matrix, distance matrix
3D Based on 3D molecular geometry 3D MoRSE descriptors, sterimol

4D based on dividing 3D space around Fukui function, CoMFA, GRID

molecules into discrete grids

Another means of representing molecules utilizes the inherent atomic connectivity
described by bond information as a scaffold on which information is propagated; such
models use the molecular graph itself as inputs, with atoms represented as graph nodes
and bonds represented as graph edges. This method allows the unique neighborhood
environments of the constituent atoms to be well resolved and is well suited to be used as
the input for a type of neural network known as a Graph Neural Network. Such networks
have been used with great success in chemical property prediction applications [159, 160].
With a representation, it is then possible to construct a predictive model. With recent
rapid advances in computing hardware technologies, various machine learning models
have become easily accessible to computational researchers.

Historically, linear regression models have been used to build QSPR models to
estimate chemical properties. These models are easily interpretable, as the significance of
each input parameter in determining the model output is reflected in the scalar weight of
the term in the regression formula: the larger the weight, the more impactful the input
parameter. However, since the model consists of only linear combinations of input terms,
linear regression models tend to perform poorly when used to describe nonlinear

phenomena. Careful feature engineering is necessary to overcome this issue.

37



Thus, machine learning models that can inherently describe nonlinear phenomena
have become popular in recent years. One popular class of nonlinear models utilizes
decision trees to make predictions, in which a flowchart-like process is used to make
decisions on learned threshold values of input descriptors. Some such models, like random
forests [161] or XGBoost [162], use ensembles of such “trees” to reduce overfitting. Such
decision tree models perform well with smaller dataset sizes (100 data points). A recent
study used decision tree models to design a general framework for biofuel compound
screening, predicting the probability that a given input compound has a property
above/below a threshold value [163]. The research octane number (RON), TSI, and
melting point (MP) are selected as target properties; the model achieves test set predictive
accuracies of 88%, 87%, and 94%, respectively, using a selection of 1D and 2D descriptors
generated by the PaDEL-Descriptor software [164]. Since the parameter threshold values
for generating predictions can be obtained from the trained model, an importance score
can be assigned to each input descriptor, ensuring model interpretability.

Comesana et al. [153] deliberately uses this importance score to drive experimental
design, studying the influence of chemical input descriptors on predictions of MP, boiling
point (BP), flash point (FP), YSI, and net heat of combustion. The Tree-based Pipeline
Optimization Tool (TPOT) [165] generates the decision tree architecture to avoid human
bias in model selection. Underneath the TPOT software, a genetic algorithm-based
selection is carried out to choose the optimal tree-based model for a given task. The
authors found that the most important descriptors selected by the ML algorithms recover
chemical intuition: for example, the most important descriptor to predict the YSI of a
compound was the number of aromatic bonds. The atom bond connectivity (ABC) index,
the second most important descriptor, is a measure of branching that correlates with
stability for linear compounds and strain energy for cyclic compounds and is known to
indicate thermodynamic stability [166].

Deep learning models using neural networks have also become popular for their
ability to model complex nonlinear phenomena. In the chemical context, calculated
descriptors for a given molecular structure are fed as inputs into the neural network and
are propagated forward through the network, resulting in a target property prediction that
is compared to a known value for the given structure. The error between the prediction and
the known value is minimized by adjusting the network weights using a gradient descent
procedure. The process is repeated for all structures in the training dataset, resulting in a
trained neural network to make property predictions for an unseen molecular structure

input. These models typically require large scale datasets of thousands or even millions of
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data points to make successful predictions due to the large number of parameters that
must be fit during the training process.

Recent work has used artificial neural networks (ANNs) to accurately predict ST
from molecular structure descriptors. Several chemical moieties were selected, and their
count in each molecule was used as a descriptor: Ahmed Qasem et al. [156] use the
numbers of paraffinic CH;, CH,, CH, carbons, the number of olefinic CH-CH., naphthenic
CH-CH,, and aromatic C-CH bonds, and the number of alcohol and ether groups as
inputs. The compound molecular weight and branching index are also used, resulting in 10
distinct model inputs. The authors train an ANN model on a curated dataset of 366
experimental smoke point measurements, achieving a model mean absolute error (MAE)
of 4.5 units with an R? of 0.98. Albogami et al. [157] use the same input descriptors to
predict the YSI of 294 hydrocarbons and oxygenates curated from the work of Das et al.
[110] with both an ANN and an adaptive network based fuzzy inference system (ANFIS)
model. The ANFIS model incorporates fuzzy logic operations into the input structure of an
ANN model, allowing a degree of ambiguity to be incorporated into the model inputs. It
was found that the ANN model achieves a test set root mean square error (RMSE) of 15.83,
with an R? of 0.99, while the ANFIS model achieves a test set RMSE of 58.78, with an R? of
0.92. Notably, the ANFIS model achieves a training set RMSE of 3.98, indicating that the
ANFIS model cannot generalize training results to the unseen test set data.

