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Abstract 

 

The transition from fossil fuels to sustainable fuels offers a unique opportunity to select 

new fuel compositions that will not only reduce net carbon dioxide emissions, but also 

improve combustor performance and reduce emissions of other pollutants.  A particularly 

valuable goal is finding fuels that reduce soot emissions.  These emissions cause significant 

global warming, especially from aviation since soot particles are the nucleation site of 

contrails.  Furthermore, soot contributes to ambient fine particulates, which are 

responsible for millions of deaths worldwide each year.  Fortunately, soot formation rates 

depend sensitively on the molecular structure of the fuel, so fuel composition provides a 

strong lever for reducing emissions.  Sooting tendencies measured in laboratory-scale 

flames provide a scientific basis for selecting fuels that will maximize this benefit.  Recent 

work has developed new techniques that expand the range of compounds that can be 

tested by reducing the required sample volume and increasing the dynamic range.  This 

has many benefits, but it is particularly essential for the development of structure-property 

relationships using machine learning algorithms: the accuracy and predictive ability of 
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these relationships depends strongly on the number of compounds in the training set and 

the coverage of structural features.  This paper reviews: (1) these new techniques; (2) 

trends in sooting tendency versus molecular structure; (3) structure-property relationships 

for sooting tendency; and (4) interpretation of the observed trends based on first-principle 

chemical kinetic and molecular dynamic simulations. 
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Nomenclature 

 

Variables 

a, b  rescaling constants for TSI 

a’, b’  rescaling constants for OESI 

C  number of carbon atoms in a molecule 

da  particle aerodynamic diameter 

H  number of hydrogen atoms in a molecule 

hflame  the height of a flame 

ṁfuel  mass fuel flowrate 

Mr  relative molecular mass 

N  number of nitrogen atoms in a molecule 

noxy  number of oxymethylene units in a POME 

ṅfuel  molar fuel flowrate 

O  number of oxygen atoms in a molecule 

P443K  vapor pressure at 443 K 

Qfuel  volumetric fuel flowrate 

S  moles of oxidizer required to burn one mole of fuel 

Tad  adiabatic flame temperature 

Tflame  characteristic temperature of a flame 

T0  initial temperature of the fuel 

 

ρ  mass density 

φ  equivalence ratio 
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Acronyms 

AIC  aviation induced cloudiness/cirrus 

ANN  artificial neural network 

AQG  air quality guideline of the WHO 

BC  black carbon 

CRP  color ratio pyrometry 

DBE  double bond equivalent 

DSP  derived smoke point 

FESI  fuel equivalent sooting index 

FURTI  fuel uptake rate measurement with threshold imaging 

GDI  gasoline direct injection 

GCM  group contribution method 

GPR  Gaussian process regression 

GSAT  global surface air temperature 

HC  hydrocarbon 

IDSY  isolated droplet soot yield 

LHV  lower heating value 

LII  laser induced incandescence 

MD  molecular dynamics 

ML  machine learning 

MLR  multivariate linear regression 

MPI  micropyrolysis index 

NAAQS national ambient air quality standard of the US EPA 

NSP  normalized smoke point 

OESI  oxygen extended sooting index 

PM2.5  particulates with da ≤ 2.5 μm 

PM10  particulates with da ≤ 10 μm 

PMI  particulate mass index 

POME  poly(oxy)methylene ether 

QSPR  quantitative structure property relationship 

SAF  sustainable aviation fuels 

ST  sooting tendency 

SVM  support vector machines 

TSI  threshold sooting index 

UFP  ultrafine particles; da ≤ 0.1 μm 
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VSP  virtual smoke point 

YSI  yield sooting index 

 

 

1. Introduction 
 

This paper reviews recent research related to the sooting tendency (ST) of 

hydrocarbons.  This topic has seen an explosion of interest in the past decade since it 

provides the necessary scientific basis for choosing sustainable fuel compositions that will 

reduce soot emissions.  The remainder of this section describes this opportunity (Section 

1.1), the motivation to pursue it due to the adverse effects of soot emissions on climate 

(Section 1.2) and human health (Section 1.3), the chemical kinetic basis that causes ST to 

depend strongly on fuel composition (Section 1.4), the relationship of ST to other fuel 

properties that affect soot emissions (Section 1.5), and strategies for designing fuels that 

simultaneously optimize soot and other fuel properties (Section 1.6).  Section 2 reviews 

experimental techniques for measuring ST, including both older threshold-based 

approaches such as smoke point and newer yield-based approaches such as yield sooting 

index (YSI).  Section 3 discusses some of the trends in measured STs, including the effects 

of unsaturation, heteroatoms, and isomerism.  Section 4 describes the use of machine 

learning to convert these experimental results into systematic knowledge through 

structure-property relationships.  Finally, Section 5 reviews numerical simulations of ST, 

which provides insight into the kinetic mechanisms of soot formation. 

 

1.1 Sooting tendency research is a key enabler for sustainable fuels 

 

The left side of Fig. 1 shows the main part of the world’s current energy economy:  

fossil fuels are extracted from the ground, they are burned to produce energy, and the 

products are emitted into the air.  This model is completely linear—whenever more energy 

is needed, more fossil fuels are harvested, and more CO2 is released.  It has enabled an 

extraordinary increase in human prosperity, life expectancy, and population.  However, it 

has also led to geopolitical problems due to the uneven distribution of fossil fuels, and to 

global warming due to the accumulation of CO2 in the atmosphere. 
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Figure 1. The current energy economy (left) and a circular energy economy based around 

sustainable fuels (right).  The left-side emphasizes fossil fuels since they constituted 80% of 

the world’s primary energy supply in 2021 [1]. 

 

These problems can be ameliorated by the circular energy economy shown on the 

right of Fig. 1.  In this model, hydrocarbon (HC) fuels would still be burned to produce 

energy in many contexts such as heavy-duty road transport, aviation, and shipping (upper 

half of the circle).  However, the CO2 produced from combusting these fuels—or an 

equivalent amount of atmospheric CO2—would then be recycled into the next batch of fuels 

(lower half of the circle).  CO2 can be converted into these sustainable fuels with two broad 

strategies.  The first is to grow plants, algae, or cyanobacteria and then convert their biomass 

into biofuels.  These organisms use solar energy to take CO2 directly from the atmosphere 

and fix it into HCs via photosynthesis.  The second strategy is to use catalytic reactors to 

convert CO2 from powerplant exhausts, fermentation, direct air capture, and other sources 

into synthetic fuels.  These fuels are also called e-fuels or power-to-liquids since the 

thermochemical reactors are ideally powered by green electricity from solar and wind. 

The circular energy economy raises a key question: what is the best chemical 

composition for these sustainable fuels [2, 3]?  Since the starting material is CO2, the fuel 

composition is not limited to the molecules in fossil fuels but can be anything in organic 

chemistry.  Answering this question correctly is vital to enabling the circular energy 

economy.  Sustainable fuels currently cost much more than fossil fuels, which is the primary 

factor limiting their deployment.  The value proposition of sustainable fuels can be improved 

by choosing compositions that are less expensive to produce and that have better properties 

so users will pay more for them.  Combustion science can contribute to the former by 

developing new technologies that allow a wider range of fuels to be used in practice, and to 

the latter by identifying desirable fuel properties and the molecules that possess them.  

Thus, sustainable fuel composition presents an opportunity for the combustion science 

community to move from reactively studying the behavior of sustainable fuels in case they 

are ever implemented, to proactively enabling their deployment in the first place. 
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Sooting tendency (ST) is among the most important fuel property targets for 

sustainable fuels.  One reason is the mounting evidence that soot emissions are among the 

worst aspects of combustion due to their effects on climate change and human health—

these issues are reviewed in Sections 1.2 and 1.3.  A second reason is that ST depends strongly 

on molecular structure, so fuel composition presents a strong lever to reduce emissions.  As 

an example, Fig. 2 shows a photograph of pool fires burning ethanol (left) and benzene 

(right).  The yellow color is blackbody emission from soot particles in the flames.  The 

ethanol flame is mostly blue, with only a small amount of soot production at its tip.  In 

contrast, the benzene flame produces so much soot that the camera is saturated over the 

entire surface of the flame.  Thus, this photograph shows that two fuels can produce very 

different amounts of soot even when burning under the same conditions. 

 

 

 

Figure 2. Photograph of pool fires burning ethanol (left) and benzene (right). 

 

 

1.2. Effects of soot emissions on climate change 

 

Soot emissions affect climate through three mechanisms [4, 5]: 

1. Soot particles are “black”, with emissivities close to one, so they absorb incident sunlight 

and heat the atmosphere.  This warming mechanism is more direct than the greenhouse 

gas effect, where species like CO2 do not interact with incident visible light, but absorb 

infrared light reradiated from the earth’s surface.  Atmospheric particles other than soot 

are mostly “white” and scatter or reflect incident sunlight.  Overall, the net effect of 

aerosols is to cool the climate, but this is the sum of a warming effect due to soot and a 

cooling effect due to the other particles.  Atmospheric scientists refer to soot as black 

carbon (BC) to emphasize the consequences of its unique optical properties. 
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2. Soot particles decrease the earth’s reflectivity when they deposit on snow and ice.  This 

change in albedo causes warming since it increases the proportion of incident light that 

is absorbed by the earth versus reflected to space. 

3. Soot particles emitted from airplanes in the stratosphere create contrails by acting as 

nucleation sites for ice crystals.  These contrails can then convert into aviation induced 

cloudiness/cirrus (AIC), which is relatively long-lived (i.e., longer than 10 minutes) [6, 

7].  Water-based clouds at lower tropospheric altitudes tend to have a net cooling effect 

due to reflection of incident sunlight, but the ice-dominated stratospheric AIC tend to 

have a net warming effect due to the greenhouse mechanism [6]. 

The Intergovernmental Panel on Climate Change is a United Nations organization 

that comprehensively reviews and synthesizes the state-of-the-art in climate science via its 

periodic Assessment Reports.  The Sixth Assessment Report includes estimates of the effect 

of specific climate forcing agents on the global surface air temperature (GSAT) in 2019 

relative to 1750 [4, 5].  The values include +1.0 °C for CO2, +0.1 °C for the BC direct effect, 

+0.04 °C for the BC albedo effect, and +0.02 °C for the BC contrail effect.  Thus, soot 

emissions have a total effect of +0.16 °C.  This amount is one-tenth of the 1.5 °C limit 

identified by the Paris Climate Accords, so reductions in ST will add significantly to the 

climate benefits of sustainable fuels. 

