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Superconductivity at low temperature—observed in lithium and bismuth, as well as in various low-density
superconductors—calls for the development of reliable theoretical and experimental tools for predicting ultralow
critical temperatures 7, of Cooper instability in a system demonstrating simply normal Fermi liquid behavior
in a broad range of temperatures below the Fermi energy 7r. Equally important are controlled predictions of
stability in a given Cooper channel. We identify such a protocol within the paradigm of precursory Cooper
flow—a universal ansatz describing logarithmically slow temperature evolution of the linear response of the
normal state to the pair-creating perturbation. Applying this framework to the two-dimensional uniform electron
gas, we reveal a series of exotic superconducting states, pushing controlled theoretical predictions of 7, to the

unprecedentedly low scale of 107'% Tg.
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I. INTRODUCTION

The conceptual elegance of the Kohn-Luttinger theorem
establishing that the Fermi liquid state is unstable in high-
angular momentum Cooper channels at low temperatures
comes at the price of lacking accurate predictions as to which
channels get unstable first and at what temperatures. Exper-
imentally, each new discovery of the ultralow-temperature
superconductor, be it lithium [1] or bismuth [2], exhibiting
superconductivity at about 0.1 mK, emerges as a surprise. The
potential for observing analogous phenomena in traditionally
nonsuperconducting metals such as gold, copper, or sodium,
as well as in low-density superconductors [3-5], adds to the
scientific intrigue, with no a priori knowledge of the critical
temperature 7, that one should expect for a given system.

There is, however, a fundamental reason to expect that
the desired answers can be controllably extracted—definitely
theoretically and, hopefully, experimentally as well—from the
system’s properties in the normal Fermi liquid regime at tem-
peratures much lower than the Fermi energy T, but still many
orders of magnitude higher than 7. Indeed, the (ultra-)low
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value of T, is due to the emergent Bardeen-Cooper-Schrieffer
(BCS) regime of instability, when the system that is strongly
correlated at the ultraviolet level gets renormalized into the
Fermi liquid with a weak effective BCS interaction character-
ized by a dimensionless negative coupling constant |g| < 1.
The result is an exponentially small critical temperature,
T, ~ Tre~'/18l. The BCS nature of the transitions implies a
rather characteristic temperature evolution of the pair sus-
ceptibility, xo(T'), defined as the linear response to a static
pair-creating perturbation. On the approach to the critical
point, xo(7T) should behave as [6,7]

xo(T) o< 1/In(T/Te) (T — T. +0). ey
Experimental studies across a range of superconduc-
tors have validated this prediction using superconductor-
superconductor tunnel junctions [8—13].

While providing a proof-of-principle result for the idea of
extracting T, from properties of the normal state at 7 > T,
relation (1) turns out to be rather impractical, and sometimes
even misleading, when it comes to a controlled quantitative
analysis of (in)stability in a given pairing channel (for an
illustration, see the blue curve in Fig. 1). The reason is that
ansatz (1) ignores a logarithmic prefactor (its physical origin
is discussed below) that is slowly evolving with temperature,
making a naive extrapolation of an apparent linear dependence
of 1/x0(T) on InT from high temperature to the temperature
when it is supposed to hit zero very inaccurate, not to mention
that it may predict finite 7, for a Cooper-stable channel (see a
similar discussion in Ref. [14]).
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FIG. 1. Finite-temperature flows of the largest s-wave eigen-
value, Am., Of the standard gap function equation (blue squares
connected by line) and linear response functions x, (green triangles)
and R (red circles) computed for the 2D UEG at r; = 1.156. The
1/x0 and 1/R, data are fitted using Eqs. (2) and (3), demonstrating
excellent agreement. The role of the logarithmic numerator in Eq. (2)
is clearly visible as the difference between the solid green line [fitted
with ansatz (2)] and the dashed green line [fitted with ansatz (1)].
The inset shows how linear in In 7 scaling of 1/Ry is extrapolated to
extract 7. in the f channel at several densities. All 1/xo and 1/Ry
flows undergo qualitative changes near T /Ty ~ 107!, where Ty is
the Fermi temperature; this sets an energy scale A below which the
attractive Cooper-channel interaction emerges.

Recently, a numeric method—the so-called implicit renor-
malization (IR)—allowing one to accurately predict 7, from
the field-theoretical properties of the system at 7 > T. was
proposed in Ref. [14] and further developed in Refs. [15,16],
with an application to the model of uniform electron gas.
Despite unquestionable success, the IR approach encounters
certain technical limitations and lacks a direct connection with
what can be measured experimentally. Technical limitations
of IR are most pronounced in the vicinity of the “quantum
transition point” (QTP) at which a given channel undergoes a
transition from a Cooper-stable to Cooper-unstable regime. It
is thus crucial to find an approach that is complementary to
the IR and one compatible with experimental protocols.