Chen et al. [158] expand the input descriptor space using an ANN model trained on
428 compounds in the dataset published by Das et al. [110] to predict the YSI of species
relevant to gasoline spark ignition engines. In addition to the descriptors used by Ahmed
Qasem et al., [156] inputs representing frequencies of halogens, ketones, cyanides, esters,
carboxyls, and aldehydes were added, resulting in a total of 21 input descriptors. A model
MAE of 19.20 with an R* of 0.98 was obtained. By studying the sensitivity of the model
predictions to changes in the descriptors, it was found that the length of the carbon chain
connecting benzene rings significantly impacts the YSI. In keeping with chemical
intuition, the YSI was found to show a positive sensitivity on carbon-centered groups,
while groups with oxygen atoms showed a negative impact on YSI.

In contrast, Kessler et al. [167] train an ANN model to predict the CN, YSI, and lower
heating value (LHV) of 24 test terpene molecules using QSPR descriptors. A starting
dataset comprising 460, 463, and 388 data points for each property was compiled from
published experimental data, and 5305 QSPR descriptors were calculated for each
molecular structure using the alvaDesc software package. [168]. Separate principal

component analysis (PCA) transformations were utilized as a dimensionality reduction
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technique to reduce the number of descriptors used as model inputs, resulting in 368, 370,
and 310 input descriptors for each property model. Model accuracies of 3.25 CN units, 1.68
YSI units, and 0.26 M]/kg were achieved, and the CN, YSI, and LHV of the 24 test terpenes
predicted; two of the test terpenes, geranial and citronellal, showed promising predicted
CN. However, the YSIs of all predicted terpenes were predicted to be higher than
traditional terpenes. The correlation between the CN, YSI, and LHV was also studied; it
was found that YSI and LHV may be correlated. Further work investigating this correlation
is necessary to establish the degree of interdependence between these two quantities.

St. John et al. [147] use a similar descriptor selection technique to build a YSI
predictor model from 297 experimentally measured values. 5270 molecular descriptors
were initially generated using the Dragon7y software package [169]. A variance threshold
for each descriptor was used to throw out descriptors that showed little change across
dataset constituent molecules, leading to 2414 descriptors being removed. The remaining
2856 descriptors were then subject to a recursive feature selection procedure. Finally, the
remaining 390 descriptors were inputted into an ANN model. A detailed functional group-
based cross-validation strategy was performed to analyze model performance and
generalizability, and model outliers were investigated via manual quantum mechanical
calculations. The model achieved an MAE of 5.47 YSI units and was then applied to predict
the YSI for compounds with a known RON; ethanol, 2-propanone, and ethyl acetate were
identified as the best-performing oxygenate molecules by RON and YSI.

Notably, the ANN methods presented so far have been descriptor based. While
these models can achieve respectable predictive accuracies, the descriptor inputs neglect to
consider molecular connectivities. On the other hand, recently developed graph neural
network (GNN) models can explicitly use this information in addition to atom-wise, bond-
wise, and global molecular descriptors.

Kessler et al. [150] compare the performance of three different computational
prediction models for the YSI: the predictive accuracies of multivariate linear models,
ANNSs, and GNNs were compared using a dataset of 567 fuel compounds. To train the ANN
models, 5305 descriptors were obtained from the alvaDesc software, [168] and the feature
importance score of a random forest model trained on the dataset YSI was used to perform
feature selection, leading to 1800 final input descriptors. GNN models were trained using
the atomic symbol, degree of bonding, and if the atom exists within a ring as atom
parameterizations, and discrete vectors for bond order (single, double, triple, or aromatic)
as bond parameterizations. Following Jorgensen et al. [170], a message-passing scheme was

implemented to allow information about distinct atomic environments to be exchanged
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across the molecular structure. A multivariate linear model using the Levenberg-
Marquardt method of least-squares regression on the piPCos, piPCo4, and piPCo3
descriptors was created as a baseline for comparison. The ANN and GNN methods achieve
similar MAEs of 4.34 and 4.82 YSI units on the test set; notably, both methods drastically
outperform the multivariate linear model, which reaches a test set accuracy of 29.12 YSI
units.