The change in GSAT due to contrails is only a small part of the effect from soot, but it 

derives entirely from one sector of human activity—aviation—and it is the largest cause of 

climate change from that sector [4].  Voigt et al. demonstrated the role of soot particles and 

sustainable fuels on contrail formation through flight experiments where a lead jet used 

various fuels, and a chase plane sampled its exhaust [8].  When the lead plane burned 

sustainable aviation fuels (SAF) instead of a conventional Jet A-1 fossil fuel, its soot emissions 

decreased by about a factor of two, and the ice particle concentrations in its wake decreased 

by the same proportion.  These results directly show that SAF can reduce the climate impact 

of contrails.  Subsequent emissions modeling estimates that adoption of 100% SAF on all 

flights would reduce the climate impact of contrails by 44%, and that targeted adoption of 

50% SAF to the most critical 2% of flights would still reduce it by 10% [9].  The ST research 

discussed in this review can be used to optimize the composition of SAF to maximize this 

benefit. 
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1.3. Effects of soot emissions on human health 

 

Ambient particles are classified into categories based on their aerodynamic diameter 

da: coarse particulates (da ≤ 10 μm, designated PM10), fine particulates (da ≤ 2.5 μm, PM2.5), 

and ultrafine particulates (da ≤ 0.1 μm, UFPs).  Strictly speaking, these categories overlap, 

i.e. PM10 includes the two smaller categories; however, most particulate standards and 

guidelines are written in terms of mass—which scales with da
3—so the particles from the 

smaller categories contribute negligibly to the total.  In terms of aerosol dynamics, the UFPs 

correspond to the nucleation mode of the initial particles formed by condensation 

processes, PM2.5 corresponds to the accumulation mode of aggregated nucleation mode 

particles, and PM10 corresponds to the coarse mode of particles formed by frictional 

processes.  Soot particles are formed by a chemical condensation process, so the primary 

particles are typically in the UFP range and the aggregates are in the PM2.5 range [10, 11]. 

In 1993 the Six Cities Study showed that mortality in six U.S. cities correlated strongly 

with PM2.5, but less so with PM10 and other types of air pollution [12].  Since then, 

overwhelming epidemiological evidence has verified that PM2.5 contributes to poor human 

health through cardiopulmonary disease and lung cancer [13, 14].  While people tend to 

fixate on cancer, heart disease is the leading cause of death worldwide (one out of every three 

deaths) [15], so it is the contribution to heart disease that makes PM2.5 exposure a particularly 

severe problem.  Particles may cause heart disease by (1) triggering oxidative stress in the 

lungs and the release of inflammatory compounds into the bloodstream, (2) activating 

alveolar sensory receptors and disrupting the autonomic nervous system that regulates heart 

function, and (3) crossing directly over the lung epithelial barrier into the bloodstream [16]. 

Many governments and international agencies have implemented PM2.5 air quality 

standards and guidelines, and these have tended to grow more stringent over time.  For 

example, in 2021 the World Health Organization (WHO) reduced its PM2.5 air quality 

guideline (AQG) from 10 to 5 μg/m3 [17].  Similarly, in February 2024 the U.S. Environmental 

Protection Agency (US EPA) reduced its annual PM2.5 national ambient air quality standard 

(NAAQS) from 12.0 μg/m3 to 9.0 μg/m3 [18, 19]. 

Unfortunately, the exposures to fine particulates are enormous.  Spatially resolved 

PM2.5 concentrations for the entire earth can be derived from satellite aerosol optical depth 

measurements.  The results show that in 2018 essentially the entire global population was 

exposed to concentrations that exceeded the WHO AQG, and more than 90% of people were 

exposed to levels above the US EPA NAAQS [20].  Moreover, for most of the population the 

levels were increasing over time, by up to 3 μg/m3 per year. 
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The most comprehensive effort to determine the health consequences of these 

exposures, and how they compare to other risk factors, is the 2019 Global Burden of Disease 

study (GBD 2019), which was a collaborative effort of over 5,000 researchers [21].  GDB 2019 

concluded that PM2.5 was responsible for 4.1 million deaths worldwide in 2019.  The number 

of deaths had more than doubled from 2.0 million in 1990 due to higher exposures.  PM2.5 

was the most significant environmental risk factor, and the sixth largest risk factor overall.  

Other studies have produced even larger totals; for example, Burnett et al. concluded that 

PM2.5 was responsible for 8.9 million deaths in 2015 [22].  Ambient PM2.5 includes many types 

of particles (soot, dust, sulfates, nitrates, etc.) from many sources (engines, furnaces, 

cookstoves, wildland fires, etc.).  However, estimates of the annual deaths due to just fossil 

fuel combustion sources range from 1 to 10 million [23, 24].  Furthermore, estimates of the 

annual deaths due to just BC—the particle type definitely attributable to soot emissions—

include 14,000 in the United States in 2010 and 265,000 in China in 2013 [25, 26].  These 

numbers are astonishing, and they show that adopting sustainable fuels with lower ST than 

existing fuels will have enormous health benefits for humanity. 

 

1.4 The chemical kinetic basis for sooting tendencies 

 

This review defines ST as the quantitative propensity of a fuel to produce soot relative 

to other fuels when burned.  It is a property of the fuel and not the measurement procedure.  

Sections 2.1 and 2.2 show that ST can be measured by a wide range of methods, and section 

2.3 shows that these methods give similar results for any given fuel when properly scaled.  

This section discusses the kinetic mechanism of ST with the goal of explaining why ST is a 

true fuel property, and why it depends so strongly on molecular structure. 

As background, Fig. 3 presents a schematic overview of the soot formation process.  

As the fuel enters the flame, it encounters heat and small radicals generated at the main 

reaction front and it decomposes to a pool of primary hydrocarbon products (top).  If the 

local C:O ratio is sufficiently low, then these products will be oxidized to CO2 and H2O 

(bottom left).  However, if the local C:O ratio is too high, then these products will react with 

one another and produce larger hydrocarbons through a process of hydrocarbon growth 

(bottom right).  These larger hydrocarbons will include aromatic molecules with more 

benzenoid rings than were present in the fuel, and they will eventually grow to soot particles. 
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Figure 3. A schematic overview of the soot formation process. 

 

ST is determined by the composition of the primary hydrocarbon products and how 

quickly they can grow to larger aromatics [27].  To illustrate this concept, Fig. 4 shows the 

soot formation process for ethanol and benzene, the two fuels that were compared in Fig. 2.  

Ethanol decomposes to small HCs (methyl radical, ethylene, etc.) and small oxygenated HCs 

(formaldehyde, acetaldehyde, etc.) (left side) [28].  Benzene decomposes primarily to phenyl 

radical since benzenoid rings are stable under pyrolytic conditions (right side) [29].  Thus, 

two possible factors can explain why the ethanol pool fire produces so much less soot than 

the benzene pool fire in Fig. 2.  First, the primary products from ethanol must undergo the 

process of forming one-ring aromatic species, whereas the primary products from benzene 

already include one-ring species and skip this slow step.  Second, the oxygenated products 

of ethanol may already be on an inescapable path to CO2, especially since they include strong 

C=O double bonds, and so their carbon is not available to grow to aromatics.  Crucially, both 

factors are very general and would apply to any fuel-rich combustion environment, which 

explains why ST is a property of the fuel and not the combustion system. 
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Figure 4. A schematic overview of the soot formation process for the two fuels that were 

compared in Fig. 2: ethanol (left) and benzene (right). 

 

1.5. Predictive emission indices 

 

Soot formation is a complex process whose rates depend on many factors including 

temperature, residence time, pressure, etc. [30, 31], but this review focuses on the effects of 

fuel composition.  The overview of soot formation presented in Fig. 3 suggests that there are 

two primary mechanisms by which the fuel composition can affect the amount of soot 

formed in a particular combustion device.  The first is the rate at which the fuel’s 

decomposition products grow to large aromatic molecules, i.e., the effect quantified by ST.  

The second is the level of fuel-to-air mixing, which affects the C:O ratio and therefore the 

relative importance of hydrocarbon growth to soot (right side of the figure) versus oxidation 

to CO2 and H2O (left side).  The level of mixing is primarily determined by the device 

technology, but it can also be affected by fuel properties. 

Predictive emission indices are formulas that combine the direct effect of ST and the 

indirect effect of other fuel properties on mixing to predict the overall fuel-dependence of 

emissions from a specific combustion technology.  The best-known example is particulate 

mass index (PMI), which was developed by Aikawa and co-workers in 2010 to predict soot 

emissions from gasoline direct-injection (GDI) engines [32].  PMI is defined by: 
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PMI = ∑ 𝑤𝑗 ∗
DBE𝑗 + 1

𝑃𝑗,443K
                                                                                           (1)

𝑗

 

 

where the sum is over all the components j in the fuel, wj is the mass fraction of component j, 

DBEj is the double bond equivalent of component j, and Pj,443K is the vapor pressure of 

component j at 443 K.  DBE is a measure of the number of rings and higher order bonds in 

a molecule; for the general hydrocarbon CCHHOONN it is given by: 

 

DBE =
2𝐶 + 2 − 𝐻 + 𝑁

2
                                                                                             (2) 

 

The numerator of Eq. 1  accounts for the direct effect of fuel composition on soot 

formation.  It uses DBE as a crude estimate of ST.  This was necessary in 2010 when PMI was 

created: DBE can be immediately calculated for any molecule, while STs had only been 

measured for a limited range of molecules at that time.  However, Section 3.1 shows that 

while ST roughly correlates with DBE, a wide range of ST exists for any given DBE.  

Fortunately, since 2010 ST has been measured for many more molecules (see Section 2), and 

this has enabled detailed quantitative structure-property relationships (QSPRs) that are 

much more precise than ST ~ DBE and just as easy to calculate (see Section 4). 

The denominator of Eq. 1  accounts for the indirect effect of the fuel on soot 

formation via the impact of its properties on mixing.  In a GDI engine, the fuel is injected 

directly into the cylinder during the intake stroke and forms a liquid layer on the cylinder 

walls and piston surface.  During the compression stroke the fuel will evaporate and begin 

to mix with the air.  If the fuel is more volatile (i.e., has a larger value of Pj,443K), then it will 

evaporate more quickly and mix more thoroughly with the air by the end of the compression 

stroke.  This mechanism is specific to GDI engines, and it does not occur in other devices 

such as diesel engines and gas turbines—thus, PMI is not applicable to these other devices. 

In general, ST is a fundamental property that can be measured once for each fuel and 

then compiled into databases that can be applied to any combustion device.  In contrast, 

predictive emission indices like PMI need to be developed separately for each combustion 

technology, but then they can use ST as input to produce more refined emissions 

predictions. 
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1.6 Rational design of sustainable fuels with improved properties 

 

STs have been used for many purposes: (1) formulating surrogate mixtures that mimic 

the behavior of real fuels, (2) testing the ability of chemical kinetic mechanisms to predict 

soot formation, and (3) designing fuels with improved properties.  Table 1 lists some 

noteworthy examples of these uses. 

 

Table 1 

Noteworthy publications that use ST.  SP, TSI, and YSI are measures of ST defined in Sections 

2.1 and 2.2. 