In this paper, we show that the desired solution is
simply provided by an expression that is more accu-
rate than (2), but still physically transparent, for the pair
susceptibility. Specifically, we find that the following three-
parametric ansatz (universal to all ultralow-temperature BCS-
type superconductors)—the precursory Cooper flow (PCF)
ansatz—perfectly captures the temperature evolution of xq
within a broad temperature range:

cIn(A/T)
1+ gln(A/T)

The nonuniversal parameters c, g, and A are tied to the micro-
scopic properties of the system, with A being the lowest rele-
vant energy/frequency scale (we set i = kg = 1), such as T,
Debye, or plasma frequency. Negative g implies the BCS tran-
sition at 7. = Ae~!/18l while g > 0 implies its absence, with
g = 0 corresponding to QTP. The logarithmic factor in the

X0 = + O(T) (T. <T KA. 2

numerator—distinguishing (2) from (1)—has the same math-
ematical origin and, thus, the same expression as the “Tol-
machev’s logarithm” in the denominator. However, the two
logarithms describe distinctively different physics. The one in
the numerator is the pair susceptibility of an ideal Fermi liquid
(a system with no coupling in the Cooper channel), while
the one in the denominator is responsible for Tolmachev’s
renormalization of the effective interaction [17,18]. A sharp
difference between the stable and unstable regimes develops
only at |g|In(A/T) > 1; otherwise, susceptibility increases in
both regimes regardless of interactions. In the former case,
Xo saturates to c/g at temperatures T < T, ~ Ae~ /18l These
pair correlations (diverging as g — 0) play a crucial role in
the scenario of strange metal behavior discussed in Ref. [19].

For a model with weak momentum-independent interac-
tion, the expression (2) is readily obtained by Bethe-Salpeter
summation of the Cooper-channel diagrammatic ladder. Far
less trivial is our result shedding light on the previous IR
observations [14-16] that Eq. (2) also works in the case of a
dynamically screened Coulomb interaction with complex mo-
mentum and frequency dependence of the effective coupling
in the Cooper channel.

In the context of ab initio calculations employing the PCF
methodology, we introduce an optimized field-theoretical
counterpart of the pair susceptibility, Ry. As opposed to
X0, the flow of Ry is free of the “confusing” ideal-Fermi-
liquid logarithmic numerator and is characterized by only two
parameters,

Ro(T) = + O(T). 3)

1+ ¢ In(A"/T)
[Consistency with (2) implies In(A’/A) = 1/¢ — 1/g.] This
yields an exciting opportunity for precise theoretical and
numerical determination of 7. and QTP from normal state
calculations using a minimal number of fitting parameters (see
Figs. 1 and 2).

With the precise method at hand, we performed a model
study of the two-dimensional (2D) uniform electron gas
(UEG) in the regime of weak-to-moderate interactions, which
is interesting for its intrinsic (no-phonons) superconductiv-
ity driven by the dynamically screened Coulomb interaction
[20-24], as opposed to the original Kohn-Luttinger scenario
[25]. Our results (see Fig. 3) reveal a series of QTPs associated
with ultralow-temperature superconducting instabilities that
we can resolve down to 10719 75,

II. FIELD-THEORETICAL ANALYSIS

Without loss of generality, we study the universal s-wave
linear response scaling laws in a d-dimensional spheri-
cally symmetric homogeneous system (other channels and
realistic superconductors are discussed in Appendix A).
The linear response functions (2) and (3) originate from
the two-electron Green’s function with zero incoming mo-
mentum and frequency, G,(:;) = (Tlﬁ,{TT lﬁ:k l1/;_ i lﬁpT), where
Y /" are the electron annihilation/creation operators. We
define the shifted momentum-frequency vector as k =
k — ‘]]:—‘kp, wy), where w, = 2n+ 1)nT is the fermionic
Matsubara frequency. Pair susceptibility xo is then the
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FIG. 2. Temperature evolution of the standard pair susceptibility x, and modified pair susceptibility R, of the 2D uniform electron gas in
the s channel for various values of r,. Red circles correspond to QTP r; = 0.6339, squares stand for stable regimes (g > 0), and triangles are
used for the unstable regimes (g < 0). The lines are the fits with the ansatz (2) for xo and ansatz (3) for Ry. (a) Function (7). For stable
regimes, xo(T) saturates to a constant at T < T, >~ Ae~!/1¢l; for unstable regimes, xo(T) diverges at T = T,; at the QTP, xo(T) diverges as
T — 0. (b) Inverse yo(T') rescaled with the ideal-gas logarithmic factor. (c) Inverse R.

linear response to the static uniform pair-field perturbation (of
unit amplitude), xo = [, /, G,(:;), where [, =T, [ o5
The momentum-dependent linear response is defined as R, =
fp G,f;) /(GyG_y), where G denotes the dressed one-electron
Green’s function.

We start by analyzing the analytic structure of Rj as it
follows from the self-consistent Bethe-Salpeter equation,

R.=1-— / FipGpG_ Ry, (Y]
p
where T is the particle-particle irreducible four-point vertex
with zero incoming momentum and frequency. It encodes
all effective pairing interactions, such as screened Coulomb
potential. The second term on the right-hand side of (4) is
a sum of ladder diagrams generated by repeated products of
I' and GG, each carrying its own set of singularities. The
finite-temperature cutoff of GG at the Fermi surface is re-
sponsible for the logarithmic flow that ultimately leads to
BCS instability. Concurrently, the vertex function I' has sin-
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FIG. 3. Superconducting phase diagram of the 2D UEG. For
each channel, the line starting at QTP shows the (would-be) critical
temperature. Critical values of r, for £ as large at 10 are presented in
the inset.

gular momentum dependence due to incomplete screening of
the long-range Coulomb interaction at any finite frequency.
The possible interplay between the two singularities raises the
question of whether the flow of the pair susceptibility still
follows the same law as in the case of short-range interaction.