Kim et al. [171] utilize a GNN model to predict the CN of biofuel compounds. A
database comprising experimental CNs measured using several different techniques was
collected. To account for the differing experimental accuracies of the various testing
methods, a data weighting strategy was implemented that assigns a lower sample weight to
data points collected using methods with higher errors, thus reducing their contributions
during model training. In addition to the atom and bond state descriptors used by Kessler
et al., [150] hydrogen bond donor/acceptor pairs were used as global features. The resultant
model achieves a predictive accuracy (MAE) of 2.44 CN units. Notably, a parallel model
omitting the global features was trained on the same dataset; it achieves an accuracy of
4.29 CN units, highlighting the importance of the chemically informed hydrogen bond
features in ensuring predictive accuracy.

The models discussed so far have excelled at predicting the sooting tendencies of
individual compounds; to state the obvious, however, most commercially utilized fuels are
not single compounds and are tailored mixtures in which each component molecule
influences the sooting behavior. Thus, novel methodologies must be used to model such
blending behavior properly - one such methodology is a mixing operator.

Kuzhagaliyeva et al. [40] introduce a hybrid ANN/recurrent neural network (RNN)
model to predict the blending behavior of a mixture of RON, MON, and YSI using a similar
mixing operator approach. A framework is introduced to generate novel fuel compounds
using the predicted values in an inverse-design problem. A database of 813, 690, and 491
data points was curated for each property; due to the scarcity of blend YSI measurements, a
conversion formula was used to scale reported YSIs to an apparatus-independent value. A
fingerprint representation of the target molecule is combined with calculated descriptors
obtained from the MORDRED software package [172] to yield a total molecular
representation; this per-molecule representation is then combined based on input
concentrations using a mixing operator approach, and the result is scaled to account for
differing YSI scales in the database. By exploiting the continuity of the neural network

model’s latent space, greedy and full-scope exploration strategies are employed to generate
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new fuel blends with target YSIs; the authors present several fuel blends predicted to serve

as viable fuel alternatives.
5 Numerical simulations of sooting tendencies

Numerical predictions of sooting tendencies have been carried out in numerous
previous studies mainly for three purposes: (1) validation of chemical models and soot
models, (2) design and validation of surrogate formulations to represent real fuels, and (3)
screening of fuel additives to meet certain emission criteria. In this section, we review
previous numerical predictions of sooting tendencies based on smoke point and soot yield.
We also summarize recent efforts in predicting fuel sooting behaviors using reactive MD

simulations.
5.1 Predictions of threshold based sooting tendencies

Previous numerical studies on smoke point based sooting tendencies of various fuels
have focused mainly on two flame configurations, coflow diffusion flames and counterflow
diffusion flames [30]. In coflow diffusion flames, the residence time is typically long [173],
and once soot is formed, it will be convected and subsequently oxidized in downstream
oxidation zones. Therefore, the smoke point in coflow diffusion flames is essentially where
soot formation and oxidation are balanced. In contrast, in counterflow diffusion flames,
smoke point is largely determined by soot formation without much interference from soot
oxidation.

In counterflow nonpremixed flames, sooting tendencies of different fuels have
typically been characterized in forms of sooting limit curves, where the flame transitions
from non-sooting to sooting [174], as reviewed in [30]. In order to capture such sooting
threshold, simulations typically require solving the full set of one-dimensional (1D)
conservation equations with detailed chemical kinetics and soot formation models.
Detailed simulations have been used to predict sooting limits for different fuels [174, 175,
176], oxygen levels in the oxidizer [135], exhaust gas recirculation levels [177], and strain rates
[178]. These simulations can qualitatively predict how sooting limits change with varied
operating conditions, but accurate quantitative sooting limit prediction is still a challenge
(174, 175, 176, 177, 178, 179]. In addition, these predictions have not been used to directly
calculate smoke point based sooting tendencies but have been used to infer mixing rules for

TSIs of fuel mixtures [174].
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Predicting smoke point or TSI data in coflow diffusion flames is computationally
more expensive than in counterflow flames since a series of two-dimensional (2D) detailed
flame simulations with varied flow rates are required. These simulations need to incorporate
detailed species transport and finite-rate chemistry, with soot transport, growth, and
oxidation models. For these reasons, to the authors’ best knowledge, there is no TSI
calculation reported in the literature that is directly from detailed numerical simulations.
Instead, previous numerical studies on laminar coflow smoking flames have mainly focused
on the predictions of smoke point height, for instance in flames fueled with ethylene,
acetylene, propane, butadiene, butene, and diesel and bio-diesel surrogates [180, 181, 182,
183, 184, 185]. These studies have focused on investigating the effects of pressure [180],
dilution [181], and fuel [180, 181, 182, 183, 184, 185] on the smoke point height and have
primarily used these flames as modeling targets to validate empirical or phenomenological

soot models specifically designed for smoke point prediction [180, 181, 182, 183, 184, 185].
5.2 Predictions of yield based sooting tendencies