Publication Description 

Aksit and Moss, 2005 [33] SP was a property target for a jet fuel surrogate 

Mensch et al., 2010 [34] TSI was a property target for a jet fuel surrogate 

Huo et al., 2019 [35] YSI was a property target for selecting alkanes for 

improved diesel fuels 

Huq et al., 2019 [36] YSI was a property target for selecting ethers for 

improved diesel fuels 

Kwon et al., 2020 [37] 20 YSIs were simulated to test kinetic mechanisms 

Bartholet et al., 2021 [38] YSI was a property target for selecting 

polyoxymethylene ethers for improved diesel fuels 

Cai et al., 2022 [39] YSI was a property target for selecting molecules for 

improved diesel fuels 

Kuzhagaliyeva et al., 2022 [40] YSI was a property target for selecting mixtures for 

improved spark-ignition fuels 

Li et al., 2022 [41] YSI was a property target for selecting molecules for 

improved internal combustion engine fuels 

Fleitmann et al., 2023 [42] YSI was a property target for selecting molecules for 

improved spark-ignition fuels 

 

Given the purposes of this review, fuel design is of particular interest.  The challenge 

is that the performance of a fuel is affected by many properties: ST, heat of combustion, 

ignition quality, melting point, boiling point, flash point, corrosivity, water solubility, 
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biodegradability, toxicity, and many others.  No fuel will have ideal values of all these 

properties, so designing optimal fuels requires trade-offs. 

Polyoxymethylene ethers (POMEs) provide a good example of these trade-offs.  The 

structure of a POME consists of an initial end-group R, an ether O, noxy oxymethylene units 

(–CH2–O–), and a final end-group R’ (see Fig. 5A).  POMEs with R = R’ = methyl have been 

widely discussed as alternative diesel fuels [43, 44].  They have very low STs due to the 

absence of C-C bonds [45, 46, 47], and engine studies show that they have very low soot 

emissions [48, 49, 50].  However, they also have high water solubilities and low heats of 

combustion.  Water-soluble fuels are a concern because they can dissolve into water layers 

that are often present in the fuel infrastructure, and they can contaminate groundwater 

when spilled.  These properties can be improved by replacing the methyl end-groups with 

larger end-groups, but at the cost of increasing ST (see Fig 5B).  Bartholet et al. optimized 

this trade-off by (1) defining a fuel design space containing 67 candidate POMEs with 

different combinations of R, R’, and noxy, (2) setting required values for eight properties, (3) 

predicting these properties for every candidate with QSPRs, and (4) identifying the 

candidates that met all the property requirements [38].  The best candidate was 

dibutoxymethane (R = R’ = n-butyl, noxy = 1; see Fig 5C).  This compound has a ST that is 

higher than the methyl-terminated POMEs, but still much lower than conventional diesel 

fuel, and its water solubility is about 1,000 times lower than the methyl-terminated POMEs.  

The superior performance of this butyl-terminated POME was confirmed by subsequent 

testing [51]. 
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Figure 5. A) Generic POME structure.  B) The trade-offs in fuel properties depending on the 

size of the end groups.  C) The optimum POME structure identified by Bartholet et al. [38]. 

 

This example shows that fuel design studies require QSPRs that can accurately 

predict fuel properties for a wide range of candidate molecules—almost all the 67 POME 

candidates had never been synthesized, let alone tested for fuel properties.  The accuracy of 

QSPRs depends critically on the size and comprehensiveness of the database used for 

training, so large databases with wide coverage of structural features are also essential.  

Section 2 reviews methods for measuring ST, with emphasis on newer yield-based methods 

that enable datasets that are large enough to accurately train QSPRs.  Section 3 shows that 

measured STs cannot be predicted precisely with simple parameters such as C:H ratio or 

DBE.  Section 4 discusses QSPRs that provide much better predictions of ST.  Finally, Section 

5 discusses computational simulations that can explain measured STs with chemical kinetic 

mechanisms and molecular dynamics. 

 

2 Experimental measurements of sooting tendency 
 

This section discusses the experimental methods that are used to measure ST.  The 

emphasis is on methods that have been applied to large sets of compounds (> 10) and 

therefore provide detailed structure-property information.  Sooting propensity has also 

been studied in standard kinetic systems such as flow reactors (e.g., [52]) and shock tubes 
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(e.g. [53]), but the focus in those studies is on the effects of temperature and other kinetic 

parameters, so they are outside the scope of this review. 

The ST methods divide into two categories:  threshold-based methods (Section 2.1) 

and yield-based methods (Section 2.2).  The threshold methods do not require a soot 

measurement and can use simple, commercially available equipment.  The yield methods 

require a custom setup but can be applied to a wider range of compounds and enable larger 

datasets. 

 

2.1 Threshold-based sooting tendencies 

 

The first ST technique to be widely adopted was smoke point (SP).  It was developed 

around 1930 [54] and has been codified into the ASTM D1322 standard test method [55].  The 

ASTM specification for Jet A/A-1 aviation fuel, D7566 [56], requires SP > 25 mm (or 

SP > 18 mm if the volume percent of naphthalenes is less than 3%).  Given this requirement, 

fuels are routinely tested for SP in the aviation industry and the apparatus for performing it 

is ubiquitous. 

The SP procedure is to generate a coflow flame, increase the fuel flowrate until soot 

just breaks through the tip of the flame, and then measure the flame height at this threshold.  

“Smoke point” refers both to the flame being at this condition and to the measured height.  

The underlying idea is that if the fuel has a greater ST, then it will form more soot for a given 

fuel flowrate, and the flame will be shorter when the amount of soot formed exceeds the 

amount that can be oxidized.  Thus, SP is inversely proportional to ST, which explains why 

ASTM D7566 requires a minimum (not maximum) value for SP.  The ASTM D1322 apparatus 

generates the flame with a wick burner and varies the fuel flowrate by changing the amount 

of wick that projects from a metal tube. 

Although SP is primarily used for certifying aviation fuels, it has also been an 

important tool for fundamental combustion research.  Table 2 lists some noteworthy studies 

related to SP and to other methods that depend on identifying a threshold. 

 

Table 2 

Noteworthy publications related to threshold-based ST methods.  Qfuel and ṁfuel are the 

volumetric and mass fuel flowrates; φ is fuel-air equivalence ratio. 

Publication Description 

Hunt, 1953 [57] SP was measured for HCs, sulfur-containing HCs, and 

nitrogenated HCs 
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Schalla and McDonald, 1953 [58] Qfuel at the SP was measured for HCs 

Blazowski, 1980 [59] φ at the onset of soot formation was measured for HCs 

in a jet-stirred reactor 

Glassman and Yaccarino, 1981 

[27] 

Qfuel at the SP was measured for HCs with the flame 

temperature controlled via N2 dilution 

Calcote and Manos, 1983 [60] Threshold sooting index (TSI) was proposed and used 

to combine literature data from premixed and 

nonpremixed flames 

Senkan et al., 1983 [61] φ at the onset of soot formation was measured for 

chlorinated HCs in a flat flame burner 

Takahashi and Glassman, 1984 

[62] 

φ at the onset of soot formation was measured for HCs 

in a Bunsen burner with the temperature controlled 

via inert dilution 

Gill and Olson, 1984 [63] TSI was measured for binary and ternary HC mixtures 

and shown to fit a linear mixing rule 

Gomez et al., 1984 [64] ṁfuel at the SP was measured for HCs with the 

temperature controlled via inert dilution 

Olson et al., 1985 [65] SP was measured for HCs 

Gülder et al., 1989 [66] SP was measured for binary and ternary HC mixtures 

Gülder et al., 1990 [67] SP was measured for HCs, binary and ternary HC 

mixtures, and transportation fuels 

Ladommatos et al., 1996 [68] SP was measured for HCs 

Yan et al., 2005 [69] SP was measured for binary HC mixtures 

Yang et al., 2007 [70] SP was measured for jet fuels and their TSIs were 

shown to correlate with soot formation in a gas turbine 

Berry Yelverton and Roberts, 

2008 [71] 

SP was measured for methane and ethylene at 

pressures up to 8 atm 

Pepiot-Desjardins et al., 2008 

[72] 

SP was measured for oxygenated HCs mixed with a HC 

base fuel 
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Allan et al., 2009 [73] SP was measured for HCs, oxygenated HCs, and waxes 

in candles 

Barrientos and Boehman, 2010 

[74] 

SP was measured for multi-ring aromatics and their 

saturated analogues mixed with a HC base fuel 

Mensch et al., 2010 [34] SP was measured for jet fuel surrogate HCs 

Dotson et al., 2011 [75] SP was measured for HCs in microgravity 

Li and Sunderland, 2012 [76] Literature SPs were combined into a database of 

normalized smoke points (NSPs) 

Barrientos et al., 2013 [77] Oxygen extended sooting index (OESI) was proposed 

and applied to SPs measured for oxygenated HCs 

Li and Sunderland, 2013 [78] Linear mixing rules were developed for literature SPs 

of HC mixtures 

Llamas et al., 2013 [79] SP was measured for biokerosenes mixed with 

conventional kerosene 

Watson et al., 2013 [80] Fuel uptake rate measurement with threshold imaging 

(FURTI) was proposed and used to measure objective 

STs for HCs and HC mixtures 

Wang and Chung, 2014 [81] Oxygen and fuel mole fractions at the onset of soot 

formation were measured in counterflow 

nonpremixed flames 

Graziano et al., 2018 [82] SP was measured for HCs and HC mixtures using 

FURTI 

Tan et al., 2018 [45] SP was measured for POMEs mixed with diesel fuel 

Rubio-Gomez et al., 2019 [83] An automated SP procedure was proposed and applied 

to HCs 

Cho et al., 2020 [84] Virtual smoke point (VSP) was proposed and used to 

measure SPs that exceeded the upper limit of the 

apparatus 

Corral-Gomez et al., 2020 [85] An automated SP procedure was proposed and applied 

to HCs 
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Donoso et al., 2021 [86] SP was measured for terpenes and hydrogenated 

terpene mixtures 

Li et al., 2022 [87] Oxygen mole fraction at the onset of soot formation 

was measured for oxygenated HCs mixed with 

ethylene in counterflow nonpremixed flames  

Muelas et al., 2023 [88] An automated SP procedure was proposed and applied 

to HCs 

 

These publications can be grouped into several categories.  First, several studies 

report SPs for large sets of compounds [34, 57, 58, 64, 65, 68].  Li and Sunderland have 

compiled these results into a database of normalized smoke points (NSPs) that includes 112 

HCs [76].  As discussed in Section 2.2, larger databases are available for yield-based STs. 