The key observation is that Coulomb singularity does not
produce large terms when I'GG is integrated over p, and the
dominant contribution still comes from the BCS logarithm.
That is, [, TxyGpG—p = & InT + fi + O(T), where g and
fr are temperature-independent and regular-in-k functions,
and the finite-T corrections vanish at least linearly with 7.
Further technical details are provided elsewhere [26]. This
observation allows one to parametrize ['GG as

TpGpG_p = (8 InT + fil8, + rp. )
d
where 8, = %B(WM — 2T)8(Ip| — k) (as expected,

fp 8, = 1), and the regular correction satisfies fp by = O(T).
By incorporating this form into Eq. (4), we obtain the temper-
ature dependence of the linear response,

R — 1+ (fi — fo)+ (g —go)InT
¢ I —fo—goInT

+0(T), (0

where f; and g; are regular functions representing f; and g
renormalized by pair fluctuations. Remarkably, the logarith-
mic correction in the numerator vanishes in the low-energy
limit kK — 0, resulting in a simple relation for Ry = Ry_.¢
given by Eq. (3) with ¢ =gy and A’ = e /0/%0. The pair
susceptibility xo = j}{RkaG,k, on the other hand, involves
Ry with finite k and, thus, retains the global logarithmic factor.

III. SUPERCONDUCTIVITY IN THE 2D UNIFORM
ELECTRON GAS

In the absence of electron-phonon interaction, supercon-
ductivity in this model is of the emergent BCS type, and the
values of T; are supposed to be extremely low. The theory
presented above and advanced numerical techniques not only
allow us to study many pairing channels, but also accurately
locate QTP when 7. goes to zero.
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Previous studies [15,22] revealed the existence of high-
orbital-momentum ¢ superconducting states in the 3D UEG in
the weak-coupling limit when the random phase approxima-
tion (RPA) becomes controllably accurate. The pairing comes
from dynamic nature screening in Coulomb systems, as dis-
cussed by Rieschel and Sham [20,27], and not from the static
Kohn-Luttinger mechanism [25]. In light of the pioneering
work by Takada [21], we expect that the dynamic character
of screening will play a crucial role in 2D as well.

In the weak-coupling limit, the RPA vertex function I" has
the form

K0, ~ Vp_k
P.wn 1+ Vp_k - Mo(p — k, 0 — Cl)n)7

(N

where Vy = 2me?/q is the bare Coulomb repulsion and
IMy(p — k, ,, — w,) is the RPA polarization. At this level
of accuracy, we consider bare Green’s functions Gy, =
1/(iw, —k*/2m + Er) in Eq. (4), where m is the elec-
tron mass [Fermi temperature can be expressed as Ty =
1/(ma}r?), where r, = +/2/(kpag) with the Bohr radius ag].

To efficiently solve Eq. (4) at ultralow temperatures,
we employ the discrete Lehmann representation (DLR)
[16,28,29] to radically reduce the computational cost of rep-
resenting the linear response and Green’s functions from
O(1/Te) for uniform grids to O[In(1/T)In(1/€)], where €
is the error tolerance. The codes are available online [30].

We performed systematic calculations of Ry for various
orbital channels ¢ and values of r,. For each ¢ and r,, we de-
termine the transition temperature by extrapolating 1/Ry(T')
flows to zero using the least-squares criterion. Subsequently,
for each £, we extrapolate results for —1/ In[T.(r,)/Tr] to zero
to reveal critical values of ;. The phase diagram of competing
superconducting states in the 2D UEG is shown in Fig. 3.

As expected, by increasing density (decreasing ry), one
suppresses T, in all orbital channels. While all channels are
superconducting at r; ~ 1, they successively go through QTPs
so that only large ¢ channels stay superconducting at small
rs. Accordingly, the orbital index of the dominant (highest-
T.) channel also increases with density [we obtain it from
crossing points between the T.°)(r,) and T,/“"V(ry) curves].
The smooth dependence of —1/1In(7;/Tr) on r, leads to the
accurate determination of the QTP by linear extrapolation.
We observe that —1/In[T9/T¢] ~ (r; — r'?)/cq, where ¢,
is a dimensionless constant, i.e., in the vicinity of QTP, the
transition temperature obeys 7.9 = Tre!/* [31,32], with
Ao = (r; —1r9)/cy.

Data in the inset in Fig. 3 suggest that superconductivity
in the 2D UEG survives in the high-density limit (r; — 0) for
large enough ¢. We emphasize that this outcome cannot be
explained by the Kohn-Luttinger mechanism because, in 2D,
this mechanism simply does not exist at the RPA level [33].
Similar to the 3D case, we are dealing with the consequences
of dynamic screening in systems with long-range interactions.
To explore how the interaction range changes the picture, we
took density corresponding to r; = 0.8 (when all channels are
superconducting) and replaced the Coulomb potential with the
Yukawa one. We find that for screening length ~1/kg, all of
the channels mentioned in Fig. 3 are no longer superconduct-
ing. For more details, see the Appendix.