The most direct way to predict YSI is to use two-dimensional detailed numerical
simulations of the YSI flame doped with test fuels. These simulations have been
demonstrated to be a reliable tool in reproducing axisymmetric laminar co-flow diffusion
flames with various burner configurations and fuel compositions [134, 186, 187, 188, 189, 190,
191]. However, these simulations are computationally expensive, since all species transport
equations need to be solved with detailed finite-rate chemistry, simultaneously with the
Navier-Stokes equations in 2D. In addition, a different simulation needs to be carried out
for the flame doped with each test hydrocarbon to predict the YSI of the test fuel [190, 191].
The factors make YSI predictions based on 2D detailed simulations expensive and inefficient
for fast screening of fuel sooting properties.

Xuan and Blanquart [135] proposed a computationally-efficient, 1D flamelet-based
YSI simulation framework by acknowledging that the YSI concept is a perturbation-based
approach with nearly identical temperature and velocity fields in the YSI flames compared
to those in the undoped methane/air flame. Therefore, only one detailed 2D simulation
would be required for a single well-defined undoped flame, and the computations for the
doped flames might be simplified to allow large kinetic mechanisms to be used without
mechanism reduction. In contrast, modeling smoke point height or TSI data would require
simulating a series of pure-fueled flames with different fuel flowrates and different

computational grids to determine the threshold where soot is emitted from the flame.
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In the flamelet-based framework [135], modified 1D flamelet equations were specially
derived on the centerline of the YSI flames to account for the effects of multi-dimensional
flow and differential diffusion on soot precursors. It took as input the temperature,
convective velocity, and scalar dissipation rate profiles extracted from the direct simulation
of the undoped flame. Soot transport model was excluded in these flamelet-based
calculations for both simplicity and to be unbiased from the choice of soot model used.
Sooting tendencies were estimated exclusively from the increment of polycyclic aromatic
hydrocarbon (PAH) dimer production rate along the centerline where the flame was doped.

Xuan and Blanquart [135] performed the first set of chemical kinetic-based YSI
calculations using this framework for a series of non-aromatic and aromatic test fuels and
achieved good agreement with measurements. Thereafter, this framework has been used to
predict the YSI of various gasoline surrogates [114], validate chemical kinetic models for
prediction soot formation from bio-derived fuel additives for spark-ignition engines [37],
and investigate the effects of elevated pressures on YSI for n-alkanes and aromatic fuels [136].
This framework was originally implemented in the FlameMaster software [192], and later
combined with a more computationally efficient solver in Zero-RK [193], an open-source
software package that simulates chemically reacting systems, hosted by the Lawrence
Livermore National Laboratory [194, 195]. Overall, the flamelet-based YSI solver is efficient,
which enables fast sooting tendency predictions using large, more accurate chemical kinetic
mechanisms [193]. It also enables sensitivity analysis and uncertainty quantification which
can help identify reactions particularly important for sooting tendency predictions [37, 193].
The main limitation of this approach is that the YSI prediction can only be performed for
fuels with known chemical kinetics, which renders this approach inapplicable to many bio-

derived fuels with unknown decomposition chemistry.
5.3 Application of MD simulations in yield based sooting tendency predictions

Since the combustion chemistry of bio-synthesized sustainable fuels for ground
transportation and aviation is typically unknown, ReaxFF-based reactive Molecular
Dynamics (MD) simulations have been recently employed for YSI predictions, and more
generally to analyze fuel effects on soot formation. ReaxFF-based MD is commonly used to
discover reaction networks in complex and large chemical systems over time scales longer
than quantum mechanics (QM) [196, 197], since they use empirical force fields trained
against QM-based data and therefore require much lower computational cost. Recent