Second, several procedures have been proposed for normalizing SPs.  The purposes 

are to (1) invert SP so that larger values correspond to sootier fuels, (2) factor out 

experimental differences such as varying wick diameters, and (3) clarify the intensive basis 

of SP.  Regarding the latter, the most fundamental basis would be (soot/mole)—the amount 

of soot formed per mole of fuel burned—but SP is not directly related to this ratio since the 

proportionality constant between the flame height hflame and the molar fuel flowrate ṅfuel 

depends on the fuel.  Roper has shown that they are related by [89]: 

 

ℎflame ~ 
𝑛̇fuel ∗ (𝑇0/𝑇flame)0.67

𝐷0 ∗ ln(1 + 1/𝑆)
                                                                                (3) 

 

where T0 is the initial temperature of the fuel, Tflame is a characteristic temperature for the 

flame, D0 is a characteristic diffusivity for the oxidizer into the fuel at T0, and S is the moles 

of oxidizer required to stoichiometrically burn one mole of fuel.  For the general 

hydrocarbon CCHHOONN burning in air (O2 + 3.77N2): 

 

𝑆 = 4.77 ∗ (𝐶 +
𝐻

4
−

𝑂

2
)                                                                                              (4) 

 

For a pure hydrocarbon if C ≥ 3, then S ≥ 14.3 and ln(1+1/S) = 1/S to within 3.5%.  Thus, if T0, 

Tflame, and D0 are assumed to be constant, then: 

 

ℎflame ~ 𝑆 ∗ 𝑛̇fuel                                                                                                           (5) 
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If we assume that the SP occurs when the amount of soot formed in the flame reaches a fuel-

independent critical value, then (soot/mole) ~ 1/ṅfuel,SP where ṅfuel,SP is the molar fuel 

flowrate at the SP.  Combining this with Eq. (5) yields: 

 

(
soot

mole
) ~ 

𝑆

SP
                                                                                                                (6) 

 

Based on this type of argument, Calcote and Manos proposed normalizing SP into a 

threshold sooting index (TSI) defined by [60]: 

 

TSI = 𝑎(
𝑀r

SP
) + 𝑏                                                                                                           (7) 

 

where Mr is the relative molecular mass (i.e., molecular weight) of the fuel, and a and b are 

constants chosen so that the TSI(1-methylnaphthalene) = 100 and TSI(n-hexane) = 2.  They 

recognized that S would be the more appropriate normalizing factor but argued that Mr ~ S 

with sufficient accuracy given the uncertainties in SP.  They included the rescaling with the 

constants a and b so that data from a wide range of experimental configurations could be 

directly compared.  This data included both SPs measured in nonpremixed flames and fuel-

air equivalence ratios φ for the onset of soot formation in premixed flames. 

Subsequently, Barrientos et al. noted that Mr ~ S fails for oxygenated fuels due to the 

−O/2 term in Eq. (4), and they proposed an oxygen extended sooting index (OESI) defined 

by [77]: 

 

OESI = 𝑎′(
𝑆

SP
) + 𝑏′                                                                                                      (8) 

 

A third category in Table 2 are studies that extend SP to new configurations.  

Glassman and Yaccarino tested gaseous fuels diluted by N2 and showed that SPs can be 

strongly affected by a fuel’s adiabatic flame temperature Tad [27].  For example, pure 

acetylene had a smaller SP than pure C3 and C4 alkenes, but the order reversed when the 

acetylene was diluted enough to equalize the temperature in all the flames.  Allan et al. 

measured SPs of solid hydrocarbons by (1) forming them into candles, (2) drilling holes 

through the centerline, and (3) inserting wicks whose position relative to the candle could 

be varied [73].  Wang and Chung have defined a series of threshold STs for counterflow 
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flames [81].  Perhaps most exotically, Dotson et al. used the International Space Station to 

measure SPs in microgravity [75]. 

A fourth category are studies that seek to improve the SP method.  The standard 

method requires the experimenter to subjectively determine when the flame is at the SP.  

Watson et al. proposed an alternative procedure, fuel uptake rate measurement with 

threshold imaging (FURTI), where hflame is measured as a function of the fuel mass flowrate 

ṁfuel and then SP is objectively determined as the hflame where ∂(hflame)/∂(ṁfuel) is a maximum 

[80].  Their results showed that FURTI significantly reduced the uncertainty of the measured 

SPs, and Graziano et al. independently verified this conclusion [82]. 

Another issue with SP is that it has a narrow dynamic range: if the fuel has a high ST, 

then the SP will be too short to determine accurately (e.g., only 3.5 mm for naphthalene 

[76]), and if the fuel has a low ST, then the SP will exceed the limit of the instrument.  Haas 

and co-workers have addressed the latter problem with a virtual smoke point (VSP) 

procedure where (1) the low ST target compound is mixed at varying ratios with a high ST 

compound, (2) SPs are measured for the mixtures, and (3) the results are extrapolated to the 

case of the pure target compound [84]. 

 

2.2 Yield-based sooting tendencies 

 

Direct soot measurements were impossible when ST first became important at the 

beginning of jet aviation in the 1930s.  However, many techniques have been developed since 

then that enable in-situ quantification of soot concentrations.  These techniques cover a 

wide range of complexity: 

1. In laser-induced incandescence (LII) a laser pulse heats soot particles in the flame to a 

much higher temperature than the surrounding gases, and then a detector records the 

intense blackbody emission from this heating [90, 91, 92].  Even at modest laser fluences, 

the particles can be heated to the various carbon sublimation temperatures in the 4000 

to 4500 K range, so the signals are strong and easily discriminated from the background 

flame emission.  LII can determine both the mass concentration of soot from the 

magnitude of the signal and the particle size from the cooling rate after the laser pulse 

ends.  It offers the usual benefits of laser diagnostics including the ability to perform 

spatially resolved point or 2D imaging measurements. 

2. In laser extinction (LE) a laser beam propagates through the flame, the transmitted signal 

is measured, and then the soot concentration is determined from the amount of 



 22 

absorption [93, 94].  LE requires much less expensive lasers than LII, and it is often used 

to calibrate LII data since its data is much simpler to interpret. 

3. In color ratio pyrometry (CRP) a color camera photographs the soot emission in several 

wavelength regions, the soot temperature is calculated from the ratios of the color 

channels with Planck’s Law, and the soot concentration is determined from an absolute 

light calibration with a thermocouple [95, 96].  The only equipment required is a 

consumer grade digital camera.  The line-of-sight data must be converted to spatially 

resolved data with an Abel inversion, but techniques have been developed for this 

transformation that suit CRP [97, 98]. 

As early as the 1980s researchers noted that the TSI of a fuel correlated with the 

maximum soot concentration in its SP flame [e.g., 65].  Since 2000, several methods have 

been formulated that determine the ST for a fuel from the amount of soot it forms in a 

particular system.  Table 3 lists noteworthy publications related to these methods. 

 

Table 3 

Noteworthy publications related to yield-based ST methods. 

Publication Description 

McEnally and Pfefferle, 2007 [99] Yield sooting index (YSI) was proposed and measured 

for HCs 

Crossley et al., 2008 [100] Micropyrolysis index (MPI) was proposed and 

measured for HCs 

McEnally and Pfefferle, 2009 

[101] 

YSI was measured for large aromatics 

McEnally and Pfefferle, 2011 [102] YSI was measured for HCs and oxygenated HCs 

Kashif et al., 2014 [103] YSI was measured for n-heptane/toluene and 

isooctane/toluene mixtures 

Kashif et al., 2015 [104] YSI was measured for n-heptane/toluene and 

isooctane/toluene mixtures 

Das et al., 2015 [105] YSI was measured for unsaturated esters 

Lemaire et al., 2015 [106] Fuel equivalent sooting index (FESI) was measured for 

oxygenated HCs sprayed into a turbulent diesel 

surrogate flame 



 23 

Abboud et al., 2017 [107] YSI was measured for methyl decanoate mixed with a 

diesel surrogate 

Das et al., 2017 [108] YSI was measured for jet and diesel fuels and their 

surrogates 

Abboud et al, 2018 [109] YSI was measured for esters mixed with a diesel 

surrogate 

Das et al., 2018 [110] A unified YSI scale was created to replace the 

incompatible scales in [99], [101], and [102] 

Staples et al., 2018 [111] YSI was measured for dioxolanes 

Staples et al., 2019 [112] YSI was measured for camphorane 

Ford Ryan et al., 2020 [113] YSI was measured for cycloalkanes 

McEnally et al., 2019 [114] YSI was measured for gasolines and their surrogates 

Montgomery et al., 2019 [115] YSI was shown to be insensitive to partial premixing 

and temperature variation in the base flame 

Carlson et al., 2020 [116] YSI was measured for alkyl ethers 

Arellano-Treviño et al., 2021 [51] YSI was measured for butyl-exchanged POME 

mixtures 

Cosimbescu et al., 2021 [117] YSI was measured for bicyclic and multicyclic HCs 

Huq et al., 2021 [118] YSI was measured for a wet waste-derived SAF 

Gu et al., 2021 [119] Soot yield was measured for toluene and n-heptane 

doped into CH4 flame at pressures up to 8 atm 

Montgomery et al., 2021 [120] YSI was measured for amines 

Yang and Gülder, 2021 [121] Soot yield was measured for benzene, cyclohexane, 

and n-hexane doped into a CH4 flame at pressures up 

to 10 bar 

Yang and Gülder, 2021 [122] Soot yield was measured for ethylbenzene, p-xylene, 

o-xylene, and n-octane doped into a CH4 flame at 

pressures up to 10 bar 

Dagle et al., 2022 [123] YSI was measured for an iso-olefin gasoline 
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Lucas et al., 2022 [46] YSI was measured for POMEs 

Zhu et al., 2022 [124] YSI was measured for HCs, surrogate mixtures, and 

transportation fuels 

Gleason and Gomez, 2023 [125] Absolute soot production rates were measured for HCs 

in counterflow flames 

Jalain et al., 2023 [126] YSI was measured for alcohols in an ethylene base 

flame 

Monroe et al., 2023 [127] YSI was measured for alkoxyalkanoates 

Singh and Tsolas, 2023 [128] YSI was measured for isopropanol-butanol-ethanol 

mixed with a diesel surrogate 

Zhu et al., 2023 [129] YSI was measured for terpenes and hydrogenated 

terpenes 

Muelas et al., 2023 [88] IDSY (isolated droplet soot yield) was proposed and 

measured for HCs 

Arellano-Treviño et al., 2024 [130] YSI was measured for POMEs with branched end-

groups 

Jung et al., 2024 [131] YSI was measured for benzene substituted with 

hydroxy, formyl and methoxy groups 

Xiang et al., 2024 [132] YSI was measured for lactones 

 

The most widely adopted yield-based ST is yield sooting index (YSI).  We proposed 

this method in 2007 [99] and have employed it extensively since.  Several other research 

groups have published YSI measurements [e.g., 124, 103, 128].  Several studies have 

formulated sustainable fuels with YSI as one of the fuel property targets (see Section 1.6) and 

many structure-property relationships have been developed to predict YSI (see Section 4). 

The YSI procedure is to dope a small concentration of the test compound into the fuel 

of a methane/air coflow flame and measure the maximum soot concentration f in the doped 

flame.  The underlying idea is that if the test fuel has a larger ST, it will produce more soot, 

and a larger f will be measured.  f has been measured with LII [99, 124], LE [103], CRP [108], 

and flame emission [114].  The base flame is a CH4/air flame since it produces a low 

background f, but also has a more representative chemical environment than an H2 flame.  
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YSIs measured in CH4/air flames agree well with SP and other STs measured in pure-fueled 

flames (see Section 2.3), which shows that the YSI results are not sensitive to the background 

fuel. 