Finally, we recalculated the phase diagram by account-
ing for renormalization of the Green’s function within the
GoW, approximation for the proper self-energy. Qualitative
(and quantitative at small ;) agreement between the phase
diagrams presented in the Appendix and Fig. 3 demonstrates
the robustness of our conclusions.

IV. CONCLUSIONS AND OUTLOOK

We have shown that pair susceptibility (linear response to
a static spatially uniform pair-creating perturbation) of the
normal Fermi liquid features is universal for all BCS su-
perconductors’ temperature dependence, or “flow,” given by
Eq. (2), irrespective of the emergent pairing mechanism. The
ansatz (2) applies to both stable and unstable pairing channels.
In both cases, the higher-temperature part of the flow is the
same, up to small corrections, and represents a response that
is singular in the 7 — O limit of an ideal Fermi liquid. A
sharp difference between the stable and unstable cases de-
velops only at exponentially low temperatures: the unstable
channel hits finite-temperature singularity at 7;, while the sta-
ble channel develops nontrivial correlations suppressing the
zero-temperature singularity. The 7 = 0 singularity survives
only at the quantum transition points (QTPs) separating the
stable and unstable regimes.

Using two-dimensional uniform electron gas as a paradig-
matic model of intrinsic superconductivity mediated by
dynamic screening of Coulomb interaction, we demonstrated
that fitting the normal Fermi liquid data to the ansatz (2)—and
its numeric counterpart (3)—allows one to accurately predict
ultralow critical temperatures of unstable Cooper channels
and locate QTPs.

We anticipate that our method for controlled quantita-
tive predictions of ultralow-temperature Cooper instability
(or its absence) from finite-temperature flows of the linear
response to a spatially uniform pair-creating perturbation can
be extended to cases where the perturbation is applied at the
boundaries of the normal state. This would be the theoretical
basis for experimental studies of precursory Cooper flows
in the normal metallic state by using superconductor—normal
metal-superconductor tunnel junction setups [8—13] in the
high-temperature range 7. < T < Tg. For metals such as Cu,
Au, and Na, where superconductivity at ultralow temperature
remains uncertain, it would be equally informative to observe
whether flows (2) correspond to negative or positive values of
g in the s channel.

ACKNOWLEDGMENTS

We thank A. Chubukov for valuable discussions. P.H.
and Y.D. were supported by the National Natural Science
Foundation of China (Grant No. 12275263), the Innovation
Program for Quantum Science and Technology (Grant No.
2021ZD0301900), and the National Key R&D Program of
China (Grant No. 2018 YFA0306501). N.P., B.S., and T.W.
were supported by the National Science Foundation under
Grant No. DMR-2032077. X.C. and K.C. were supported by
the Simons Collaboration on the Many Electron Problem. The
Flatiron Institute is a division of the Simons Foundation. K.C.
is supported by Project No. 12047503 of National Natural
Science Foundation of China.

013099-4



PRECURSORY COOPER FLOW IN ULTRALOW- ...

PHYSICAL REVIEW RESEARCH 6, 013099 (2024)

APPENDIX A: ANGULAR MOMENTUM
DECOMPOSITION IN TWO AND HIGHER DIMENSIONS

In an isotropic system, the particle-particle four-point ver-
tex with zero incoming momentum and frequency, F';;m, only
depends on the angle between k and p (6, = 6; — 0,), their
moduli, and the Matsubara-frequencies difference w, — w,,.
This allows us to simplify the analysis by projecting I onto
different orbital channels £. In this Appendix, the frequency
variables and Matsubara summation are omitted for brevity as
they do not affect the decomposition.

Considering the Bethe-Salpeter equation for the linear re-
sponse function R,

dp
sznk_f(zT)deFp,

where 7y is the sourced term and F, = G,G_pRp, we can
project it onto decoupled orbital channels ¢ via an expansion.
After the projection to the angular momentum sector, R and I"
are solely dependent on the momentum amplitudes, allowing
a unified treatment of generic dimension.

(AD)

dp
Wrwk—me

0=

In two dimensions, the vertex function can be expressed as
a Fourier expansion,

ro = cos €6y,

_ ©
Pl = =~ +Zrk,p p—
=1

2
I = /O dek})r(\/k2 + p? — 2kpcos 0y;,) cos L0y,
(A2)

Apart from the I' expansion, given by Eq. (A2), we also
need to expand functions that depend only on one momentum
variable,
O(O) nd cosl0;  —)sinto;
0 (4) k 0 k
KT o + Z b4

(A3)
=1

wge):re O represents R, F, or 7, O(Z) 0 de cos £6; Oy, and

0, = 0 " do; sin £6; Ox. The convolution term in Eq. (A1)
can also be expanded in Fourier series,

dp F(O) i ) €0S K@kp F(O) D f: ([)COSE ) F(L”) sin 6/9’2
) Z 1 4 T

_ [ Par | o ,, r® T dey P > F([/)Cosﬁleﬁ f(e')sin[Gﬁ
@) Ler oy + Z Ky — - (cos £6; cos £ + sin L6 sin Y| F — 4 F,
=1
© oo .
pdp | o (e) (0)COS L0 —) sin L6
R S v 0 + 0T Ad
(2n)2|: kP 2m +(Z:l T L 4 ’ &4)

where F” = G,G_,R} and R} = o dfy cos LOsRy (the
product of two Green’s functions is isotropic). Therefore, the
linear response function for each channel is given by

€ pdp
R}j:l—/ = )zr,i;G G_,RY. (A5)
Here, by setting n® = 1 and projecting into channel £, we
break the U(1) symmetry and the rotation symmetry so that
the result for different channels can be obtained separately.