applications of the ReaxFF-based MD method in the broader combustion- and energy-
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related fields are reviewed in [198]. ReaxFF-based MD simulations have been applied
successfully to describe pyrolysis and oxidation processes for hydrocarbons, oxygenated, and
nitrogenated hydrocarbons [199, 200, 201, 202, 203, 204], and soot formation [204, 205, 206].
A summary of recent studies using ReaxFF MD for YSI predictions and for quantifying fuel
effects on soot formation is provided in Table 7. These studies investigated a wide spectrum
of fuels ranging from hydrogen, methane, to gasoline/diesel fuel surrogates and bio-derived
oxygenated fuels. Due to the limitations of simulation duration, they typically relied on the
yield of premature soot nanostructures, PAH, or highly unsaturated non-aromatic soot
precursors to compute sooting tendencies or to compare sooting behaviors of fuels and fuel
mixtures. Although the ReaxFF MD simulations are typically carried out at very high density
and pressure to accelerate the reaction dynamics, the simulation results were generally
shown to qualitatively agree with available measurements, and the reaction pathways and
chemical kinetic information extracted from these ReaxFF simulations can be used as
starting point for further chemical kinetic investigations using higher fidelity methods, such

as QM calculations based on density function theory.

Table 7
Summary of recent ReaxFF MD applications for YSI predictions and for fuels effect

quantification on soot formation.

Publication Fuels/Fuel Soot Indicator Major Outcome
Mixtures

Zhang etal. [207]  Ethylene/ammonia Large PAH Quantified the effects of
mixtures fuel ammonia content on

soot suppression

Kwon et al. [208] Bio-derived Non-aromatic Examined the effects of
polycyclic alkanes  soot precursors ring fusion on fuel soot
propensity
Kwon et al. [209] Bio-derived Non-aromatic Examined side chain
dioxolanes SOOt precursors effects on soot propensity
Zhang et al. [210] Butanol and PAH Examined fuel molecular
butane isomers structure effects on soot
propensity
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Wang et al. [211]

Kwon et al. [212]

Chen et al. [213]

Kwon et al. [139]

Methane and
ethylene with
hydrogen

Hexylamine

isomers

Diesel surrogates
and oxygenated

additives

Toluene and

phenol

PAH

Non-aromatic

soot precursors

PAH and nascent

soot particles

PAH

Examined the effects of
hydrogen addition on

PAH and soot formation

Examined fuel molecular
structure effects on soot

propensity

Analyzed pyrolysis
pathways and soot

propensity of diesel fuels

Performed the first set of
YSI calculations using
ReaxFF

6 Conclusions and future directions

The tendency to produce soot during combustion of a fuel depends strongly on its

molecular structure. Therefore, as we transition towards more sustainable fuels we have

the opportunity to tailor their compositions to improve combustion performance and

reduce emissions of soot. Sooting tendencies measured in laboratory-scale flames provide

a scientific database or selecting low soot fuels. However, large databases require a

systematic approach to arrive at quantitative structure property relationships (QSPR) that

allow data to be extrapolated to a wide variety of fuel structures not measured. This is

essential for tuning the synthesis strategies for these new fuels considering the large range

of possibilities. Recently, a wide range of machine learning algorithms are being applied to

relate fuel structures to desired combustion properties. These can apply of host of

different statistical methods but the accuracy and predictive ability of these techniques

depends strongly on the coverage of compounds and structural features in the database

used both to develop and test the model. These factors suggest that future research should

be directed at enlarging the databases of sooting tendencies. Compounds containing

oxygen and nitrogen are underrepresented in the databased. Most oxygenated compounds

reduce soot but not all. Nitrogen containing compounds can also reduce soot without

harming other performance features but are not widely covered. In addition to

statistically-based methods for developing QSPRs, STs can be used to test chemical

mechanisms. Molecular dynamics simulations can provide useful insights into ST at a
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lower computational cost than complex chemical models without requiring the same

chemical reaction input.

Finally, we offer the following suggestions for future directions:

e Measure sooting tendencies for additional hydrocarbons.

e Use simulations to examine possible confounding effects on ST measurement due to
other fuel properties such as mass diffusivity.

e Develop predictive emissions indices analogous to PMI for other systems such as
diesel engines and gas turbines.

e Improve QSPRs, especially for categories like aromatic hydrocarbons and larger
oxygenated hydrocarbons.

e Use kinetic and MD simulations to explain measured YSIs; for example, the isomer
effects in Table 5.

e Use simulations to explain why QSPR relationships work for ST.
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The YSI database discussed in Section 2.2 is available as a comma-separated-values

file (“ysi_comma_separated.csv”) and a semicolon-separated values file
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(“ysi_semicolon_separated.txt”). Both files identify the entries by name and by canonical
SMILES string—the latter provides a definitive means for searching for specific compounds
that is not subject to the ambiguity of chemical names.
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