In analogy to TSI—and to other fuel properties such as octane and cetane rating—

YSI is rescaled relative to two endpoint species.  The rescaling equation is: 

 

YSITF = (YSIU − YSIL) ∗
𝑓TF − 𝑓L

𝑓U − 𝑓L
+ YSIL                                                              (9) 

 

Where the subscripts TF, U, and L denote the test fuel, the upper endpoint species, and the 

lower endpoint species.  YSIU and YSIL are constants that define the scale; normally U is 

toluene, YSIU ≡ 170.9, L is n-heptane, and YSIL ≡ 36.0 [110].  Equation 9  shows that YSI 

depends on the ratio of f between flames, not its absolute value in a single flame; therefore, 

many sources of uncertainty cancel out, including the absolute calibration and the effect of 

soot optical properties on the diagnostic. 

YSI offers several benefits: 

1. It eliminates the subjectivity associated with SP: the experimentalist calculates the 

flowrates necessary to achieve the specified dopant concentration, generates the flame, 

and then triggers the soot diagnostic.  The results for the objective versions of SP show 

that the uncertainties are significantly reduced when the subjectivity is eliminated [80, 

82] (see Section 2.1). 

2. Since the test compound is added to the flame at low concentrations—typically 

1000 μmol/mol (1000 ppm)—the required sample volume is very small.  Each 

measurement takes less than 50 μL of sample, which is 200 times less than the 10 mL 

required by ASTM D1322 for SP [55]  This difference has enabled YSI to be measured for 

many hydrocarbons that are not commercially available and had to be custom-

synthesized (e.g., [111] and many others).  The SP method requires 10 mL because the wick 

must be fully saturated with the test fuel to obtain an accurate measurement; we are not 

aware of any studies that have attempted to reduce this requirement. 

3. It has a large dynamic range, both because it is an objective measurement that uses precise 

diagnostics and because the dopant concentration can be increased or decreased to suit 

test compounds with small or large ST.  Measured values of YSI range from 0.5 for 

2,4,6,8-tetraoxanonane [46], a POME, to 1250 for pyrene [110], a four-ring polycyclic 

aromatic hydrocarbon. 
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4. Since the test compound is doped into the base flame at a small concentration, the ST of 

every compound is measured at the same flame temperature and fuel concentration.  As 

noted in Section 2.1, Glassman and Yaccarino studied fuels diluted with N2 and concluded 

that the fuel’s Tad could significantly impact its SP [27].  Later Axelbaum et al. showed 

that while N2 dilution could normalize the flame temperature, the differences in fuel 

concentration for fuels with different Tad also affected their SP [133].  The YSI approach 

removes the effect of Tad without introducing changes in fuel concentration. 

5. In principle the measurements can be performed at high pressure.  Although no high-

pressure YSIs have been reported, Gülder and co-workers have shown that soot yields can 

be measured in fuel-doped CH4/air flames at pressures up to 10 atm [119, 121, 122]. 

6. The results can be compared to simulations with detailed mechanisms (see Section 5).  

Simulating a YSI requires computing a single flame, not a series of flames as would be 

required with SP to locate the threshold.  The pre-vaporized coflow YSI flames have much 

simpler boundary conditions than wick burner flames and can be simulated with high 

accuracy (e.g., [134]).  Most importantly, the base flame can be solved with methane 

kinetic mechanisms, which are relatively small, then the YSI flames can be solved from 

the base flame using perturbation methods [135]. 

7. Simulations can also be used to determine the effects of flame parameters and other fuel 

properties that are difficult to vary experimentally.  For example, the YSIs of alkanes and 

aromatics have been simulated at different pressures [136].  The results indicate that while 

the absolute soot concentration f depends strongly on pressure, this dependence largely 

factors out when f is converted to YSI with Eq. 9. 

8. It has a straightforward intensive basis:  since the test fuel is added to the flame at a fixed 

mole fraction, YSI scales directly with (soot/mole).  Other intensive ratios can be obtained 

from simple manipulations:  

 

(
soot

mole
) ~ YSI                                                                                                                (10) 

 

(
soot

mass
) ~ 

YSI

𝑀r
                                                                                                              (11) 

 

(
soot

liquid volume
) ~ 

YSI ∗ 𝜌

𝑀r
                                                                                       (12) 
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(
soot

energy
) ~ 

YSI

LHV
                                                                                                         (13) 

 

where ρ is mass density and LHV is the lower heating value (in units of J/mol).  (In some 

previous studies we have measured (soot/mass) directly and called it “YSI” [e.g., 108], but we 

recognize that practice is confusing, and we are deprecating it.) 

The net result of these benefits is that YSIs have been measured for a large total 

number of hydrocarbons from many chemical families.  For example, we have posted a 

canonical database that contains fully vetted and published YSIs for 447 compounds to the 

Harvard Dataverse online depository [137].  We have unpublished YSIs for an additional 216 

compounds; the combined database of 663 compounds is included in the Supplemental 

Information (SI) to this review.  This database includes values for 257 regular HCs, which is 

more than twice the number of values in the NSP database [76]. 

As discussed in Section 1.6, a major purpose of STs is to train QSPRs that can guide 

the development of sustainable fuels.  The accuracy of the QSPRs depends strongly on the 

total number of data points in the training set and how widely it covers structural features.  

Thus, YSI databases are ideal for training QSPRs, and they have been widely used for this 

purpose (see Section 4). 

 

2.3 Comparison of sooting tendencies 

 

Sections 2.1 and 2.2 have shown that ST has been measured in a wide range of 

experimental systems.  In general, the results agree across these systems, which supports the 

hypothesis that ST is a fundamental property of a fuel, and not of the measurement system 

(see Section 1.4).  For example, Calcote and Manos stated that with normalization to TSI “all 

of the data in the literature on premixed and diffusion flames, taken by many techniques, 

can be successfully correlated with respect to molecular structure” [60].  Mensch et al. 

observed strong linear correlations between their measured TSIs and literature YSIs—in 

fact, these correlations were stronger than most of the correlations with literature TSIs [34].  

Crossley et al. found that their MPIs—which were measured for pre-vaporized fuels in an 

1120 K non-flame pyrolytic reactor—correlated with literature TSIs measured in flames [100].  

Similarly, Muelas et al. observed a good correlation between their TSIs measured in coflow 

flames and their IDSYs measured for droplets in a 1700 K inert environment [88]. 

Recently, Zhu et al. quantitatively compared SP and YSI using many more data 

points than in previous comparisons [129].  From Eqs. 6 and 10, YSI/S ~ 1/SP.  Figure 6 
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shows YSI/S plotted against 1/SP for 80 HCs and 7 HC mixtures from many chemical 

families.  The plot uses a log-log scale since the STs vary over a range of about 100.  The 

data correlates reasonably well with the linear least-squares fit, which is shown by the 

dashed line.  The largest scatter occurs for the aromatics, but in this case the SPs are all less 

than 10 mm and the challenges of measuring SP in such short flames are well-known [80]. 

 

 
 

Figure 6. Comparison of YSIs and SPs.  YSIs are from the database in the SI.  SPs are from 

[55], [76], and [86]. 

 

The linear fit allows YSIs to be converted to derived smoke points (DSPs): 

 

30.4

DSP
=

YSI

𝑆
− 0.427                                                                                                      (14) 

 

Melder et al. used Eq. 14  to demonstrate that the ST of complex fuels can be accurately 

predicted from the fuel’s detailed composition [138].  They (1) characterized the molecular 

composition of 20 gasolines with a novel 2D gas chromatography technique; (2) calculated 

the YSI of these compositions using measured YSIs which were available for 95% of the 

components, extrapolated YSIs for the other 5% of components, and a linear mixing rule; (3) 

converted the YSIs to DSPs; and (4) showed that the DSPs agreed well with SPs measured 

directly for the fuels. 
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3 Effects of molecular parameters on sooting tendency 

 

The goal of this section is to interrogate the large YSI database that is included in the 

SI to determine how ST depends on molecular details such as unsaturation, heteroatoms, 

and isomerism. 

 

3.1 Effects of unsaturation 

 

Combustion research has long since established that unsaturated hydrocarbons tend 

to soot more than their saturated analogues, and unsaturation is often used as a crude 

indicator of ST (e.g., in PMI, which is discussed in Section 1.5).  Unsaturation can occur 

because of rings or because of double and triple C-C bonds.  Figure 7 plots the measured 

YSIs as a function of C:H ratio, with separate data series for pure HCs (C and H only) and for 

HCs with heteroatoms (either O or N).  The YSIs are plotted on a log scale since they vary 

over almost 104.  In general, YSI increases as C:H increases, especially for C:H below 0.8.  

However, for any given C:H the YSIs vary by around a factor of four.  For example, the YSIs 

for C:H = 0.5 range from 39 (cyclopentane) to 158 

(1,2-dimethyl-4-(4-methylpentyl)cyclohexane), for C:H = 0.6 from 46 (cyclohexene) to 304 

(n-dodecylbenzene), and for C:H = 1 from 100 (benzene) to 984 (2,2’-dimethylbiphenyl).  A 

similar conclusion holds for YSI/C; its values range from 6.9 to 11.3 for C:H = 0.5, from 7.6 to 

16.9 for C:H = 0.6, and 16.7 to 70.3 for C:H = 1.0. 

 

 
 

Figure 7. Measured YSIs as a function of the C:H ratio.  YSIs are from the database in the SI. 

 

A better indicator of unsaturation is DBE (defined in Eq. 2): alkanes and other fully 

saturated HCs have varying C:H but they all have DBE = 0.  Figure 8 plots the measured YSIs 
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DBE the YSIs vary by around a factor of four.  For example, the YSIs for DBE = 0 range from 

25 (n-pentane) to 133 (7-butyl-6-pentyltridecane), for DBE = 1 from 39 (cyclopentane) to 158 

(1,2-dimethyl-4-(4-methylpentyl)cyclohexane), and for DBE = 2 from 46 (cyclohexene) to 

161 (1-tert-butyl-cyclohexene).  Again, the same conclusion holds for YSI/C; its values range 

from 4.9 to 8.3 for DBE = 0, from 6.9 to 11.3 for DBE = 1, and from 7.6 to 16.1 for DBE = 2.  

These results illustrate the need for QSPRs to predict sooting tendency. 

 

 

 

Figure 8. Measured YSIs as a function of DBE.  DBE is defined in Eq. 2.  YSIs are from the 

database in the SI.  The data points for Hydrocarbons with Heteroatoms have been offset by 

+0.1 DBE for clarity. 

 

3.2 Effects of heteroatoms 

 

Conventional fossil fuels are comprised almost exclusively of regular HCs (C and H 

only).  However, sustainable fuels may include large amounts of oxygenated HCs since the 

raw material—biomass or CO2—contains O.  Fuel specifications often limit the O content, 

but relaxing these requirements may be a valuable way to improve the economics of 

sustainable fuels by reducing the amount of fuel processing. 