In three or higher dimensions, the angular momentum
decomposition can be achieved by a similar approach using
expansion in the spherical harmonics. The vertex function can
be expressed as an expansion in Legendre polynomials Py (x),

N(d £)
Pp = Z T Pe(x),
=0

1
ry, = [ TR = 2ApOR, (A

6 and N(d, ) =

2 +d-3
where x = cos 0, 2“4#( +

¢_1 ) denotes the

number of linearly independent Legendre polynomials of
degree ¢ in d dimensions. Using the addition theorem for

(

spherical harmonics [34],

N(d.t)

Z Yon (6;)Y 55, (0p),

Py(x) = (A7)

N(d £)

where Q,; = (271)% /T'(d/2) is the solid angle in d dimensions
and Y,,,(0) is the spherical harmonic function, the vertex func-
tion can be expressed further on as

$2a

- Zr%ow )Yi5(6p)-

£=0

Ck—p = (A8)

Here we set m = 0 because the decomposed equation is inde-
pendent of m for a system with rotation symmetry. The linear
response function can also be decomposed as

[e.¢]
R =) RYi(0)), (A9)

=0

where R,(f) = f dO;RYy(0;). Projecting the convo-
lution term in Eq. (Al) on the spherical harmonics,
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we obtain [ . : |
dp |
—— D k_p /K 0.04~
/ PEIT |
Qq dp [
—_—— —_— _ /\0.03_
2 ) @uy "t S
~
) 00 , = oo
X > T Y(0)Y50(05) Y R Yoo (0p) = 0.0
~ L
=0 =0 -
o [
Qa [ PP ) p 0.0
- Z 7/ 2m)d Fi pRi Yoo (6p). (A10) [ 0.3067
=0 L
] , 0.00
where the orthonormal property of the spherical harmonics as [ 03658 0.4838 -
J d0pYun 0p)Y:, (63) = See:Sy i utilized. 0406 08 10 12 1.4
Finally, we have the decoupled self-consistent linear rg

response equation for each orbital channel in d (> 3) dimen-
sions as

Qq [ p'dp
2 (2m)?
where only the measure of momentum integral is differ-

ent from two dimensions. We can unify both Eq. (A5) and
Eq. (A11) with the following simplified expression:

) ) 4
R’ =1 T GG R, (A11)

Ry =1 —/dPFK,PGj?RP, (A12)
where we introduce the momentum-frequency variable P =
(Ap, wy) with Ap = p — kg and Gg,z) = GpG_p. The integral
is defined as [dP=TY , [dAp. We have also defined

. . . -1 S
Ckp= #Fgl)} in two dimensions and ’;(2—752)51“,((4; in higher
dimensions to absorb the measure of momentum integral. The

¢ label in R" is omitted.

APPENDIX B: SUPERCONDUCTING PHASES OF THE
TWO-DIMENSIONAL ELECTRON GAS WITH G,W,
SELF-ENERGY RENORMALIZATION

We employed the precursory Cooper flow approach to in-
vestigate dynamic-screening-driven superconductivity in the
two-dimensional uniform electron gas (2D UEG) model,
parametrized by the Wigner-Seitz radius r, = /2/(krag),
where kg is the Fermi momentum and ag is the Bohr radius.
As shown in Fig. 1, we obtained a rich phase diagram for
several channels.

To verify the robustness of the pairing mechanism in the
2D UEQG, here we computed the same phase diagram using the
RPA interaction for I and the GoW, renormalized propagator
GR (referred to as RPA-GR), as shown in Fig. 4. A comparison
with the RPA-Gy results presented in the main text reveals
small shifts of the phase boundaries, but all key features of
the RPA-G, phase diagrams are preserved for RPA-GR, as fol-
lows: (i) The critical temperature 7 in all orbital channels is
suppressed as the density increases (r; decreases) and eventu-
ally becomes zero at the quantum transition point (QTP) (¥,
below which the 2D UEG no longer superconducts. (ii) On
the logarithmic scale, —1/In[7.(ry)/T¢] still demonstrates a
linear dependence on r, near the QTP, indicating that the BCS
transition temperature obeys 7,) = T.e=!/** with the cou-
pling parameter A, = (r; — r'¥))/c,, where ¢, is a constant.

FIG. 4. Phase diagram of superconducting states in the 2D UEG
within the RPA-GR framework showing s-, p-, d-, and f-wave
superconducting states. Each orbital channel features a QTP with
TO(ry — r¥) — 0. Critical values of ry for € as large as 10 are
presented in the inset.

(iii) The data for 1/ versus r, in the inset of Fig. 4 suggest that
superconductivity survives in the high-density limit for large
enough ¢. The qualitative agreement between the RPA-G( and
RPA-GR phase diagrams reflects the robustness of dynamic-
screening-driven superconductivity in the 2D UEG.

APPENDIX C: SUPERCONDUCTING PHASES OF THE
TWO-DIMENSIONAL ELECTRON GAS WITH
YUKAWA-TYPE INTERACTION

To investigate the impact of interaction range on the
dynamic-screening-driven superconductivity in two dimen-
sions, we consider the 2D electron gas with the Yukawa-type

interaction Vy(q) = 2mwe*/,/q* + q(z), also known as a stati-

cally screened Coulomb interaction, where gy is the screening
momentum. Specifically, we examine the behavior of the su-
perconducting state in the 2D electron gas at ry = 0.8 when
all channels exhibit superconductivity in the Coulomb system.
We performed systematic and extensive calculations of the
linear response function R for various channels ¢ and values
of go using RPA-G, and RPA-GR, respectively.

For each ¢ and ¢, we determined the transition tem-
perature T, by extrapolating the precursory Cooper flow to
1/Ry(T.) = 0. Subsequently, we used extrapolation to deter-
mine the critical values of gy (go.), where —1/1In[T.(qo)/Tr]
becomes zero and superconductivity vanishes. Finally, we
obtained the phase diagrams in the 2D electron gas with the
Yukawa-type interaction under the RPA-Gy [Fig. 5(a)] and
RPA-GR [Fig. 5(b)] approximations, respectively. The qual-
itative agreement between the two phase diagrams indicates
that the approximations are controlled.

As the range of interaction decreases (i.e., as gq increases),
the superconducting critical temperature 7, decreases for any
given channel ¢ and eventually drops to zero at the QTP
with the critical screening momentum ¢\). Since the rate of
the T, drop slows as £ increases, the dominant superconduct-
ing channel, determined from the crossing point of T.“)(go)
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FIG. 5. Ultralow-temperature phase diagram of a 2D electron gas with r, = 0.8 and a Yukawa-type interaction Vy(q) = 2we®/\/q? + g2,
calculated using the (a) RPA-G;, and (b) RPA-GR approximations. The superconducting temperature (7,) as a function of the screening
momentum (go) is represented by lines going through data points for different channels, with the colored shadow indicating the dominant

channel. For any given channel ¢, 7,”) decreases with increasing ¢ until it disappears at the critical value gy, .

and T“"V(q), increases as qo increases. Surprisingly, for
qo > 0.2kg, all of the orbital channels shown in Fig. 5 are
no longer superconducting. These observations suggest that
the long-range character of the Coulomb interaction is essen-
tial in dynamic-screening-driven superconductivity and that
decreasing the interaction range suppresses superconductiv-
ity in the 2D electron gas. Furthermore, for go — ¢, a
linear relation exists between the inverse logarithmic scale
—1/1In[T.(q0)/Tr] and gy, indicating that the superconductiv-
ity near the QTP can be described by the emergent BCS theory
with a coupling parameter 1}, o (goc — qo0)/kr < 1.

TABLE 1. The critical r, parameters for the 2D electron gas
under the RPA-G, and RPA-G® approximations for various orbital
channels ¢. In this table, rR"A=G0 and rRPA-¢" denote the critical r,
values for the disappearance of superconductivity in each channel un-
der RPA-G, and RPA-G® approximations, respectively. Meanwhile,
rRPA=C0 (¢ — ¢ 4 1) and rRPA=C" represent the critical r, values for

the transition from channel ¢ to £ 4+ 1 under the respective approxi-
mations.

£ rRPA=Go rRPA-GY PRPA=Go(p 5 g+ 1) rRPA-G*
0 0.6339(12) 0.8041(25) 1.156(3) 1.391(16)
1 0.4196(10) 0.4838(20) 0.8484(16) 0.9547(16)
2 0.3287(10) 0.3658(17) 0.6234(16) 0.6891(16)
3 0.2806(10)  0.3067(11) 0.5359(16) 0.5891(16)
4 0.2479(6) 0.2678(11) 0.4672(16) 0.5078(16)
5 0.2244(7) 0.2405(18) 0.4234(16) 0.4578(16)
6 0.2062(5) 0.2198(20) 0.3859(16) 0.416(3)

7 0.1918(8) 0.2033(10) 0.3578(16) 0.3828(16)
8 0.1798(5) 0.1898(10) 0.3359(16) 0.3578(16)
9 0.1698(4) 0.1787(10) 0.3141(16) 0.331(6)
10 0.1611(5)  0.1692(14)

(£)

APPENDIX D: DATA TABLE OF QUANTUM
TRANSITION POINTS

The results for quantum transition points ) and left
boundaries of the dominant superconducting channel r, (£ —
£ 4 1) for various orbital channels £ are given in Table I. The
data for dimensionless critical screening momentum q((fc) at

ry = 0.8 are given in Table II.