Oxygenated HCs are also of interest because they frequently have lower ST than pure 

HCs.  For example, Pepiot-Desjardins et al. observed that ST was reduced when oxygenated 

HCs were added to n-heptane/toluene or diesel mixtures [72].  By fitting the measured 

results to a QSPR, they were able to show that while some of the reduction came from 

diluting the high ST molecules in the base fuel, a large part of it came from a chemical effect 

due to the oxygenated moieties.  The methyl-terminated POMEs discussed in Section 1.6 are 

an example of oxygenated HCs that have ST ≈ 0 [45, 46].  Another interesting case is the 

addition of hydroxy (–OH) groups to benzene [131, 139]: one group reduces the YSI from 100 
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(benzene) to 81 (phenol), two groups can reduce it to 34 (1,3-dihydroxybenzene), and three 

groups can reduce it to 1o (1,3,5-trihydroxybenzene)—a tenfold decrease. 

However, the chemical effect of O is complex, and it can increase ST in some cases.  

A good example is esters [110].  Methyl pentanoate (C6H12O2) has a lower YSI than n-hexane 

(C6H14), 22 vs. 30, but its isomer butyl acetate has a higher YSI than n-hexane, 36 vs. 30.  A 

likely reason is that butyl acetate has four Cs next to the ether O, so it can undergo a six-

centered H transfer [102]: 

 

 
 

This reaction promotes soot formation since the first product (acetic acid) uses the O atoms 

inefficiently, and the second product is a large unsaturated species (1-butene).  Methyl 

pentanoate cannot undergo this reaction since it only has one C next to the ether O. 

To provide a global view of the effects of O, Figs. 7 and 8 above use different data 

series for pure HCs and HCs containing O or, in a few cases, N.  On average, the YSIs for HCs 

with heteroatoms are smaller than those for pure HCs, but the two categories overlap 

significantly.  For example, for DBE = 0, the YSIs of the pure HCs range from 25 to 133, while 

the YSIs of the heteroatom HCs range from 0.5 (2,4,6,8-tetraoxononane) to 73 (4-

hexoxyheptane); for DBE = 1, the pure HCs range from 39 to 158, while the heteroatom HCs 

range from 1 (isopropyl nitrate) to 107 (isopentyl 2,2-bis(isopentyloxy)acetate); and for 

DBE = 2, the pure HCs range from 46 to 161, while the heteroatom HCs range from 1 

(acetonitrile) to 137 (methyl oleate). 

 

3.3 Effects of isomers 

 

Isomers are a rich area for tuning fuel properties and for learning about combustion 

chemistry [28, 140, 141].  They contain the same set of atoms but connected in different ways, 

which often causes very specific changes in their properties and reactions.  In this section we 

discuss various levels of isomerism and their observed effect on ST. 

Chiral isomers have a “handedness” that cannot be interconverted by rotation or 

translation.  Also called enantiomers, they are among the subtlest form of isomers that can 

be stably separated at room temperature.  HCs will display chirality if one of their carbon 

atoms is attached to four distinct ligands.  A classic example is 2-butanol, where the #2 C is 
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attached to –H, –OH, –CH3, and –C2H5; Table 4 shows the two enantiomers.  Chirality can 

strongly affect biological processes since enzymes often contain a three-dimensional “lock” 

that can only accept a specific enantiomer as the “key”.  However, it is unlikely to affect the 

high-temperature abstraction and dissociation reactions involved in soot formation.  The 

YSI method allows this hypothesis to be directly tested since it needs only a small sample 

volume.  Table 4 shows two cases of YSIs measured for purified enantiomers.  The results 

show that, as expected, chirality has a negligible impact on ST. 

Geometric isomerism occurs when the orientation of ligands is restricted by a 

structural feature that does not allow rotation such as a double C-C bond or a fused bicycle.  

For example, in any 1,2-substituted ethylene there is a cis isomer with the two substituents 

on the same side of the plane containing the π-bond, and a trans isomer with them on 

opposite sides of the plane.  Table 4 shows one case of SPs and two cases of YSIs measured 

for purified cis and trans isomers.  The results show that geometric isomerism, like chirality, 

does not affect ST.  These conclusions greatly simplify the formulation of structure-property 

relationships for ST. 

 

Table 4 

Measured STs of optical isomer pairs. 

C4H1oO Enantiomers [110] 

 
I-2-butanol 

YSI = 25.2 

 
(S)-2-butanol 

YSI = 25.3 

C10H14O Enantiomers [129] 

 

I-carvone 

YSI = 127.7 

 

(S)-carvone 

YSI = 126.4 

C6H12 Geometric Isomers [110] 

 

cis-2-hexene 

YSI = 44.7 

 

trans-2-hexene 

YSI = 45.8 

C10H18 Geometric Isomers [74] 
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SPs measured for 5 wt% added to a 65 volume% n-heptane/35 volume% toluene mixture 

 

cis-decalin 

SP = 21.3 mm 

 

trans-decalin 

SP = 21.3 mm 

C14H12 Geometric Isomers [110] 

 
cis-1,2-diphenylethylene 

YSI = 602.0 

 
trans-1,2-diphenylethylene 

YSI = 602.0 

 

Structural isomers are sets of molecules that have the same atomic formula, but the 

atoms are connected in different patterns.  The earliest SP measurements showed that these 

isomers can have large differences in ST, especially for branching in alkanes [57, 58].  More 

recent measurements have identified many additional cases.  Table 5 lists several examples. 

 

Table 5 

Structural isomers with large differences in their measured ST. 

C7H12 Isomers [110] 

 

2-methyl-1-cyclohexene 

YSI = 62 

 

3-methyl-1-cyclohexene 

YSI = 85 

 

4-methyl-1-cyclohexene 

YSI = 61 

C7H16 Isomers [76, 110] 

 

n-heptane 

NSP = 139 

YSI = 36 

 
2-methyl-hexane 

NSP = 119 

YSI = 42 

 

2,3-dimethyl-

pentane 

NSP = 107 

YSI = 49 

 

2,2,3-

trimethylbutane 

YSI = 55 

C10H14 Isomers [110] 
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1,2-diethylbenene 

YSI = 376 

 
1,3-diethylbenzene 

YSI = 321 

 

1,4-diethylbenzene 

YSI = 271 

C10H16 Isomers [129] 

 
myrcene 

YSI = 104 

 
β-ocimene 

YSI = 214 

 

α-pinene 

YSI = 207 

 

β-pinene 

YSI = 137 

C5H8O2 Isomers [132] 

 

delta-valerolactone 

YSI = 21 

 

 

gamma-valerolactone 

YSI = 35 

C6H12O2 Isomers [110] 

 
ethyl isobutyrate 

YSI = 26 

 
isobutyl acetate 

YSI = 35 

C6H6O2 Isomers [131] 

 
catechol 

YSI = 57 

 
resorcinol 

YSI = 34 

 
hydroquinone 

YSI = 38 

C6H15N Isomers [120] 

 

N-ethyl-n-butylamine 

YSI = 22 

 

diisopropylamine 

YSI = 32 

 

3,3-dimethylbutylamine 

YSI = 41 
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4 Structure-property relationships for sooting tendency 

 

QSPRs and machine learning (ML) techniques have been used extensively in 

chemistry [142], and they are increasing being used for combustion science [143].  This 

section reviews their application to predicting ST.  As noted above in Section 1.6, QSPRs 

that can accurately predict soot for a wide range of compounds is essential for fuel design 

studies. 

Historically, one of the most effective ways to tie the effects of different chemical 

moieties to chemical behavior has been utilizing group contribution methods (GCMs).  

Here, the effects of distinct functional groups and chemical structures on the properties of 

interest are parametrized independently; then, the value of the property for the compound 

of interest can be calculated by summing contributions from the compound backbone and 

the individual functional group constituents [144].  By applying ensemble statistical 

techniques, substituent effects can be scaled across different chemical families [145], 

offering a computationally cheap method to predict properties of interest rapidly.  

However, the generalizability of such linearly additive methods is often lacking, requiring 

increasingly unwieldy parametric forms to describe diverse groups of compounds across 

chemical space, if possible. 

Modern machine learning technologies present an attractive alternative: methods 

like multivariate linear regression (MLR), support vector machines (SVM), Gaussian 

process regression (GPR), and decision tree methods can achieve high accuracies when 

predicting chemical properties.  Further, recent advances in neural networks have 

leveraged the abilities of these models to describe highly nonlinear phenomena, achieving 

accuracies rivaling experimental uncertainty when modeling chemical systems.  However, 

this comes at the tradeoff of dataset size; many of these models require at least hundreds 

of high-fidelity training data points to produce accurate and generalizable results. 

The first step in building a machine learning model to predict chemical properties 

is to assemble a dataset and determine how to describe the chemical information best 

numerically to feed it as inputs to the model.  Due to the complex nature of the soot 

formation process, computational techniques to quantitatively simulate soot formation 

with detailed kinetic mechanisms are either too demanding, inaccurate, or unfeasible.  

Consequently, experimental datasets remain the gold standard for sooting tendency 

predictions.  However, the unique difficulties of standardizing experimental procedures 

across different experimental setups used in measuring sooting behavior often limit the 

size of available experimental datasets.  Figure 9 shows that the experimental datasets used 
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for ST predictions have increased in size over the last 36 years, but remain the order of the 

hundreds  

 

 
 

Figure 9.  Reported dataset sizes and input features of works between 1987 and 2023 aiming 

to predict the sooting tendency of pure compounds and/or mixtures.  For representation 

purposes, models shown as Group Contribution correspond to non-Neural Network models 

with most descriptors corresponding to functional group/atom/bond counts. 

 

Once a suitable database of prediction target measurements has been established, 

the next step is to determine a suitable molecular representation.  A commonly used 

technique relies on generating molecular descriptors, a series of calculated properties that 

describe molecular structure.  These descriptors are widely classified into 0D, 1D, 2D, 3D, 

and 4D descriptors based on the geometric properties they exploit; common examples of 

such descriptors can be found in Table 6.  The higher the descriptor dimension, the more 

computationally costly it is to calculate. 
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Table 6 

Descriptor classification based on dimensionality. 

Descriptor 

Type 

Description Example 

0D Aggregate properties; no structural 

information 

Relative molecular mass; H 

bond count 

1D Based on the presence/absence/count 

of substructures, such as functional 

groups 

Molecular fingerprints 

(Extended connectivity 

fingerprint, Morgan fingerprint, 

etc.) 

2D Molecular connectivity based adjacency matrix, Coulomb 

matrix, distance matrix 

3D Based on 3D molecular geometry 3D MoRSE descriptors, sterimol 

4D based on dividing 3D space around 

molecules into discrete grids 

Fukui function, CoMFA, GRID 

 

Another means of representing molecules utilizes the inherent atomic connectivity 

described by bond information as a scaffold on which information is propagated; such 

models use the molecular graph itself as inputs, with atoms represented as graph nodes 

and bonds represented as graph edges.  This method allows the unique neighborhood 

environments of the constituent atoms to be well resolved and is well suited to be used as 

the input for a type of neural network known as a Graph Neural Network.  Such networks 

have been used with great success in chemical property prediction applications [159, 160].  

With a representation, it is then possible to construct a predictive model.  With recent 

rapid advances in computing hardware technologies, various machine learning models 

have become easily accessible to computational researchers. 