TABLE II. Critical screening momentum ¢q. (in units of the
Fermi momentum kg) of the 2D electron gas with a Yukawa-type
interaction under the RPA-G, and RPA-G® approximations at r,
0.4 and 0.8. Note that s-wave superconductivity is absent in the 2D
electron gas with RPA-G® at r;, = 0.8 and ¢y = 0.

r, Y (l)(fA—Go ng—GR
2 0.00674(15) 0.00152(7)
3 0.0193(2) 0.0110(3)
4 0.0313(3) 0.0216(5)
5 0.0409(4) 0.0306(7)
0.4 6 0.0490(5) 0.0382(8)
7 0.0557(6) 0.0445(9)
8 0.0615(6) 0.0500(10)
9 0.0666(6) 0.0546(11)
10 0.0713(7) 0.0588(13)
0 0.0205(5)
1 0.1190(11) 0.0748(7)
2 0.1936(13) 0.1446(18)
0.8 3 0.2270(11) 0.177(6)
4 0.263(4) 0.205(5)
5 0.299(7) 0.228(9)
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APPENDIX E: DATA TABLE OF SUPERCONDUCTING TEMPERATURES
OF THE TWO-DIMENSIONAL ELECTRON GAS

All of the superconducting transition temperature 7" data are given in Table III with RPA-G, and Table IV with RPA-G*.

TABLE III. Superconducting temperatures TC“) (in units of the Fermi temperature 7¢) for different r; from RPA-Gy. The “—" symbol
means that the 7, value is lower than the limit of double-precision floating-point number resolution.
7y TC(O) Tc(l) TC(Z) TC(3)
0.300000 0 0 0 1.406 x 1077
0.312500 0 0 0 4.072 x 107147
0.315625 0 0 0 2.579 x 107134
0.318750 0 0 0 1.469 x 107123
0.325000 0 0 0 1.695 x 10106
0.331250 0 0 1.4249 x 1073
0.334375 0 0 3.2153 x 107%8
0.337500 0 0 1.9099 x 1083
0.350000 0 0 1.280 x 10718 1.3299 x 10768
0.356250 0 0 2.575 x 107147 5.2761 x 10793
0.359375 0 0 1.572 x 107132 1.5520 x 10=%
0.362500 0 0 1.927 x 107120 2.9667 x 1078
0.375000 0 0 2.9758 x 10738 1.2427 x 107>
0.381250 0 0 7.3936 x 10778 1.5765 x 10=%7
0.384375 0 0 1.5728 x 10773 4.0684 x 10746
0.387500 0 0 1.1665 x 107% 8.6837 x 10™%
0.400000 0 0 1.4701 x 1077 3.6303 x 10740
0.412500 0 0 4.6208 x 107% 2.0135 x 1073
0.418750 0 0 1.0688 x 107% 8.3380 x 10~%
0.421875 0 3.4799 x 10~* 47395 x 1073
0.425000 0 9.0343x 10+ 2.4979 x 1073
0.450000 0 2.007 x 107112 43625 x 1073 1.6146 x 10728
0.462500 0 1.2949 x 10~7° 5.7451 x 1073 1.2998 x 10726
0.465625 0 3.2625 x 10774 2.8157 x 1073 3.5458 x 10726
0.468750 0 1.6743 x 10~ 1.2848 x 107% 9.3524x 10726
0.475000 0 1.0989 x 107°! 2.1986 x 10728 5.9198 x 1072
0.500000 0 1.4072 x 10742 2.0830 x 107%* 2.8734 x 1072
0.525000 0 1.1742 x 10732 2.2786 x 1072 4.9251 x 10720
0.531250 0 7.2448 x 1073! 9.7356x 102! 1.4711 x 1071
0.534375 0 4.8022 x 1073 1.9460 x 10720 2.4908 x 1071
0.537500 0 2.8769 x 1072 3.8086 x 10720 4.1629 x 1071
0.550000 0 1.5595 x 10726 4.6101 x 1071 2.8777 x 10718
0.600000 0 2.0370 x 107 9.6175 x 10716 1.4137 x 10713
0.618750 0 1.1135 x 107V 8.4689 x 10713 8.9310 x 101
0.621875 0 2.0163 x 1077 1.1839 x 10714 1.1902 x 10714
0.625000 0 3.5848 x 107V 1.6431 x 10714 1.5776 x 10714
0.650000 6.976 x 107162 2.0240 x 10713 1.7896 x 10713 1.2623 x 10713
0.700000 2.0992 x 10~%7 7.2375 x 1071 7.9388 x 10712 3.7862 x 10712
0.750000 1.3675 x 10721 4.2496 x 10711 1.4054 x 10710 5.4233 x 10711
0.800000 2.1308 x 10713 8.3996 x 10710 1.3343 x 107%° 4.6029 x 10710
0.825000 1.5734 x 10713 2.8191 x 107 3.4548 x 107% 1.1534 x 107%
0.837500 9.0592 x 10713 4.8863 x 107% 5.3631 x 107% 1.7689 x 107%
0.843750 2.0085 x 1012 6.3537 x 107% 6.6275 x 1079 2.1747 x 1079
0.846875 2.9382 x 10712 7.2240 x 1079 7.3530 x 107% 2.4070 x 107%
0.850000 42506 x 10712 8.1979 x 107%° 8.1475 x 107 2.6612 x 107%
0.900000 4.7595 x 10710 4.9371 x 1079 3.5988 x 1098 1.1516 x 1079
0.950000 1.1847 x 10798 2.1071 x 1077 1.2450 x 107%7 3.9840 x 10798
1.000000 1.1952 x 1077 6.8526 x 1077 3.5015 x 1077 1.1361 x 107%7
1.125000 5.1861 x 107% 6.5649 x 100 2.7484 x 1070 9.4091 x 10~
1.156250 1.0027 x 107% 1.0202 x 107% 4.1536 x 107% 1.4455 x 107%
1.187500 1.8013 x 107% 1.5295 x 107% 6.0903 x 107% 2.1568 x 107%
1.218750 3.0440 x 1079 2.2195 x 107% 8.6879 x 107% 3.1285 x 1079
1.250000 4.8980 x 1079 3.1356 x 107% 1.2097 x 107% 4.4263 x 107%
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TABLE IV. Superconducting temperatures 7,) (in units of the Fermi temperature 7i) for different r, from RPA-G®. The symbol “—”
indicates that the value of 7, is too small to be represented by a double-precision floating-point number.