Historically, linear regression models have been used to build QSPR models to 

estimate chemical properties.  These models are easily interpretable, as the significance of 

each input parameter in determining the model output is reflected in the scalar weight of 

the term in the regression formula: the larger the weight, the more impactful the input 

parameter.  However, since the model consists of only linear combinations of input terms, 

linear regression models tend to perform poorly when used to describe nonlinear 

phenomena.  Careful feature engineering is necessary to overcome this issue. 
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Thus, machine learning models that can inherently describe nonlinear phenomena 

have become popular in recent years. One popular class of nonlinear models utilizes 

decision trees to make predictions, in which a flowchart-like process is used to make 

decisions on learned threshold values of input descriptors. Some such models, like random 

forests [161] or XGBoost [162], use ensembles of such “trees” to reduce overfitting. Such 

decision tree models perform well with smaller dataset sizes (100 data points).  A recent 

study used decision tree models to design a general framework for biofuel compound 

screening, predicting the probability that a given input compound has a property 

above/below a threshold value [163].  The research octane number (RON), TSI, and 

melting point (MP) are selected as target properties; the model achieves test set predictive 

accuracies of 88%, 87%, and 94%, respectively, using a selection of 1D and 2D descriptors 

generated by the PaDEL-Descriptor software [164].  Since the parameter threshold values 

for generating predictions can be obtained from the trained model, an importance score 

can be assigned to each input descriptor, ensuring model interpretability. 

Comesana et al. [153] deliberately uses this importance score to drive experimental 

design, studying the influence of chemical input descriptors on predictions of MP, boiling 

point (BP), flash point (FP), YSI, and net heat of combustion. The Tree-based Pipeline 

Optimization Tool (TPOT) [165] generates the decision tree architecture to avoid human 

bias in model selection.  Underneath the TPOT software, a genetic algorithm-based 

selection is carried out to choose the optimal tree-based model for a given task. The 

authors found that the most important descriptors selected by the ML algorithms recover 

chemical intuition: for example, the most important descriptor to predict the YSI of a 

compound was the number of aromatic bonds.  The atom bond connectivity (ABC) index, 

the second most important descriptor, is a measure of branching that correlates with 

stability for linear compounds and strain energy for cyclic compounds and is known to 

indicate thermodynamic stability [166]. 

Deep learning models using neural networks have also become popular for their 

ability to model complex nonlinear phenomena. In the chemical context, calculated 

descriptors for a given molecular structure are fed as inputs into the neural network and 

are propagated forward through the network, resulting in a target property prediction that 

is compared to a known value for the given structure. The error between the prediction and 

the known value is minimized by adjusting the network weights using a gradient descent 

procedure. The process is repeated for all structures in the training dataset, resulting in a 

trained neural network to make property predictions for an unseen molecular structure 

input. These models typically require large scale datasets of thousands or even millions of 
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data points to make successful predictions due to the large number of parameters that 

must be fit during the training process. 

Recent work has used artificial neural networks (ANNs) to accurately predict ST 

from molecular structure descriptors.  Several chemical moieties were selected, and their 

count in each molecule was used as a descriptor: Ahmed Qasem et al. [156] use the 

numbers of paraffinic CH3, CH2, CH, carbons, the number of olefinic CH–CH2, naphthenic 

CH–CH2, and aromatic C–CH bonds, and the number of alcohol and ether groups as 

inputs. The compound molecular weight and branching index are also used, resulting in 10 

distinct model inputs. The authors train an ANN model on a curated dataset of 366 

experimental smoke point measurements, achieving a model mean absolute error (MAE) 

of 4.5 units with an R2 of 0.98. Alboqami et al. [157] use the same input descriptors to 

predict the YSI of 294 hydrocarbons and oxygenates curated from the work of Das et al. 

[110] with both an ANN and an adaptive network based fuzzy inference system (ANFIS) 

model. The ANFIS model incorporates fuzzy logic operations into the input structure of an 

ANN model, allowing a degree of ambiguity to be incorporated into the model inputs. It 

was found that the ANN model achieves a test set root mean square error (RMSE) of 15.83, 

with an R2 of 0.99, while the ANFIS model achieves a test set RMSE of 58.78, with an R2 of 

0.92. Notably, the ANFIS model achieves a training set RMSE of 3.98, indicating that the 

ANFIS model cannot generalize training results to the unseen test set data. 

Chen et al. [158] expand the input descriptor space using an ANN model trained on 

428 compounds in the dataset published by Das et al. [110] to predict the YSI of species 

relevant to gasoline spark ignition engines. In addition to the descriptors used by Ahmed 

Qasem et al., [156] inputs representing frequencies of halogens, ketones, cyanides, esters, 

carboxyls, and aldehydes were added, resulting in a total of 21 input descriptors. A model 

MAE of 19.20 with an R2 of 0.98 was obtained. By studying the sensitivity of the model 

predictions to changes in the descriptors, it was found that the length of the carbon chain 

connecting benzene rings significantly impacts the YSI. In keeping with chemical 

intuition, the YSI was found to show a positive sensitivity on carbon-centered groups, 

while groups with oxygen atoms showed a negative impact on YSI. 

In contrast, Kessler et al. [167] train an ANN model to predict the CN, YSI, and lower 

heating value (LHV) of 24 test terpene molecules using QSPR descriptors. A starting 

dataset comprising 460, 463, and 388 data points for each property was compiled from 

published experimental data, and 5305 QSPR descriptors were calculated for each 

molecular structure using the alvaDesc software package. [168].  Separate principal 

component analysis (PCA) transformations were utilized as a dimensionality reduction 
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technique to reduce the number of descriptors used as model inputs, resulting in 368, 370, 

and 310 input descriptors for each property model. Model accuracies of 3.25 CN units, 1.68 

YSI units, and 0.26 MJ/kg were achieved, and the CN, YSI, and LHV of the 24 test terpenes 

predicted; two of the test terpenes, geranial and citronellal, showed promising predicted 

CN. However, the YSIs of all predicted terpenes were predicted to be higher than 

traditional terpenes. The correlation between the CN, YSI, and LHV was also studied; it 

was found that YSI and LHV may be correlated. Further work investigating this correlation 

is necessary to establish the degree of interdependence between these two quantities. 

St. John et al. [147] use a similar descriptor selection technique to build a YSI 

predictor model from 297 experimentally measured values. 5270 molecular descriptors 

were initially generated using the Dragon7 software package [169].  A variance threshold 

for each descriptor was used to throw out descriptors that showed little change across 

dataset constituent molecules, leading to 2414 descriptors being removed. The remaining 

2856 descriptors were then subject to a recursive feature selection procedure. Finally, the 

remaining 390 descriptors were inputted into an ANN model. A detailed functional group-

based cross-validation strategy was performed to analyze model performance and 

generalizability, and model outliers were investigated via manual quantum mechanical 

calculations. The model achieved an MAE of 5.47 YSI units and was then applied to predict 

the YSI for compounds with a known RON; ethanol, 2-propanone, and ethyl acetate were 

identified as the best-performing oxygenate molecules by RON and YSI.   

Notably, the ANN methods presented so far have been descriptor based. While 

these models can achieve respectable predictive accuracies, the descriptor inputs neglect to 

consider molecular connectivities. On the other hand, recently developed graph neural 

network (GNN) models can explicitly use this information in addition to atom-wise, bond-

wise, and global molecular descriptors. 

Kessler et al. [150] compare the performance of three different computational 

prediction models for the YSI: the predictive accuracies of multivariate linear models, 

ANNs, and GNNs were compared using a dataset of 567 fuel compounds. To train the ANN 

models, 5305 descriptors were obtained from the alvaDesc software, [168] and the feature 

importance score of a random forest model trained on the dataset YSI was used to perform 

feature selection, leading to 1800 final input descriptors. GNN models were trained using 

the atomic symbol, degree of bonding, and if the atom exists within a ring as atom 

parameterizations, and discrete vectors for bond order (single, double, triple, or aromatic) 

as bond parameterizations. Following Jørgensen et al. [170], a message-passing scheme was 

implemented to allow information about distinct atomic environments to be exchanged 
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across the molecular structure. A multivariate linear model using the Levenberg-

Marquardt method of least-squares regression on the piPC05, piPC04, and piPC03 

descriptors was created as a baseline for comparison. The ANN and GNN methods achieve 

similar MAEs of 4.34 and 4.82 YSI units on the test set; notably, both methods drastically 

outperform the multivariate linear model, which reaches a test set accuracy of 29.12 YSI 

units. 

Kim et al. [171] utilize a GNN model to predict the CN of biofuel compounds. A 

database comprising experimental CNs measured using several different techniques was 

collected. To account for the differing experimental accuracies of the various testing 

methods, a data weighting strategy was implemented that assigns a lower sample weight to 

data points collected using methods with higher errors, thus reducing their contributions 

during model training. In addition to the atom and bond state descriptors used by Kessler 

et al., [150] hydrogen bond donor/acceptor pairs were used as global features. The resultant 

model achieves a predictive accuracy (MAE) of 2.44 CN units. Notably, a parallel model 

omitting the global features was trained on the same dataset; it achieves an accuracy of 

4.29 CN units, highlighting the importance of the chemically informed hydrogen bond 

features in ensuring predictive accuracy. 

The models discussed so far have excelled at predicting the sooting tendencies of 

individual compounds; to state the obvious, however, most commercially utilized fuels are 

not single compounds and are tailored mixtures in which each component molecule 

influences the sooting behavior. Thus, novel methodologies must be used to model such 

blending behavior properly – one such methodology is a mixing operator. 

Kuzhagaliyeva et al. [40] introduce a hybrid ANN/recurrent neural network (RNN) 

model to predict the blending behavior of a mixture of RON, MON, and YSI using a similar 

mixing operator approach. A framework is introduced to generate novel fuel compounds 

using the predicted values in an inverse-design problem.  A database of 813, 690, and 491 

data points was curated for each property; due to the scarcity of blend YSI measurements, a 

conversion formula was used to scale reported YSIs to an apparatus-independent value. A 

fingerprint representation of the target molecule is combined with calculated descriptors 

obtained from the MORDRED software package [172] to yield a total molecular 

representation; this per-molecule representation is then combined based on input 

concentrations using a mixing operator approach, and the result is scaled to account for 

differing YSI scales in the database. By exploiting the continuity of the neural network 

model’s latent space, greedy and full-scope exploration strategies are employed to generate 
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new fuel blends with target YSIs; the authors present several fuel blends predicted to serve 

as viable fuel alternatives. 

 

5 Numerical simulations of sooting tendencies 

 

Numerical predictions of sooting tendencies have been carried out in numerous 

previous studies mainly for three purposes: (1) validation of chemical models and soot 

models, (2) design and validation of surrogate formulations to represent real fuels, and (3) 

screening of fuel additives to meet certain emission criteria.  In this section, we review 

previous numerical predictions of sooting tendencies based on smoke point and soot yield.  

We also summarize recent efforts in predicting fuel sooting behaviors using reactive MD 

simulations.  

 

5.1 Predictions of threshold based sooting tendencies 

 

Previous numerical studies on smoke point based sooting tendencies of various fuels 

have focused mainly on two flame configurations, coflow diffusion flames and counterflow 

diffusion flames [30].  In coflow diffusion flames, the residence time is typically long [173], 

and once soot is formed, it will be convected and subsequently oxidized in downstream 

oxidation zones.  Therefore, the smoke point in coflow diffusion flames is essentially where 

soot formation and oxidation are balanced.  In contrast, in counterflow diffusion flames, 

smoke point is largely determined by soot formation without much interference from soot 

oxidation. 

In counterflow nonpremixed flames, sooting tendencies of different fuels have 

typically been characterized in forms of sooting limit curves, where the flame transitions 

from non-sooting to sooting [174], as reviewed in [30].  In order to capture such sooting 

threshold, simulations typically require solving the full set of one-dimensional (1D) 

conservation equations with detailed chemical kinetics and soot formation models.  

Detailed simulations have been used to predict sooting limits for different fuels [174, 175, 

176], oxygen levels in the oxidizer [135], exhaust gas recirculation levels [177], and strain rates 

[178].  These simulations can qualitatively predict how sooting limits change with varied 

operating conditions, but accurate quantitative sooting limit prediction is still a challenge 

[174, 175, 176, 177, 178, 179].  In addition, these predictions have not been used to directly 

calculate smoke point based sooting tendencies but have been used to infer mixing rules for 

TSIs of fuel mixtures [174].  
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Predicting smoke point or TSI data in coflow diffusion flames is computationally 

more expensive than in counterflow flames since a series of two-dimensional (2D) detailed 

flame simulations with varied flow rates are required.  These simulations need to incorporate 

detailed species transport and finite-rate chemistry, with soot transport, growth, and 

oxidation models.  For these reasons, to the authors’ best knowledge, there is no TSI 

calculation reported in the literature that is directly from detailed numerical simulations.  

Instead, previous numerical studies on laminar coflow smoking flames have mainly focused 

on the predictions of smoke point height, for instance in flames fueled with ethylene, 

acetylene, propane, butadiene, butene, and diesel and bio-diesel surrogates [180, 181, 182, 

183, 184, 185].  These studies have focused on investigating the effects of pressure [180], 

dilution [181], and fuel [180, 181, 182, 183, 184, 185] on the smoke point height and have 

primarily used these flames as modeling targets to validate empirical or phenomenological 

soot models specifically designed for smoke point prediction [180, 181, 182, 183, 184, 185]. 

 

5.2 Predictions of yield based sooting tendencies 

 

The most direct way to predict YSI is to use two-dimensional detailed numerical 

simulations of the YSI flame doped with test fuels.  These simulations have been 

demonstrated to be a reliable tool in reproducing axisymmetric laminar co-flow diffusion 

flames with various burner configurations and fuel compositions [134, 186, 187, 188, 189, 190, 

191].  However, these simulations are computationally expensive, since all species transport 

equations need to be solved with detailed finite-rate chemistry, simultaneously with the 

Navier–Stokes equations in 2D.  In addition, a different simulation needs to be carried out 

for the flame doped with each test hydrocarbon to predict the YSI of the test fuel [190, 191].  

The factors make YSI predictions based on 2D detailed simulations expensive and inefficient 

for fast screening of fuel sooting properties. 

Xuan and Blanquart [135] proposed a computationally-efficient, 1D flamelet-based 

YSI simulation framework by acknowledging that the YSI concept is a perturbation-based 

approach with nearly identical temperature and velocity fields in the YSI flames compared 

to those in the undoped methane/air flame.  Therefore, only one detailed 2D simulation 

would be required for a single well-defined undoped flame, and the computations for the 

doped flames might be simplified to allow large kinetic mechanisms to be used without 

mechanism reduction. In contrast, modeling smoke point height or TSI data would require 

simulating a series of pure-fueled flames with different fuel flowrates and different 

computational grids to determine the threshold where soot is emitted from the flame. 
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In the flamelet-based framework [135], modified 1D flamelet equations were specially 

derived on the centerline of the YSI flames to account for the effects of multi-dimensional 

flow and differential diffusion on soot precursors.  It took as input the temperature, 

convective velocity, and scalar dissipation rate profiles extracted from the direct simulation 

of the undoped flame.  Soot transport model was excluded in these flamelet-based 

calculations for both simplicity and to be unbiased from the choice of soot model used. 

Sooting tendencies were estimated exclusively from the increment of polycyclic aromatic 

hydrocarbon (PAH) dimer production rate along the centerline where the flame was doped.  

Xuan and Blanquart [135] performed the first set of chemical kinetic-based YSI 

calculations using this framework for a series of non-aromatic and aromatic test fuels and 

achieved good agreement with measurements.  Thereafter, this framework has been used to 

predict the YSI of various gasoline surrogates [114], validate chemical kinetic models for 

prediction soot formation from bio-derived fuel additives for spark-ignition engines [37], 

and investigate the effects of elevated pressures on YSI for n-alkanes and aromatic fuels [136].  

This framework was originally implemented in the FlameMaster software [192], and later 

combined with a more computationally efficient solver in Zero-RK [193], an open-source 

software package that simulates chemically reacting systems, hosted by the Lawrence 

Livermore National Laboratory [194, 195].  Overall, the flamelet-based YSI solver is efficient, 

which enables fast sooting tendency predictions using large, more accurate chemical kinetic 

mechanisms [193].  It also enables sensitivity analysis and uncertainty quantification which 

can help identify reactions particularly important for sooting tendency predictions [37, 193].  

The main limitation of this approach is that the YSI prediction can only be performed for 

fuels with known chemical kinetics, which renders this approach inapplicable to many bio-

derived fuels with unknown decomposition chemistry. 

 

5.3 Application of MD simulations in yield based sooting tendency predictions 

 

Since the combustion chemistry of bio-synthesized sustainable fuels for ground 

transportation and aviation is typically unknown, ReaxFF-based reactive Molecular 

Dynamics (MD) simulations have been recently employed for YSI predictions, and more 

generally to analyze fuel effects on soot formation.  ReaxFF-based MD is commonly used to 

discover reaction networks in complex and large chemical systems over time scales longer 

than quantum mechanics (QM) [196, 197], since they use empirical force fields trained 

against QM-based data and therefore require much lower computational cost.  Recent 

applications of the ReaxFF-based MD method in the broader combustion- and energy-
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related fields are reviewed in [198].  ReaxFF-based MD simulations have been applied 

successfully to describe pyrolysis and oxidation processes for hydrocarbons, oxygenated, and 

nitrogenated hydrocarbons [199, 200, 201, 202, 203, 204], and soot formation [204, 205, 206].  

A summary of recent studies using ReaxFF MD for YSI predictions and for quantifying fuel 

effects on soot formation is provided in Table 7. These studies investigated a wide spectrum 

of fuels ranging from hydrogen, methane, to gasoline/diesel fuel surrogates and bio-derived 

oxygenated fuels.  Due to the limitations of simulation duration, they typically relied on the 

yield of premature soot nanostructures, PAH, or highly unsaturated non-aromatic soot 

precursors to compute sooting tendencies or to compare sooting behaviors of fuels and fuel 

mixtures.  Although the ReaxFF MD simulations are typically carried out at very high density 

and pressure to accelerate the reaction dynamics, the simulation results were generally 

shown to qualitatively agree with available measurements, and the reaction pathways and 

chemical kinetic information extracted from these ReaxFF simulations can be used as 

starting point for further chemical kinetic investigations using higher fidelity methods, such 

as QM calculations based on density function theory.  

 

Table 7 

Summary of recent ReaxFF MD applications for YSI predictions and for fuels effect 

quantification on soot formation. 

Publication Fuels/Fuel 

Mixtures 

Soot Indicator Major Outcome 

Zhang et al. [207] Ethylene/ammonia 

mixtures 

Large PAH Quantified the effects of 

fuel ammonia content on 

soot suppression 

Kwon et al. [208] Bio-derived 

polycyclic alkanes 

Non-aromatic 

soot precursors 

Examined the effects of 

ring fusion on fuel soot 

propensity 

Kwon et al. [209] Bio-derived  

dioxolanes 

Non-aromatic 

soot precursors 

Examined side chain 

effects on soot propensity 

Zhang et al. [210] Butanol and 

butane isomers 

PAH Examined fuel molecular 

structure effects on soot 

propensity 
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Wang et al. [211] Methane and 

ethylene with 

hydrogen 

PAH Examined the effects of 

hydrogen addition on 

PAH and soot formation 

Kwon et al. [212] Hexylamine 

isomers 

Non-aromatic 

soot precursors 

Examined fuel molecular 

structure effects on soot 

propensity 

Chen et al. [213] Diesel surrogates 

and oxygenated 

additives 

PAH and nascent 

soot particles 

Analyzed pyrolysis 

pathways and soot 

propensity of diesel fuels 

Kwon et al. [139] Toluene and 

phenol 

PAH Performed the first set of 

YSI calculations using 

ReaxFF 

 

6 Conclusions and future directions 

 

The tendency to produce soot during combustion of a fuel depends strongly on its 

molecular structure.  Therefore, as we transition towards more sustainable fuels we have 

the opportunity to tailor their compositions to improve combustion performance and 

reduce emissions of soot.  Sooting tendencies measured in laboratory-scale flames provide 

a scientific database or selecting low soot fuels.  However, large databases require a 

systematic approach to arrive at quantitative structure property relationships (QSPR) that 

allow data to be extrapolated to a wide variety of fuel structures not measured.  This is 

essential for tuning the synthesis strategies for these new fuels considering the large range 

of possibilities.  Recently, a wide range of machine learning algorithms are being applied to 

relate fuel structures to desired combustion properties.  These can apply of host of 

different statistical methods but the accuracy and predictive ability of these techniques 

depends strongly on the coverage of compounds and structural features in the database 

used both to develop and test the model. These factors suggest that future research should 

be directed at enlarging the databases of sooting tendencies.  Compounds containing 

oxygen and nitrogen are underrepresented in the databased.  Most oxygenated compounds 

reduce soot but not all.  Nitrogen containing compounds can also reduce soot without 

harming other performance features but are not widely covered.  In addition to 

statistically-based methods for developing QSPRs, STs can be used to test chemical 

mechanisms.  Molecular dynamics simulations can provide useful insights into ST at a 
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lower computational cost than complex chemical models without requiring the same 

chemical reaction input. 

 

Finally, we offer the following suggestions for future directions: 

• Measure sooting tendencies for additional hydrocarbons. 

• Use simulations to examine possible confounding effects on ST measurement due to 

other fuel properties such as mass diffusivity. 

• Develop predictive emissions indices analogous to PMI for other systems such as 

diesel engines and gas turbines. 

• Improve QSPRs, especially for categories like aromatic hydrocarbons and larger 

oxygenated hydrocarbons. 

• Use kinetic and MD simulations to explain measured YSIs; for example, the isomer 

effects in Table 5. 

• Use simulations to explain why QSPR relationships work for ST. 
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