Ty TC(0> Tc(l) TC(Z) TC(S)
0.337500 0 0 0 1.848 x 10~248
0.350000 0 0 0 2.831 x 107181
0.356250 0 0 0 5.646 x 107160
0.359375 0 0 0 3.665 x 1015!
0.362500 0 0 0 2.615 x 107143
0.375000 0 0 6.452 x 107119
0.381250 0 0 1.003 x 10710
0.384375 0 0 1.130 x 107105
0.387500 0 0 1.366 x 107313 6.269 x 107102
0.400000 0 0 2412 x 10727 6.6615 x 1070
0.412500 0 0 3.464 x 107153 7.7736 x 10780
0.418750 0 0 3.555 x 107136 7.7817 x 10776
0.425000 0 0 1.111 x 107122 2.9707 x 10772
0.450000 0 0 1.8986 x 10788 4.9793 x 107!
0.456250 0 0 8.2578 x 1078 8.3200 x 10~
0.459375 0 0 2.8627 x 10780 9.1969 x 10~
0.462500 0 0 6.8269 x 10778 9.2354 x 1057
0.475000 0 0 9.8906 x 1077 3.9974 x 1053
0.500000 0 4.3555 x 10758 2.2543 x 1079
0.506250 0 8.491 x 10282 1.2004 x 10755 5.0364 x 10746
0.509375 0 9.489 x 10724 1.4192 x 10754 1.9576 x 1074
0.512500 0 9.849 x 107222 1.5107 x 10753 7.3012 x 1074
0.525000 0 1.667 x 107157 7.6809 x 1070 9.6863 x 10~4
0.550000 0 3.180 x 107100 6.1712 x 107+ 3.7644 x 107%
0.575000 0 3.8725 x 107 1.9191 x 1073 3.1175 x 10736
0.587500 0 8.6714 x 1079 1.4080 x 10737 5.7148 x 107%
0.590625 0 5.2670 x 10~ 3.8236 x 107 1.1358 x 10734
0.593750 0 2.5354 x 10752 1.0101 x 10736 2.2238 x 10734
0.600000 0 2.6681 x 1075 5.8416 x 10736 7.2998 x 10734
0.650000 0 7.7443 x 1074 1.0118 x 1073° 4.8374 x 10730
0.675000 0 7.4252 x 10738 9.2698 x 1072 1.5266 x 10728
0.687500 0 7.9884 x 10736 6.8043 x 10728 7.2234 x 10728
0.690625 0 2.3548 x 107 1.0932 x 10727 1.0485 x 10727
0.693750 0 6.7210 x 1073 1.7405 x 1077 1.5126 x 10777
0.700000 0 47454 x 1073 4.0702 x 10727 2.9090 x 1077
0.750000 0 1.5585 x 10728 2.0370 x 107 45382 x 1072
0.800000 0 8.5340 x 102 2.2287 x 1072 2.3030 x 102
0.850000 9.797 x 10120 46114 x 10722 9.6861 x 102! 6.0225 x 10722
0.900000 5.7897 x 1078 5.2413 x 10720 1.9609 x 10~ 8.5010 x 10~
0.950000 3.8577 x 107% 22112 % 10718 2.4495 x 10718 8.2838 x 10720
0.953125 22514 x 10738 27177 x 10~'8 2.8234 x 1018 9.4232 x 102
0.956250 1.2216 x 10737 3.3309 x 108 3.2494 x 108 1.0706 x 107"
0.962500 2.9409 x 1036 4.9637 x 10718 42845 x 10718 1.3767 x 107"
0.975000 8.4522 x 10~ 1.0689 x 10~"7 7.3212 x 10718 2.2440 x 107
1.000000 9.0407 x 10730 43732 x 10717 1.9723 x 1077 5.5433 x 107"
1.250000 1.1905 x 10~ 3.8819 x 1013 1.9591 x 10~ 3.7003 x 1016
1.375000 48188 x 10712 5.2926 x 10712 1.6566 x 10713 2.9358 x 10715
1.390625 8.5285 x 10712 6.9704 x 1072 2.0832 x 10713 3.6727 x 10715
1.406250 14732 x 10~ 9.0872 x 1072 2.6001 x 10~13 4.5643 x 10713
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